KR101198307B1 - manufacturing mathod of CNT micro-ball, the CNT micro-ball thereby and electrode using the CNT micro-ball - Google Patents

manufacturing mathod of CNT micro-ball, the CNT micro-ball thereby and electrode using the CNT micro-ball Download PDF

Info

Publication number
KR101198307B1
KR101198307B1 KR1020090076347A KR20090076347A KR101198307B1 KR 101198307 B1 KR101198307 B1 KR 101198307B1 KR 1020090076347 A KR1020090076347 A KR 1020090076347A KR 20090076347 A KR20090076347 A KR 20090076347A KR 101198307 B1 KR101198307 B1 KR 101198307B1
Authority
KR
South Korea
Prior art keywords
carbon nanotube
microball
electrode
manufacturing
microballs
Prior art date
Application number
KR1020090076347A
Other languages
Korean (ko)
Other versions
KR20110018735A (en
Inventor
차승일
이동윤
서선희
구보근
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Priority to KR1020090076347A priority Critical patent/KR101198307B1/en
Priority to PCT/KR2010/004461 priority patent/WO2011021773A2/en
Publication of KR20110018735A publication Critical patent/KR20110018735A/en
Application granted granted Critical
Publication of KR101198307B1 publication Critical patent/KR101198307B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/10Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • H10K30/821Transparent electrodes, e.g. indium tin oxide [ITO] electrodes comprising carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/22Electronic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/28Solid content in solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

본 발명은 탄소나노튜브를 이용한 마이크로볼을 제조하고 이로부터 전극을 제조하기 위한 방법에 관한 것으로서, 탄소나노튜브와 용매 및 바인더를 혼합하여 탄소나노튜브 용액을 제조하는 제1단계와; 상기 탄소나노튜브 용액을 초음파 분산시켜 탄소나노튜브 분산액을 제조하는 제2단계와; 상기 탄소나노튜브 분산액을 분무 건조하여 탄소나노튜브 마이크로볼을 제조하는 제3단계;를 포함하여 이루어지는 것을 특징으로 하는 탄소나노튜브 마이크로볼의 제조방법, 이에 의해 제조된 탄소나노튜브 마이크로볼 및 상기 탄소나노튜브 마이크로볼을 이용한 투명 전기화학 전극의 제조방법을 기술적 요지로 한다. 이에 따라 탄소나노튜브 분산액을 분무 건조하여 마이크로볼로 제작하고, 이를 기판 상면에 코팅하여 전극으로 제작하여 탄소나노튜브의 분산도를 향상시키고, 전극의 투명도 및 기타 전기 화학적 특성의 조절이 용이한 이점이 있다.The present invention relates to a method for manufacturing a microball using carbon nanotubes and to prepare an electrode therefrom, comprising: a first step of preparing a carbon nanotube solution by mixing a carbon nanotube, a solvent, and a binder; A second step of producing a carbon nanotube dispersion by ultrasonic dispersion of the carbon nanotube solution; Method for producing a carbon nanotube microball, characterized in that the carbon nanotube microball prepared by the spray drying the carbon nanotube dispersion liquid to produce a carbon nanotube microball; and the carbon The manufacturing method of the transparent electrochemical electrode using a nanotube microball is a technical subject matter. Accordingly, the carbon nanotube dispersion is spray dried to produce a microball, and coated on the upper surface of the substrate to form an electrode to improve the dispersion of carbon nanotubes, and to easily control the transparency and other electrochemical properties of the electrode. There is this.

탄소나노튜브 마이크로볼 분무건조 투명 페이스트 전극 Carbon Nanotube Microball Spray Drying Transparent Paste Electrode

Description

탄소나노튜브 마이크로볼의 제조방법, 이에 의해 제조된 탄소나노튜브 마이크로볼 및 이를 이용한 전극의 제조방법{manufacturing mathod of CNT micro-ball, the CNT micro-ball thereby and electrode using the CNT micro-ball}Manufacturing method of carbon nanotube microball, carbon nanotube microball manufactured by the same, and method of manufacturing electrode using same {manufacturing mathod of CNT micro-ball, the CNT micro-ball thereby and electrode using the CNT micro-ball}

본 발명은 탄소나노튜브를 이용한 마이크로볼을 제조하고 이로부터 전극을 제조하기 위한 방법에 관한 것으로서, 탄소나노튜브 분산액을 분무 건조하여 마이크로볼로 제작하고, 이를 기판 상면에 코팅하여 전극으로 제작하여 탄소나노튜브의 분산도를 향상시키고, 전극의 투명도의 조절이 용이한 탄소나노튜브 마이크로볼의 제조방법, 이에 의해 제조된 탄소나노튜브 마이크로볼 및 이를 이용한 전극의 제조방법에 관한 것이다.The present invention relates to a method for producing a microball using carbon nanotubes and to produce an electrode therefrom, by spray-drying a carbon nanotube dispersion is produced as a microball, and coated on the upper surface of the substrate to produce an electrode carbon The present invention relates to a method for manufacturing a carbon nanotube microball, to improve the dispersion of nanotubes and to easily control the transparency of an electrode, to a carbon nanotube microball manufactured thereby, and to a method for manufacturing an electrode using the same.

일반적으로, 탄소나노튜브는 금속에 버금가는 전기전도도를 가지고 있으며, 비표면적이 높고 화학적 기계적으로 안정하며, 전기화학 반응용 전극으로 사용되는 경우 촉매 역할을 수행하기 때문에 염료감응형 태양전지의 상대전극으로 기존에 사용되던 고가의 백금 전극을 대체할 수 있을 것으로 기대되고 있다. 또한 기타 전지, 슈퍼커패시터 등에 이용되는 전기화학 전극으로 활용이 가능하다.In general, carbon nanotubes have an electrical conductivity comparable to that of metal, have a high specific surface area, are chemically and mechanically stable, and act as a catalyst when used as an electrode for electrochemical reactions. As such, it is expected to be able to replace the expensive platinum electrode used previously. In addition, it can be used as an electrochemical electrode used in other batteries, supercapacitors, and the like.

상기 염료감응형 태양전지의 경우를 고려하면, 염료감응형 태양전지는 태양 광을 이용하여 전자가 여기되는 염료가 여기된 전자를 흡수하여 전극으로 이동시키는 투명한 다공성 n형 반도체 산화물막 표면에 흡착되어 있으며, 전해질 층에서 여기된 전자를 n형 반도체 산화물 층으로 흡수당한 염료에 전자를 산화환원 반응으로 공급해주는 이온이 상대전극에서 전극반응을 통해 환원되어 계속적으로 태양광 에너지를 전기에너지로 변환하게 된다. Considering the case of the dye-sensitized solar cell, the dye-sensitized solar cell is absorbed on the surface of the transparent porous n-type semiconductor oxide film that absorbs the electrons excited by the dye electrons are moved to the electrode by using sunlight In addition, ions that supply electrons to the dye absorbed by the n-type semiconductor oxide layer by the redox reaction in the electrolyte layer are reduced through the electrode reaction at the counter electrode to continuously convert solar energy into electrical energy. .

이때 상대전극은 촉매 특성을 유지하며 전기전도도가 높아 전해질 내 이온의 환원 반응 속도를 높이고 전자의 전달에 있어서 손실을 최소한으로 유지하는 것이 중요하다. 이러한 요구사항에 부합되는 소재로 종래에는 백금이나 팔라듐과 같은 귀금속이 사용되고 있으나, 고가이거나 매장량에 한계가 있으며, 장시간 사용시 강한 산성의 전해질 내에서 화학적 안정성에 의문이 제기되고 있다.In this case, it is important that the counter electrode maintains catalytic properties, has high electrical conductivity, speeds up the reduction reaction of ions in the electrolyte, and maintains a minimum loss of electrons. Conventionally, precious metals such as platinum and palladium are used as materials that meet these requirements, but they are expensive or have limited reserves, and have been questioned about their chemical stability in strong acidic electrolytes when used for a long time.

이와 같은 문제를 해결하기 위하여 비교적 가격이 저렴하고 전해질 내에서 화학적 안정성이 우수한 탄소나노튜브를 상대전극으로 활용하는 기술이 개발되었다. 탄소나노튜브 상대전극은 탄소나노튜브를 고분자 바인더와 혼합하여 제조된 페이스트(paste)를 스크린 프린팅 및 스프레이 공정을 이용하여 기판에 도포하는 방식으로 제조되며, 열처리를 통하여 바인더를 제거하거나 바인더의 접착 능력을 변화시키는 후공정이 포함되어 있다.In order to solve such a problem, a technology of utilizing carbon nanotubes as a counter electrode having relatively low cost and excellent chemical stability in an electrolyte has been developed. The carbon nanotube counter electrode is manufactured by applying a paste prepared by mixing carbon nanotubes with a polymer binder to a substrate by using a screen printing and spraying process, and removing the binder through heat treatment or bonding ability of the binder. A post-process to change the temperature is included.

특히 탄소나노튜브를 이용하여 투명전도성 필름을 제작할 경우 염료감응형 태양전지 뿐만 아니라 여러 투명소자의 전극에 널리 활용될 수 있는데, 이러한 탄소나노튜브는 일반적으로 길이 방향으로 길게 형성되어 용매 내 분산이 균일하게 이루어지지 않을 뿐만 아니라, 이를 이용하여 제작된 투명전도성 필름은 탄소나노 튜브의 함량을 조절하거나 탄소나노튜브의 분산도를 향상시키거나 용매의 함량 등을 달리하여 투명도를 조절하여 왔으나, 투명도의 조절이 쉽지 않은 단점이 있었다.In particular, when manufacturing a transparent conductive film using carbon nanotubes, it can be widely used not only for dye-sensitized solar cells but also for electrodes of various transparent devices. Such carbon nanotubes are generally formed long in the longitudinal direction so that the dispersion in the solvent is uniform. In addition, the transparent conductive film produced by using the same has been used to control the transparency of carbon nanotubes by adjusting the content of carbon nanotubes, improving the dispersibility of carbon nanotubes, or by changing the content of solvents. This was not an easy drawback.

본 발명은 상기 문제점을 해결하기 위한 것으로, 탄소나노튜브 분산액을 분무 건조하여 마이크로볼로 제작하고, 이를 기판 상면에 코팅하여 전극으로 제작하여 탄소나노튜브의 분산도를 향상시키고, 전극의 투명도의 조절이 용이한 탄소나노튜브 마이크로볼의 제조방법, 이에 의해 제조된 탄소나노튜브 마이크로볼 및 이를 이용한 전극의 제조방법의 제공을 그 목적으로 한다.The present invention is to solve the above problems, by spray-drying the carbon nanotube dispersion liquid is produced as a microball, and coated on the upper surface of the substrate to produce an electrode to improve the dispersion of carbon nanotubes, the control of the transparency of the electrode An object of the present invention is to provide a method for producing a carbon nanotube microball, which is easily manufactured, and a method for producing an electrode using the same.

상기 목적을 달성하기 위해 본 발명은, 탄소나노튜브와 용매 및 바인더를 혼합하여 탄소나노튜브 용액을 제조하는 제1단계와; 상기 탄소나노튜브 용액을 초음파 분산시켜 탄소나노튜브 분산액을 제조하는 제2단계와; 상기 탄소나노튜브 분산액을 분무 건조하여 탄소나노튜브 마이크로볼을 제조하는 제3단계;를 포함하여 이루어지는 것을 특징으로 하는 탄소나노튜브 마이크로볼의 제조방법 및 이에 의해 제조된 탄소나노튜브 마이크로볼을 기술적 요지로 한다.The present invention to achieve the above object, the first step of preparing a carbon nanotube solution by mixing a carbon nanotube, a solvent and a binder; A second step of producing a carbon nanotube dispersion by ultrasonic dispersion of the carbon nanotube solution; The third step of manufacturing the carbon nanotube microball by spray drying the carbon nanotube dispersion; and a carbon nanotube microball manufactured by the method comprising the Shall be.

또한, 상기 탄소나노튜브 용액을 초음파 분산하기 전에 볼 밀링을 수행하는 것이 바람직하다.In addition, it is preferable to perform ball milling before ultrasonically dispersing the carbon nanotube solution.

또한, 상기 용매는, 물, 알코올, 벤젠, 톨루엔, 피리딘, 아세톤, 테트라하이드로퓨란(tetrahydrofuran, THF) 및 디메틸폼아마이드(dimethylformamide, DMF) 중 어느 하나 또는 둘 이상을 혼합한 혼합물인 것이 바람직하며, 상기 바인더는, 카복시메틸셀룰로오즈(carboxymethylcellulose, CMC), 폴리비닐알콜(polyvinylalcohol, PVA), 폴리에틸렌옥사이드(polyethyleneoxide, PEO), 에틸셀룰로오스(ethylcellulose, EC) 및 폴리비닐부틸랄(polyvinylbutyral, PVB) 중에 어느 하나인 것이 바람직하다.In addition, the solvent is preferably a mixture of any one or two or more of water, alcohol, benzene, toluene, pyridine, acetone, tetrahydrofuran (THF) and dimethylformamide (DMF), The binder is any one of carboxymethylcellulose (CMC), polyvinyl alcohol (polyvinylalcohol, PVA), polyethylene oxide (PEO), ethyl cellulose (ethylcellulose, EC) and polyvinyl butyral (PVB). Is preferably.

또한, 상기 탄소나노튜브는 산용액에 의한 산처리 후 사용되는 것이 바람직 하다.In addition, the carbon nanotubes are preferably used after the acid treatment with an acid solution.

여기에서, 상기 탄소나노튜브 마이크로볼은 직경 0.5㎛에서 100㎛ 범위의 구형 또는 입자 형상인 것이 바람직하다.Herein, the carbon nanotube microballs are preferably spherical or particulate in the range of 0.5 μm to 100 μm in diameter.

또한, 본 발명은 상기의 제조방법에 의해 제조된 탄소나노튜브 마이크로볼을 용매에 분산시켜 페이스트 제조 후 기판 상면에 코팅하여 건조 및 열처리하여 제조되는 것을 특징으로 하는 탄소나노튜브 마이크로볼을 이용한 전극의 제조방법을 또 다른 기술적 요지로 한다.In addition, the present invention is a carbon nanotube microball prepared by the above manufacturing method by dispersing in a solvent, the paste is produced by coating on the upper surface of the substrate after drying and heat treatment of the electrode using a carbon nanotube microball The manufacturing method is another technical point.

또한, 상기 페이스트는 상기 탄소나노튜브 마이크로볼에 용매 및 바인더를 혼합하여 제조되는 것이 바람직하다.In addition, the paste is preferably prepared by mixing a solvent and a binder in the carbon nanotube microball.

또한, 본 발명은 상기의 탄소나노튜브 마이크로볼을 용매에 분산시켜 기판 상면에 스프레이 후 건조 및 열처리하여 제조되는 것을 특징으로 하는 탄소나노튜브 마이크로볼을 이용한 전극의 제조방법을 또 다른 기술적 요지로 한다.In another aspect, the present invention provides a method for producing an electrode using a carbon nanotube microball, characterized in that the carbon nanotube microball is dispersed in a solvent and then sprayed and dried on a substrate and heat treated. .

여기에서 상기 기판은 전기전도성 기판을 사용하여 상기 전극이 전기화학용 또는 광전기화학용 전극인 것이 바람직하다.Herein, the substrate is preferably an electrochemical or photoelectrochemical electrode using an electroconductive substrate.

상기 과제 해결 수단에 의해 본 발명은, 탄소나노튜브 분산액을 분무 건조하여 마이크로볼로 제작하고, 이를 기판 상면에 코팅하여 전극으로 제작하여 탄소나노튜브의 분산도를 향상시키고, 전극의 투명도 및 기타 전기 화학적 특성의 조절이 용이한 효과가 있다.According to the present invention, the present invention, by spray-drying the carbon nanotube dispersion liquid is produced as a microball, coated on the upper surface of the substrate to produce an electrode to improve the dispersion of carbon nanotubes, the transparency of the electrode and other electrical It is easy to control chemical properties.

또한, 본 발명에 따른 탄소나노튜브 마이크로볼은 도전성볼로써 국부적 전기 전도가 필요한 곳에 활용할 수 있는 등 다양한 분야에 적용할 수 있을 것으로 기대되며, 디스플레이 및 태양전지 소자, 투명전자파 차폐재료, 투명 전지, 슈퍼커패시터 등의 분야에 대한 활용도가 증가될 것으로 기대되고 있다.In addition, the carbon nanotube microball according to the present invention is expected to be applicable to a variety of fields, such as can be used as a conductive ball where local electrical conduction is required, display and solar cell device, transparent electromagnetic shielding material, transparent battery, It is expected that the utilization of such fields as supercapacitors will increase.

본 발명은 탄소나노튜브를 이용하여 마이크로볼을 제조하기 위한 것으로, 탄소나노튜브와 용매 및 바인더를 혼합하여 탄소나노튜브 용액을 제조하고, 상기 탄소나노튜브 용액을 초음파 분산시켜 제조된 탄소나노튜브 분산액을 분무 건조하여 탄소나노튜브 마이크로볼을 제조하는 것이다. 본 발명에서 제조된 상기 탄소나노튜브 마이크로볼은 직경 0.5㎛에서 100㎛ 범위의 구형 또는 입자 형상을 띈다.The present invention is for producing a microball using carbon nanotubes, a carbon nanotube solution is prepared by mixing a carbon nanotube, a solvent and a binder, and a carbon nanotube dispersion prepared by ultrasonic dispersion of the carbon nanotube solution. Spray drying to prepare a carbon nanotube microball. The carbon nanotube microball prepared in the present invention has a spherical or particle shape ranging from 0.5 μm to 100 μm in diameter.

또한, 상기 탄소나노튜브 마이크로볼을 이용하여 염료감응형 태양전지의 상대전극이나 투명 전지, 슈퍼캐패시터 등에 이용되는 전기화학 전극 또는 광전기화학 전극으로 활용할 수 있도록 이를 도전성 기판 위에 코팅하는 것이다.In addition, the carbon nanotube microball is coated on a conductive substrate to be used as an electrochemical electrode or photoelectrochemical electrode used in a counter electrode, a transparent battery, a supercapacitor, or the like of a dye-sensitized solar cell.

이하에서는 첨부된 도면을 참조하여 본 발명에 따른 탄소나노튜브 마이크로볼의 제조방법에 대해 설명하고자 한다. 도 1은 탄소나노튜브 마이크로볼의 제조방법에 대한 블럭도이고, 도 2는 탄소나노튜브 마이크로볼을 이용한 전극의 제조방법에 대한 블럭도이다.Hereinafter, a method of manufacturing a carbon nanotube microball according to the present invention will be described with reference to the accompanying drawings. 1 is a block diagram of a method of manufacturing a carbon nanotube microball, Figure 2 is a block diagram of a method of manufacturing an electrode using a carbon nanotube microball.

먼저, 탄소나노튜브와 용매 및 바인더를 혼합하여 탄소나노튜브 용액을 제조한다.First, a carbon nanotube solution is prepared by mixing a carbon nanotube, a solvent, and a binder.

상기 탄소나노튜브는 분리 정제된 것을 사용하거나, 그렇지 않은 경우에는 질산, 염산, 황산이나 이들의 혼합액들을 이용하여 산처리를 수행한 후 사용한다. 상기 용매로서는 물, 알코올, 벤젠, 톨루엔, 피리딘, 아세톤, 테트라하이드로퓨란 (tetrahydrofuran, THF) 및 디메틸폼아마이드(dimethylformamide, DMF) 중 어느 하나 또는 둘 이상을 혼합한 혼합물을 사용한다. 그리고, 상기 바인더는 용매에 따라 사용되며, 카복시메틸셀룰로오즈(carboxymethylcellulose, CMC), 폴리비닐알콜(polyvinylalcohol, PVA), 폴리에틸렌옥사이드(polyethyleneoxide, PEO), 에틸셀룰로오스(ethylcellulose, EC) 및 폴리비닐부틸랄(polyvinylbutyral, PVB) 중에 어느 하나를 사용한다. 특히 물을 용매로 사용한 경우에는 카복시메틸셀룰로오즈(carboxymethylcellulose, CMC), 폴리비닐알콜(polyvinylalcohol, PVA), 폴리에틸렌옥사이드(polyethyleneoxide, PEO)와 같은 바인더가 사용되며, 에탄올과 같은 유계용매를 사용한 경우에는 에틸셀룰로오스(ethylcellulose, EC), 폴리비닐부틸랄(polyvinylbutyral, PVB)를 사용한다.The carbon nanotubes may be separated and purified, or otherwise used after acid treatment using nitric acid, hydrochloric acid, sulfuric acid, or a mixture thereof. As the solvent, a mixture of any one or two or more of water, alcohol, benzene, toluene, pyridine, acetone, tetrahydrofuran (THF) and dimethylformamide (DMF) is used. In addition, the binder is used according to the solvent, carboxymethylcellulose (carboxymethylcellulose, CMC), polyvinyl alcohol (polyvinylalcohol, PVA), polyethylene oxide (PEO), ethyl cellulose (ethylcellulose, EC) and polyvinyl butyral ( polyvinylbutyral (PVB). In particular, when water is used as a solvent, binders such as carboxymethylcellulose (CMC), polyvinylalcohol (PVA) and polyethylene oxide (PEO) are used. Cellulose (ethylcellulose, EC), polyvinyl butyral (PVB) is used.

그 다음, 상기 탄소나노튜브 용액을 초음파를 이용하여 분산시켜 탄소나노튜브 분산액을 제조하고, 상기 탄소나노튜브 분산액을 분무 건조하여 탄소나노튜브 마이크로볼을 제조한다.Next, the carbon nanotube solution is dispersed using ultrasonic waves to prepare a carbon nanotube dispersion, and the carbon nanotube dispersion is spray dried to prepare a carbon nanotube microball.

상기 탄소나노튜브 분산액을 제조하기 전에 탄소나노튜브가 산처리 등 다른 분산 촉진 처리가 되지 않은 경우에는 볼밀링(ball milling) 공정이 필요하게 되며, 합성된 상태의 탄소나노튜브를 사용하는 경우에는 볼밀링을 실시하게 된다. 상기 볼밀링은 볼/용액 무게비를 3:1~20:1, 용기 크기에 따라 다르지만 60rpm 이상의 속도에서 이루어진다.If the carbon nanotubes are not subjected to other dispersion-promoting treatments such as acid treatment before the carbon nanotube dispersion is prepared, a ball milling process is required, and in the case of using the synthesized carbon nanotubes, Milling will be performed. The ball milling is a ball / solution weight ratio of 3: 1 to 20: 1, depending on the vessel size but is made at a speed of 60rpm or more.

그리고, 상기 탄소나노튜브 분산액을 분무 건조하여 탄소나노튜브 마이크로볼을 제조하며, 이렇게 제조된 탄소나노튜브 마이크로볼은 투명도 및 전기전도도를 고려하여 적정량 칭량하여 다시 용매에 분산시켜 페이스트 형태를 제조한 후 닥터블레이드법이나 스크린 프린팅법 등에 의해 기판 상에 코팅하거나, 이를 기판 상에 스프레이하여 건조 및 열처리 과정을 거쳐 탄소나노튜브 마이크로볼로 이루어진 도전성 전극을 제조하게 된다.The carbon nanotube dispersion is spray-dried to produce carbon nanotube microballs, and the carbon nanotube microballs thus prepared are weighed in an appropriate amount in consideration of transparency and electrical conductivity, and dispersed in a solvent to prepare a paste form. Coating on the substrate by a doctor blade method or a screen printing method, or sprayed on the substrate to dry and heat treatment to produce a conductive electrode made of carbon nanotube microballs.

이렇게 제조된 전극은 전도성기판을 사용하여 각종 전기화학용 또는 광전기 화학용 전극용으로 사용되게 된다.The electrode thus manufactured is used for various electrochemical or photoelectrochemical electrodes using a conductive substrate.

이하에서는 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 상세히 설명하고자 한다.Hereinafter, with reference to the accompanying drawings, preferred embodiments of the present invention will be described in detail.

먼저, 탄소나노튜브는 10시간 동안 황산을 이용하여 산처리가 수행된다(Acid Treated, AT).First, carbon nanotubes are subjected to acid treatment using sulfuric acid for 10 hours (Acid Treated, AT).

그리고, 상기 탄소나노튜브 100mg, 바인더로 CMC(카복시메틸셀룰로오즈) 100mg, 물 100ml, 또는 탄소나노튜브 200mg, 바인더로 CMC(카복시메틸셀룰로오즈) 20mg, 물 100ml, 또는 탄소나노튜브 100mg, 바인더로 CMC(카복시메틸셀룰로오즈) 10mg, 물 100ml을 혼합하여 탄소나노튜브 용액을 제조하였다. 여기에서 물 대신에 에탄올을 사용하는 경우에는 바인더로 EC(에틸셀룰로오스)를 사용한다.The carbon nanotube 100 mg, CMC (carboxymethyl cellulose) 100 mg, 100 ml of water, or carbon nanotube 200 mg, CMC (carboxymethyl cellulose) 20 mg, 100 ml of water, or 100 mg of carbon nanotubes, CMC (binder) 10 mg of carboxymethyl cellulose) and 100 ml of water were mixed to prepare a carbon nanotube solution. In this case, when ethanol is used instead of water, EC (ethyl cellulose) is used as the binder.

그리고, 혼(horn) 타입의 초음파 분산기로 20분간 초음파 분산을 실시하여 탄소나노튜브 분산액을 제조한다.Then, by dispersing ultrasonic waves for 20 minutes with a horn type ultrasonic disperser to prepare a carbon nanotube dispersion.

상기 탄소나노튜브 분산액을 이용한 분무 건조는 분무 압력 130kPa, 블로잉(blowing) 속도 0.13m3/min, 입구 온도(inlet temp.) 약 200℃, 출구 온도(outlet temp.) 약 60℃에서 수행된다. 이렇게 제조된 탄소나노튜브 마이크로볼을 도 3에 나타내었다. 도 3의 사진은 탄소나노튜브 또는 탄소나노튜브 200mg, 바인더로 CMC(카복시메틸셀룰로오즈) 20mg, 물 100ml의 실시예에 대한 것으로, 직경 0.5㎛에서 100㎛ 범위의 구형 또는 입자 형상을 띄었다.Spray drying using the carbon nanotube dispersion is performed at a spray pressure of 130 kPa, a blowing speed of 0.13 m 3 / min, an inlet temp. Of about 200 ° C., and an outlet temp. Of about 60 ° C. The carbon nanotube microball thus prepared is shown in FIG. 3. The photo of FIG. 3 is about 200 mg of carbon nanotubes or carbon nanotubes, 20 mg of CMC (carboxymethyl cellulose) as a binder, and 100 ml of water, and had a spherical or particle shape ranging from 0.5 μm to 100 μm in diameter.

그리고, 상기 탄소나노튜브 마이크로볼 30mg, 1.5ml의 EC, 에탄올을 혼합하여 탄소나노튜브 페이스트를 제조하고, 이를 FTO 상면에 닥터 블레이드법으로 코팅하며, 350℃에서 2시간 동안 건조 및 열처리를 수행한다. 도 4는 이렇게 제조된 탄소나노튜브 마이크로볼 전극과 종래의 연속적인 탄소나노튜브를 이용한 전극 및 Pt 전극에 대한 효율을 측정한 것이다. 도시된 바에 의하면 본 발명에 따른 마이크로볼을 이용한 전극의 효율이 일반적인 탄소나노튜브를 이용한 전극(CNT Film)에 비해 높은 효율을 가짐을 알 수 있다.Then, the carbon nanotube microball 30mg, 1.5ml of EC, ethanol is mixed to prepare a carbon nanotube paste, and coated on the upper surface of the FTO by a doctor blade method, drying and heat treatment at 350 ℃ for 2 hours. . 4 is a measurement of the efficiency of the electrode and Pt electrode using the carbon nanotube microball electrode and conventional continuous carbon nanotube prepared as described above. As shown, it can be seen that the efficiency of the electrode using the microball according to the present invention has a higher efficiency than the electrode using a CNT film.

도 5는 탄소나노튜브 마이크로볼의 양에 따라 전극의 투명도가 조절된 것을 나타내며, 이에 따른 효율을 측정한 것이다. 도시된 바와 같이 탄소나노튜브 마이크로볼의 양에 따라 전극의 투명도 조절이 가능한 것을 알 수 있다. 5 shows that the transparency of the electrode is adjusted according to the amount of carbon nanotube microballs, and the efficiency is measured accordingly. As shown, it can be seen that the transparency of the electrode can be controlled according to the amount of carbon nanotube microballs.

도 6은 단위 면적당 탄소나노튜브 마이크로볼 수에 대한 투명도를 측정한 것으로, 탄소나노튜브 마이크로볼을 페이스트 형태로 제작하여 FTO 기판 상면에 코팅한 것과, 탄소나노튜브 마이크로볼을 스프레이 형태로 제작하여 FTO 기판 상면에 코팅한 것을 비교한 것이다. 도시된 바와 같이 탄소나노튜브 마이크로볼의 양에 따라 투명도의 조절이 가능함을 알 수 있었다.Figure 6 is a measure of the transparency of the number of carbon nanotube microballs per unit area, the carbon nanotube microballs in the form of a paste coated on the upper surface of the FTO substrate, the carbon nanotube microballs in the form of a spray FTO The coating on the upper surface of the substrate is compared. As shown, it can be seen that the transparency can be adjusted according to the amount of carbon nanotube microballs.

도 7은 투명도에 따른 Pt (상대)전극(C.E.)에 대한 규격화된 효율을 나타낸 것이다. 투명도가 낮을수록 효율이 증가하는 것으로 보아, 탄소나노튜브 마이크로볼의 양이 증가함에 따라 효율은 증가하는 것으로 보인다.7 shows normalized efficiencies for Pt (relative) electrodes (C.E.) according to transparency. The lower the transparency, the higher the efficiency. As the amount of carbon nanotube microballs increases, the efficiency seems to increase.

도 8, 도 9, 도 10은 본 발명의 일실시예에 따라 제작된 탄소나노튜브 마이크로볼 전극에 대한 전기적 성질을 측정한 데이타로써, 투명도에 따라 즉 탄소나노 튜브 마이크로볼의 양에 따라 Voc, Jsc, Fill Factor 등이 달라짐을 알 수 있으며, 적절하게 탄소나노튜브 마이크로볼의 양을 조절하면 Pt 전극과 비슷한 전기적 성질을 얻을 수 있음을 확인할 수 있었다.8, 9, and 10 are data obtained by measuring electrical properties of the carbon nanotube microball electrode manufactured according to one embodiment of the present invention, that is, Voc, according to the transparency, that is, the amount of carbon nanotube microballs. It can be seen that the Jsc, Fill Factor, etc. are changed, and if the amount of carbon nanotube microballs is properly adjusted, electrical properties similar to those of the Pt electrode can be obtained.

도 1 - 본 발명에 따른 탄소나노튜브 마이크로볼의 제조방법에 대한 블럭도.1-a block diagram of a method for producing a carbon nanotube microball according to the present invention.

도 2 - 본 발명에 따른 탄소나노튜브 마이크로볼을 이용한 전극의 제조방법에 대한 블럭도.2 is a block diagram of a method of manufacturing an electrode using a carbon nanotube microball according to the present invention.

도 3 - 본 발명의 일실시예에 따른 탄소나노튜브 마이크로볼에 대한 SEM 사진을 나타낸 도.3 is a SEM photograph of the carbon nanotube microball according to an embodiment of the present invention.

도 4 - 본 발명에 따라 제조된 탄소나노튜브 마이크로볼 전극과 종래의 연속적인 탄소나노튜브를 이용한 전극 및 Pt 전극에 대한 효율을 비교 측정한 것을 나타낸 도. Figure 4 is a view showing a comparative measurement of the efficiency of the electrode and Pt electrode using a carbon nanotube microball electrode prepared according to the present invention and conventional continuous carbon nanotubes.

도 5 - 본 발명의 탄소나노튜브 마이크로볼의 양에 따라 전극의 투명도가 조절된 것을 나타내며, 이에 따른 효율을 측정한 것을 나타낸 도. Figure 5-shows that the transparency of the electrode is adjusted according to the amount of carbon nanotube microball of the present invention, showing the efficiency measured accordingly.

도 6 - 본 발명에 따른 단위 면적당 탄소나노튜브 마이크로볼 수에 대한 투명도를 측정한 것으로, 탄소나노튜브 마이크로볼을 페이스트 형태로 제작하여 FTO 기판 상면에 코팅한 것과, 탄소나노튜브 마이크로볼을 스프레이 형태로 제작하여 FTO 기판 상면에 코팅한 것을 비교 측정한 것을 나타낸 도.6-Measured the transparency of the number of carbon nanotube microballs per unit area according to the present invention, the carbon nanotube microballs in the form of a paste coated on the top surface of the FTO substrate, and the carbon nanotube microballs in the spray form Fig. 1 shows the comparative measurement of the coating on the upper surface of the FTO substrate.

도 7 - 도 6의 전극에 대한 투명도에 따른 Pt (상대)전극(C.E.)에 대한 규격화된 효율을 측정한 것을 나타낸 도.7-6 show measurements of normalized efficiencies for Pt (relative) electrodes (C.E.) according to transparency for the electrodes of FIGS.

도 8, 도 9, 도 10 - 도 6의 전극에 대한 전기적 성질을 측정한 것을 나타낸 도. 8, 9, and 10 to 6 show the electrical properties of the electrodes of Figure 6 measured.

Claims (11)

전극제조용 탄소나노튜브 마이크로볼의 제조방법에 있어서, In the manufacturing method of the carbon nanotube microball for electrode production, 산 처리된 탄소나노튜브와, 용매 및 바인더를 혼합하여 탄소나노튜브 용액을 제조하는 제1단계와;A first step of preparing a carbon nanotube solution by mixing an acid treated carbon nanotube, a solvent and a binder; 상기 탄소나노튜브 용액을 초음파 분산시켜 탄소나노튜브 분산액을 제조하는 제2단계와;A second step of producing a carbon nanotube dispersion by ultrasonic dispersion of the carbon nanotube solution; 상기 탄소나노튜브 분산액을 분무 건조하여 탄소나노튜브 마이크로볼을 제조하는 제3단계;를 포함하여 이루어지는 것을 특징으로 하는 탄소나노튜브 마이크로볼의 제조방법.And spraying the carbon nanotube dispersion liquid to prepare a carbon nanotube microball. 3. 제 1항에 있어서, 상기 탄소나노튜브 용액을 초음파 분산하기 전에 볼 밀링을 수행하는 것을 특징으로 하는 탄소나노튜브 마이크로볼의 제조방법.The method of claim 1, wherein before the ultrasonic dispersion of the carbon nanotube solution, ball milling is performed. 제 1항에 있어서, 상기 용매는, 물, 알코올, 벤젠, 톨루엔, 피리딘, 아세톤, 테트라하이드로퓨란(tetrahydrofuran, THF) 및 디메틸폼아마이드(dimethylformamide, DMF) 중 어느 하나 또는 둘 이상을 혼합한 혼합물인 것을 특징으로 하는 탄소나노튜브 마이크로볼의 제조방법.The method of claim 1, wherein the solvent is water, alcohol, benzene, toluene, pyridine, acetone, tetrahydrofuran (THF) and dimethylformamide (dimethylformamide (DMF)) is a mixture of any one or two or more Method for producing a carbon nanotube microball, characterized in that. 제 1항에 있어서, 상기 바인더는, 카복시메틸셀룰로오즈(carboxymethylcellulose, CMC), 폴리비닐알콜(polyvinylalcohol, PVA), 폴리에틸렌옥사이드(polyethyleneoxide, PEO), 에틸셀룰로오스(ethylcellulose, EC) 및 폴리비닐부틸랄(polyvinylbutyral, PVB) 중에 어느 하나인 것을 특징으로 하는 탄소나노튜브 마이크로볼의 제조방법.The method of claim 1, wherein the binder is carboxymethylcellulose (CMC), polyvinyl alcohol (polyvinylalcohol (PVA), polyethylene oxide (PEO), ethyl cellulose (ethylcellulose, EC) and polyvinyl butyral , PVB) any one of the carbon nanotube microball manufacturing method. 삭제delete 제 1항 내지 제 4항 중의 어느 한 항에 있어서, 상기 탄소나노튜브 마이크로볼은 직경 0.5㎛에서 100㎛ 범위의 구형 또는 입자 형상인 것을 특징으로 하는 탄소나노튜브 마이크로볼의 제조방법.The method of claim 1, wherein the carbon nanotube microballs have a spherical or particle shape ranging from 0.5 μm to 100 μm in diameter. 6. 제 6항의 제조방법에 의해 제조된 탄소나노튜브 마이크로볼.Carbon nanotube microball manufactured by the manufacturing method of claim 6. 제 1항의 제조방법에 의해 제조된 탄소나노튜브 마이크로볼을 용매에 분산시켜 페이스트 제조 후 기판 상면에 코팅하여 건조 및 열처리하여 제조되는 것을 특징으로 하는 탄소나노튜브 마이크로볼을 이용한 전극의 제조방법.A method of manufacturing an electrode using carbon nanotube microballs, characterized in that the carbon nanotube microballs prepared by the manufacturing method of claim 1 are dispersed in a solvent, and then coated and coated on the upper surface of the substrate, followed by drying and heat treatment. 제 8항에 있어서, 상기 페이스트는 상기 탄소나노튜브 마이크로볼에 용매 및 바인더를 혼합하여 제조되는 것을 특징으로 하는 탄소나노튜브 마이크로볼을 이용한 전극의 제조방법.The method of claim 8, wherein the paste is prepared by mixing a solvent and a binder with the carbon nanotube microballs. 제 1항의 제조방법에 의해 제조된 탄소나노튜브 마이크로볼을 용매에 분산시켜 기판 상면에 스프레이 후 건조 및 열처리하여 제조되는 것을 특징으로 하는 탄소나노튜브 마이크로볼을 이용한 전극의 제조방법.A method of manufacturing an electrode using carbon nanotube microballs, characterized in that the carbon nanotube microballs prepared by the method of claim 1 are dispersed in a solvent, and then sprayed and dried and heat treated on the upper surface of the substrate. 제 8항 내지 제 10항 중의 어느 한 항에 있어서 상기 전극은 전기화학용 또는 광전기화학용 전극인 것을 특징으로 하는 탄소나노튜브 마이크로볼을 이용한 전극의 제조방법.The method according to any one of claims 8 to 10, wherein the electrode is an electrochemical or photoelectrochemical electrode.
KR1020090076347A 2009-08-18 2009-08-18 manufacturing mathod of CNT micro-ball, the CNT micro-ball thereby and electrode using the CNT micro-ball KR101198307B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020090076347A KR101198307B1 (en) 2009-08-18 2009-08-18 manufacturing mathod of CNT micro-ball, the CNT micro-ball thereby and electrode using the CNT micro-ball
PCT/KR2010/004461 WO2011021773A2 (en) 2009-08-18 2010-07-09 Method for manufacturing carbon nanotube micro-balls, carbon nanotube micro-balls manufactured by same, and method for manufacturing an electrode using the carbon nanotube micro-balls

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090076347A KR101198307B1 (en) 2009-08-18 2009-08-18 manufacturing mathod of CNT micro-ball, the CNT micro-ball thereby and electrode using the CNT micro-ball

Publications (2)

Publication Number Publication Date
KR20110018735A KR20110018735A (en) 2011-02-24
KR101198307B1 true KR101198307B1 (en) 2012-11-07

Family

ID=43607419

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090076347A KR101198307B1 (en) 2009-08-18 2009-08-18 manufacturing mathod of CNT micro-ball, the CNT micro-ball thereby and electrode using the CNT micro-ball

Country Status (2)

Country Link
KR (1) KR101198307B1 (en)
WO (1) WO2011021773A2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101303899B1 (en) * 2011-05-04 2013-09-05 (주)마크스톤 Method for preparing of polymer-carbon nanotube composite particles
KR101900780B1 (en) * 2014-03-21 2018-09-20 중국 과학원, 쑤저우 나노기술 및 나노바이오닉스 연구소 Porous carbon nanotube microsphere and preparation method therefor and application thereof, lithium metal-skeleton carbon composite material and preparation method therefor, negative electrode, and battery
GB201607421D0 (en) * 2016-04-28 2016-06-15 Cambridge Entpr Ltd Members of carbon nanomaterials and methods for their production
CN110073458B (en) * 2016-12-12 2022-07-08 韩国地质资源研究院 Preparation method of corrugated graphene composite, composite prepared by preparation method and supercapacitor containing composite
FR3094710A1 (en) * 2019-04-05 2020-10-09 Arkema France Process for preparing a pasty composition comprising carbon nanotubes
KR102250814B1 (en) 2019-05-17 2021-05-12 한국과학기술연구원 Carbon-coated composites containing graphenes, silicon nanoparticles, and carbon nanotubes for lithium secondary battery anode, and preparation method of the same
CN114436333A (en) * 2022-04-11 2022-05-06 中博龙辉装备集团股份有限公司 Molybdenum dioxide nanodot-loaded carbon nanotube conductive microsphere and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080286559A1 (en) 2007-05-18 2008-11-20 Korea Electrotechnology Research Institute Method of Manufacturing Transparent Conductive Film Containing Carbon Nanotubes And Binder, And Transparent Conductive Film Manufactured Thereby
JP2009090272A (en) 2007-09-20 2009-04-30 Nissan Motor Co Ltd Methods for producing particle-dispersed sol and particle-dispersed resin composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080286559A1 (en) 2007-05-18 2008-11-20 Korea Electrotechnology Research Institute Method of Manufacturing Transparent Conductive Film Containing Carbon Nanotubes And Binder, And Transparent Conductive Film Manufactured Thereby
JP2009090272A (en) 2007-09-20 2009-04-30 Nissan Motor Co Ltd Methods for producing particle-dispersed sol and particle-dispersed resin composition

Also Published As

Publication number Publication date
WO2011021773A3 (en) 2011-04-21
WO2011021773A2 (en) 2011-02-24
KR20110018735A (en) 2011-02-24

Similar Documents

Publication Publication Date Title
KR101198307B1 (en) manufacturing mathod of CNT micro-ball, the CNT micro-ball thereby and electrode using the CNT micro-ball
Wang et al. Aloe peel-derived honeycomb-like bio-based carbon with controllable morphology and its superior electrochemical properties for new energy devices
Poudel et al. Carbon nanostructure counter electrodes for low cost and stable dye-sensitized solar cells
Sarkar et al. CoNi2S4-reduced graphene oxide nanohybrid: An excellent counter electrode for Pt-free DSSC
Ma et al. Electrospun carbon nano-felt derived from alkali lignin for cost-effective counter electrodes of dye-sensitized solar cells
Cai et al. Direct application of commercial fountain pen ink to efficient dye-sensitized solar cells
Wang et al. Micro–meso hierarchical porous carbon as low-cost counter electrode for dye-sensitized solar cells
TWI666780B (en) Counter electrode for dye-sensitized solar cell, dye-sensitized solar cell, and solar cell module
Chen et al. Mesoporous carbon counter electrode materials for dye-sensitized solar cells: The effect of structural mesopore ordering
Wang et al. Nitrogen-doped mesoporous carbon as low-cost counter electrode for high-efficiency dye-sensitized solar cells
Zheng et al. In situ growing CNTs encapsulating nickel compounds on Ni foils with ethanol flame method as superior counter electrodes of dye-sensitized solar cells
Shao et al. Ordered mesoporous carbon/graphene nano-sheets composites as counter electrodes in dye-sensitized solar cells
Shinde et al. Chemical synthesis of flower-like hybrid Cu (OH) 2/CuO electrode: application of polyvinyl alcohol and triton X-100 to enhance supercapacitor performance
Liu et al. Nitrogen-doped multi-scale porous carbon for high voltage aqueous supercapacitors
Ma et al. Heteroatom tri-doped porous carbon derived from waste biomass as Pt-free counter electrode in dye-sensitized solar cells
CN106024408A (en) Ruthenium oxide-copper sulfide composite material, application thereof and electrode plate for supercapacitor
Shao et al. Hierarchical porous carbons as a metal-free electrocatalyst of triiodide reduction for dye-sensitized solar cells
Dissanayake et al. Low cost, platinum free counter electrode with reduced graphene oxide and polyaniline embedded SnO2 for efficient dye sensitized solar cells
Vijayakumar et al. Electrochemical interfacial charge transfer dynamics and photovoltaic performances of nanofibrous vanadium derivatives based platinum free counter electrodes in dye sensitized solar cells
Yu et al. Enhancing the energy storage capacity of graphene supercapacitors via solar heating
Zhang et al. Toward highly efficient CdS/CdSe quantum dot-sensitized solar cells incorporating a fullerene hybrid-nanostructure counter electrode on transparent conductive substrates
Wang et al. Edge-nitrogenated graphene nanoplatelets as high-efficiency counter electrodes for dye-sensitized solar cells
Ahmed et al. Carbon black/silicon nitride nanocomposites as high-efficiency counter electrodes for dye-sensitized solar cells
Wu et al. Nickel-cobalt oxide nanocages derived from cobalt-organic frameworks as electrode materials for electrochemical energy storage with redox electrolyte
Faraji et al. 2.0-V flexible all-solid-state symmetric supercapacitor device with high electrochemical performance composed of MWCNTs-WO 3-graphite sheet

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161020

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170927

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20181025

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20191029

Year of fee payment: 8