KR101178702B1 - 프로그램 작성장치, 수치제어장치 및 프로그램 작성방법 - Google Patents

프로그램 작성장치, 수치제어장치 및 프로그램 작성방법 Download PDF

Info

Publication number
KR101178702B1
KR101178702B1 KR1020097025380A KR20097025380A KR101178702B1 KR 101178702 B1 KR101178702 B1 KR 101178702B1 KR 1020097025380 A KR1020097025380 A KR 1020097025380A KR 20097025380 A KR20097025380 A KR 20097025380A KR 101178702 B1 KR101178702 B1 KR 101178702B1
Authority
KR
South Korea
Prior art keywords
dimension
data
shape
shape data
elements
Prior art date
Application number
KR1020097025380A
Other languages
English (en)
Other versions
KR20100011972A (ko
Inventor
아키라 미야타
겐지 이리구치
다카시 이와사키
Original Assignee
미쓰비시덴키 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 미쓰비시덴키 가부시키가이샤 filed Critical 미쓰비시덴키 가부시키가이샤
Priority claimed from PCT/JP2007/061424 external-priority patent/WO2008149431A1/ja
Publication of KR20100011972A publication Critical patent/KR20100011972A/ko
Application granted granted Critical
Publication of KR101178702B1 publication Critical patent/KR101178702B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4093Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine
    • G05B19/40931Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine concerning programming of geometry
    • G05B19/40932Shape input
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4097Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using design data to control NC machines, e.g. CAD/CAM
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/35Nc in input of data, input till input file format
    • G05B2219/35001Data input, data handling, programming, monitoring of nc
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/35Nc in input of data, input till input file format
    • G05B2219/35061From cad make drawing with text for dimensions, scan it and read dimensions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/35Nc in input of data, input till input file format
    • G05B2219/35223Tolerance, consider tolerance in design, design for assembly

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Geometry (AREA)
  • Numerical Control (AREA)

Abstract

가공대상물의 형상데이터에 치수공차 데이터를 반영한 NC가공 프로그램을 작성하는 NC프로그래밍 지원장치에 있어서, 형상데이터와 치수공차 데이터에 근거하여, 가공대상물의 가공목표치수를 산출하는 가공목표치수 산출부(5)와, 도형요소를 이동시키는 방법에 관한 위치이동정보, 가공목표치수 및 형상데이터에 근거하여, 형상데이터에 포함되는 도형요소간의 치수가 가공목표치수가 되도록 도형요소의 이동위치를 설정하는 형상데이터 변형처리부(6)와, 형상데이터 및 각 도형요소의 이동위치를 이용하여 NC가공 프로그램을 작성하는 NC가공 프로그램 생성 처리부(7)를 구비한다.

Description

프로그램 작성장치, 수치제어장치 및 프로그램 작성방법 {PROGRAM CREATION DEVICE, NUMERIC CONTROL DEVICE,AND PROGRAM CREATION METHOD}
본 발명은 공작기계를 수치제어하기 위한 NC가공 프로그램을 작성하는 프로그램 작성장치, 수치제어장치 및 프로그램 작성방법에 관한 것이다.
NC가공 프로그램에서 지시한 대로의 가공을 충실하고 또한 고정밀도로 진행시켜 나가는 수치제어 공작기계에서는 피가공물을 설계하는 설계자의 의도대로의 가공결과를 가져오는 NC가공 프로그램을 얼마나 용이하고 효율 좋게 작성하는지가 품질관리나 생산성의 관점으로부터 중요하게 된다.
최근, 프로그램 작성장치의 NC프로그램 작성지원기능의 충실화가 진행되어, 오퍼레이터가 제작도면을 보면서 가공대상물의 좌표값을 설정함으로써 용이하게 NC가공 프로그램을 작성할 수 있게 되었다. 또, 설계자가 CAD 시스템을 이용하여 모델링한 CAD 데이터를 프로그램 작성장치로 직접 읽어들여 NC가공 프로그램의 작성을 행할 수 있는 장치도 등장하고 있다.
그런데, 끼워맞춤(감합(嵌合))이나 치수공차 등의 피가공물의 제품으로서의 기능이나 성능에 관한 부위의 가공에 대해서는 끼워맞춤이나 치수공차를 가미한 가공목표치수를 NC가공 프로그램에 반영시켜 둘 필요가 있다. 특히, 상하(치수상한과 치수하한)의 치수허용차가 한쪽(치수상한 또는 치수하한)에 치우친 비대칭인 끼워맞춤이나 치수공차에서는 가공목표치수가 기준치수와는 다른 값이 되는 경우가 있다.
제작도면을 보면서 NC가공 프로그램을 직접 프로그래밍(수정)하는 경우에는, 오퍼레이터가 손계산이나 계산기로 가공목표치수를 계산함과 동시에, 계산결과에 근거하여 보정한 좌표값을 NC가공 프로그램에 입력해 가는 방법이 채용되고 있었다. 이 방법으로는 NC가공 프로그램의 수정이 번잡하기 때문에 계산 실수나 입력 실수를 초래하기 쉽고, 작성된 NC가공 프로그램의 신뢰성이 부족하다고 하는 문제가 있었다.
이 때문에, NC가공 프로그램 중에 기준치수와 공차정보(치수공차 등)를 직접 기술할 수 있도록 하여, 기술된 정보에 근거하여 수치제어장치가 가공처리를 행하는 방법이 제안되고 있다.
예를 들면, 특허문헌 1에 기재한 수치제어장치는 끼워맞춤의 기준치수와 공차영역 클래스에 근거하는 치수허용차 데이터를 미리 보존하고 있다. 그리고, 가공 프로그램상에 지령된 가공물의 끼워맞춤의 기준치수 및 공차영역 클래스를 나타내는 지령과, 이 지령에 대응하는 보존해 둔 치수허용차 데이터로부터 공차영역의 중앙위치를 산출하고, 산출한 중앙위치를 제어축의 이동지령으로서 축제어를 행하고 있다. 이것에 의해, 프로그래머는 가공도면상에 기록된 끼워맞춤의 부위의 기준치수 및 공차영역 클래스를 직접 프로그램하는 것이 가능하게 된다.
또, 특허문헌 2에 기재의 수치제어장치의 자동 끼워맞춤 보정기는, NC지령 프로그램 중에서 소정의 구획(bound)기호에 끼워진 끼워맞춤 기호를 검출함과 동시에, 끼워맞춤 기호에 대응하는 치수와 NC지령 프로그램 중의 치수로부터 절삭치수를 산출하고 있다.
또, 특허문헌 3에 기재한 가공제어방법에서는 가공 프로그램 중의 치수허용차 지정영역에 있어서, 치수허용차가 구체적인 수치로 나타내고 있는 경우는 그 수치에 근거하여 가공목표치수를 결정하고, 끼워맞춤 부호로 나타내고 있는 경우는 치수허용차 테이블을 검색하여 가공목표치수를 결정하고 있다.
[특허문헌 1] 일본국 특개평4-245305호 공보
[특허문헌 2] 일본국 특개소61-15204호 공보
[특허문헌 3] 일본국 특개소60-201860호 공보
<발명이 해결하고자 하는 과제>
그렇지만, 상기 1번째 ~ 3번째의 종래기술에서는 산출하는 치수의 가공대상면이 단일한 경우로서, 또한 공차정보와 가공지령의 단위가 1대 1로 대응하며, 기준치수 및 공차정보를 기술하는 개소를 국재화(局在化)할 수 있는 경우밖에 중앙위치를 산출할 수 없다. 이 때문에, 예를 들면 축이나 구멍의 끼워맞춤과 같이 원통면의 지름에 대해서 공차정보가 지정된 경우나, 절대기준위치(프로그램 원점 등)로부터의 상대치수에 대해서 공차정보가 지정된 경우 밖에 NC가공 프로그램 중에 기준치수와 공차정보를 직접 기술할 수 없다고 하는 문제가 있었다. 환언하면, 면과 면의 거리 등 복수의 가공대상면이 관련되는 경우에는 기준치수 및 공차정보를 NC가공 프로그램 중에 직접 기술할 수 없다고 하는 문제가 있었다. 또, 오퍼레이터가 도면을 주의 깊게 분석하여 공차를 적절히 배분하여 기술하는 경우에는 오퍼레이터의 처리가 번잡하게 된다고 하는 문제가 있었다.
프로그램 작성장치가 CAD 데이터를 읽어들여 NC가공 프로그램을 작성하는 기능을 가지고 있는 경우에는, 미리 공차를 예상한 가공목표치수로 가공대상물의 형상을 모델링해 두는 방법이 채용된다. 이 방법에서는 설계자나 CAD 데이터 작성자에게 가공목표치수를 계산하여 NC가공 프로그램에 입력하는 작업을 강요하게 되어 본질적인 해결은 되지 않는다. 또, 설계상 의미가 있는 기준치수가 없어지므로, 설계자가 의도하지 않는 가공결과를 가져오는 NC가공 프로그램을 작성해 버릴 가능성이 있다고 하는 문제가 있었다.
본 발명은 상기한 점을 감안하여 이루어진 것으로서, 복수의 가공대상면이 관련되는 경우라도 치수공차에 나타내진 설계 의도를 반영한 NC가공 프로그램을 용이하게 작성할 수 있는 프로그램 작성장치, 수치제어장치 및 프로그램 작성방법을 얻는 것을 목적으로 한다.
<과제를 해결하기 위한 수단>
상술한 과제를 해결하여 목적을 달성하기 위해서, 본 발명은 가공대상물의 형상데이터와 상기 형상데이터의 치수공차 데이터에 근거하여, 상기 형상데이터에 상기 치수공차 데이터를 반영한 NC가공 프로그램을 작성하는 프로그램 작성장치에 있어서, 상기 형상데이터와 상기 치수공차 데이터에 근거하여, 상기 가공대상물의 가공목표치수를 산출하는 가공목표치수 산출부와, 상기 가공목표치수 산출부가 산출한 가공목표치수와 상기 형상데이터에 근거하여, 상기 형상데이터에 포함되는 도형요소간의 치수가 상기 가공목표치수에 대응하는 치수가 되도록 상기 도형요소의 이동위치를 설정하는 형상데이터 변형처리부와, 상기 형상데이터 및 상기 형상데이터 변형처리부가 설정한 각 도형요소의 이동위치를 이용하여 NC가공 프로그램을 작성하는 가공 프로그램 작성부를 구비하고, 상기 치수공차 데이터는 상기 도형요소를 이동시키는 방법에 관한 위치이동정보를 포함하며, 상기 형상데이터 변형처리부는 상기 위치이동정보에 근거하여 상기 도형요소의 이동위치를 설정하는 것을 특징으로 한다.
<발명의 효과>
본 발명에 관한 프로그램 작성장치는 도형요소를 이동시키는 방법에 관한 위치이동정보에 근거하여, 형상데이터에 포함되는 도형요소간의 치수가 가공목표치수가 되도록 도형요소의 이동위치를 설정하므로, 복수의 가공대상면이 관련되는 경우라도 치수공차를 반영한 NC가공 프로그램을 용이하게 작성하는 것이 가능하게 된다는 효과를 나타낸다.
도 1은 실시형태 1에 관한 NC프로그래밍 지원장치의 구성을 나타내는 블럭도면이다.
도 2는 치수공차 데이터 테이블의 구성의 일례를 나타내는 도면이다.
도 3은 조정모드가 「요소 1 고정」인 경우의 형상데이터의 이동변형방법을 설명하기 위한 도면이다.
도 4는 조정모드가 「중앙 고정」인 경우의 형상데이터의 이동변형방법을 설 명하기 위한 도면이다.
도 5는 조정모드가 「자동」인 경우의 형상데이터의 이동변형방법을 설명하기 위한 도면이다.
도 6은 가공대상형상과 치수공차 데이터의 일례를 나타내는 도면이다.
도 7은 도 6에 나타낸 치수 중 비대칭인 치수공차를 가지는 치수공차 데이터 테이블의 구성을 나타내는 도면이다.
도 8은 본 발명의 실시형태 1에 관한 NC프로그래밍 지원장치의 동작순서를 나타내는 플로우차트이다.
도 9는 그룹마다 도형요소의 변형처리순서를 나타내는 플로우차트이다.
도 10은 본 발명의 실시형태 2에 관한 NC프로그래밍 지원장치의 구성을 나타내는 블럭도면이다.
도 11은 점도형 데이터 테이블의 구성의 일례를 나타내는 도면이다.
도 12는 점도형 데이터의 이동변형방법을 설명하기 위한 도면이다.
도 13은 점도형에 관련된 도형요소군(群)의 이동변형방법을 설명하기 위한 도면이다.
도 14는 공작장치의 구성의 일례를 나타내는 도면이다.
<부호의 설명>
1 CAD 데이터 입력부
2 형상데이터 보존부
3 대화조작 처리부
4 치수공차 데이터 보존부
5 가공목표치수 산출부
6 형상데이터 변형처리부
7 NC가공 프로그램 생성 처리부
8 표시부
9 지시 입력부
10 점도형 데이터 보존부
20 CAD 데이터
30 NC가공 프로그램
51, 52 치수공차 데이터 테이블
53 점도형 데이터 테이블
61 ~ 63 형상데이터
101, 102 프로그래밍 지원장치
110 제어부
150 수치제어장치
201 공작장치
205 가공부
210 피가공물
301A, 302A, 302B, 401A, 401B, 402A, 402B, 501A, 501B, 502A, 502B, 503A, 601A ~ 605A, 607A ~ 609A, 701A ~ 704A 능선
801A, 801B 점도형
<발명을 실시하기 위한 바람직한 형태>
이하에, 본 발명에 관한 프로그램 작성장치, 수치제어장치 및 프로그램 작성방법의 실시형태를 도면에 근거하여 상세하게 설명한다. 또한, 이 실시형태에 의해 이 발명이 한정되는 것은 아니다.
실시형태 1.
도 1은 본 발명의 실시형태 1에 관한 NC프로그래밍 지원장치의 구성을 나타내는 블럭도면이다. NC프로그래밍 지원장치(프로그램 작성장치)(101)는 CAD 데이터 입력부(1), 형상데이터 보존부(2), 대화조작 처리부(3), 치수공차 데이터 보존부(4), 가공목표치수 산출부(5), 형상데이터 변형처리부(6), NC가공 프로그램 생성 처리부(가공 프로그램 작성부)(7), 표시부(8), 지시 입력부(9)를 가지고 있다.
CAD 데이터 입력부(1)는 CAD 데이터 작성장치나 CAD 데이터 기억장치 등의 외부장치 등으로부터 CAD 데이터(20)를 입력하고, 형상데이터 보존부(2)로 보낸다. CAD 데이터(20)는 CAD 시스템 등을 이용하여 작성된 가공대상물(피가공물)의 형상데이터(가공대상물의 기준치수)나 CAD 시스템상에서 설정한 치수공차에 관한 데이터 등을 포함하여 구성되어 있다. 형상데이터 보존부(2)는 CAD 데이터 입력부(1)로부터의 CAD 데이터(20)를 기억하는 메모리 등의 기억수단이다.
표시부(8)는 액정 모니터 등의 표시단말로서, CAD 데이터(20), 유저에 의해서 지정된 형상데이터의 도형요소, 유저에 의해서 입력된 치수공차 데이터 등을 표 시한다.
지시 입력부(9)는 마우스나 키보드를 구비하여 구성되며, 유저로부터의 지시정보(후술하는 조정모드 등)나 치수공차 데이터 등을 입력한다. 입력된 지시정보나 치수공차 데이터 등은 대화조작 처리부(3)로 보내진다.
대화조작 처리부(3)는 형상데이터 보존부(2)에 보존되어 있는 CAD 데이터(20)를 표시부(8)에 표시시킴과 동시에, 지시 입력부(9)로부터의 지시정보를 입력한다. 대화조작 처리부(3)는, 예를 들면 오퍼레이터가 마우스 등에 의해서 지정한 형상데이터의 도형요소와, 오퍼레이터가 키보드로부터 입력한 도형요소에 대응하는 치수공차 데이터를 지시 입력부(9)로부터 받아들인다. 대화조작 처리부(3)는 지시 입력부(9)로부터의 지시정보에 근거하여, CAD 데이터(20)의 형상데이터의 도형요소와 치수공차 데이터를 대응시킴과 동시에, 대응시킨 데이터(후술의 치수공차 데이터 테이블(51))를 치수공차 데이터 보존부(4)에 기억시킨다. 치수공차 데이터 보존부(4)는 대화조작 처리부(3)로부터의 치수공차 데이터 테이블(51)을 기억하는 메모리 등의 기억수단이다.
가공목표치수 산출부(5)는 치수공차 데이터 보존부(4)에 보존된 치수공차 데이터 테이블(51)을 읽어내어, 기준치수와 치수공차를 이용하여 가공목표치수를 계산한다. 가공목표치수 산출부(5)는 산출한 가공목표치수를 형상데이터 변형처리부(6)에 입력한다.
형상데이터 변형처리부(6)는 가공목표치수 산출부(5)의 계산결과(가공목표치수)와 형상데이터 보존부(2)에 보존된 형상데이터와 조정모드를 이용하여, 형상데 이터 중 치수공차 데이터에 관계하고 있는 각 도형요소의 이동량을 산출하며, 가공목표치수를 만족하도록 형상데이터를 변형(도형요소의 위치를 이동)시킨다. 형상데이터 변형처리부(6)는 변형 후의 형상데이터를 NC가공 프로그램 생성 처리부(7)에 입력한다. NC가공 프로그램 생성 처리부(7)는 변형 후의 형상데이터의 각 도형요소의 위치에 근거하여 NC가공 프로그램(30)을 생성하여 외부 출력한다.
여기서, 치수공차 데이터 보존부(4)에 보존되는 치수공차 데이터 테이블(51)의 구성에 대해 설명한다. 도 2는 치수공차 데이터 테이블의 구성의 일례를 나타내는 도면이다. 치수공차 데이터 테이블(51)은 치수공차 데이터를 식별하는 정보(「No.」)와, 「도형요소 1」과, 「도형요소 2」와, 「치수종별」과, 「기준치수」와, 「상한치수 허용차」와, 「하한치수 허용차」와, 「조정모드」가 각각 대응된 정보 테이블이다. 치수공차 데이터 테이블(51)에서는 각 행이 1개의 치수공차 데이터를 나타내고 있다.
「도형요소 1」의 필드 및 「도형요소 2」의 필드는 치수공차 데이터의 설정 대상이 되는 도형요소 또는 도형요소의 조합을 나타내고 있고, 형상데이터 보존부(2)에 보존된 형상데이터의 도형요소(면, 능선, 정점 등)의 ID(「No.」)와 대응되어 있다. 「도형요소 1」의 필드는 형상데이터를 구성하는 한쪽의 도형요소를 나타내며, 「도형요소 2」의 필드는 형상데이터를 구성하는 다른 쪽의 도형요소를 나타내고 있다.
끼워맞춤과 같은 축이나 구멍의 지름에 대한 치수공차의 경우, 이 치수공차는 「도형요소 1」에서 정의되고, 「도형요소 2」의 필드는 무시된다. 「치수종별 」의 필드는 치수공차 데이터의 치수의 종별이 거리, 각도, 지름 등 중 어느 한 종류인지를 나타내는 정보이다.
「기준치수」의 필드는 도형요소의 기준의 치수(CAD 데이터(20)로부터 추출한 치수 등)를 나타내고 있다. 「상한치수 허용차」의 필드 및 「하한치수 허용차」의 필드는 치수공차 데이터의 「기준치수」로부터의 상하의 허용치수의 차이(상한의 허용치수차와 하한의 허용치수차)를 나타내고 있다.
「조정모드」의 필드는 본 발명의 주된 특징으로서, 치수공차 데이터에 근거하여 도형요소를 이동변형시킬 때의 이동변형방법(형상데이터를 변형시키는 방법)(도형요소를 이동시키는 방법에 관한 위치이동정보)를 나타내고 있다. 「조정모드」는, 예를 들면 「요소 1 고정」, 「요소 2 고정」, 「중앙 고정」, 「자동」 중 어느 하나를 나타낸다.
「요소 1 고정」은 「도형요소 1」을 고정하고 「도형요소 2」를 이동시키는 방법이며, 「요소 2 고정」은 「도형요소 2」를 고정하고 「도형요소 1」을 이동시키는 방법이다. 「중앙 고정」은 「도형요소 1」과 「도형요소 2」 사이의 중심을 고정하고, 「도형요소 1」과 「도형요소 2」를 균등하게 이동시키는 방법이며, 「자동」은 「도형요소 1」과 「도형요소 2」 중 어느 한쪽이 「요소 1 고정」, 「요소 2 고정」, 「중앙 고정」 중 어느 한쪽에 의해서 이동한 경우에, 이동한 도형요소를 고정함과 동시에, 이동하고 있지 않은 도형요소를 이동시키는 방법이다.
끼워맞춤과 같이 단일한 도형요소를 대상으로 하는 경우, 「조정모드」의 필드는 무시된다. 「조정모드」의 필드는 오퍼레이터 등에 의해서 지시 입력부(9)로 부터 입력되는 것이다. 「조정모드」 이외의 「도형요소 1」, 「도형요소 2」, 「치수종별」, 「기준치수」, 「상한치수 허용차」, 「하한치수 허용차」는 CAD 데이터(20)로부터 추출해도 되고, 오퍼레이터 등에 의해서 지시 입력부(9)로부터 입력시켜도 된다.
가공목표치수 산출부(5)에 의해서 계산되는 가공목표치수는 치수공차 데이터 테이블(51)에 격납된 「기준치수」, 「상한치수 허용차」, 「하한치수 허용차」를 만족하는 범위에 들어가는 치수값이며, 「기준치수」, 「상한치수 허용차」, 「하한치수 허용차」에 근거하여 결정된다. 가공목표치수 산출부(5)는, 예를 들면 식 (1)에 근거하여 가공목표치수를 산출한다.
가공목표치수 = 기준치수 + (상한치수 허용차 + 하한치수 허용차) / 2 … (1)
다음으로, 「조정모드」의 종류에 의해서 치수공차 데이터의 도형요소가 어떻게 이동변형되는지와, 치수공차 데이터의 작성 처리를 도 3 ~ 도 5를 이용하여 설명한다. 우선, 치수공차 데이터의 「조정모드」가 「요소 1 고정」인 경우의 이동변형의 방법에 대해 설명한다. 도 3은 조정모드가 「요소 1 고정」인 경우의 형상데이터의 이동변형방법을 설명하기 위한 도면이다.
오퍼레이터가 형상데이터(61)의 능선(301A(도형요소 1) 및 302A(도형요소 2))에 대해서 치수공차 데이터를 설정할 때에, 「조정모드」로서 「요소 1 고정」이 지정되면, 대화조작 처리부(3)는 형상데이터(61)에 대응하는 치수공차 데이터(D11)를 작성한다.
구체적으로는, 대화조작 처리부(3)는 치수공차 데이터(D11)로서, 형상데이터(61)의 능선(301A)을 CAD 데이터(20)로부터 추출하여 「도형요소 1」로 설정함과 동시에, 능선(302A)을 CAD 데이터(20)로부터 추출하여 「도형요소 2」로 설정한다. 또한, 치수공차 데이터(D11)에 오퍼레이터에 의해서 지정된 「요소 1 고정」의 「조정모드」를 포함해 둔다. 대화조작 처리부(3)는 CAD 데이터(20)의 형상데이터(61)에 대응하는 치수공차 데이터(D11)를 치수공차 데이터 보존부(4)에 보존시킨다.
형상데이터 변형처리부(6)는 가공목표치수를 만족하도록 능선(301A, 302A)을 이동변형할 때에 「도형요소 1」의 능선(301A)을 이동시키지 않고 고정하고, 「도형요소 2」의 능선(302A)을 이동시킨다. 이 때의 이동량(Δ)은 가공목표치수(Y1)와 변형전의 형상치수(이동변형 전의 능선(301A)과 능선(302A) 사이의 거리)(X1)와의 차이가 된다. 형상데이터(61)의 능선(302A)은 이동량(Δ)의 이동처리에 의해서 이동 후의 능선(302B)이 된다.
「조정모드」가 「요소 2 고정」인 경우는 도형요소의 고정과 이동의 입장이 역으로 되는 점을 제외하고는 「요소 1 고정」의 처리와 동일하다. 즉, 「요소 2 고정」의 경우, 「도형요소 2」의 능선(302A)을 이동시키지 않고 고정하고, 「도형요소 1」의 능선(301A)을 이동시킨다.
다음으로, 치수공차 데이터의 「조정모드」가 「중앙 고정」인 경우의 이동변형의 방법에 대해 설명한다. 도 4는 조정모드가 「중앙 고정」인 경우의 형상데이터의 이동변형방법을 설명하기 위한 도면이다.
오퍼레이터가 형상데이터(62)의 능선(401A(도형요소 1) 및 402A(도형요소 2))에 대해서 치수공차 데이터를 설정할 때에, 「조정모드」로서 「중앙 고정」이 지정되면, 대화조작 처리부(3)는 형상데이터(62)에 대응하는 치수공차 데이터(D12)를 작성한다.
구체적으로는, 대화조작 처리부(3)는 치수공차 데이터(D12)로서, 형상데이터(62)의 능선(401A)을 CAD 데이터(20)로부터 추출하여 「도형요소 1」로 설정함과 동시에, 능선(402A)을 CAD 데이터(20)로부터 추출하여 「도형요소 2」로 설정한다. 또한, 치수공차 데이터(D12)에 오퍼레이터에 의해서 지정된 「중앙 고정」의 「조정모드」를 포함해 둔다. 대화조작 처리부(3)는 CAD 데이터(20)의 형상데이터(62)에 대응하는 치수공차 데이터(D12)를 치수공차 데이터 보존부(4)에 보존시킨다.
형상데이터 변형처리부(6)는 치수공차 데이터(D12)의 가공목표치수를 만족하도록 능선(401A, 402A)을 이동변형할 때에, 능선(401A, 402A)의 중간(중심선) 위치를 이동시키지 않고 고정하고, 「도형요소 1」의 능선(401A)과 「도형요소 2」의 능선(402A)을 균등량만큼 이동시킨다. 이 때의 각 이동량(Δ)은 가공목표치수(Y2)와 변형 전의 형상치수(이동변형 전의 능선(401A)과 능선(402A) 사이의 거리)(X2)와의 차이의 절반이 된다. 형상데이터(62)의 능선(401A)은 이동량(Δ)의 이동처리에 의해서 이동 후의 능선(401B)이 되며, 형상데이터(62)의 능선(402A)은 이동량(Δ)의 이동처리에 의해서 이동 후의 능선(402B)이 된다.
다음으로, 치수공차 데이터의 「조정모드」가 「자동」인 경우의 이동변형의 방법에 대해 설명한다. 도 5는 조정모드가 「자동」인 경우의 형상데이터의 이동변 형방법을 설명하기 위한 도면이다.
이미 치수공차 데이터 보존부(4)에는 능선(502A, 503A)에 대한 치수공차 데이터(D13)가 보존되어 있는 것으로 한다. 오퍼레이터가 형상데이터(63)의 능선(501A(도형요소 1) 및 502A(도형요소 2))에 대해서 치수공차 데이터를 설정할 때에, 「조정모드」로서 「자동」이 지정되면, 대화조작 처리부(3)는 형상데이터(63)에 대응하는 치수공차 데이터(D14)를 작성한다.
이 때, 치수공차 데이터(D14)의 「도형요소 1」필드 또는 「도형요소 2」필드 중 어느 한쪽은 치수공차 데이터(D13) 내의 어느 한쪽의 도형요소와 같은 것이 된다. 형상데이터(63)의 경우, 치수공차 데이터(D13)의 도형요소에 능선(502A)과 능선(503A)이 포함되므로, 치수공차 데이터(D14)의 「도형요소 1」 또는 「도형요소 2」 중 어느 한쪽의 필드는 능선(502A)이나 능선(503A)이 된다. 도 5에서는 치수공차 데이터(D14)의 「도형요소 2」의 필드가 치수공차 데이터(D13)의 「도형요소 1」의 필드와 같은 값인 경우를 나타내고 있다.
NC프로그래밍 지원장치(101)에서는 우선 대화조작 처리부(3)가 CAD 데이터(20)의 형상데이터(63)에 대응하는 치수공차 데이터(D14)를 치수공차 데이터 보존부(4)에 보존시킨다. 이 때, 대화조작 처리부(3)는 치수공차 데이터(D14)로서 형상데이터(63)의 능선(501A)을 CAD 데이터(20)로부터 추출하여 「도형요소 1」으로 설정함과 동시에, 능선(502A)을 CAD 데이터(20)로부터 추출하여 「도형요소 2」로 설정한다. 또한, 치수공차 데이터(D14)에 오퍼레이터에 의해서 지정된 「자동」의 「조정모드」를 포함해 둔다. 대화조작 처리부(3)는 CAD 데이터(20)의 형상데이터(63)에 대응하는 치수공차 데이터(D14)를 치수공차 데이터 보존부(4)에 보존시킨다.
형상데이터 변형처리부(6)는 치수공차 데이터(D14)의 가공목표치수를 만족하도록 능선(501A, 502A)을 이동변형할 때에, 일단, 도형요소를 공유하는 다른 치수공차 데이터(여기서는 치수공차 데이터(D13))의 이동변형이 종료할 때까지, 치수공차 데이터(D14)의 이동변형을 보류한다.
치수공차 데이터(D13)의 이동변형이 종료하면, 형상데이터 변형처리부(6)는 이동변형이 종료한 치수공차 데이터(D13)의 도형요소를 고정하면서, 치수공차 데이터(D14)의 이동변형을 행한다.
도 5에 나타내는 형상데이터(63)의 경우, 치수공차 데이터(D13)가 「요소 2 고정」이므로, 「도형요소 2」의 능선(503A)을 고정하고, 「도형요소 1」의 능선(502A)을 이동시켜 능선(502B)으로 한다(s1). 이것에 의해, 치수공차 데이터(D13)의 「도형요소 1」과 「도형요소 2」의 가공목표치수가 치수공차 데이터(D13)에 대응하는 가공목표치수(Y3)로 된다.
이 후, 치수공차 데이터(D14)가 「자동」이므로, 치수공차 데이터(D13)의 「도형요소 1」과 같은 치수공차 데이터(D14)의 「도형요소 2」(능선(502A))를 고정한다. 그리고, 치수공차 데이터(D14)의 「도형요소 1」(능선(501A))을 이동시켜 능선(501B)으로 한다(s2). 이것에 의해, 치수공차 데이터(D14)의 「도형요소 1」과 「도형요소 2」의 가공목표치수가 치수공차 데이터(D14)에 대응하는 가공목표치수(Y4)로 된다.
환언하면, 본 실시형태에서는, 형상데이터 변형처리부(6)는 이동변형이 끝난 측의 도형요소(여기서는 능선(502A))를 기준으로 가공목표치수를 만족하도록 반대 측의 도형요소(능선(501A))를 이동변형한다.
또한, 다른 치수공차 데이터와 도형요소를 공유하지 않는 치수공차 데이터의 조정모드가 「자동」인 경우는, 예를 들면 양측의 도형요소를 균등하게 이동변형하는 「조정모드」 = 「중앙 고정」으로 동등하게 취급한다.
다음으로, 도 6 ~ 도 8을 참조하여 실시형태 1에 관한 NC프로그래밍 지원장치의 동작순서를 설명한다. 도 6은 가공대상형상과 치수공차 데이터의 일례를 나타내는 도면이다. 도 6에서는 가공대상형상의 설계자에 의해서 지정되는 5개소의 치수와 치수공차를 일례로서 나타내고 있고, 그 외의 치수에 대해서는 설명의 편의상 생략하고 있다.
도 6의 가공대상형상에는 능선(601A ~ 605A, 607A ~ 609A)이 포함되어 있다. 그리고, 능선(601A)과 능선(603A) 사이의 「기준치수」(거리)는 80.0(㎜)이며, 「상한치수 허용차」는 +0.05이고, 「하한치수 허용차」는 +0.01이다. 또, 능선(602A)과 능선(603A) 사이의 「기준치수」는 40.0이며, 「상한치수 허용차」는 +0.03이고, 「하한치수 허용차」는 -0.01이다.
또, 능선(604A)과 능선(605A) 사이의 「기준치수」는 35.0이며, 「상한치수 허용차」는 +0.03이고, 「하한치수 허용차」는 +0.01이다. 또, 능선(607A)과 능선(608A) 사이의 「기준치수」는 25.0이며, 「상한치수 허용차」는 +0.03이고, 「하한치수 허용차」는 +0.01이다. 또, 능선(608A)과 능선(609A) 사이의 「기준치수 」는 70.0이며, 「상한치수 허용차」는 +0.03이고, 「하한치수 허용차」는 -0.03이다.
도 7은 도 6에 나타낸 치수 중 비대칭인 치수공차를 가지는 치수공차 데이터 테이블의 구성을 나타내는 도면이다. 도 7에서는 도 6에 나타낸 5개소의 비대칭인 치수공차를 가지는 치수에 대해서, 오퍼레이터가 치수공차 데이터를 설정했을 때의 치수공차 데이터 보존부(4)의 내용을 나타내고 있다. 도 7의 치수공차 데이터 테이블(52)은 치수공차 데이터 테이블(51)의 요소에 더하여 치수공차 데이터가 속하는 그룹명의 정보를 포함하고 있다.
치수공차 데이터(D21)는 「도형요소 1」이 능선(601A)이고, 「도형요소 2」가 능선(603A)이다. 80㎜의 기준치수가 지정된 치수공차 데이터(D21)의 「조정모드」가 「요소 1 고정」이므로, 형상데이터 변형처리부(6)는 능선(601A)을 이동시키지 않게 한다.
치수공차 데이터(D22)는 「도형요소 1」이 능선(602A)이며, 「도형요소 2」가 능선(603A)이다. 40㎜의 기준치수가 지정된 치수공차 데이터(D22)는 치수공차 데이터(D21)와 능선(603A)을 공유하고 있고, 조정모드가 「자동」으로 되어 있다. 이 때문에, 형상데이터 변형처리부(6)는 능선(603A)을 이동시키지 않게 한다.
치수공차 데이터(D23)는 「도형요소 1」이 능선(604A)이며, 「도형요소 2」가 능선(605A)이다. 35㎜의 기준치수가 지정된 치수공차 데이터(D23)는 「조정모드」가 「중앙 고정」이므로, 형상데이터 변형처리부(6)는 도형요소의 중심선에 대해서 각 도형요소가 대칭이 되도록 능선(604A, 605A)을 이동시킨다.
치수공차 데이터(D24)는 「도형요소 1」이 능선(607A)이며, 「도형요소 2」가 능선(608A)이다. 25㎜의 기준치수가 지정된 치수공차 데이터(D24)는 「조정모드」가 「요소 2 고정」이므로, 형상데이터 변형처리부(6)는 능선(608A)을 이동시키지 않게 한다.
도 6에 나타낸 기준치수치가 70㎜의 치수공차 데이터(능선(608A, 609A))는 「상한치수 허용차」는 +0.03이고, 「하한치수 허용차」는 -0.03이므로, 형상데이터 변형처리부(6)는 능선(608A, 609A)을 이동시키지 않게 한다.
치수공차 데이터(D21 ~ D24) 가운데, 치수공차 데이터(D21, D22)는 능선(603A)을 공유하고 있다. 따라서, 치수공차 데이터(D21, D22)는 각각 그룹(G1)의 치수공차 데이터가 된다. 한편, 치수공차 데이터(D23, D24)는 각각 다른 치수공차 데이터와 도형요소를 공유하고 있지 않다. 이 때문에, 치수공차 데이터(D23, D24)는 각각 그룹(G1)과는 다른 그룹(G2, G3)의 치수공차 데이터가 된다.
도 8은 본 발명의 실시형태 1에 관한 NC프로그래밍 지원장치의 동작순서를 나타내는 플로우차트이다. 도 8에서는 형상데이터 변형처리부(6)의 동작순서의 일례를 나타내고 있다.
형상데이터 변형처리부(6)는 우선 치수공차 데이터 보존부(4)에 보존되고 있는 치수공차 데이터 테이블(51) 내의 치수공차 데이터를 도형요소를 공용하는 그룹마다 분류한다(스텝 S1).
다음으로, 형상데이터 변형처리부(6)는 가공목표치수 산출부(5)의 계산결과(가공목표치수)와 형상데이터 보존부(2)에 보존된 형상데이터를 이용하여, 분류한 그룹마다 각 도형요소의 이동량을 산출해 간다. 형상데이터 변형처리부(6)는 우선 도형요소의 이동량을 산출하고 있지 않은 미처리의 그룹이 있는지 여부를 확인한다(스텝 S2). 도형요소의 이동량을 산출하고 있지 않은 미처리의 그룹이 있는 경우(스텝 S2, 예), 형상데이터 변형처리부(6)는 미처리의 그룹에 대해서 도형요소의 이동량을 산출하여 형상데이터를 변형(변형 계산)시킨다(스텝 S3).
형상데이터 변형처리부(6)는 미처리의 그룹이 없어질 때까지 그룹마다 변형처리를 반복한다(스텝 S2 ~ S3). 도형요소의 이동량을 산출하고 있지 않은 미처리의 그룹이 없어지면(스텝 S2, 아니오), 형상데이터 변형처리부(6)는 도형요소의 변형처리를 종료한다.
여기서, 스텝 S3의 처리(그룹마다 도형요소의 변형처리)를 상세하게 설명한다. 도 9는 그룹마다 도형요소의 변형처리순서를 나타내는 플로우차트이다. 도 9에서는 1개의 그룹에 대해서 형상데이터 변형처리부(6)가 도형요소의 변형처리를 행하는 경우의 처리 순서를 나타내고 있다.
형상데이터 변형처리부(6)는 처리대상의 그룹에 속하는 치수공차 데이터가 단지 1개이고, 또한 치수공차 데이터의 「조정모드」가 「자동」인지 여부를 판단한다(스텝 S10).
그룹에 속하는 치수공차 데이터가 단지 1개이고, 또한 치수공차 데이터의 「조정모드」 = 「자동」인 경우(스텝 S10, 예), 형상데이터 변형처리부(6)는 「조정모드」가 「중앙 고정」인 경우와 동일하게 도형요소의 변형처리(디폴트)를 행하고, 도형요소의 변형처리를 종료한다(스텝 S20). 이 후, 형상데이터 변형처리부(6) 는 다음의 그룹의 도형요소의 변형처리가 있으면, 도 8의 플로우차트로 나타낸 스텝 S2, S3의 처리를 반복한다(리턴).
그룹에 속하는 치수공차 데이터가 복수인 경우나, 「조정모드」 = 「자동」이 아닌 치수공차 데이터가 그룹에 포함되어 있는 경우(스텝 S10, 아니오), 형상데이터 변형처리부(6)는 처리대상의 그룹에 「조정모드」 = 「자동」이 아닌 치수공차 데이터가 복수 개 포함되어 있는지 여부를 판단한다(스텝 S30).
처리대상의 그룹에 「조정모드」 = 「자동」 이외의 치수공차 데이터가 복수 개 포함되어 있는 경우(스텝 S30, 예), 형상데이터 변형처리부(6)는 도형요소의 변형처리 불능으로서 에러 종료한다. 또, 형상데이터 변형처리부(6)는 처리대상의 그룹에 「조정모드」 = 「자동」인 치수공차 데이터가 복수 개 포함되어 있는 경우에도 도형요소의 변형처리 불능으로서 에러 종료한다.
처리대상의 그룹에 「조정모드」 = 「자동」 이외의 치수공차 데이터가 1개만 포함되어 있는 경우(스텝 S30, 아니오), 형상데이터 변형처리부(6)는 미처리의 치수공차 데이터가 없어질 때까지 각각의 치수공차 데이터의 처리를 반복한다(스텝 S40 ~ S140).
구체적으로는, 형상데이터 변형처리부(6)는 우선 미처리의 치수공차 데이터가 있는지 여부를 확인한다(스텝 S40). 미처리의 치수공차 데이터가 있는 경우(스텝 S40, 예), 형상데이터 변형처리부(6)는 미처리의 치수공차 데이터 중 어느 한쪽을 선택한다(스텝 S50).
그리고, 형상데이터 변형처리부(6)는 선택한 치수공차 데이터의 「조정모드 」가 「요소 1 고정」인지 여부를 판단한다(스텝 S60). 치수공차 데이터의 「조정모드」가 「요소 1 고정」인 경우(스텝 S60, 예), 형상데이터 변형처리부(6)는 「도형요소 1」을 고정함과 동시에 「도형요소 2」를 이동시켜, 「도형요소 1」과 「도형요소 2」의 위치를 확정시킨다(스텝 S70).
치수공차 데이터의 「조정모드」가 「요소 1 고정」이 아닌 경우(스텝 S60, 아니오), 형상데이터 변형처리부(6)는 선택한 치수공차 데이터의 「조정모드」가 「요소 2 고정」인지 여부를 판단한다(스텝 S80). 치수공차 데이터의 「조정모드」가 「요소 2 고정」인 경우(스텝 S80, 예), 형상데이터 변형처리부(6)는 「도형요소 2」를 고정함과 동시에 「도형요소 1」을 이동시켜, 「도형요소 1」과 「도형요소 2」의 위치를 확정시킨다(스텝 S90).
치수공차 데이터의 「조정모드」가 「요소 2 고정」이 아닌 경우(스텝 S80, 아니오), 형상데이터 변형처리부(6)는 선택한 치수공차 데이터의 「조정모드」가 「중앙 고정」인지 여부를 판단한다(스텝 S100). 치수공차 데이터의 「조정모드」가 「중앙 고정」인 경우(스텝 S100, 예), 형상데이터 변형처리부(6)는 「도형요소 1」과 「도형요소 2」의 중앙부를 고정함과 동시에 「도형요소 1」과 「도형요소 2」를 균등하게 이동(이동변형)시켜서, 「도형요소 1」과 「도형요소 2」의 위치를 확정시킨다(스텝 S110).
치수공차 데이터의 「조정모드」가 「중앙 고정」이 아닌 경우(스텝 S100, 아니오), 형상데이터 변형처리부(6)는 선택한 치수공차 데이터의 「도형요소 1」과 「도형요소 2」 중 어느 한쪽의 위치가 이미 확정이 마무리된 상태인지 여부를 판 단한다(스텝 S120). 「도형요소 1」과 「도형요소 2」 중 어느 한쪽의 위치가 이미 확정이 마무리된 상태인 경우(스텝 S120, 예), 형상데이터 변형처리부(6)는 「조정모드」가 「자동」이므로, 「도형요소 1」과 「도형요소 2」 중 위치 확정하고 있지 않은 쪽의 도형요소(다른 쪽의 도형요소)를 이동시켜, 「도형요소 1」과 「도형요소 2」의 위치를 확정시킨다(스텝 S130). 이 때, 위치가 이미 확정이 마무리된 도형요소는 위치를 고정해 두고 이동시키지 않는다.
「도형요소 1」과 「도형요소 2」 중 양쪽 모두 위치가 확정하고 있지 않은 경우(스텝 S120, 아니오), 형상데이터 변형처리부(6)는 다음의 미처리의 치수공차 데이터를 선택한다(스텝 S140). 환언하면, 「도형요소 1」과 「도형요소 2」 중 어느 쪽의 도형요소의 위치도 미확정인 경우는 이동처리를 일단 보류하여 다른 미처리의 치수공차 데이터를 먼저 처리한다. 그리고, 형상데이터 변형처리부(6)는 선택한 치수공차 데이터에 대해서 스텝 S60 ~ S140 가운데, 이동처리의 보류에 수반하여 선택한 치수공차 데이터(다음의 미처리의 치수공차 데이터)에 따른 처리를 행한다.
「도형요소 1」과 「도형요소 2」의 위치를 확정시킨 후(스텝 S70, S90, S110, S130의 처리 후), 형상데이터 변형처리부(6)는 미처리의 치수공차 데이터가 있는지 여부를 확인한다(스텝 S40).
형상데이터 변형처리부(6)는 미처리의 치수공차 데이터가 없어질 때까지, 스텝 S40 ~ S140의 처리를 반복한다. 미처리의 치수공차 데이터가 없어지면(스텝 S40, 아니오), 형상데이터 변형처리부(6)는 처리대상의 그룹에 포함되어 있는 도형 요소의 변형처리를 종료한다.
형상데이터 변형처리부(6)에 의한 형상데이터의 변형처리가 종료하면, NC가공 프로그램 생성 처리부(7)는 변형 후의 형상데이터의 각 도형요소의 형상과 위치에 근거하여 NC가공 프로그램을 생성하여 외부 출력한다.
이것에 의해, 오퍼레이터가 치수공차를 반영한 가공대상형상의 변형결과를 용이하게 예측할 수 있으므로, 설계자의 의도(치수공차)를 반영한 적절한 NC가공 프로그램을 용이하게 효율 좋게 작성하는 것이 가능하게 된다. 또, 형상의 변형에 관한 개소에 대해서만 치수공차 데이터를 설정하면 되기 때문에, 적은 시간과 노력으로 소망의 NC가공 프로그램을 용이하게 작성하는 것이 가능하게 된다.
또한, 스텝 S20에서는 그룹 내의 치수공차 데이터가 단지 1개(「조정모드」가 「자동」)인 경우에, 「조정모드」가 「중앙 고정」인 경우와 동일하게 도형요소의 변형처리를 행했지만, 다른 방법에 의해서 도형요소의 변형처리를 행해도 된다. 예를 들면, 「조정모드」가 「요소 1 고정」이나 「요소 2 고정」인 경우와 동일하게 도형요소의 변형처리를 행해도 된다.
또, 가공목표치수 산출부(5)에 의한 가공목표치수의 산출방법은 식 (1)을 이용한 산출방법에 한정되지 않는다. 예를 들면, 상한치수 허용차와 하한치수 허용차를 소정의 비율(예를 들면 3 : 1 등)로 곱한 값을 이용하여 가공목표치수를 산출해도 된다. 예를 들면, 상한치수 허용차와 하한치수 허용차를 n : m으로 곱한 값을 이용하는 경우, 가공목표치수 산출부(5)는 식 (2)에 근거하여 가공목표치수를 산출한다.
가공목표치수 = 기준치수 + ((m × 상한치수 허용차) + (n × 하한치수 허용차)) / (n + m) … (2)
또한, 본 실시형태에서는 형상데이터가 2차원인 경우를 일례로서 도형요소의 변형처리를 설명했지만, NC프로그래밍 지원장치(101)는 3차원의 형상데이터에 대해서 도형요소의 변형처리를 실시해도 된다. 이 경우도 형상데이터가 2차원인 경우와 동일한 구성, 동일한 처리 순서에 의해서 도형요소의 변형처리를 행할 수 있다.
또, 「조정모드」의 값(종별)은 「요소 1 고정」, 「요소 2 고정」, 「중앙 고정」, 「자동」의 4 종류로 한정되는 것은 아니다. 예를 들면, 가공목표치수와 형상치수와의 차이를 양측의 도형요소로 배분하는 비율을 지정하는 데이터 형식이라도 된다. 이 경우에는 양측의 도형요소를 예를 들면 50% : 50%로 배분하는 것은 「중앙 고정」과 등가인 의미를 가지게 된다.
또한, 형상데이터 보존부(2)에 기억시켜 두는 가공대상물의 형상데이터는 CAD 데이터(20)의 형상데이터에 한정하지 않고, 다른 데이터라도 된다. 또, 치수공차 데이터 가운데, 「조정모드」 이외의 항목은 CAD 데이터(20)로부터 추출하는 경우에 한정하지 않고, 필요에 따라서 오퍼레이터가 보충해도 된다.
또, 실시형태 1에 관한 NC프로그래밍 지원장치(101)를 공작기계의 수치제어장치의 내부에 조립함으로써, NC프로그래밍 지원장치(101)가 생성한 NC가공 프로그램을 공작기계로 직접 실행시키는 것이 가능하게 된다.
이와 같이 실시형태 1에 의하면, 가공목표치수가 형상데이터의 치수와는 다른 부위(상하의 치수허용차가 한쪽으로 치우친 비대칭인 끼워맞춤이나 치수공차가 지정되는 형상데이터)를 가지는 가공대상물의 NC가공 프로그램을 작성할 때에, 끼워맞춤이나 치수공차에 관한 도형요소에 대해서만 치수공차 데이터(조정모드등)를 설정하는 것만으로 소망의 출력결과(NC가공 프로그램)를 얻을 수 있다. 이것에 의해, 도형요소의 이동변형에 관련되지 않은 개소에 대해서는 치수공차 데이터의 설정을 생략할 수 있어, NC가공 프로그램을 작성할 때의 시간과 노력을 억제하는 것이 가능하게 된다. 따라서, 치수공차에 나타낸 설계의도를 반영한 NC가공 프로그램을 용이하게 작성하는 것이 가능하게 된다.
또, 도형요소가 복수의 치수공차 데이터에 의해서 공유되고 있는 경우에는, 이 공유되고 있는 도형요소가 도형요소를 공유하고 있는 치수공차 데이터의 각각의 가공목표치수에 대응하는 치수가 되도록 도형요소의 이동위치를 설정하므로, 도형요소가 복수의 치수공차 데이터에 의해서 공유되고 있는 경우라도 용이하게 NC가공 프로그램을 작성하는 것이 가능하게 된다.
실시형태 2.
다음으로, 도 10 ~ 도 13을 참조하여 본 발명의 실시형태 2에 대해 설명한다. 실시형태 2에서는 복수의 도형요소를 도형요소군으로서 일체화하고, 도형요소군의 대표 기준점을 이동시키는 것에 의해서 가공대상물의 NC가공 프로그램을 작성한다.
도 10은 본 발명의 실시형태 2에 관한 NC프로그래밍 지원장치의 구성을 나타내는 블럭도면이다. 도 10의 각 구성요소 가운데, 도 1에 나타내는 실시형태 1의 NC프로그래밍 지원장치(101)와 동일 기능을 달성하는 구성요소에 대해서는 동일 번 호를 부여하고 있고, 중복하는 설명은 생략한다.
NC프로그래밍 지원장치(102)는 NC프로그래밍 지원장치(101)의 기능(CAD 데이터 입력부(1), 형상데이터 보존부(2), 대화조작 처리부(3), 치수공차 데이터 보존부(4), 가공목표치수 산출부(5), 형상데이터 변형처리부(6), NC가공 프로그램 생성 처리부(7), 표시부(8), 지시 입력부(9))에 더하여, 점도형 데이터 보존부(10)를 가지고 있다. 점도형 데이터 보존부(10)는 형상데이터의 도형요소군에 관한 정보(후술의 점도형 데이터 테이블(53))를 기억하는 메모리 등의 기억수단이다.
NC프로그래밍 지원장치(102)의 대화조작 처리부(3)는 치수공차의 설정처리에 더하여, 오퍼레이터가 지정한 형상데이터의 복수의 도형요소를 도형요소군으로서 일체화한다. 그리고, 일체화한 도형요소군의 대표 기준점의 위치에 점도형을 작성하고, 점도형과 도형요소군을 관련지어 점도형 데이터를 점도형 데이터 테이블로서 점도형 데이터 보존부(10)에 보존한다. 또, 대화조작 처리부(3)는 치수공차를 설정 조작시킬 때에, 가공대상형상을 나타내는 도형요소에 더하여, 점도형도 설정 대상으로 하여 치수공차를 설정한다.
또, NC프로그래밍 지원장치(102)의 형상데이터 변형처리부(6)는 가공목표치수를 만족하도록 치수공차 데이터에 관계하는 도형요소를 이동변형시킬 때, 이동변형의 대상이 점도형인 경우는 점도형 데이터 보존부(10)에 보존되어 있는 점도형 데이터를 읽어내어 당해 점도형 데이터에 관련된 도형요소군을 점도형의 이동에 연동하여 이동변형시킨다. 환언하면, 본 실시형태에서는 복수로 이루어진 형상데이터를 1개의 도형요소군을 나타내는 점데이터로서 취급한다. 그리고, 점데이터로서 취 급하는 도형요소군 내에서는 각 도형요소의 치수공차를 치수공차 데이터 0로 하고, 점데이터의 이동과 동일한 만큼 도형요소를 상대이동시킨다.
여기서, 점도형 데이터 보존부(10)에 보존되는 점도형 데이터 테이블의 구성에 대해 설명한다. 도 11은 점도형 데이터 테이블의 구성의 일례를 나타내는 도면이다. 도 11에서는 각 행이 1개의 점도형 데이터를 나타내고 있다.
점도형 데이터 테이블(53)은 점도형 데이터를 식별하는 정보(「ID」)와 「X좌표」와, 「Y좌표」와, 점도형 데이터에 관련하고 있는 도형요소의 리스트(「도형요소 리스트」)가 각각 대응된 정보 테이블이다.
「ID」의 필드는 각 점도형을 일의적으로 식별 가능한 번호이며, 가공대상형상을 나타내는 도형요소의 ID와는 겹치지 않도록 번호를 붙인다. 「X좌표」의 필드 및 「Y좌표」의 필드는 점도형에 관련된 도형요소군의 대표 기준점의 위치(점도형의 좌표)를 나타내고 있다. 「도형요소 리스트」의 필드는 점도형에 관련된 도형요소군 내의 각 도형 데이터(도형요소)의 ID의 리스트를 나타내고 있다.
다음으로, 도 12, 13을 참조하여 실시형태 2에 관한 NC프로그래밍 지원장치의 동작순서를 설명한다. 도 12는 가공대상형상, 점도형 데이터, 치수공차 데이터의 일례를 나타내는 도면이다. 도 12에서는 설계자가 능선(701A, 702A, 703A)으로 이루어진 폭 15㎜의 홈 형상의 중심과 능선(704A)과의 사이에 치수공차를 지정한 상태를 나타내고 있다(s11).
대화조작 처리부(3)는 오퍼레이터로부터의 지시에 근거하여, 홈 형상을 구성하는 도형요소군(능선(701A, 702A, 703A))을 일체화하고, 그 중앙위치를 대표 기준 점으로 한 점도형(801A)을 작성한다(s12).
대화조작 처리부(3)는 점도형(801A)을 지정한 점도형 데이터를 점도형 데이터 보존부(10)의 점도형 데이터 테이블(53)에 기억시킨다. 점도형 데이터 테이블(53)에 등록하는 점도형 데이터는 도형요소군의 대표 기준점인 점도형(801A), 점도형(801A)의 X좌표와 Y좌표, 「도형요소 리스트」(능선(701A, 702A, 703A)의 ID) 등을 포함하고 있다(s13).
대화조작 처리부(3)는 홈 형상의 중심(점도형(801A))과 능선(704A)과의 사이의 치수공차 데이터(조정모드등)를 설정하고, 치수공차 데이터 보존부(4)의 치수공차 데이터 테이블(52)에 기억시킨다(s14). 점도형(801A)과 능선(704A)과의 사이의 치수공차 데이터는 점도형(801A)의 X좌표와 Y좌표, CAD 데이터(20) 내의 형상데이터, 오퍼레이터로부터의 지시 등에 기초하여 설정된다.
본 실시형태에서는, 치수공차 데이터의 설정대상도형(도형요소의 변형처리)에 점도형을 포함하고 있으므로, 형상데이터 변형처리부(6)는 도형요소를 변형처리할 때에 필요에 따라서 점도형(801A)의 위치를 이동시킨다.
도 13은 점도형이 이동될 때의 점도형에 관련된 도형요소군의 이동변형방법을 설명하기 위한 도면이다. 도 13에서는 도 12에 나타낸 점도형(801A)을 이동시켰을 경우의 능선(701A, 702A, 703A)의 이동처리를 나타내고 있다.
도 13에 나타내는 바와 같이, 점도형(801A)이 점도형(801B)의 위치로 이동되면, 이 이동에 연동하여 점도형(801A)에 관련된 능선(701A, 702A, 703A)이 점도형(801A)의 이동량과 동일한 이동량만큼 이동변형된다. 이 때, 능선(701A, 702A, 703A)은 점도형(801A)으로부터 점도형(801B)으로의 이동방향과 동일한 방향으로 이동된다.
이것에 의해, 형태나 크기는 불변이지만 그 위치가 치수공차의 영향으로 바뀌는 가공대상물(도형요소군)의 부위에 대해서도 오퍼레이터가 치수공차를 반영한 가공대상형상의 변형결과를 용이하게 예측할 수 있다. 이것에 의해, 설계자의 의도를 반영한 적절한 NC가공 프로그램을 용이하게 효율 좋게 작성하는 것이 가능하게 된다. 또, 실시형태 1(NC프로그래밍 지원장치(101))의 경우와 마찬가지로, 변형에 관한 개소에 대해서만 치수공차 데이터를 설정하면 되기 때문에, 적은 시간과 노력으로 소망한 NC가공 프로그램을 작성하는 것이 가능하게 된다.
또한, 본 실시형태에서는, 형상데이터가 2차원인 경우를 일례로서 도형요소의 변형처리를 설명했지만, NC프로그래밍 지원장치(102)는 3차원의 형상데이터에 대해서 도형요소의 변형처리를 실시해도 된다. 이 경우도 형상데이터가 2차원의 경우와 동일한 구성, 동일한 처리 순서에 의해서 도형요소의 변형처리를 행할 수 있다.
또, NC프로그래밍 지원장치(102)를 공작기계의 수치제어장치의 내부에 조립함으로써, NC프로그래밍 지원장치(102)가 생성한 NC가공 프로그램을 공작기계로 직접 실행시키는 것이 가능하게 된다.
여기서 공작기계의 구성에 대해 설명한다. 도 14는 공작장치의 구성의 일례를 나타내는 도면이다. 공작장치(공작기계)(201)는 수치제어장치(150)와 가공부(205)를 가지고 있고, 가공부(205)는 수치제어장치(150)로부터의 제어지시에 근 거하여 피가공물(210)을 가공한다.
수치제어장치(150)는 NC프로그래밍 지원장치(102)와 제어부(110)를 구비하고 있고, 제어부(110)는 NC프로그래밍 지원장치(102)가 작성한 NC프로그램을 이용하여 가공부(205)를 제어한다. 이것에 의해, 공작장치(201)는 NC프로그래밍 지원장치(102)가 생성한 NC가공 프로그램을 실행하여 피가공물(210)을 가공하는 것이 가능하게 된다. 또한, 수치제어장치(150)에 조립한 NC프로그래밍 지원장치는 NC프로그래밍 지원장치(102)에 한정되지 않고, NC프로그래밍 지원장치(101)라도 된다.
또, 본 실시형태에서는 점도형(801A)과 능선(704A)과의 사이의 치수공차 데이터에 근거하여, 점도형(801A)을 이동시키는 경우에 대해 설명했지만, 점도형과 점도형 사이로 설정된 치수공차 데이터에 근거하여, 점도형을 이동시켜도 된다. 또, 점도형(801A)의 위치를 이동시키는 경우에 한정하지 않고, 능선 등의 도형데이터의 위치를 이동시켜도 된다. 또, 도형요소군의 대표 기준점의 위치는 도형요소군의 중앙위치에 한정하지 않고 어느 쪽의 위치라도 된다. 또, 도형요소군의 기준 위치는 점도형 이외의 선분이나 면이라도 된다.
이와 같이 실시형태 2에 의하면, 국소적으로 본 형태나 크기는 원래의 형상데이터의 대응하는 부위(도형요소군)와 같지만, 비대칭인 치수공차가 지정된 것에 의해서, 가공대상물 전체에 대한 부위의 위치가 다른 위치에 나타나는 가공대상물의 NC가공 프로그램을 작성할 때에, 부위를 구성하는 각각의 도형요소에 대해서 치수공차 데이터를 설정하지 않고, 부위를 대표하는 점도형에 대해서 치수공차 데이터(조정모드)를 설정하는 것만으로 소망한 출력 결과(NC가공 프로그램)를 얻을 수 있다.
이것에 의해, 적은 수의 치수공차 데이터를 설정하는 것만으로 NC가공 프로그램을 얻을 수 있어, NC가공 프로그램을 작성할 때의 시간과 노력을 억제하는 것이 가능하게 된다. 따라서, 치수공차에 나타내진 설계의도를 반영한 NC가공 프로그램을 용이하게 작성하는 것이 가능하게 된다.
또한, 상기의 실시형태 1, 2에서 설명한 NC가공 프로그램의 작성처리는 미리 준비해 둔 프로그램을 퍼스널 컴퓨터 등의 컴퓨터에서 실행함으로써 행해도 된다.
이상과 같이, 본 발명에 관한 프로그램 작성장치, 수치제어장치 및 프로그램 작성방법은 공작기계를 수치제어하기 위한 NC가공 프로그램의 작성에 적절하다.

Claims (8)

  1. 가공대상물의 형상데이터와 상기 형상데이터의 치수공차 데이터에 근거하여, 상기 형상데이터에 상기 치수공차 데이터를 반영한 NC가공 프로그램을 작성하는 프로그램 작성장치에 있어서,
    상기 형상데이터와 상기 치수공차 데이터에 근거하여, 상기 가공대상물의 가공목표치수를 산출하는 가공목표치수 산출부와,
    상기 가공목표치수 산출부가 산출한 가공목표치수와 상기 형상데이터에 근거하여, 상기 형상데이터에 포함되는 도형요소간의 치수가 상기 가공목표치수에 대응하는 치수가 되도록 상기 도형요소의 이동위치를 설정하는 형상데이터 변형처리부와,
    상기 형상데이터 및 상기 형상데이터 변형처리부가 설정한 각 도형요소의 이동위치를 이용하여 NC가공 프로그램을 작성하는 가공 프로그램 작성부를 구비하고,
    상기 치수공차 데이터는 설계의도를 반영시키면서 상기 도형요소간의 치수가 상기 가공목표치수에 대응하는 치수가 되도록 상기 각 도형요소를 이동변형할 때에 이용되는 정보로서, 상기 각 도형요소의 이동변형방법을 나타내는 조정모드 정보를 포함하며,
    상기 형상데이터 변형처리부는,
    상기 조정모드에 근거하여, 설계의도를 반영시키면서 상기 도형요소간의 치수가 상기 가공목표치수에 대응하는 치수가 되도록, 상기 도형요소의 이동위치를 설정하는 것을 특징으로 하는 프로그램 작성장치.
  2. 청구항 1에 있어서,
    상기 형상데이터 변형처리부는,
    상기 도형요소가 복수의 치수공차 데이터에 의해서 공유되고 있는 경우에는, 이 공유되고 있는 도형요소가 상기 도형요소를 공유하고 있는 치수공차 데이터의 각 가공목표치수에 대응하는 치수가 되도록 상기 도형요소의 이동위치를 설정하는 것을 특징으로 하는 프로그램 작성장치.
  3. 청구항 1에 있어서,
    상기 도형요소는 복수의 도형요소를 포함한 도형요소군(群)이고,
    상기 형상데이터 변형처리부는 상기 도형요소군에 대응하는 소정 좌표의 이동위치를 설정하는 것을 특징으로 하는 프로그램 작성장치.
  4. 청구항 1에 있어서,
    상기 도형요소의 하나는 적어도 2개의 서브요소를 가지고,
    상기 조정모드는, 상기 적어도 2개의 서브요소 중 하나의 요소를 고정하고 다른 요소를 이동시키는 제1 모드와, 상기 적어도 2개의 서브요소 중 제1의 요소를 고정하고 제2의 요소를 이동시키고, 또 제2의 요소를 고정하고 제1의 요소를 이동시키는 자동모드를 구비한 조정모드군(群)으로부터 선택되는 것을 특징으로 하는 프로그램 작성장치.
  5. 청구항 1에 있어서,
    상기 도형요소의 하나는 적어도 2개의 서브요소를 가지고,
    상기 치수공차 데이터는, 상기 도형요소의 ID 및 상기 적어도 2개의 서브요소의 각각의 ID, 치수종별, 기준치수, 적어도 2개의 치수허용차, 상기 조정모드를 가지고,
    상기 조정모드는, 상기 적어도 2개의 서브요소 중 하나의 요소를 고정하고 다른 요소를 이동시키는 제1 모드와, 서브요소의 모두가 고정한 중심으로부터 이동하는 제2 모드와, 상기 적어도 2개의 서브요소 중 제1의 요소를 고정하고 제2의 요소를 이동시키고, 또 제2의 요소를 고정하고 제1의 요소를 이동시키는 제3 모드를 구비하는 것을 특징으로 하는 프로그램 작성장치.
  6. 청구항 1에 있어서,
    상기 가공목표치수는, 다른 조정모드에 대해 따로 따로 연산되는 것을 특징으로 하는 프로그램 작성장치.
  7. 청구항 1 내지 6 중 어느 한 항에 기재한 프로그램 작성장치를 구비하며, 상기 NC가공 프로그램에 근거하여 상기 가공대상물의 가공제어를 행하는 수치제어장치.
  8. 가공대상물의 형상데이터와 상기 형상데이터의 치수공차 데이터에 근거하여, 상기 형상데이터에 상기 치수공차 데이터를 반영한 NC가공 프로그램을 작성하는 프로그램 작성방법에 있어서,
    상기 형상데이터와 상기 치수공차 데이터에 근거하여, 상기 가공대상물의 가공목표치수를 산출하는 가공목표치수 산출 스텝과,
    산출한 가공목표치수와 상기 형상데이터에 근거하여, 상기 형상데이터에 포함되는 도형요소간의 치수가 상기 가공목표치수에 대응하는 치수가 되도록 상기 도형요소의 이동위치를 설정하는 이동위치 설정 스텝과,
    상기 형상데이터 및 설정한 각 도형요소의 이동위치를 이용하여 NC가공 프로그램을 작성하는 가공 프로그램 작성 스텝을 포함하고,
    상기 치수공차 데이터는 설계의도를 반영시키면서 상기 도형요소간의 치수가 상기 가공목표치수에 대응하는 치수가 되도록 상기 각 도형요소를 이동변형할 때에 이용되는 정보로서, 상기 각 도형요소의 이동변형방법을 나타내는 조정모드 정보를 포함하며,
    상기 이동위치 설정 스텝은,
    상기 조정모드에 근거하여, 설계의도를 반영시키면서 상기 도형요소간의 치수가 상기 가공목표치수에 대응하는 치수가 되도록, 상기 도형요소의 이동위치를 설정하는 것을 특징으로 하는 프로그램 작성방법.
KR1020097025380A 2007-06-06 2007-06-06 프로그램 작성장치, 수치제어장치 및 프로그램 작성방법 KR101178702B1 (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2007/061424 WO2008149431A1 (ja) 2007-06-06 2007-06-06 プログラム作成装置、数値制御装置およびプログラム作成方法

Publications (2)

Publication Number Publication Date
KR20100011972A KR20100011972A (ko) 2010-02-03
KR101178702B1 true KR101178702B1 (ko) 2012-08-30

Family

ID=42086312

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020097025380A KR101178702B1 (ko) 2007-06-06 2007-06-06 프로그램 작성장치, 수치제어장치 및 프로그램 작성방법

Country Status (1)

Country Link
KR (1) KR101178702B1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020015036A1 (en) 2000-08-07 2002-02-07 Koji Shiroyama CAD consulting method, method for detecting inappropriate shape change, data storage medium, and a computer program product
JP7061596B2 (ja) * 2019-11-12 2022-04-28 株式会社藤商事 遊技機

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020015036A1 (en) 2000-08-07 2002-02-07 Koji Shiroyama CAD consulting method, method for detecting inappropriate shape change, data storage medium, and a computer program product
JP7061596B2 (ja) * 2019-11-12 2022-04-28 株式会社藤商事 遊技機

Also Published As

Publication number Publication date
KR20100011972A (ko) 2010-02-03

Similar Documents

Publication Publication Date Title
JP5020315B2 (ja) プログラム作成装置、数値制御装置およびプログラム作成方法
CN106126767B (zh) 用于在计算机控制***中对全局和局部偏移实施补偿的***及方法
CN108369407B (zh) 刀具路径修正装置及刀具路径修正方法
CN102445922B (zh) 用于复合加工的方法和设备
EP2634659A1 (en) Method and device for generating tool path
JP6026746B2 (ja) ワークの組み立て手順演算方法、組み立て手順演算プログラム、部品の製造方法及び自動組立ロボット
EP2048558A1 (en) Program creating device and program creating method
US20030043177A1 (en) Exploded view automatic creation apparatus, storage media and methods
CA2459744A1 (en) Nurbs based cnc machine process using boolean substraction
CN109542046B (zh) 控制装置、控制方法及控制***
WO2020168211A1 (en) In-situ springback compensation in incremental sheet forming
US20020049514A1 (en) Method for compensating for static position errors and orientation errors
JP6068414B2 (ja) 曲率の小さな円弧・曲面の形状を指定可能な数値制御装置
CN106003056B (zh) 改变初始设定的机器人轨迹
Rea Minango et al. Combining the STEP-NC standard and forward and inverse kinematics methods for generating manufacturing tool paths for serial and hybrid robots
KR101178702B1 (ko) 프로그램 작성장치, 수치제어장치 및 프로그램 작성방법
JP7473321B2 (ja) シミュレーション装置、数値制御装置、及びシミュレーション方法
RU2438849C2 (ru) Устройство для создания программ, устройство числового программного управления, способ создания программ
Petráček et al. Effect of CNC interpolator parameter settings on toolpath precision and quality in corner neighborhoods
JP5289644B1 (ja) 自動プログラミング装置および方法
JP2007058748A (ja) 曲面nc加工における補間パス生成方法
JPH08212270A (ja) 生産指示システム
JP2005301450A (ja) 二次元板金形状データの形状補正方法、その形状補正装置及びプログラム
RU2362200C2 (ru) Программирующее устройство и способ программирования
CN117600691B (zh) 一种激光振镜校正***以及激光振镜校正方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150730

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160727

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170804

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180801

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190730

Year of fee payment: 8