KR101169303B1 - Graphite cooling material containing nano sized copper particle coated with graphite and manufacturing method thereof - Google Patents

Graphite cooling material containing nano sized copper particle coated with graphite and manufacturing method thereof Download PDF

Info

Publication number
KR101169303B1
KR101169303B1 KR1020110133435A KR20110133435A KR101169303B1 KR 101169303 B1 KR101169303 B1 KR 101169303B1 KR 1020110133435 A KR1020110133435 A KR 1020110133435A KR 20110133435 A KR20110133435 A KR 20110133435A KR 101169303 B1 KR101169303 B1 KR 101169303B1
Authority
KR
South Korea
Prior art keywords
graphite
carbon
manufacturing
coated
particles
Prior art date
Application number
KR1020110133435A
Other languages
Korean (ko)
Inventor
문갑영
Original Assignee
아이엠나노주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아이엠나노주식회사 filed Critical 아이엠나노주식회사
Priority to KR1020110133435A priority Critical patent/KR101169303B1/en
Application granted granted Critical
Publication of KR101169303B1 publication Critical patent/KR101169303B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/22Intercalation
    • C01B32/225Expansion; Exfoliation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE: A graphite heat-radiating material is provided to improve heat conductivity by using carbon-coated nano copper particles, to prevent rust of the nano copper particles, and to remarkably improving durability. CONSTITUTION: A graphite heat-radiating material comprises 2 weight% or less of carbon coated nano copper particles of 20-100 nm size in pores included at extrusion molding expanded natural graphite based on total weight of the material. A manufacturing method of the graphite heat-radiating material comprises: a step(S11) of generating nano copper particle in which carbon is coated by dipping wire with the diameter of 1mm or less into a chamber storing ethanol, and applying voltage to the copper wire; a step(S13) of mixing the nano copper particles into the expanded graphite; and a step(S15) of manufacturing heat-radiating sheet by extrusion-molding the mixture.

Description

탄소가 코팅된 나노구리입자를 포함하는 흑연 방열재 및 그 제조방법{Graphite cooling material containing nano sized copper particle coated with graphite and manufacturing method thereof}Graphite heat dissipation material comprising carbon-coated nanocopper particles and a method for manufacturing the same {Graphite cooling material containing nano sized copper particle coated with graphite and manufacturing method

본 발명은 방열 시트, 방열 롤(roll), 방열 패드, 방열 플레이트 등의 제조에 사용되는 흑연계 방열재에 대한 것으로서, 더욱 상세하게는 탄소가 코팅된 나노구리입자를 이용함으로써 수평방향 및 수직방향으로의 열전도율을 획기적으로 향상시킬 수 있는 흑연 방열재 및 그 제조방법에 대한 것이다.The present invention relates to a graphite-based heat dissipation material used in the manufacture of a heat dissipation sheet, a heat dissipation roll, a heat dissipation pad, a heat dissipation plate, and more specifically, by using carbon-coated nanocopper particles in the horizontal and vertical directions. The present invention relates to a graphite heat dissipation material and a method of manufacturing the same that can significantly improve the thermal conductivity of the furnace.

특허 제10-0971780호는 비정질 탄소 미립자를 포함하는 흑연 방열재 및 그 제조방법에 대한 것이다. 상기 특허에서는 팽창된 천연 흑연의 압축 성형시에 포함되는 공극 내에 비정질 탄소 미립자를 충진시킨 방열재 및 그 제조방법이 개시되어 있다. 이 경우 팽창된 천연 흑연의 공극에 비정질 탄소 미립자를 충진시킴으로써, 수평방향의 열 확산 뿐만 아니라 수직방향의 열전도율을 높이려고 하였다.Patent No. 10-0971780 relates to a graphite heat insulating material comprising amorphous carbon fine particles and a method for manufacturing the same. The patent discloses a heat dissipating material in which amorphous carbon fine particles are filled in pores included in compression molding of expanded natural graphite, and a method of manufacturing the same. In this case, the amorphous carbon fine particles are filled in the pores of the expanded natural graphite, thereby increasing the thermal conductivity in the vertical direction as well as the heat diffusion in the horizontal direction.

그러나 특허 제10-0971780호에 개시된 흑연 방열재의 경우 흑연 방열재에 충진되는 비정질 탄소 미립자의 경우 비금속이므로 탄소 미립자의 열전도율이 높지 아니하여 비정질 탄소 미립자를 충진시키더라도 수직방향의 열전도율이 예상했던 만큼 향상되지 않는다는 문제점이 있다.However, in the case of the graphite heat dissipation disclosed in Patent No. 10-0971780, the amorphous carbon fine particles filled in the graphite heat dissipation are nonmetals, so the thermal conductivity of the carbon fine particles is not high, so even when the amorphous carbon fine particles are filled, the thermal conductivity in the vertical direction is improved as expected. There is a problem that is not.

본 발명은 상기의 문제점을 해결하기 위한 것이다. 본 발명은 수직방향으로 열전도율을 높일 수 있는 흑연 방열재 및 그 제조방법을 제공하는 것을 목적으로 한다.The present invention is intended to solve the above problems. An object of the present invention is to provide a graphite heat dissipation material and a method of manufacturing the same that can increase thermal conductivity in the vertical direction.

본 발명의 일 측면에 따른 흑연방열재 팽창된 천연 흑연을 압축 성형시 포함되는 공극 내에, 탄소가 코팅된 20 ~ 100nm크기의 나노구리입자가 총 중량의 2 중량% 이하로 포함된 것이 바람직하다.Graphite heat radiation material according to an aspect of the present invention, it is preferable that carbon nanoparticles of 20 to 100 nm size coated with carbon are included in the pores included in compression molding at 2 wt% or less of the total weight.

본 발명의 다른 측면에 따른 흑연방열재의 제조방법은 나노구리입자생성단계와, 혼합단계와, 시트제조단계를 포함한다. 상기 나노구리입자생성단계는 에탄올이 저장된 챔버에 직경이 1mm 보다 작은 구리 와이어를 담근 후 상기 구리 와이어에 전압을 가하여 탄소가 코팅된 20 ~ 100nm크기의 나노구리입자를 생성한다. 상기 혼합단계는 상기 나노구리입자가 총 중량 대비 2 중량% 이하가 되도록 팽창된 흑연에 혼합된다. 상기 시트제조단계는 상기 혼합단계에서 혼합된 혼합물을 압축 성형하여 방열재 시트를 제조한다.According to another aspect of the present invention, a method of manufacturing a graphite heat sink includes nano copper particle generation step, mixing step, and sheet manufacturing step. The nanocopper particle generation step is to immerse a copper wire smaller than 1mm in diameter in a chamber in which ethanol is stored to apply a voltage to the copper wire to produce carbon nanoparticles of 20 ~ 100nm size coated. The mixing step is mixed with the expanded graphite so that the nanocopper particles are 2% by weight or less based on the total weight. The sheet manufacturing step is compression molding the mixture mixed in the mixing step to produce a heat dissipation sheet.

본 발명에 의하면 탄소미립자 대신에 탄소가 코팅된 나노구리입자를 사용하므로써 열전도율을 높일 수 있다.According to the present invention, thermal conductivity can be improved by using carbon-coated nanocopper particles instead of carbon fine particles.

또한, 본 발명에 의하면 나노구리입자에 탄소를 코팅함으로써 나노구리입자가 녹스는 것을 방지하여 열전도율을 높일 수 있을 뿐만 아니라 방열재의 내구성을 높일 수 있다.Further, according to the present invention, by coating carbon on the nanocopper particles, the nanocopper particles can be prevented from rusting, thereby increasing the thermal conductivity as well as increasing the durability of the heat dissipating material.

도 1은 본 발명에 따른 흑연방열재의 생산방법의 개념도,
도 2는 도 1에 도시된 실시예의 나노구리입자를 생산하는 개념도이다.
1 is a conceptual diagram of a method of producing a graphite heat insulating material according to the present invention,
Figure 2 is a conceptual diagram for producing the nano-copper particles of the embodiment shown in FIG.

본 실시예의 흑연방열재는 팽창된 천연 흑연을 압축 성형시 포함되는 공극 내에, 탄소가 코팅된 20 ~ 100nm크기의 나노구리입자가 총 중량의 2 중량% 이하로 포함된다.In the graphite heat dissipating material of the present embodiment, 20 to 100 nm sized carbon nanoparticles coated with carbon are included in the pores included in compression molding of expanded natural graphite in an amount of 2 wt% or less of the total weight.

팽창된 천연 흑연으로 흑연방열재를 만드는 방법은 종래의 특허 제10-0971780호에 개시되어 있다. 본 발명에서는 종래의 특허에서 비정질 탄소 미립자 대신 탄소가 코팅된 나노입자 크기의 구리가 사용된다. 비정질 탄소 미립자는 금속이 아니므로 열전도율이 높지 않다. 본 실시예의 경우 금속인 구리를 사용하므로 열전도율을 높일 수 있다. 그래서 나노구리입자가 포함된 방열재는 비정질 탄소 미립자가 포함된 흑연방열재에 비하여 수평방향으로의 열확산 뿐만 아니라 수직방향으로의 열전도율을 높일 수 있다. 또한, 본 실시예의 경우 나노구리입자가 탄소로 코팅되어 있으므로 나노구리입자의 산화를 막을 수 있다. 따라서 탄소가 코팅된 나노구리입자를 사용함으로 인하여 열전도율을 높이는 한편 구리의 산화를 방지하여 방열재의 수명을 높일 수 있다.A method of making a graphite radiator from expanded natural graphite is disclosed in conventional patent 10-0971780. In the present invention, carbon of nanoparticle size coated with carbon is used instead of amorphous carbon fine particles in the conventional patent. Since amorphous carbon fine particles are not metals, they do not have high thermal conductivity. In the present embodiment, since the metal is copper, the thermal conductivity can be increased. Therefore, the heat dissipation material containing the nano-copper particles can increase the thermal conductivity in the vertical direction as well as the heat diffusion in the horizontal direction as compared with the graphite heat dissipation material containing the amorphous carbon particles. In addition, in the embodiment, since the nanocopper particles are coated with carbon, oxidation of the nanocopper particles may be prevented. Therefore, by using the carbon-coated nanocopper particles to increase the thermal conductivity while preventing the oxidation of copper can increase the life of the heat insulating material.

이때 나노입자크기의 구리입자는 구리 와이어의 전기폭발을 이용하여 만들 수 있다. 전기폭발은 펄스 대전류에 의하여 와이어가 폭발을 일으키는 현상을 말한다. 이 현상은 전기에너지가 와이어에 열에너지로 축적되어 어느 한 순간 폭발적으로 방출되면서 강한 빛과 폭음을 동반한다. 전기에너지에 의해서 와이어가 폭발할 수 있는 중요한 원인은 온도상승에 의해서 저항이 증가하는 금속의 고유한 성질 때문이다. 금속의 온도증가에 의한 저향률의 상승은 전기에너지의 소비를 공간적으로 와이어 부분에 집중시킨다. 또한 시간적으로도 상태 변화가 급속히 가속되는 현상이 발생한다. 즉, 와이어의 온도상승은 저항상승을 일으키고, 저항상승이 전기에너지 소비를 가속시켜 다시 온도상승이 일어나는 과정이 반복되며 에너지를 급속하게 와이어에 축적된다. 이러한 급속한 에너지 축적에 의해서 와이어는 부분적으로플라즈마의 상태에 도달한다.At this time, the copper particles of the nanoparticle size can be made by using an electrical explosion of the copper wire. Electroexplosion is a phenomenon in which wires explode by pulsed high current. This phenomenon is accompanied by strong light and binge as electrical energy is accumulated as thermal energy on the wire and exploded at any moment. An important reason that wires can explode by electrical energy is due to the inherent properties of metals that increase resistance due to temperature rise. The increase in the refraction rate due to the increase in the temperature of the metal spatially concentrates the consumption of electrical energy on the wire part. In addition, a phenomenon in which the state change is rapidly accelerated in time. That is, the temperature rise of the wire causes an increase in resistance, the resistance increase accelerates the consumption of electrical energy, and the temperature rise occurs again, and energy is rapidly accumulated in the wire. Due to this rapid accumulation of energy, the wire partially reaches the state of the plasma.

와이어의 금속물질이 증발하여 원자화 한 후 분위기 가스와 충돌하여 냉각되면 응축되어 입자가 된다. 이때 와이어 물질이 급격히 팽창한 만큼 분위기 가스와의 충돌에 의한 냉각 또한 급속히 이루어지므로 입자는 성장이 억제되어 일반적으로 100mm 이하의 직경을 갖는 나노분말이 된다.After the metal material in the wire evaporates and atomizes, it collides with the atmospheric gas and cools to condense to form particles. At this time, as the wire material expands rapidly, the cooling by the collision with the atmosphere gas is also rapidly performed, so that the particles are inhibited from growth and become nanopowders having a diameter of generally 100 mm or less.

이하에서는 도 1을 참조하여 본 발명에 따른 흑연방열재의 제조방법에 대하여 설명한다.Hereinafter, with reference to Figure 1 will be described a method for producing a graphite heat insulating material according to the present invention.

본 발명에 따른 흑연방열재의 제조방법은 나노구리입자생성단계(S11)와, 혼합단계(S13)와, 시트제조단계(S15)를 포함한다.The method of manufacturing the graphite heat-radiating material according to the present invention includes a nanocopper particle generation step (S11), a mixing step (S13), and a sheet manufacturing step (S15).

나노구리입자생성단계(S11)에서는 챔버(10)에 에탄올(11)을 저장하고 직경이 1mm 보다 작은 구리 와이어(13)를 담근다. 그리고 전극(15)에 전류를 가한다. 그러면 구리 와이어(13)에 열에너지가 축적되어 어느 한 순간에 구리 와이어가 폭발하여 20 ~ 100nm크기의 나노입자가 된다. 이 경우 에탄올(11)도 기화하여 열분해된다. 에탄올(11)의 분자식은 C2H5OH이다. 즉 에탄올(11)은 탄소 2개 수소 6개, 산소 1개로 구성되어 있다. 이때 구리 와이어(13)의 전기폭발시 용매로 에탄올을 사용할 경우 CO가스로 배출된 후 탄소(C)가 남게 된다. 남아 있는 탄소(C)는 구리 와이어(13)가 폭발시 열분해 되어 나노입자 크기의 구리를 둘러싸게 된다. 그래서 나노입자 크기의 구리는 탄소로 코팅되어 코어셀 구조가 된다. 나노입자 크기의 구리는 탄소 층으로 코팅되어 있으므로 산화를 막을 수 있어서 안정적인 구리로 형성될 수 있다. 이 과정에서 챔버(10) 내에서 탄소가 코팅된 나노입자 크기의 구리는 콜로이드의 상태로 침전되어 가라앉는다. 연속형 원심분리기를 사용하면 연속공정에서 탄소가 코팅된 나노입자 크기의 구리를 대량으로 회수할 수 있다.In the nano-copper particle generation step (S11) stores the ethanol (11) in the chamber 10 and immersed copper wire 13 smaller than 1mm in diameter. Then, a current is applied to the electrode 15. Then, thermal energy is accumulated in the copper wire 13, and at any one time, the copper wire explodes into nanoparticles having a size of 20 to 100 nm. In this case, ethanol 11 is also vaporized and pyrolyzed. The molecular formula of ethanol 11 is C 2 H 5 OH. In other words, the ethanol 11 is composed of two carbon atoms, six hydrogen atoms, and one oxygen atom. At this time, when ethanol is used as a solvent during the electrical explosion of the copper wire 13, carbon (C) remains after being discharged as CO gas. The remaining carbon (C) is thermally decomposed when the copper wire 13 is exploded to surround copper of nanoparticle size. Thus, nanoparticle-sized copper is coated with carbon to form a core cell structure. Nanoparticle-sized copper is coated with a carbon layer, which can prevent oxidation and thus form stable copper. In the process, the carbon-coated nanoparticle-sized copper in the chamber 10 precipitates and sinks in a colloidal state. Continuous centrifuges allow large-scale recovery of carbon-coated nanoparticle copper in a continuous process.

혼합단계(S13)는 나노구리입자생성단계(S11)에서 생성된 나노구리입자가 총 중량 대비 2 중량% 이하가 되도록 팽창된 흑연에 혼합한다.Mixing step (S13) is mixed with the expanded graphite so that the nano-copper particles produced in the nano-copper particle generation step (S11) is 2% by weight or less relative to the total weight.

방열재 시트제조단계(S15)는 혼합단계(S13)에서 혼합된 혼합물을 압축 성형하여 방열재 시트를 제조한다. 혼합단계(S13) 및 방열재 시트제조단계(S15)는 종래의 특허에 기재된 내용과 동일하므로 자세한 설명은 생략한다.Heat radiation sheet manufacturing step (S15) is compression molding the mixture mixed in the mixing step (S13) to produce a heat radiation sheet. The mixing step (S13) and the heat dissipation sheet manufacturing step (S15) is the same as the contents described in the conventional patent, so a detailed description thereof will be omitted.

상기와 같은 과정을 거쳐서 탄소가 코팅된 나노구리입자를 포함하는 흑연 방열재를 제조할 수 있다.Through the above process, it is possible to manufacture a graphite heat dissipation material including carbon-coated nanocopper particles.

10 : 챔버 11 : 에탄올
13 : 구리 와이어 15 : 전극
10 chamber 11: ethanol
13: copper wire 15: electrode

Claims (2)

팽창된 천연 흑연을 압축 성형시 포함되는 공극 내에, 탄소가 코팅된 20 ~ 100nm크기의 나노구리입자가 총 중량의 2 중량% 이하로 포함된 것을 특징으로 하는 흑연방열재.Graphite heat radiation material, characterized in that contained in the pores included in compression molding the expanded natural graphite, the carbon coated nano-copper nanoparticles of 20 ~ 100nm size in less than 2% by weight of the total weight. 에탄올이 저장된 챔버에 직경이 1mm 보다 작은 구리 와이어를 담근 후 상기 구리 와이어에 전압을 가하여 탄소가 코팅된 20 ~ 100nm크기의 나노구리입자를 생성하는 나노구리입자생성단계와,
상기 나노구리입자가 총 중량 대비 2 중량% 이하가 되도록 팽창된 흑연에 혼합하는 혼합단계와,
상기 혼합단계에서 혼합된 혼합물을 압축 성형하여 방열재 시트를 제조하는 방열재 시트제조단계를 포함하는 것을 특징으로 하는 흑연방열재 제조방법.

A nanocopper particle generation step of dipping a copper wire smaller than 1 mm in diameter in a chamber in which ethanol is stored and applying a voltage to the copper wire to produce carbon nanoparticles having a size of 20 to 100 nm coated with carbon;
A mixing step of mixing the expanded graphite so that the nanocopper particles are 2 wt% or less of the total weight;
And a heat dissipating sheet manufacturing step of manufacturing a heat dissipating sheet by compression molding the mixture mixed in the mixing step.

KR1020110133435A 2011-12-13 2011-12-13 Graphite cooling material containing nano sized copper particle coated with graphite and manufacturing method thereof KR101169303B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110133435A KR101169303B1 (en) 2011-12-13 2011-12-13 Graphite cooling material containing nano sized copper particle coated with graphite and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110133435A KR101169303B1 (en) 2011-12-13 2011-12-13 Graphite cooling material containing nano sized copper particle coated with graphite and manufacturing method thereof

Publications (1)

Publication Number Publication Date
KR101169303B1 true KR101169303B1 (en) 2012-07-30

Family

ID=46717506

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110133435A KR101169303B1 (en) 2011-12-13 2011-12-13 Graphite cooling material containing nano sized copper particle coated with graphite and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR101169303B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100380760B1 (en) * 2000-12-27 2003-04-18 경상북도 농업기술원 Falcarindiol isolated from Peucedanum japonicum and its manufacturing method
CN104269205A (en) * 2014-08-25 2015-01-07 鸿纳(东莞)新材料科技有限公司 Electric-conduction heat-conduction graphite composite wire rod and manufacturing method thereof
KR101913770B1 (en) * 2018-04-06 2018-11-05 (주)알앤유 Sheet of shielding electro magnetic interference and dissipating heat
JP2020055895A (en) * 2018-09-28 2020-04-09 日本ゼオン株式会社 Heat-conductive sheet
US11383297B2 (en) 2018-05-30 2022-07-12 Korea Institute Of Industrial Technology Method of manufacturing a metal hybrid, heat-dissipating material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328260A (en) 2005-05-27 2006-12-07 Japan Electronic Materials Corp Heat exchange medium
KR100971780B1 (en) * 2009-09-01 2010-07-21 지씨에스커뮤니케이션(주) Graphite cooling material containing amorphous carbon nanogranules and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328260A (en) 2005-05-27 2006-12-07 Japan Electronic Materials Corp Heat exchange medium
KR100971780B1 (en) * 2009-09-01 2010-07-21 지씨에스커뮤니케이션(주) Graphite cooling material containing amorphous carbon nanogranules and manufacturing method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100380760B1 (en) * 2000-12-27 2003-04-18 경상북도 농업기술원 Falcarindiol isolated from Peucedanum japonicum and its manufacturing method
CN104269205A (en) * 2014-08-25 2015-01-07 鸿纳(东莞)新材料科技有限公司 Electric-conduction heat-conduction graphite composite wire rod and manufacturing method thereof
KR101913770B1 (en) * 2018-04-06 2018-11-05 (주)알앤유 Sheet of shielding electro magnetic interference and dissipating heat
US11383297B2 (en) 2018-05-30 2022-07-12 Korea Institute Of Industrial Technology Method of manufacturing a metal hybrid, heat-dissipating material
JP2020055895A (en) * 2018-09-28 2020-04-09 日本ゼオン株式会社 Heat-conductive sheet
JP7163700B2 (en) 2018-09-28 2022-11-01 日本ゼオン株式会社 thermal conductive sheet

Similar Documents

Publication Publication Date Title
Lerner et al. Synthesis of Al nanoparticles and Al/AlN composite nanoparticles by electrical explosion of aluminum wires in argon and nitrogen
Yu et al. In situ construction of anode–molecule interface via lone‐pair electrons in trace organic molecules additives to achieve stable zinc metal anodes
Wang et al. Uniformly confined germanium quantum dots in 3D ordered porous carbon framework for high‐performance Li‐ion battery
Li et al. In Situ “Chainmail Catalyst” Assembly in Low‐Tortuosity, Hierarchical Carbon Frameworks for Efficient and Stable Hydrogen Generation
KR101169303B1 (en) Graphite cooling material containing nano sized copper particle coated with graphite and manufacturing method thereof
Cao et al. Facile and efficient fabrication of branched Si@ C anode with superior electrochemical performance in LIBs
Yang et al. Fabrication and characterization of beaded SiC quantum rings with anomalous red spectral shift
Cho et al. Enhancement of energy deposition in pulsed wire discharge for synthesis of nanosized powders
Yang et al. Enhanced field emission from a carbon nanotube array coated with a hexagonal boron nitride thin film
RU2016105246A (en) REAGENT, HEATING DEVICE AND METHOD OF HEATING
Gu et al. Corrosion behavior of selective laser melted AlSi10Mg alloy in NaCl solution and its dependence on heat treatment
KR101705943B1 (en) Method of manufacturing multilayer graphene coated composite powders by wire explosion
KR20170066282A (en) Carbon coated heat conducting material
Lee et al. Synthesis and characterization of carbon-coated Cu-Ni alloy nanoparticles and their application in conductive films
Qian et al. In situ synthesis and electrical properties of CuW–La2O3 composites
KR100984414B1 (en) Method for preparing carbon coated metal nanopowder and carbon coated metal nanopowder manufactured using same
Zhou et al. Arc erosion behavior and mechanism of Ag/Ti3SiC2 cathodes in different atmospheres
Saifutdinov et al. Evaporation of Carbon Atoms and Molecules in Helium by Low-Current Arc Discharge with Graphite Electrodes
Song et al. Effects of vacancy on the thermodynamic properties of Co-Cr-Fe-Mn-Ni high-entropy alloys
Xiao et al. Engineering Amorphous–Crystallized Interface of ZrNx Barriers for Stable Inverted Perovskite Solar Cells
Zaikovskii et al. Graphene, SiC and Si Nanostructures Synthesis During Quartz Pyrolysis in Arc‐Discharge Plasma
Wagner et al. Enhancing the Combustion of Magnesium Nanoparticles via Low-Temperature Plasma-Induced Hydrogenation
KR101523849B1 (en) Method of fabricating metal-carbon composite particle
CN105339299B (en) Method for producing the colloidal solution of nano-scale carbon
KR101537216B1 (en) A making process of silicon powder Using Plasma Arc Discharge

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee