KR101152107B1 - In-situ synthesis of metallic nanopowder in lubricating oil - Google Patents

In-situ synthesis of metallic nanopowder in lubricating oil Download PDF

Info

Publication number
KR101152107B1
KR101152107B1 KR1020090104054A KR20090104054A KR101152107B1 KR 101152107 B1 KR101152107 B1 KR 101152107B1 KR 1020090104054 A KR1020090104054 A KR 1020090104054A KR 20090104054 A KR20090104054 A KR 20090104054A KR 101152107 B1 KR101152107 B1 KR 101152107B1
Authority
KR
South Korea
Prior art keywords
metal
lubricating oil
metal nanoparticles
oil
copper
Prior art date
Application number
KR1020090104054A
Other languages
Korean (ko)
Other versions
KR20110047430A (en
Inventor
최철
오제명
최승덕
박종일
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Priority to KR1020090104054A priority Critical patent/KR101152107B1/en
Publication of KR20110047430A publication Critical patent/KR20110047430A/en
Application granted granted Critical
Publication of KR101152107B1 publication Critical patent/KR101152107B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M177/00Special methods of preparation of lubricating compositions; Chemical modification by after-treatment of components or of the whole of a lubricating composition, not covered by other classes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M101/00Lubricating compositions characterised by the base-material being a mineral or fatty oil
    • C10M101/02Petroleum fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M101/00Lubricating compositions characterised by the base-material being a mineral or fatty oil
    • C10M101/04Fatty oil fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/04Metals; Alloys

Abstract

본 발명은 금속 나노입자의 윤활유 내 직접 합성 제조방법에 관한 것으로서, 보다 상세하게는 광유, 동식물류 또는 합성윤활유와 같은 베이스 오일에 금속 나노입자를 직접적(in-situ)으로 합성하여 얻어지는 금속나노입자를 0.01~10wt% 함유하여, 나노분말의 분산성이 대폭 향상될 수 있는 금속 나노입자의 윤활유내 직접 합성 제조방법을 개시한다.The present invention relates to a method for directly synthesizing metal nanoparticles in a lubricating oil, and more particularly, to a metal nanoparticle obtained by in-situ synthesis of metal nanoparticles in a base oil such as mineral oil, animal or plant, Of 0.01 to 10% by weight based on the total weight of the metal nanoparticles, whereby the dispersibility of the nanopowder can be greatly improved.

나노분말, 윤활유, 분산, 구리, 은 Nano powder, lubricant, dispersion, copper, silver

Description

금속 나노분말의 윤활유 내 직접 합성 제조방법{In-situ synthesis of metallic nanopowder in lubricating oil}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a metal nanopowder in a lubricating oil,

본 발명은 대형펌프의 기어오일, 자동차의 엔진오일 및 미션오일 등과 같이 기계 장치들의 활동면(특히 마찰면)의 재료 손상, 마모, 발열을 방지하기 위해 사용되는 윤활유에 관한 것으로서, 특히 종래의 제품에 비해 내마모성, 내하중성 및 내마찰성이 더욱 향상된 윤활유 조성물에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lubricating oil used for preventing material damage, abrasion, and heat of an active surface (particularly, a friction surface) of a mechanical device such as gear oil of a large-sized pump, engine oil of an automobile, Lubricating oil compositions having improved abrasion resistance, load-carrying ability and frictional resistance as compared to conventional lubricating oil compositions.

일반적으로 윤활(lubrication)이라 함은 마찰면에 오일이나 고체윤활제를 포함한 기타의 것을 도포하여 마찰과 마모손상을 줄이고 마찰면이 과열되어 서로 달라붙는 융착현상을 방지하는 것을 의미하며, 윤활유는 상기 윤활작용을 일으키는 오일로서, 더욱 상세히 설명하면, 상접하여 운동하는 두 고체 사이의 마찰을 줄여서 활동면의 발열, 손상, 마모를 방지하고 기계효율의 향상을 도모하기 위해 사용되는 물질을 말한다. In general, lubrication means that friction or abrasion damage is reduced by applying oil or other solid lubricant to the friction surface to prevent fusing phenomenon which is caused by overheating of the friction surface, As used herein, the term " oil " refers to a substance used to reduce the friction between two solids that move in contact with each other, thereby preventing heat generation, damage and wear of the active surface and improving mechanical efficiency.

윤활유로 가장 많이 사용되는 것으로는 동식물유, 광유, 합성윤활유 등이 있 으며, 이들에 의해 두 고체 사이에 얇은 유막을 형성하여 하중을 지탱함과 동시에 하중에 따라 두 마찰면을 부분적 또는 완전히 떼어 놓아 마찰을 감소시킨다.Most commonly used lubricants are animal, mineral and synthetic lubricants, which form a thin film between the two solids to support the load and at the same time partially or completely separate the two friction surfaces according to the load Reduces friction.

이러한 윤활유는 내마모성, 내하중성, 내마찰성 외에 적당한 점도, 물리화학적 안정성, 산화 안정성 등이 요구되며, 따라서 상기 물성 향상을 위해 적절한 첨가제가 혼합될 수 있다. 특히 본 발명에서 제시하는 바와 같이 금속 나노분말이 첨가제로 사용될 경우 극압에서 내하중 및 내마모 특성의 우수한 결과가 예상된다. These lubricating oils are required to have proper viscosity, physico-chemical stability, oxidation stability, etc. in addition to abrasion resistance, load-carrying property and abrasion resistance, so that appropriate additives may be mixed for improving the physical properties. In particular, when the metal nano powder is used as an additive as shown in the present invention, excellent results of the load resistance and the wear resistance at extreme pressure are expected.

그러나 나노분말의 경우 분말 사이의 응집력이 커서 윤활기유 내 균일하고 안정한 분산을 위해서는 비드밀, 고압 균질기나 초음파분산기와 같은 고에너지 분산기구 및 분산제를 사용해야 하는 등 공정이 복잡해지고, 또한 분산된 금속 분말도 시간이 경과함에 따라 산화되고 재응집되어 쉽게 침전되는 단점을 가지고 있어 윤활유 내 첨가제로서의 적용에 어려움이 있었다.However, in the case of the nano powder, the cohesive force between the powders is large, so that a uniform and stable dispersion in the lubricant oil requires complicated processes such as the use of a high-energy dispersing device and a dispersing agent such as a bead mill, a high-pressure homogenizer or an ultrasonic disperser, But also have the disadvantage that they are oxidized and re-agglomerated with time as they are easily precipitated, making it difficult to apply them as an additive in lubricating oil.

본 발명은 상기한 바와 같은 종래기술의 문제점을 해결하기 위한 것으로, 금속 나노입자를 윤활유 내에서 직접 제조함으로써 나노분말의 분산성을 대폭 향상시킬 수 있는 방법을 제공하고자 한다.Disclosure of Invention Technical Problem [8] Accordingly, the present invention has been made keeping in mind the above problems occurring in the prior art, and an object of the present invention is to provide a method for directly improving the dispersibility of nanopowder by directly preparing metal nanoparticles in lubricating oil.

상기 목적을 달성하기 위하여 본 발명은,According to an aspect of the present invention,

금속 수용액과 분산제를 윤활기유에 첨가하고 혼합하여 혼합 용액을 제조하는 (a)단계; 고속회전 혼합 상태에서 환원제를 투입하여 금속이온을 환원하여 윤활기유에서 합성하는 (b)단계; 층분리를 통해 윤활기유만을 분리하는 (c)단계; 및 윤활기유 내 수분을 제거하는 (d)단계를 포함하는 금속 나노입자의 윤활유 내 직접 합성 제조방법을 제공한다.(A) adding a metal aqueous solution and a dispersant to a lubricating oil and mixing to prepare a mixed solution; (B) a step of adding a reducing agent in a high-speed spin mixing state to reduce metal ions and synthesizing the metal ions in a lubricant oil; (C) separating only the lubricant oil through layer separation; And (d) removing moisture in the lubricating oil. The present invention also provides a method for directly synthesizing metal nanoparticles in a lubricating oil.

상기 윤활기유는 광유계 윤활유, 식물성 윤활유, 합성 윤활유 혹은 이들의 혼합물로 이루어진 군에서 선택되는 것을 특징으로 하고, 상기 금속 나노입자는 금, 은, 구리, 팔라듐, 플래티늄, 니켈로 이루어진 군에서 선택되는 1종 이상의 순금속, 순금속의 혼합물 또는 2종 이상의 합금으로 이루어지는 것을 특징으로 한다.Wherein the lubricating oil is selected from the group consisting of mineral oil lubricating oil, vegetable lubricating oil, synthetic lubricating oil or mixtures thereof, wherein the metal nanoparticles are selected from the group consisting of gold, silver, copper, palladium, A mixture of at least one kind of pure metal, a pure metal, or at least two kinds of alloys.

본 발명에 따른 윤활유 직접 합성 제조방법의 상기 (a) 단계에서 금속 수용액의 전구체는 상기 금속질산염, 탄산염, 염화염, 인산염, 붕산염, 산화염, 술폰산염, 황산염, 스테아린산염, 미리스틴산염 및 초산염으로 이루어진 군으로부터 선택 되는 하나 이상의 화합물인 것을 특징으로 하며, 상기 (a) 단계에서 분산제로 라우린산, 올레인산, 데카노익산 및 팔미틴산 등 RCOOH의 구조를 가지며, R은 C1 내지 C20의 포화 또는 불포화 지방족 탄화수소 1종과 음이온 계면활성제인 AOT를 단독 또는 혼합 사용하는 것을 특징으로 한다.In the step (a) of the direct synthesis method for producing a lubricating oil according to the present invention, the precursor of the aqueous metal solution may be a metal nitrate, carbonate, chloride, phosphate, borate, oxide, sulfonate, sulfate, stearate, Wherein the dispersing agent has a structure of RCOOH such as lauric acid, oleic acid, decanoic acid and palmitic acid as the dispersing agent in the step (a), and R is a C1 to C20 saturated or unsaturated aliphatic One hydrocarbon and AOT, which is an anionic surfactant, are used singly or in combination.

본 발명에 따른 제조방법에 있어서, 상기 분산제는 금속 화합물에 대하여 0.1 내지 1몰비로 첨가되는 것을 특징으로 하며, 상기 (b) 단계에서 환원제로 수산화붕소염, 히드라진, 알코올, 아미드산 및 글루코스 중에서 적어도 하나 이상 선택되고, 상기 금속 나노입자의 평균 입경은 1?100 ㎚, 상기 금속 나노입자의 함량은 0.01 ? 10 wt% 인 것을 특징으로 한다.In the production process according to the present invention, the dispersant is added in a ratio of 0.1 to 1 mole based on the metal compound. In the step (b), at least one of boron hydroxide, hydrazine, alcohol, amidic acid and glucose Wherein the metal nanoparticles have an average particle diameter of 1 to 100 nm and the metal nanoparticles have an average particle diameter of 0.01 to 100 nm. 10 wt%.

본 발명에 따르면, 균일한 크기의 금속 나노입자를 윤활유 내에 직접적으로 분산된 상태로 얻을 수 있어, 분산안정성과 내산화 특성이 우수하여 다양한 분야에 적용이 가능하며, 내마모성, 내하중성 및 내마찰성이 우수한 나노 윤활유 제조에도 활용될 수 있다.According to the present invention, it is possible to obtain uniformly sized metal nano-particles in a lubricating oil in a directly dispersed state, and is excellent in dispersion stability and oxidation resistance characteristics, and is applicable to various fields, and is excellent in abrasion resistance, load- It can also be used to manufacture excellent nano lubricant.

이하, 첨부된 도면을 참조하여 본 발명을 보다 상세히 설명한다. 첨부된 도면은 본 발명의 예시적인 형태를 도시한 것으로, 이는 본 발명을 보다 상세히 설명하기 위해 제공되는 것일 뿐, 이에 의해 본 발명의 기술적인 범위가 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings. BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this application, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.

도 1은 본 발명에 따른 금속 나노분말의 윤활유내 직접 합성 프로세스를 나타낸 흐름도로서, 금속 나노입자의 윤활유 내 직접 합성 제조방법은 금속 수용액과 분산제를 윤활기유에 첨가하고 혼합하여 혼합 용액을 제조하는 (a)단계; 고속회전 혼합 상태에서 환원제를 투입하여 금속이온을 환원하여 윤활기유에서 합성하는 (b)단계; 층분리를 통해 윤활기유만을 분리하는 (c)단계; 및 윤활기유 내 수분을 제거하는 (d)단계를 포함한다.FIG. 1 is a flow chart illustrating a direct synthesis process of metal nano-particles in a lubricating oil according to the present invention. The method for directly synthesizing metal nanoparticles in a lubricating oil comprises the steps of adding a metal aqueous solution and a dispersant to a lubricating oil, )step; (B) a step of adding a reducing agent in a high-speed spin mixing state to reduce metal ions and synthesizing the metal ions in a lubricant oil; (C) separating only the lubricant oil through layer separation; And (d) removing moisture from the lubricating oil.

상기 제조방법에 사용되는 금속 수용액 전구체는 금, 은, 구리, 백금, 팔라듐 및 이들의 합금으로 이루어진 군으로부터 선택되는 하나 이상의 금속을 포함할 수 있다. 바람직한 실시예에 따르면 상기 금속 전구체는 상기 금속 질산염, 탄산염, 염화염, 인산염, 붕산염, 산화염, 술폰산염, 황산염, 스테아린산염, 미리스틴산염 및 초산염으로 이루어진 군으로부터 선택되는 하나 이상의 화합물일 수 있고, AgNO3, AgBF4, AgPF6, AgO, CH3COOAg, AgCF3SO3 및 AgClO4로 이루어진 군으로부터 선택되는 하나 이상의 화합물이 바람직하다. 또한, 상기 금속 수용액은 0.05 내지 5 몰농도로 혼합될 수 있다.The metal aqueous solution precursor used in the above production method may include at least one metal selected from the group consisting of gold, silver, copper, platinum, palladium, and alloys thereof. According to a preferred embodiment, the metal precursor may be at least one compound selected from the group consisting of metal nitrate, carbonate, chloride, phosphate, borate, oxide, sulfonate, sulfate, stearate, myristate and acetate, At least one compound selected from the group consisting of AgNO3, AgBF4, AgPF6, AgO, CH3COOAg, AgCF3SO3 and AgClO4 is preferable. The metal aqueous solution may be mixed at a concentration of 0.05 to 5 moles.

상기 제조방법에 사용되는 구리 화합물은 아세트산구리, 아세토아세트산구리, 탄산구리, 사이클로헥산 낙산구리, 질산구리, 스테아린산구리, 과염소산구리, 에틸렌 디아민의 구리착물, 및 트리플루오로 아세틸아세톤의 구리착물로 이루어진 군으로부터 선택되는 하나 이상의 화합물일 수 있다. 여기서 베이스 오일은 광유, 동식물류 또는 합성윤활유로 상용 제품을 사용할 수 있다.The copper compound used in the above production method is composed of copper acetate, copper acetoacetate, copper carbonate, cyclohexanedicarboxylate, copper nitrate, copper stearate, copper perchlorate, copper complex of ethylenediamine and copper complex of trifluoroacetylacetone Lt; / RTI > group. Base oils can be commercial products for mineral oil, animal or plant or synthetic lubricants.

본 발명에 따른 금속 나노입자가 제조되기 위해 분산제가 요구되는데, 이러한 분산제는 일반적으로 산소, 질소, 황 및 인 중에서 선택되는 하나 이상의 원자를 가지는 화합물이 사용될 수 있다. 보다 구체적으로는 티올기(-SH), 아민기(-NH2), 카르복실기(-COOH), -P기를 가지는 화합물이 사용될 수 있으며, 본 발명 바람직한 실시예에서는 알카노에이트 분자(-COOR)를 가지는 화합물 또는 아민기를 가지는 분산제를 사용하였다.Dispersants are required for preparing the metal nanoparticles according to the present invention. Such dispersants may be compounds having at least one atom selected from oxygen, nitrogen, sulfur and phosphorus. More specifically, a compound having a thiol group (-SH), an amine group (-NH2), a carboxyl group (-COOH), and a -P group may be used. In a preferred embodiment of the present invention, A dispersant having a compound or an amine group was used.

여기서 알카노에이트 분자를 분산제로 하는 경우 윤활유와 쉽게 혼합될 수 있고, 금속 나노입자와 일정 세기로 결합되어 있어 안정적인 금속 나노입자를 형성시킬 수 있다. 이러한 알카노에이트 분자를 가지는 화합물로 본 발명에서는 알카노익 에시드와 AOT(sodium bis-2-ethyl hexyl sulfosuccinate)를 사용하였는데, 상기 알카노익 에시드는 RCOOH의 구조를 가지며, R은 탄소수 3 내지 20의 포화 또는 불포화 지방족 탄화수소이다. 즉 R은 탄소수 3 내지 20의 알킬기, 알케닐기, 알킬렌기 등일 수 있다. When the alkanoate molecule is used as a dispersant, the metal nanoparticles can be easily mixed with the lubricating oil, and the metal nanoparticles are bonded to the metal nanoparticles with a certain strength, so that stable metal nanoparticles can be formed. In the present invention, alkanoic acid and sodium bis-2-ethyl hexyl sulfosuccinate (AOT) are used as the compound having such an alkanoate molecule. The alkanoic acid has a structure of RCOOH, and R is a C 3-20 Of saturated or unsaturated aliphatic hydrocarbons. That is, R may be an alkyl group, an alkenyl group, an alkylene group or the like having 3 to 20 carbon atoms.

이러한 알카노익 에시드의 예로 더 구체적으로는 라우린산(C11H22COOH), 올레인산(C17H33COOH), 데카노익산(C9H19COOH), 팔미틴산(C15H31COOH) 등을 들 수 있다. 분산도 측면에서 이 중 라우린산, 올레인산과 AOT 를 적정 비율로 혼합하여 사용하는 것이 바람직하다.More specifically, examples of such alkanoic acid include lauric acid (C11H22COOH), oleic acid (C17H33COOH), decanoic acid (C9H19COOH), and palmitic acid (C15H31COOH). From the viewpoint of dispersion, it is preferable to use a mixture of lauric acid, oleic acid and AOT in an appropriate ratio.

상기 (b) 단계에서 환원제로 수산화붕소염, 히드라진, 알코올, 아미드산 및 글루코스 등이 사용될 수 있다. 반응적인 측면과 불순물 측면에서 히드라진의 사용이 가장 적합하고, 반응시 가스발생에 대비하여 가스 배출구를 설치하여야 하며, 환원제 투입속도를 조절하여 반응속도를 적절히 조절한다.In step (b), boron hydroxide, hydrazine, alcohol, amidic acid, and glucose may be used as the reducing agent. In terms of reactive side and impurities, hydrazine is most suitable. In case of reaction, gas outlet should be installed in case of reaction, and the reaction rate is appropriately controlled by adjusting the reducing agent input rate.

상기 (c) 단계에서는 반응이 종료된 후 교반을 멈추고 방치하면 윤활유 층과 물 층의 상호분리가 일어나며, 하부 출구를 통해 물층을 분리하면나노분말이 분산된 윤활유를 얻을 수 있다.In the step (c), when the stirring is stopped and left after the reaction is terminated, mutual separation of the lubricant layer and the water layer occurs, and when the water layer is separated through the lower outlet, lubricating oil in which the nano powder is dispersed can be obtained.

상기 (d) 단계에서는 윤활유 내 존재하는 수분을 완전히 제거하기 위하여 molecular sieve나 무수 황산마그네슘(MgSO4)과 같은 흡습제를 혼합하여 교반해 줌으로써 잔여 수분을 제거할 수 있으며, 흡습제와 윤활유와의 최종 분리를 통해 나노 윤활유를 제조할 수 있다.In the step (d), a moisture absorbent such as a molecular sieve or anhydrous magnesium sulfate (MgSO 4) is mixed and stirred to completely remove the water present in the lubricating oil, thereby removing residual water, and the final separation of the moisture absorbent and the lubricating oil Nano lubricant can be produced through the process.

본 발명에 따른 윤활유내 금속 나노입자의 직접 제조방법에 의한 나노윤활유 제조법을 구체적인 실시예를 기준으로 설명하기로 한다. 단, 아래의 예는 본 발명을 예시하기 위한 것일 뿐, 이에 한정하지 않으며 본 발명의 실시예에서 제조한 산물의 분석은 다음과 같은 방법으로 실시했다. The method for producing nano lubricant by the direct production method of the metal nanoparticles in lubricating oil according to the present invention will be described on the basis of specific examples. However, the following examples are intended to illustrate the present invention, but the present invention is not limited thereto. Analysis of the products prepared in the examples of the present invention was carried out as follows.

[[ 실시예Example 1] One]

아르곤 분위기가 유지될 수 있는 반응기에 Cu(NO3)2 500g을 물 1.2L에 용해시켜 구리 수용액을 제조한 후, 여기에 윤활기유(SK Supergear EP220) 1.5L와 NaAOT 15g, 올레인산 20mL를 첨가하였다. 이 혼합용액을 700RPM 으로 교반시켜 균질하게 혼합하였다. 구리 나노입자의 경우, 대기 중에서 쉽게 산화되므로 반응기 내부를 진공으로 배기한 후 아르곤으로 치환하여 아르곤 가스분위기에서 실험을 수 행하였다. 하이드라진 400mL를 분당 10mL씩 투입하였으며, 구리이온의 환원에 의해 구리나노입자가 생성되었다. 반응이 종료된 후 교반을 멈추면 천천히 상분리가 일어나 구리나노입자가 함유된 윤활유는 상부에 층을 형성하고 하부에는 수용액이 존재한다. 500 g of Cu (NO 3 ) 2 was dissolved in 1.2 L of water to prepare a copper aqueous solution, and then 1.5 L of a lubricating oil (SK Supergear EP 220), 15 g of NaAOT and 20 mL of oleic acid were added to a reactor capable of maintaining an argon atmosphere . This mixed solution was stirred at 700 RPM to homogeneously mix. The copper nanoparticles were easily oxidized in the atmosphere, so the reactor was evacuated to vacuum and replaced with argon, and the experiment was carried out in an argon gas atmosphere. Hydrazine (400 mL) was added at a rate of 10 mL / min. Copper nanoparticles were formed by reduction of copper ions. When stirring is stopped after completion of the reaction, phase separation occurs slowly, and the lubricating oil containing copper nanoparticles forms a layer on the upper part and an aqueous solution exists in the lower part.

하부의 수용액을 제거한 후 윤활유 내부에 남아있는 잔존 수분 제거를 위해 molecularsieve와 같은 흡습제를 첨가하였으며, 수분을 제거한 후 흡습제와 윤활유를 분리하여 구리 나노입자가 분산된 나노 윤활유를 제조할 수 있었다. 제조된 구리 나노입자는 TEM 분석결과 도 2와 같이 20nm의 크기를 가지는 입자가 얻어졌으며, 도 3을 참조하면, 산화되지 않은 금속 구리 나노입자가 얻어졌음을 XRD 분석을 통해 확인할 수 있었다.After removal of the lower aqueous solution, a humectant such as a molecular sieve was added to remove the residual water remaining in the lubricating oil. After the moisture was removed, the nano lubricant with copper nanoparticles dispersed therein could be prepared by separating the moisture absorbent and the lubricating oil. As a result of TEM analysis of the copper nanoparticles produced, particles having a size of 20 nm were obtained as shown in FIG. 2, and referring to FIG. 3, it was confirmed by XRD analysis that unoxidized metal copper nanoparticles were obtained.

[분산안정성 측정][Measurement of dispersion stability]

분산안정성의 경우 근적외선을 이용하여 시간에 따른 투과도와 반사도 변화를 측정하여 입자의 침전 정도를 정량화하여 분석하는 장비인 Turbiscan 장비를 이용하여 분석하였다. 본 실시예에서는 구리이온의 직접 환원에 의해 제조된 나노윤활유와 기상법에 의해 제조된 구리 나노분말의 기계적 분산에 의해 제조된 나노윤활유의 분산안정성을 비교한 결과를 보여주고 있다. 도 4 에서 보는 바와 같이 직접 환원에 의해 제조된 나노윤활유의 경우, 구리 나노분말의 침전속도가 현저히 개선되어 일주일이 지나도 침전이 거의 없는 높은 분산안정성을 보인다.In the case of dispersion stability, it was analyzed using Turbiscan equipment, which is a device for quantifying and analyzing the degree of precipitation of particles by measuring transmittance and reflectance change with time using near infrared rays. In this example, the dispersion stability of nano lubricating oil produced by direct reduction of copper ions and nanofloving oil produced by mechanical dispersion of copper nano powder produced by vapor phase method are compared. As shown in FIG. 4, in the case of the nano lubricant prepared by the direct reduction, the precipitation rate of the copper nano powder was remarkably improved, and the dispersion stability was almost stable even after one week.

도 1은 본 발명의 금속나노분말의 윤활유내 직접 합성 프로세스를 나타낸 흐름도이다.1 is a flow chart illustrating a direct synthesis process of a metal nano powder of the present invention in lubricating oil.

도 2는 본 발명의 일 실시예에 따른 윤활기유 내 합성된 구리 나노분말의 전자현미경 사진이다.2 is an electron micrograph of a copper nano powder synthesized in a lubricant oil according to an embodiment of the present invention.

도 3은 본 발명의 일 실시예에 따른 윤활기유 내 합성된 구리 나노분말의 XRD 분석 결과이다.FIG. 3 is a result of XRD analysis of copper nano powder synthesized in a lubricant oil according to an embodiment of the present invention.

도 4는 본 발명의 일 실시예에 따른 윤활기유 내 합성된 구리 나노분말의 분산안정도를 측정한 결과이다.4 is a graph illustrating the results of measurement of dispersion stability of copper nano powder synthesized in a lubricant oil according to an embodiment of the present invention.

Claims (9)

금속 전구체를 물에 용해시킨 금속 수용액과 음이온 계면활성제인 AOT(sodium bis(2-ethylhexyl) sulfosuccinate), 라우린산 및 올레인산이 혼합되어 제조되는 분산제를 윤활기유에 첨가하고 혼합하여 혼합 용액을 제조하는 (a)단계;(AOT) (sodium bis (2-ethylhexyl) sulfosuccinate), an anionic surfactant dissolved in water, and a dispersant prepared by mixing lauric acid and oleic acid in a lubricant oil to prepare a mixed solution a) a step; 고속회전 혼합 상태에서 환원제를 투입하여 금속이온을 환원하여 윤활기유 내에서 금속 나노입자를 형성시키는 (b)단계;(B) injecting a reducing agent in a high-speed rotation mixed state to reduce metal ions to form metal nanoparticles in the lubricant oil; 층분리를 통해 윤활기유만을 분리하는 (c)단계; 및(C) separating only the lubricant oil through layer separation; And 상기 분리된 윤활기유 내에 무수 황산마그네슘을 혼합 교반하여 잔여 수분을 제거하는 (d)단계를 포함하는 금속 나노입자의 윤활유 내 직접 합성 제조방법.And (d) mixing and stirring anhydrous magnesium sulfate in the separated lubricant oil to remove residual moisture. The present invention also provides a method for directly synthesizing metal nanoparticles in lubricating oil. 제 1항에 있어서,The method according to claim 1, 상기 윤활기유는 광유계 윤활유, 식물성 윤활유, 합성 윤활유 혹은 이들의 혼합물로 이루어진 군에서 선택되는 것을 특징으로 하는 금속 나노입자의 윤활유 내 직접 합성 제조방법.Wherein the lubricating oil is selected from the group consisting of mineral oil lubricating oil, vegetable lubricating oil, synthetic lubricating oil or a mixture thereof. 제 1항에 있어서, The method according to claim 1, 상기 금속 나노입자는 금, 은, 구리, 팔라듐, 플래티늄, 니켈로 이루어진 군에서 선택되는 1종 이상의 순금속, 순금속의 혼합물 또는 2종 이상의 합금으로 이 루어지는 것을 특징으로 하는 금속 나노입자의 윤활유 내 직접 합성 제조방법.Wherein the metal nanoparticles are made of at least one kind of pure metal selected from the group consisting of gold, silver, copper, palladium, platinum and nickel, a mixture of pure metals or two or more kinds of alloys. Synthetic manufacturing method. 제 1항에 있어서, The method according to claim 1, 상기 (a) 단계에서 상기 금속 수용액의 상기 금속 전구체는 금속질산염, 탄산염, 염화염, 인산염, 붕산염, 산화염, 술폰산염, 황산염, 스테아린산염, 미리스틴산염 및 초산염으로 이루어진 군으로부터 선택되는 하나 이상의 화합물인 것을 특징으로 하는 금속 나노입자의 윤활유 내 직접 합성 제조방법.In the step (a), the metal precursor of the metal aqueous solution may be at least one compound selected from the group consisting of metal nitrate, carbonate, chloride, phosphate, borate, oxide, sulfonate, sulfate, stearate, myristate and acetate Wherein the metal nano-particles are directly synthesized in a lubricating oil. 삭제delete 제 1항에 있어서, The method according to claim 1, 상기 분산제는 금속 수용액의 전구체에 대하여 0.1 내지 1몰비로 첨가되는 것을 특징으로 하는 금속 나노입자의 윤활유 내 직접 합성 제조방법.Wherein the dispersant is added in a ratio of 0.1 to 1 mole based on the precursor of the metal aqueous solution. 제 1항에 있어서, The method according to claim 1, 상기 (b) 단계에서 환원제로 수산화붕소염, 히드라진, 알코올, 아미드, 산 및 글루코스 중에서 적어도 하나 이상 선택되는 것을 특징으로 하는 금속 나노입자의 윤활유 내 직접 합성 제조방법.Wherein at least one of boron hydroxide, hydrazine, alcohol, amide, acid, and glucose is selected as a reducing agent in the step (b). 제1항에 있어서, The method according to claim 1, 상기 금속 나노입자의 평균 입경은 1?100 ㎚ 인 것을 특징으로 하는 금속 나노입자의 윤활유 내 직접 합성 제조방법.Wherein the average particle diameter of the metal nanoparticles is 1 to 100 nm. 제1항에 있어서, The method according to claim 1, 상기 금속 나노입자의 함량은 0.01 ? 10 wt% 인 것을 특징으로 하는 금속 나노입자의 윤활유 내 직접 합성 제조방법.The content of the metal nanoparticles is 0.01? 10 wt%, based on the total weight of the metal nanoparticles.
KR1020090104054A 2009-10-30 2009-10-30 In-situ synthesis of metallic nanopowder in lubricating oil KR101152107B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090104054A KR101152107B1 (en) 2009-10-30 2009-10-30 In-situ synthesis of metallic nanopowder in lubricating oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090104054A KR101152107B1 (en) 2009-10-30 2009-10-30 In-situ synthesis of metallic nanopowder in lubricating oil

Publications (2)

Publication Number Publication Date
KR20110047430A KR20110047430A (en) 2011-05-09
KR101152107B1 true KR101152107B1 (en) 2012-06-01

Family

ID=44238735

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090104054A KR101152107B1 (en) 2009-10-30 2009-10-30 In-situ synthesis of metallic nanopowder in lubricating oil

Country Status (1)

Country Link
KR (1) KR101152107B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106675732A (en) * 2016-12-28 2017-05-17 滁州品之达电器科技有限公司 Mechanical wear-resistant repairing lubricating agent and preparation method thereof
KR102416072B1 (en) * 2021-03-02 2022-07-05 충남대학교산학협력단 Suspension of Metal Powder in Fluoro Oil and Preparation Method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100661621B1 (en) * 2006-02-15 2006-12-26 김용환 Metal nanoparticle comprising colloid and manufacturing method thereof
KR100728714B1 (en) * 2006-06-30 2007-06-14 이만식 Synthesis of nanosized cu-zn colloid in base oils and their manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100661621B1 (en) * 2006-02-15 2006-12-26 김용환 Metal nanoparticle comprising colloid and manufacturing method thereof
KR100728714B1 (en) * 2006-06-30 2007-06-14 이만식 Synthesis of nanosized cu-zn colloid in base oils and their manufacturing method

Also Published As

Publication number Publication date
KR20110047430A (en) 2011-05-09

Similar Documents

Publication Publication Date Title
Meng et al. Au/graphene oxide nanocomposite synthesized in supercritical CO2 fluid as energy efficient lubricant additive
US10829838B2 (en) Solid metal alloy
Xiong et al. Preparation and evaluation of tribological properties of Cu nanoparticles surface modified by tetradecyl hydroxamic acid
Sahoo et al. Synthesis of Silver Nanoparticles using Facile Wet Chemical Route.
Peng et al. Ag–Pt alloy nanoparticles with the compositions in the miscibility gap
Wu et al. Preparation and tribological properties of MoS2 nanosheets
DE60125147T2 (en) HOLLOW FULLER ARTICLE NANOPARTICLES AS SOLID LUBRICANTS IN COMPOSITE MATRICES
US8372177B1 (en) Method of synthesizing tungsten nanoparticles
JP6251258B2 (en) Microemulsions and their use as nanoreactors or delivery vehicles
US11458538B2 (en) General synthetic strategy for fabrication of multi-metallic nanostructures
Chen et al. Efficient one-pot synthesis of mussel-inspired Cu-doped polydopamine nanoparticles with enhanced lubrication under heavy loads
Wang et al. The synthesis and tribological characteristics of triangular copper nanoplates as a grease additive
Guan et al. Controllable fabrication of magnesium silicate hydroxide reinforced MoS2 hybrid nanomaterials as effective lubricant additives in PAO
JP2017179388A (en) Powder for sintering and sintered body
KR101152107B1 (en) In-situ synthesis of metallic nanopowder in lubricating oil
Shukla et al. Ternary composite of methionine-functionalized graphene oxide, lanthanum-doped yttria nanoparticles, and molybdenum disulfide nanosheets for thin-film lubrication
Huang et al. Synthesis of nanosize-controllable copper and its alloys in carbon shells
Wang et al. Interface synthesis for controllable construction of 2D Zn (Bim)(OAc) nanosheets via oil/water system and their application in oil
Oganesova et al. Nanosized additives to lubricating materials
Zhang et al. MoS2 nanowires as additives of PFPE for enhanced tribological properties under high vacuum
Latsuzbaia et al. Bicontinuous microemulsions for high yield, wet synthesis of ultrafine nanoparticles: a general approach
Zhang et al. Size control and its mechanism of SnAg nanoparticles
US8956439B2 (en) Zero-valent catalysis of metal ion reduction methods, compositions, and articles
Jang et al. Synthesis RhAg bimetallic composite nanoparticles for improved catalysts on direct synthesis of hydrogen peroxide generation
Matsumoto et al. Wood-powder-template-based syntheses and tribology of copper oxide particles as lubricating oil additives

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150515

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160502

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170515

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180430

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190426

Year of fee payment: 8