KR101146666B1 - 3-Dimensional Low Molecular Bithiophene Derivatives and Devices using the Same - Google Patents

3-Dimensional Low Molecular Bithiophene Derivatives and Devices using the Same Download PDF

Info

Publication number
KR101146666B1
KR101146666B1 KR1020050097168A KR20050097168A KR101146666B1 KR 101146666 B1 KR101146666 B1 KR 101146666B1 KR 1020050097168 A KR1020050097168 A KR 1020050097168A KR 20050097168 A KR20050097168 A KR 20050097168A KR 101146666 B1 KR101146666 B1 KR 101146666B1
Authority
KR
South Korea
Prior art keywords
bithiophene
formula
derivative
organic
bithiophene derivative
Prior art date
Application number
KR1020050097168A
Other languages
Korean (ko)
Other versions
KR20070041243A (en
Inventor
정원철
론깔리 쟝
박상철
크라비노 안토니오
레리쉬 필리프
프레르 피에르
샌드린 카르페
Original Assignee
삼성에스디아이 주식회사
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사, 삼성전자주식회사 filed Critical 삼성에스디아이 주식회사
Priority to KR1020050097168A priority Critical patent/KR101146666B1/en
Publication of KR20070041243A publication Critical patent/KR20070041243A/en
Application granted granted Critical
Publication of KR101146666B1 publication Critical patent/KR101146666B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D497/00Heterocyclic compounds containing in the condensed system at least one hetero ring having oxygen and sulfur atoms as the only ring hetero atoms
    • C07D497/02Heterocyclic compounds containing in the condensed system at least one hetero ring having oxygen and sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D497/04Ortho-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

본 발명은 3차원 저분자 비티오펜 유도체(bithiophene derivatives) 및 이를 이용한 소자에 관한 것으로, 보다 상세하게는 선형 공액 사슬(linear conjugated chains)을 갖는 3차원 구조의 저분자 비티오펜 유도체 및 이를 유기 반도체, 정공 수송 물질로 이용한 소자에 관한 것이다. 본 발명에 의하면, 상온 스핀 코팅 공정이 가능하고 안정적일 뿐만 아니라, 전기 전도성이 우수한 비티오펜 유도체를 제공할 수 있다.The present invention relates to a three-dimensional low molecular bithiophene derivatives and a device using the same, and more particularly, to a three-dimensional low molecular bithiophene derivative having linear conjugated chains and organic semiconductors, hole transport It relates to a device used as a material. According to the present invention, it is possible to provide a bithiophene derivative having an excellent electrical conductivity as well as being stable and room temperature spin coating process.

비티오펜 유도체, 3차원, 전기 전도성, 정공 수송 물질, 태양전지, 상온 스핀 코팅 Bithiophene Derivatives, 3D, Electrically Conductive, Hole Transport Materials, Solar Cells, Room Temperature Spin Coating

Description

3차원 저분자 비티오펜 유도체 및 이를 이용한 소자{3-Dimensional Low Molecular Bithiophene Derivatives and Devices using the Same}3-Dimensional Low Molecular Bithiophene Derivatives and Devices using the Same}

도 1은 본 발명의 비티오펜 유도체의 중심에 위치한 두 티오펜환의 입체구조를 나타내는 모식도이고,1 is a schematic diagram showing the three-dimensional structure of two thiophene ring located in the center of the bithiophene derivative of the present invention,

도 2는 본 발명의 실시예 1에서 제조한 태양전지 소자의 I-V 그래프이고,2 is an I-V graph of the solar cell device manufactured in Example 1 of the present invention,

도 3은 비교예 1에서 제조한 태양전지 소자의 I-V 그래프이고,3 is an I-V graph of the solar cell device manufactured in Comparative Example 1;

도 4는 비교예 2에서 제조한 태양전지 소자의 I-V 그래프이다.4 is an I-V graph of the solar cell device manufactured in Comparative Example 2. FIG.

본 발명은 비티오펜 유도체 및 이를 이용한 소자에 관한 것으로, 보다 상세하게는 선형 공액 사슬(linear conjugated chains)을 갖는 3차원 구조의 저분자 비티오펜 유도체 및 이를 유기 반도체 또는 정공 수송 물질로 이용한 소자에 관한 것이다.The present invention relates to a bithiophene derivative and a device using the same, and more particularly, to a low molecular bithiophene derivative having a three-dimensional structure having linear conjugated chains and a device using the same as an organic semiconductor or a hole transporting material. .

현재 유기반도체 재료로서 펜타센 등의 저분자 유기재료의 연구가 가속화되 는 한편, 폴리티오펜을 중심으로 한 고분자 유기재료에 대한 연구도 활발하게 진행되고 있다.At present, research on low-molecular organic materials such as pentacene as organic semiconductor materials has been accelerated, and research on high molecular organic materials centered on polythiophene has been actively conducted.

펜타센 등의 저분자 유기재료의 경우 우수한 전하이동도 및 전류점멸비를 갖는 것으로 보고되고 있으나, 박막 형성시 고가의 진공증착 장비를 필요로 하고, 미세패턴 형성에 어려움이 있기 때문에 가격적인 면이나 대면적화에 있어서 적합하지 않은 문제점을 가진다. Low-molecular organic materials such as pentacene have been reported to have excellent charge mobility and current flashing ratio, but they require expensive vacuum deposition equipment when forming thin films, and are difficult to form fine patterns, which makes them inexpensive. There is an unsuitable problem in adaptation.

이에 반하여, 폴리티오펜계 고분자 유기재료의 경우, 저분자 재료와 달리 용액형성이 가능하고, 스크린 인쇄기술이나 잉크분사(Ink-Jet) 기술 및 롤 프린팅 기술 등을 사용하여 박막 형성이 가능하므로 가격적인 면이나 대면적화에 유리한 장점이 있는 것으로 보고되고 있다.On the other hand, polythiophene-based polymer organic materials, unlike low-molecular materials, can be formed in solution, and thin films can be formed using screen printing, ink-jet, roll printing, etc. It is reported that there is an advantage in cotton and large area.

그러나, 상기 고분자 유기재료는 분자량 분포 차이로 인해 서로 다른 산화전위(oxidation potential)를 가지므로, 안정성을 저하시키는 원인이 되어 소자에 적용하는 것이 어려운 반면, 저분자 유기재료는 동일한 산화전위를 갖기 때문에 안정성 면에서 유리한 것으로 밝혀졌다.However, since the polymer organic materials have different oxidation potentials due to the difference in molecular weight distribution, it is difficult to apply them to devices due to deterioration of stability, while the low molecular weight organic materials have the same oxidation potential. It turned out to be advantageous in terms of.

본 발명은 상술한 종래 기술의 문제점을 해결하기 위한 것으로, 본 발명의 목적은 선형 공액 사슬(linear conjugated chains)을 갖는 3차원 구조를 갖는 저분자 비티오펜 유도체를 이용하여, 소자 적용시에 상온 스핀 코팅 공정이 가능하고 안정적일 뿐만 아니라, 전기 전도성이 우수한 저분자 유기재료를 제공하는 것이다. The present invention is to solve the above-mentioned problems of the prior art, an object of the present invention is to use a low-molecular bithiophene derivative having a three-dimensional structure having linear conjugated chains, at room temperature spin coating during application The present invention provides a low molecular weight organic material which is not only processable and stable, but also has excellent electrical conductivity.

본 발명의 다른 목적은 상기 비티오펜 유도체를 유기 반도체(organic semiconductor) 또는 정공 수송 물질(hole conducting material)로 이용한 소자를 제공하는 것이다.Another object of the present invention is to provide a device using the bithiophene derivative as an organic semiconductor or a hole conducting material.

상술한 목적을 달성하기 위한 본 발명의 한 측면은 하기 화학식 1로 표시되는 비티오펜 유도체에 관한 것이다.One aspect of the present invention for achieving the above object relates to a bithiophene derivative represented by the following formula (1).

[화학식 1][Formula 1]

Figure 112005058247713-pat00001
Figure 112005058247713-pat00001

상기 식에서, R1, R2, R3, R4는 각각 독립적으로 하기 화학식 2로 표시된다.In the above formula, R 1 , R 2 , R 3 , R 4 are each independently represented by the following formula (2).

[화학식 2][Formula 2]

Figure 112005058247713-pat00002
Figure 112005058247713-pat00002

Ar은 각각 독립적으로

Figure 112005058247713-pat00003
,
Figure 112005058247713-pat00004
,
Figure 112005058247713-pat00005
또는
Figure 112005058247713-pat00006
이며, Ar is each independently
Figure 112005058247713-pat00003
,
Figure 112005058247713-pat00004
,
Figure 112005058247713-pat00005
or
Figure 112005058247713-pat00006
,

R은 수소; 탄소수가 1-10인 선형, 분지형 또는 환형 알킬기; 탄소수가 1-10인 선형, 분지형 또는 환형 알콕시기; 탄소수가 1-10인 선형, 분지형 또는 환형 히 드록시알킬기; 및 탄소수가 1-10인 선형, 분지형 또는 환형 알콕시알킬기로 이루어진 군에서 선택되고, R is hydrogen; Linear, branched or cyclic alkyl groups having 1 to 10 carbon atoms; Linear, branched or cyclic alkoxy groups having 1 to 10 carbon atoms; Linear, branched or cyclic hydroxyalkyl groups having 1-10 carbon atoms; And a linear, branched or cyclic alkoxyalkyl group having 1-10 carbon atoms,

m은 1 내지 4의 정수이며,m is an integer from 1 to 4,

n은 0 또는 1이다. n is 0 or 1;

상기 과제를 해결하기 위한 본 발명의 다른 측면은 상기 비티오펜 유도체를 유기반도체(organic semiconductor) 또는 정공 수송 물질(hole conducting material)로 포함하여 상온 스핀코팅 공정이 가능하고 안정적일 뿐만 아니라, 전기 전도성이 우수한 소자에 관한 것이다.Another aspect of the present invention for solving the above problems is to include a non-thiophene derivative as an organic semiconductor or a hole conducting material to enable room temperature spin coating process and stable, as well as electrical conductivity It relates to an excellent device.

이하에서, 도면을 참조로 하여 본 발명에 관하여 보다 상세하게 설명한다. Hereinafter, the present invention will be described in more detail with reference to the drawings.

본 발명의 비티오펜 유도체는 하기 화학식 1로 표시된다:The bithiophene derivative of the present invention is represented by the following general formula (1):

[화학식 1][Formula 1]

Figure 112005058247713-pat00007
Figure 112005058247713-pat00007

상기 식에서, R1, R2, R3, R4는 각각 독립적으로 하기 화학식 2로 표시된다.In the above formula, R 1 , R 2 , R 3 , R 4 are each independently represented by the following formula (2).

[화학식 2][Formula 2]

Figure 112005058247713-pat00008
Figure 112005058247713-pat00008

Ar은 각각 독립적으로

Figure 112005058247713-pat00009
,
Figure 112005058247713-pat00010
,
Figure 112005058247713-pat00011
또는
Figure 112005058247713-pat00012
이며,Ar is each independently
Figure 112005058247713-pat00009
,
Figure 112005058247713-pat00010
,
Figure 112005058247713-pat00011
or
Figure 112005058247713-pat00012
,

R은 수소; 탄소수가 1-10인 선형, 분지형 또는 환형 알킬기; 탄소수가 1-10인 선형, 분지형 또는 환형 알콕시기; 탄소수가 1-10인 선형, 분지형 또는 환형 히드록시알킬기; 및 탄소수가 1-10인 선형, 분지형 또는 환형 알콕시알킬기로 이루어진 군에서 선택되고, R is hydrogen; Linear, branched or cyclic alkyl groups having 1 to 10 carbon atoms; Linear, branched or cyclic alkoxy groups having 1 to 10 carbon atoms; Linear, branched or cyclic hydroxyalkyl groups having 1 to 10 carbon atoms; And a linear, branched or cyclic alkoxyalkyl group having 1-10 carbon atoms,

m은 1 내지 4의 정수이며,m is an integer from 1 to 4,

n은 0 또는 1이다.n is 0 or 1;

본 발명의 비티오펜 유도체는 도 1에서 보는 바와 같이, 분자중심에 위치하는 비티오펜의 3, 3' 위치에 선형 공액 사슬(linear conjugated chain)과 같은 부피가 큰 기(bulky group)를 포함하고 있어, 이들간의 입체장애로 인하여 두 티오펜환은 서로 90걀 가까운 각도를 형성한다. 따라서, 분자중심에 질소 내지 인을 포함하는 저분자 공액 화합물에 비하여 컨쥬게이션을 더욱 용이하게 하는 3차원 공액 구조를 형성한다. 또한, 이러한 3차원 공액 구조는 비티오펜의 3 위치에만 부피가 큰 기를 포함하거나, 3, 3' 위치에 부피가 작은 기를 포함하고 있는 다른 비티오펜 유도체에 비하여 두 티오펜환이 이루는 각도가 훨씬 크기 때문에 유리한 전기전도성을 나타낸다. 한편, 본 발명의 비티오펜 유도체는 분자량이 크지 않아 실제 소자에 적용하였을 때 산화전위가 균일하고 안전적일 뿐만 아니라, 유기용매에 용해성이 우수하여 상온에서 종래에 알려진 코팅방법으로 코팅할 수 있다. 본 발명에서 사용되는 비티오펜 유도체의 분자량은 490 내지 3600의 범위이다.As shown in FIG. 1, the bithiophene derivative of the present invention includes a bulky group such as a linear conjugated chain at 3 and 3 ′ positions of the bithiophene located at the molecular center. However, due to steric hindrance between them, the two thiophene rings form an angle close to 90 eggs. Thus, a three-dimensional conjugated structure is formed that facilitates conjugation more easily than low molecular conjugated compounds containing nitrogen to phosphorus in the molecular center. In addition, the three-dimensional conjugated structure has a much larger angle between the two thiophene rings than other bithiophene derivatives containing bulky groups only at the 3 position of the bithiophene or small groups at the 3, 3 'positions. It exhibits advantageous electrical conductivity. On the other hand, the bithiophene derivative of the present invention does not have a large molecular weight, and when applied to an actual device, the oxidation potential is not only uniform and safe, but also excellent in solubility in an organic solvent, and can be coated by a conventionally known coating method at room temperature. The molecular weight of the bithiophene derivative used in the present invention is in the range of 490 to 3600.

보다 구체적으로, 상기 화학식 1로 표시되는 비티오펜 유도체로서는 하기 화학식 3 또는 4로 표시되는 유도체를 예로 들 수 있다. More specifically, examples of the bithiophene derivative represented by Chemical Formula 1 include derivatives represented by the following Chemical Formula 3 or 4.

[화학식 3](3)

Figure 112005058247713-pat00013
Figure 112005058247713-pat00013

[화학식 4][Formula 4]

Figure 112005058247713-pat00014
Figure 112005058247713-pat00014

한편, 본 발명의 비티오펜 유도체의 합성법으로는 헤테로 방향족 화합물의 대표적인 중합방법인 화학적 또는 전기 화학적 산화 합성법, 니켈이나 팔라듐과 같은 유기 전이금속 화합물을 이용하는 축합중합법이 모두 사용될 수 있으며, 특별히 제한되는 것은 아니다. 보다 구체적으로, 상기 화학식 3으로 표시되는 비티오펜 유도체는 하기 반응식 1로 표시된 반응경로에 따라 합성될 수 있다.On the other hand, as a synthesis method of the bithiophene derivative of the present invention, a chemical or electrochemical oxidative synthesis method, a condensation polymerization method using an organic transition metal compound such as nickel or palladium, which are typical polymerization methods of heteroaromatic compounds, may all be used. It is not. More specifically, the bithiophene derivative represented by Chemical Formula 3 may be synthesized according to the reaction route represented by Scheme 1 below.

[반응식 1]Scheme 1

Figure 112005058247713-pat00015
Figure 112005058247713-pat00015

상기 반응식 1에서 스테닐 유도체와 브로모 화합물의 반응은 용매로서 무수 톨루엔, 디메틸포름알데히드 등을 사용하고, Pd(PPh3)4와 같은 촉매를 부가하여 질소 분위기 하의 환류조건에서 -80 내지 40℃의 온도로 8시간 내지 24시간 이루어지는 것이 바람직하다. The reaction of the stenyl derivative and the bromo compound in Scheme 1 uses anhydrous toluene, dimethylformaldehyde and the like as a solvent, and adds a catalyst such as Pd (PPh 3 ) 4 to -80 to 40 ° C under reflux under a nitrogen atmosphere. It is preferable that the temperature is 8 to 24 hours.

상기와 같은 반응식에 따라 합성되는 본 발명의 비티오펜 유도체는 치환기를 조절함으로써 용액 공정이 보다 용이하게 되도록 할 수 있다. 따라서, 본 발명의 비티오펜 유도체는 종래에 알려진 코팅방법 중 어느 것에 의해서도 상온에서 코팅할 수 있으며, 구체적으로 스크린 인쇄법, 프린팅법, 스핀코팅법, 스핀캐스팅법, 딥핑법(dipping) 또는 잉크분사법을 통해 필요한 두께의 박막으로 형성될 수 있다. The bithiophene derivative of the present invention synthesized according to the reaction scheme as described above may be made to facilitate the solution process by adjusting the substituents. Accordingly, the bithiophene derivative of the present invention can be coated at room temperature by any of the conventionally known coating methods, and specifically, screen printing, printing, spin coating, spin casting, dipping or ink powder. It can be formed into a thin film of the required thickness through the law.

한편, 본 발명의 다른 측면은 상기 비티오펜 유도체를 유기 반도체(organic semiconductor) 또는 정공 수송 물질(hole conducting material)로 이용한 소자에 관한 것이다. Meanwhile, another aspect of the present invention relates to a device using the bithiophene derivative as an organic semiconductor or a hole conducting material.

구체적으로 상기 소자로는 OTFT(Organic Thin Film Transistor), OFET(Organic Field Effect Transistor), 유기 태양 광 전지(Organic Solar Photovoltaic Cell) 또는 유기전계 발광소자(Organic Light Emitting Device)를 예로 들 수 있다. In detail, the device may be an organic thin film transistor (OTFT), an organic field effect transistor (OFET), an organic solar photovoltaic cell, or an organic light emitting device.

또한, 본 발명의 비티오펜 유도체는 당업계에 알려진 통상적인 공정에 의해 OTFT 및 OFET의 유기반도체층, 유기 태양 광 전지의 정공수송층 또는 OLED의 정공수송층에 적용될 수 있다. In addition, the bithiophene derivative of the present invention can be applied to the organic semiconductor layer of OTFT and OFET, the hole transport layer of organic photovoltaic cell or the hole transport layer of OLED by conventional processes known in the art.

이하에서, 실시예를 통하여 본 발명을 보다 상세하게 설명하고자 하나, 하기의 실시예는 설명의 목적을 위한 것으로 본 발명을 제한하고자 하는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to Examples, but the following Examples are for the purpose of explanation and are not intended to limit the present invention.

제조예Manufacturing example 1:  One: 비티오펜Vithiophene 유도체(화학식 3)의 합성  Synthesis of Derivative (Formula 3)

상기 화학식 3으로 표시되는 비티오펜 유도체를 다음과 같은 경로에 의해 합성하였다.A bithiophene derivative represented by Chemical Formula 3 was synthesized by the following route.

(1) 3,3'-디티에닐-2,2'-비티오펜(3,3'-dithienyl-2,2'-bithiophene)의 합성(1) Synthesis of 3,3'-dithienyl-2,2'-bithiophene (3,3'-dithienyl-2,2'-bithiophene)

[반응식 2]Scheme 2

Figure 112005058247713-pat00016
Figure 112005058247713-pat00016

먼저, 2g의 3,3'-디브로모-2,2'-비티오펜과 5.06g(2.2eq)의 2-(트리부틸스테 닐)티오펜(2-(tributylstannyl)thiophene))을 712mg(5%mol)의 Pd(PPh3 )4 를 부가한 40ml의 톨루엔에 용해시켜 커플링 반응을 시켰다. 잔류물을 칼럼 크로마토그래피(실리카겔, 2:1 PE/DCM)로 정제하여 1.65g(81%)의 녹색 고체인 3,3'-디티에닐-2,2'-비티오펜(3,3'-dithienyl-2,2'-bithiophene)(M.p.171℃)을 얻었다.First, 712 mg (2 g of 3,3'-dibromo-2,2'-bithiophene and 5.06 g (2.2 eq) of 2- (tributylstannyl) thiophene) 5% mol) of Pd (PPh 3 ) 4 was dissolved in 40 ml of toluene to which the coupling reaction was carried out. The residue was purified by column chromatography (silica gel, 2: 1 PE / DCM) to give 1.65 g (81%) of 3,3'-dithienyl-2,2'-bithiophene (3,3 ') as a green solid. -dithienyl-2,2'-bithiophene) (Mp171 ° C) was obtained.

1H NMR (CDCl3 ): 6.9 (dd, 1H) 7.0 (dd, 1H) 7.1 (dd, 1H) 7.4 (d, 1H) 7.5(d, 1H) 1 H NMR (CDCl 3 ) : 6.9 (dd, 1H) 7.0 (dd, 1H) 7.1 (dd, 1H) 7.4 (d, 1H) 7.5 (d, 1H)

(2) 테트라브로모-3,3'-디티에닐-2,2'-비티오펜의 합성(2) Synthesis of tetrabromo-3,3'-dithienyl-2,2'-bithiophene

[반응식 3]Scheme 3

Figure 112005058247713-pat00017
Figure 112005058247713-pat00017

이렇게 수득한 3,3'-디티에닐-2,2'-비티오펜(200mg)을 30ml의 클로로포름에 용해시키고, 10ml의 클로로포름에 0.13ml(4.2eq)의 브롬을 용해시킨 용액을 방울방울 부가하였다. 15분간 교반한 뒤 20ml의 NaHSO3 포화용액을 부가하였다. DCM으로 추출한 뒤, 유기상을 NaHCO3 및 NaCl 포화 수용액으로 세척한 후 MgSO4로 건조하였다. 용매를 증발시키고 잔류물을 5ml의 에탄올과 4ml의 클로로포름의 혼합물로 재결정하여 207mg(54%)의 흰색 고체인 테트라브로모-3,3'-디티에닐-2,2'-비티오펜 (M.p.158℃)을 얻었다.The 3,3'-dithienyl-2,2'-bithiophene (200 mg) thus obtained was dissolved in 30 ml of chloroform, and a solution of 0.13 ml (4.2eq) of bromine in 10 ml of chloroform was added dropwise. It was. After stirring for 15 minutes, 20 ml of NaHSO 3 Saturated solution was added. After extraction with DCM, the organic phase is extracted with NaHCO 3 And washed with saturated aqueous NaCl solution and dried over MgSO 4 . The solvent was evaporated and the residue was recrystallized from a mixture of 5 ml of ethanol and 4 ml of chloroform to give 207 mg (54%) of white solid, tetrabromo-3,3'-dithienyl-2,2'-bithiophene (Mp158 C) was obtained.

1H NMR (CDCl3): 6.8 (d, 1H) 6.9 (d, 1H) 7.28 (s, 1H) 1 H NMR (CDCl 3 ): 6.8 (d, 1H) 6.9 (d, 1H) 7.28 (s, 1H)

(3) 화학식 3의 비티오펜 유도체의 합성(3) Synthesis of Bithiophene Derivatives of Formula (3)

[반응식 4]Scheme 4

Figure 112005058247713-pat00018
Figure 112005058247713-pat00018

이렇게 수득한 테트라브로모-3,3'-디티에닐-2,2'-비티오펜(400mg)을 1.68g의 스테닐 유도체 TTSBn(5'-butylsulfanyl-2,2'-bithiophene-5-tributyltin) 및 144mg(5%mol)의 Pd(PPh3)4 와 함께 30ml의 톨루엔에 용해시키고 커플링 반응을 시켰다. 냉각 후 수득한 침전물을 여과시켜 DCM에 녹이고 NH4Cl 및 NaCl의 수용액으로 세척하고 MgSO4로 건조하였다. 용매를 증발시키고 잔류물을 크로마토그래피(실리카겔, 2:1 PE/DCM)로 정제하여 250mg(30%)의 오렌지색 고체인 비티오펜 유도체(M.p.189℃)를 얻었다.Tetrabromo-3,3'-dithienyl-2,2'-bithiophene (400 mg) thus obtained was obtained with 1.68 g of the stenyl derivative TTSBn (5'-butylsulfanyl-2,2'-bithiophene-5-tributyltin). ) And 144 mg (5% mol) of Pd (PPh 3 ) 4 were dissolved in 30 ml of toluene and subjected to a coupling reaction. The precipitate obtained after cooling was filtered, dissolved in DCM, washed with an aqueous solution of NH 4 Cl and NaCl and dried over MgSO 4 . The solvent was evaporated and the residue was purified by chromatography (silica gel, 2: 1 PE / DCM) to give 250 mg (30%) of an orange solid, bithiophene derivative (Mp189 ° C.).

1H NMR (CDCl3): 6.95-6.98 (m, 6H) 7.02 (d, 1H) 7.06 (d, 1H) 7.08 (d, 1H) 7.15 (d, 1H) 7.39 (s, 1H) 1 H NMR (CDCl 3 ): 6.95-6.98 (m, 6H) 7.02 (d, 1H) 7.06 (d, 1H) 7.08 (d, 1H) 7.15 (d, 1H) 7.39 (s, 1H)

제조예Manufacturing example 2:  2: 비티오펜Vithiophene 유도체(화학식 4)의 합성 Synthesis of Derivatives

상기 화학식 4로 표시되는 비티오펜 유도체는 다음과 같이 합성하였다.The bithiophene derivative represented by Chemical Formula 4 was synthesized as follows.

[반응식 5]Scheme 5

Figure 112005058247713-pat00019
Figure 112005058247713-pat00019

상기 제조예 1에서 얻어진 테트라브로모-3,3'-디티에닐-2,2'-비티오펜(100mg)을 0.53g의 스테닐 유도체 TETHex(Thiopheneethylendioxythiophenethiophene) 및 36mg(5%mol)의 Pd(PPh3)4와 함께 10ml의 톨루엔에 용해시키고 커플링 반응을 시킨 것을 제외하고는 제조예 1과 동일하게 실시하여 60mg의 붉은색 고체인 비티오펜 유도체를 얻었다.Tetrabromo-3,3'-dithienyl-2,2'-bithiophene (100 mg) obtained in Preparation Example 1 was 0.53 g of a stenyl derivative TETHex (Thiopheneethylendioxythiophenethiophene) and 36 mg (5% mol) of Pd ( 60 mg of a red solid bithiophene derivative was obtained in the same manner as in Preparation Example 1 except that the mixture was dissolved in 10 ml of toluene together with PPh 3 ) 4 and subjected to a coupling reaction.

1H NMR (CDCl3): 0.88 (t, 6H) 1.28-1.35 (m, 12H) 1.63-1.71 (m, 4H) 2.80 (t, 4H) 4.35-4.43 (m, 8H, EDOT) 6.67 (d, 1H) 6.7 (d, 1H) 6.96-6.97 (m, 3H) 7.0-7.02 (m, 23H) 7.05 (d, 1H) 7.11 (d, 1H) 7.15 (d, 1H) 7.39 (s, 1H) 1 H NMR (CDCl 3 ): 0.88 (t, 6H) 1.28-1.35 (m, 12H) 1.63-1.71 (m, 4H) 2.80 (t, 4H) 4.35-4.43 (m, 8H, EDOT) 6.67 (d, 1H) 6.7 (d, 1H) 6.96-6.97 (m, 3H) 7.0-7.02 (m, 2 3 H) 7.05 (d, 1H) 7.11 (d, 1H) 7.15 (d, 1H) 7.39 (s, 1H)

상기 제조예 1-2에 따라 합성된 비티오펜 유도체의 UV 흡광도를 측정하였고, 그 결과 화학식 3의 비티오펜 유도체의 최대흡수파장은 399nm이고, 화학식 4의 비 티오펜 유도체의 최대흡수파장은 441nm이었으며, 모두 넓은 파장 범위에서 UV를 흡수하는 것을 알 수 있었다.UV absorbance of the bithiophene derivatives synthesized according to Preparation Example 1-2 was measured. As a result, the maximum absorption wavelength of the bithiophene derivative of Formula 3 was 399 nm, and the maximum absorption wavelength of the non-thiophene derivative of Formula 4 was 441 nm. All of them absorb UV in a wide wavelength range.

실시예Example 1:  One: 광전Photoelectric 효율의 측정  Measurement of efficiency

유리 기판 위에 ITO 전극를 형성하고, 그 위에 80nm 두께의 전도성 고분자(Bayer社, Baytron P)층을 형성하였다. 이어서, 제조예 1에서 합성한 비티오펜 유도체와 PCBM([6,6]-phenyl-C61 -butyric acid methylester)을 1:3(w/w)로 혼합하여 스핀캐스팅에 의해 100nm 두께의 유기 반도체층을 형성하였다. 이어서, 상기 유기 반도체층 위에 알루미늄을 사용하여 60nm 두께의 반대전극을 형성함으로써 광전 효율 측정을 위한 태양전지 소자를 제작하였다. An ITO electrode was formed on the glass substrate, and an 80 nm thick conductive polymer (Bayer, Baytron P) layer was formed thereon. Then Production Example 1 A bithiophene derivative PCBM synthesized in-a ([6,6] -phenyl-C 61 butyric acid methylester) 1: 3 (w / w) and mixed with the organic semiconductor in the 100nm thickness by the spin cast to A layer was formed. Subsequently, a solar cell device for measuring photoelectric efficiency was manufactured by forming a counter electrode having a thickness of 60 nm on the organic semiconductor layer by using aluminum.

비교예Comparative example 1-2:  1-2: 광전Photoelectric 효율의 측정  Measurement of efficiency

유기 반도체층 형성시, 비티오펜 유도체로서 3, 3' 위치에 부피가 작은 기를 포함하는 하기 화학식 5의 비티오펜 유도체와 3 위치에만 부피가 큰 기를 포함하는 하기 화학식 6의 비티오펜 유도체를 사용한 것을 제외하고는, 실시예 1과 동일한 방법에 따라 실시하여 광전 효율 측정을 위한 태양전지 소자를 제작하였다.When forming the organic semiconductor layer, except for using a bithiophene derivative of the formula (5) including a small group in the 3, 3 'position and a bithiophene derivative of the formula (6) comprising a bulky group only in the 3 position when forming the organic semiconductor layer Then, according to the same method as in Example 1 to produce a solar cell device for measuring the photoelectric efficiency.

[화학식 5][Chemical Formula 5]

Figure 112005058247713-pat00020
Figure 112005058247713-pat00020

[화학식 6][Formula 6]

Figure 112005058247713-pat00021
Figure 112005058247713-pat00021

ㅍ상기 실시예 1-2 및 비교예 1-2에 따라 제조된 광전소자의 광전 효율을 측정하기 위하여 광전압 및 광전류를 측정하였다.In order to measure the photoelectric efficiency of the photoelectric device manufactured according to Example 1-2 and Comparative Example 1-2, the photovoltage and photocurrent were measured.

광원으로는 제논 램프(Xenon lamp, Oriel, 01193)을 사용하였으며, 상기 제논 램프의 태양 조건(AM 1.5)은 표준 태양전지 (Frunhofer Institute Solar Engeriessysteme, Certificate No. C-ISE369, Type of material: Mono-Si + KG 필터)를 사용하여 보정하였다. 측정된 광전류전압 곡선은 도 2-4에 나타내었다. 상기 광전류전압 곡선으로부터 계산된 전류밀도(Isc), 전압(Voc), 및 충진 계수(fill factor, FF)를 하기 광전효율 계산식을 통해 계산한 광전 효율(ηe)을 하기 표 1에 나타내었다.Xenon lamp (Oriel, 01193) was used as the light source, and the solar condition (AM 1.5) of the xenon lamp was a standard solar cell (Frunhofer Institute Solar Engeriessysteme, Certificate No. C-ISE369, Type of material: Mono-). Si + KG filter). The measured photocurrent voltage curves are shown in FIGS. 2-4. The photoelectric efficiency ηe calculated by the photoelectric efficiency calculation formula for the current density I sc , the voltage V oc , and the fill factor FF calculated from the photocurrent voltage curve are shown in Table 1 below. .

ηe = (Voc Isc FF)/(Pinc)ηe = (V oc I sc FF) / (P inc )

상기 식중, P inc는 100mw/cm2 (1sun)을 나타낸다.In the above formula, P inc is 100mw / cm 2 (1sun).

[표 1][Table 1]

구분division 광전효율(%)Photoelectric efficiency (%) 실시예 1Example 1 0.190.19 실시예 3Example 3 0.130.13 실시예 4Example 4 0.070.07

상기 표 1의 결과로부터 알 수 있는 바와 같이, 본 발명에 따른 비티오펜 유도체를 유기 반도체층으로 형성한 광전소자는, 컨쥬게이션을 더욱 용이하게 하는 3차원 공액 구조를 형성함으로써 광전효율이 향상된 것을 알 수 있다.As can be seen from the results of Table 1, the photoelectric device in which the bithiophene derivative according to the present invention is formed of an organic semiconductor layer has been found to have improved photoelectric efficiency by forming a three-dimensional conjugated structure to facilitate conjugation. Can be.

이와 같이 본 발명의 비티오펜 유도체는 새로운 구조의 3차원 저분자 유기 반도체로서 상온 스핀 코팅 공정이 가능하고 안정적일 뿐만 아니라, 전기 전도성이 우수하여 OTFT(Organic Thin Film Transistor), OFET(Organic Field Effect Transistor), 유기 태양 광 전지(Organic Solar Photovoltaic Cell) 및 OLED(Organic Light Emitting Device)에 활용할 수 있다.As described above, the bithiophene derivative of the present invention is a novel three-dimensional low molecular organic semiconductor, which is capable of spin coating at room temperature and is stable, and has excellent electrical conductivity, so that it is organic thin film transistor (OTFT) and organic field effect transistor (OFET). , Organic solar photovoltaic cells and organic light emitting devices (OLEDs).

Claims (8)

하기 화학식 1로 표시되는 비티오펜 유도체: A bithiophene derivative represented by the following general formula (1): [화학식 1][Formula 1]
Figure 112011094824283-pat00022
Figure 112011094824283-pat00022
상기 식에서, R1, R2, R3, R4는 각각 독립적으로 하기 화학식 2로 표시된다.In the above formula, R 1 , R 2 , R 3 , R 4 are each independently represented by the following formula (2). [화학식 2][Formula 2]
Figure 112011094824283-pat00023
Figure 112011094824283-pat00023
Ar은 각각 독립적으로
Figure 112011094824283-pat00024
,
Figure 112011094824283-pat00025
,
Figure 112011094824283-pat00026
또는
Figure 112011094824283-pat00027
이며,
Ar is each independently
Figure 112011094824283-pat00024
,
Figure 112011094824283-pat00025
,
Figure 112011094824283-pat00026
or
Figure 112011094824283-pat00027
,
R은 탄소수가 1-10인 선형, 분지형 또는 환형 알킬기이고R is a linear, branched or cyclic alkyl group having 1-10 carbon atoms m은 1 내지 4의 정수이며,m is an integer from 1 to 4, n은 0 또는 1이다.n is 0 or 1;
제 1항에 있어서, 상기 비티오펜 유도체가 하기 화학식 3 또는 4로 표시되는 것을 특징으로 하는 비티오펜 유도체:The bithiophene derivative according to claim 1, wherein the bithiophene derivative is represented by the following Chemical Formula 3 or 4. [화학식 3](3)
Figure 112005058247713-pat00028
Figure 112005058247713-pat00028
[화학식 4][Formula 4]
Figure 112005058247713-pat00029
Figure 112005058247713-pat00029
제 1항 또는 제 2항의 비티오펜 유도체를 채널 물질로 포함하는 유기 박막 트랜지스터.An organic thin film transistor comprising the bithiophene derivative of claim 1 as a channel material. 제 3항에 있어서, 상기 채널 물질은 스크린 인쇄법, 프린팅법, 스핀코팅법, 스핀 캐스팅법, 딥핑법 또는 잉크분사법을 통하여 박막화되는 것을 특징으로 하는 유기 박막 트랜지스터.The organic thin film transistor of claim 3, wherein the channel material is thinned by screen printing, printing, spin coating, spin casting, dipping, or ink spraying. 제 1항 또는 제 2항의 비티오펜 유도체를 정공 수송 물질(Hole Conducting Material)로 포함하는 유기 태양 광 전지.An organic photovoltaic cell comprising the bithiophene derivative of claim 1 or 2 as a hole conducting material. 제 5항에 있어서, 상기 정공 수송 물질은 스크린 인쇄법, 프린팅법, 스핀코팅법, 스핀 캐스팅법, 딥핑법 또는 잉크분사법을 이용하여 박막화되는 것을 특징으로 하는 유기 태양 광 전지.The organic photovoltaic cell of claim 5, wherein the hole transport material is thinned by screen printing, printing, spin coating, spin casting, dipping, or ink spraying. 제 1항 또는 제 2항의 비티오펜 유도체를 정공 수송 물질로 포함하는 유기 전계 발광소자.An organic electroluminescent device comprising the bithiophene derivative of claim 1 or 2 as a hole transport material. 제 7항에 있어서, 상기 정공 수송 물질은 스크린 인쇄법, 프린팅법, 스핀코팅법, 스핀 캐스팅법, 딥핑법 또는 잉크분사법을 이용하여 박막화되는 것을 특징으로 하는 유기 전계 발광소자.The organic electroluminescent device according to claim 7, wherein the hole transport material is thinned by screen printing, printing, spin coating, spin casting, dipping, or ink spraying.
KR1020050097168A 2005-10-14 2005-10-14 3-Dimensional Low Molecular Bithiophene Derivatives and Devices using the Same KR101146666B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050097168A KR101146666B1 (en) 2005-10-14 2005-10-14 3-Dimensional Low Molecular Bithiophene Derivatives and Devices using the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050097168A KR101146666B1 (en) 2005-10-14 2005-10-14 3-Dimensional Low Molecular Bithiophene Derivatives and Devices using the Same

Publications (2)

Publication Number Publication Date
KR20070041243A KR20070041243A (en) 2007-04-18
KR101146666B1 true KR101146666B1 (en) 2012-05-24

Family

ID=38176732

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050097168A KR101146666B1 (en) 2005-10-14 2005-10-14 3-Dimensional Low Molecular Bithiophene Derivatives and Devices using the Same

Country Status (1)

Country Link
KR (1) KR101146666B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101572906B1 (en) 2013-11-12 2015-12-01 원광대학교 산학협력단 Bithiophene derivative for green organic light-emitting diode dopant and method for preparing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100914383B1 (en) * 2006-06-20 2009-08-28 주식회사 엘지화학 Polyheterocyclic compound, organic electronic device using the same and electronic apparatus comprising the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311221A (en) 2003-04-08 2004-11-04 Stanley Electric Co Ltd Light-emitting organic tft element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311221A (en) 2003-04-08 2004-11-04 Stanley Electric Co Ltd Light-emitting organic tft element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101572906B1 (en) 2013-11-12 2015-12-01 원광대학교 산학협력단 Bithiophene derivative for green organic light-emitting diode dopant and method for preparing the same

Also Published As

Publication number Publication date
KR20070041243A (en) 2007-04-18

Similar Documents

Publication Publication Date Title
Cui et al. Improvement of open-circuit voltage and photovoltaic properties of 2D-conjugated polymers by alkylthio substitution
US10263190B2 (en) Difluorobithiophene-based donor-acceptor polymers for electronic and photonic applications
Yuan et al. Design of benzodithiophene-diketopyrrolopyrrole based donor–acceptor copolymers for efficient organic field effect transistors and polymer solar cells
Mikroyannidis et al. Low band gap conjugated small molecules containing benzobisthiadiazole and thienothiadiazole central units: synthesis and application for bulk heterojunction solar cells
US7906724B2 (en) N-type conjugated materials based on 2-vinyl-4,5-dicyanoimidazoles and their use in organic photovoltaics
US9809594B2 (en) Non-fullerene electron acceptors for organic photovoltaic devices
Kim et al. Benzotriazole-based donor–acceptor type semiconducting polymers with different alkyl side chains for photovoltaic devices
KR20130119916A (en) Photovoltaic cell containing novel photoactive polymer
US20090299029A1 (en) Soluble polythiophene derivatives
WO2014026244A1 (en) Photoactive optoelectronic and transistor devices
Liang et al. Donor–acceptor conjugates-functionalized zinc phthalocyanine: Towards broad absorption and application in organic solar cells
US20090171048A1 (en) Soluble polythiophene derivatives
Do et al. Efficient planar organic semiconductors containing fused triphenylamine for solution processed small molecule organic solar cells
Lin et al. Solution-processable small molecules based on thieno [3, 4-c] pyrrole-4, 6-dione for high-performance solar cells
US20080214839A1 (en) Low molecular weight conjugated nitrogen compounds and devices fabricated using the same
Zhao et al. Diketopyrrolopyrrole based A2-D-A1-D-A2 type small molecules for organic solar cells: effects of substitution of benzene with thiophene
Je et al. End-group tuning of DTBDT-based small molecules for organic photovoltaics
Adhikari et al. Solid-state showdown: Comparing the photovoltaic performance of amorphous and crystalline small-molecule diketopyrrolopyrrole acceptors
WO2014031750A1 (en) Acenaphthylene imide-derived semiconductors
Cui et al. Metallated conjugation in small-sized-molecular donors for solution-processed organic solar cells
Hong et al. A novel small molecule based on dithienophosphole oxide for bulk heterojunction solar cells without pre-or post-treatments
Yan et al. Design, synthesis and photophysical properties of ADADA small molecules for photovoltaic application
KR101146666B1 (en) 3-Dimensional Low Molecular Bithiophene Derivatives and Devices using the Same
KR101553806B1 (en) Organic semiconductor compounds Containing Posphine oxide and Solar Cell Device Using This Material
WO2023012363A1 (en) Photoactive nonfullerene acceptors of the a-d-a'-d-a type for use in optoelectronic devices

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee