KR101145993B1 - Prediction method of soc for battery - Google Patents

Prediction method of soc for battery Download PDF

Info

Publication number
KR101145993B1
KR101145993B1 KR1020100125173A KR20100125173A KR101145993B1 KR 101145993 B1 KR101145993 B1 KR 101145993B1 KR 1020100125173 A KR1020100125173 A KR 1020100125173A KR 20100125173 A KR20100125173 A KR 20100125173A KR 101145993 B1 KR101145993 B1 KR 101145993B1
Authority
KR
South Korea
Prior art keywords
battery
soc
remaining capacity
capacity
equation
Prior art date
Application number
KR1020100125173A
Other languages
Korean (ko)
Inventor
박부민
김성철
이강엽
양수석
Original Assignee
한국항공우주연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국항공우주연구원 filed Critical 한국항공우주연구원
Priority to KR1020100125173A priority Critical patent/KR101145993B1/en
Application granted granted Critical
Publication of KR101145993B1 publication Critical patent/KR101145993B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/28Provision in measuring instruments for reference values, e.g. standard voltage, standard waveform
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PURPOSE: A method for measuring residue capacity of a battery is provided to improve user convenience by recognizing the state of a battery. CONSTITUTION: Reference value residual capacity is obtained by measuring the impedance of a battery in high frequency and low frequency. Current calculation residual capacity is obtained after the standard value residual capacity through the current measurement. Battery residual capacity is obtained.

Description

배터리의 잔여용량 측정방법 {PREDICTION METHOD OF SOC FOR BATTERY}How to measure remaining battery capacity {PREDICTION METHOD OF SOC FOR BATTERY}

본 발명은 배터리의 잔여용량 측정방법에 관한 것으로서, 더욱 상세하게는 저주파와 고주파에서 측정된 배터리의 내부 임피던스를 이용하여 배터리의 잔여용량을 계산하는 배터리의 잔여용량 측정방법에 관한 것이다.The present invention relates to a method for measuring the remaining capacity of a battery, and more particularly, to a method for measuring the remaining capacity of a battery using the internal impedance of the battery measured at low and high frequencies.

일반적으로 모든 전기 전자기기의 경우 전력이 공급되어야 동작이 이루어지지며, 특히 이동성을 갖는 전기 전자기기의 경우 직류전원을 공급하는 별도의 배터리로부터 전력을 공급받는다.In general, all electrical and electronic devices are operated when power is supplied, and in particular, electrical electronic devices having mobility receive power from a separate battery for supplying DC power.

최근 휴대 단말기, 캠코더, 디지털 카메라, 노트북, 개인 정보 단말(PDA), 무선 텔레비전, 웹 패드, 스마트 디스플레이 등 각종 휴대용 기기가 기존 음성 중심에서 영상, 데이터, 이메일 등의 멀티미디어로 전환되면서 소비전력이 급증하고 있으며, 이를 위해 보다 많은 용량과 반복적인 충방전을 모두 만족하는 배터리 장치가 필요하게 되었다.Recently, various portable devices such as mobile terminals, camcorders, digital cameras, laptops, personal digital assistants (PDAs), wireless televisions, web pads, and smart displays have shifted from existing voice to multimedia such as video, data, and e-mail. To this end, a battery device that satisfies both capacity and repetitive charging and discharging is required.

이러한 배터리는 적용되는 전기 전자기기의 크기 및 용량에 맞게 그 크기 및 용량이 설정되며, 배터리에는 기본적으로 충전을 할 수 있는 충전단자와 출력을 위한 출력단자를 갖는 것이 보통이다.Such a battery has its size and capacity set according to the size and capacity of an applied electric and electronic device, and a battery generally has a charging terminal capable of charging and an output terminal for output.

이와 같이 배터리는 대부분 이동성을 갖는 전기 전자기기 등 외부전원과 분리된 기기에서 이루어지므로, 배터리의 잔여용량(State of Charge) 파악은 기기 활용 가능 시간의 예측 등 활용의 편의성에 있어서 아주 중요한 부분이다.As the battery is mostly made from a device separated from an external power source such as an electronic device having mobility, grasping the state of charge of the battery is a very important part in the convenience of use such as the prediction of the available time of the device.

한편, 무인항공기에 적용되는 배터리는 매우 가벼워야 하며, 모터의 순간 가속력을 감당할 수 있을 정도의 높은 출력특성을 보유해야 한다.On the other hand, the battery applied to the unmanned aerial vehicle should be very light and have a high output characteristic enough to handle the momentary acceleration of the motor.

이에 대한 해결방안으로 리튬이온 폴리머 배터리가 부각되고 있으며, 이 리튬이온 폴리머 배터리는 기존의 리튬이온 배터리에 비해 외장재 무게를 획기적으로 줄였을 뿐만 아니라 이온 이동이 빠르고 반응성이 좋은 전해액을 적용함으로써 출력 특성이 좋다.As a solution to this problem, lithium ion polymer batteries are emerging, which not only significantly reduced the weight of the exterior materials compared to conventional lithium ion batteries, but also exhibited excellent output characteristics by applying electrolytes with fast ion transfer and reactivity. good.

이러한 무인 항공기용 리튬이온 폴리머 배터리의 잔여용량을 정확하게 측정함으로써 리튬이온 폴리머 배터리의 상태를 판별할 수 있다.By accurately measuring the remaining capacity of the lithium ion polymer battery for an unmanned aerial vehicle, it is possible to determine the state of the lithium ion polymer battery.

이와 같은 배터리의 잔여용량에 대한 종래의 계산방법으로는 아래의 두 가지 방식이 있다.Conventional calculation methods for the remaining capacity of such a battery are as follows.

첫 번째는 배터리 개로전압(OCV: open circuit voltage, 개회로에 있어서 그 개로한 점의 양단에 나타나는 전압)을 측정함으로써 배터리 잔여용량을 확인하는 방법이다.The first method is to determine the remaining capacity of the battery by measuring the open circuit voltage (OCV), which is the voltage across the open point in the open circuit.

도 1은 배터리의 개로전압과 잔여용량과의 관계를 나타내는 그래프로서, B점에서 측정된 전압에 있어서 측정오차 △V에 대해 배터리의 잔여용량 변화는 Ca에서 Cc까지 매우 큼을 알 수 있다.1 is a graph showing the relationship between the open circuit voltage and the remaining capacity of the battery. It can be seen that the change of the remaining capacity of the battery is very large from Ca to Cc with respect to the measurement error ΔV in the voltage measured at point B.

즉, 첫 번째 방식에 의한 배터리의 잔여용량 계산방법은 개로전압 측정에 오류가 있거나, 오차가 크면 잔여용량 계산에 있어서 오차가 크다는 단점이 있다.That is, the method of calculating the remaining capacity of the battery according to the first method has a disadvantage in that an error in measuring the open circuit voltage or a large error results in a large error in calculating the remaining capacity.

두 번째는 배터리 개로전압(OCV) 또는 사용전압(CCV: close circuit voltage), 전류 등을 복합적으로 측정함으로써 배터리 잔여용량을 확인하는 방법이다.The second method is to check the remaining capacity of the battery by measuring the battery open circuit voltage (OCV), close circuit voltage (CCV), current, etc. in combination.

여기에서 배터리의 잔여용량(SOC)은 Q(현재의 충전용량 또는 보유용량)/Qmax(최대 충전용량 또는 보유용량)로 정의된다.Here, the remaining capacity SOC of the battery is defined as Q (current charge capacity or retention capacity) / Qmax (maximum charge capacity or retention capacity).

두 번째 방식에서 시간(t) 경과에 따른 전류(I)를 측정하여 배터리의 잔여용량을 계산하는 경우 잔여용량은 개로전압에서의 잔여용량(SOCocv) + ∫Idt/Qmax로 계산된다.In the second method, when the remaining capacity of the battery is calculated by measuring the current I over time t, the remaining capacity is calculated as SOC ocv + ∫Idt / Qmax at the open circuit voltage.

도 2는 전류값 변화에 따른 배터리의 용량값을 나타내는 도면으로서, ∫Idt에 의해 시간 경과에 따른 전류를 측정하여 배터리의 용량을 계산한다.2 is a diagram illustrating a capacity value of a battery according to a change in current value, and the capacity of the battery is calculated by measuring current over time by ∫Idt.

상기 두 번째 방식에 의한 배터리의 잔여용량 계산방법은 개로전압에서의 잔여용량(SOCocv)이 부정확할 경우 배터리의 잔여용량 예측이 부정확해지는 문제점이 있었다.The method of calculating the remaining capacity of the battery according to the second method has a problem in that the remaining capacity prediction of the battery is incorrect when the remaining capacity SOC ocv is incorrect at the open circuit voltage.

본 발명은 상술한 문제점을 해결하기 위하여 안출된 것으로서, 저주파와 고주파에서 측정한 배터리의 내부 임피던스를 이용하여 배터리의 잔여용량을 정확하게 측정하고 배터리의 상태를 판별할 수 있도록 하여 배터리 활용의 편의성을 향상시킬 수 있는 배터리의 잔여용량 측정방법을 제공하는데 그 목적이 있다.The present invention has been made to solve the above problems, by using the internal impedance of the battery measured at low and high frequency to accurately measure the remaining capacity of the battery and to determine the state of the battery to improve the convenience of battery utilization The object of the present invention is to provide a method for measuring the remaining capacity of a battery.

상술한 목적을 달성하기 위한 본 발명에 따른 배터리의 잔여용량 측정방법은, 고주파와 이 고주파보다 상대적으로 낮은 저주파에서 배터리의 임피던스를 각각 측정하여 t=0일 때 개로전압을 기준으로 기준값 잔여용량(SOCRef)을 계산하고, 상기 기준값 잔여용량 이후에 전류 측정을 통해 전류연산 잔여용량(SOCic)을 계산하여,A method for measuring the remaining capacity of a battery according to the present invention for achieving the above object is to measure the impedance of the battery at a high frequency and a low frequency relatively lower than the high frequency, respectively, and reference value residual capacity based on the open-circuit voltage when t = 0. SOC Ref ), and the current operation remaining capacity (SOC ic ) through the current measurement after the reference value remaining capacity,

상기 기준값 잔여용량(SOCRef)과 전류연산 잔여용량(SOCic)을 더해서 배터리 잔여용량을 측정하는 것을 특징으로 한다.The battery residual capacity is measured by adding the reference value residual capacity SOC Ref and the current operation residual capacity SOC ic .

상술한 과제의 해결 수단에 의하면 배터리의 활용에 있어서 중요한 요소인 배터리의 잔여용량을 정확하게 계산하고, 이에 따라 이동형 기기의 사용 시간을 더 정확히 예측하여 편의성을 증대시킬 수 있다.According to the above-mentioned means for solving the problem, it is possible to accurately calculate the remaining capacity of the battery, which is an important factor in the utilization of the battery, and thereby increase the convenience by more accurately predicting the usage time of the mobile device.

도 1은 배터리의 개로전압과 잔여용량과의 관계를 나타내는 그래프,
도 2는 전류값 변화에 따른 배터리의 용량값을 나타내는 도면,
도 3은 본 발명에 따라 배터리를 충전하면서 측정한 임피던스값을 나타내는 그래프,
도 4는 본 발명에 따른 임피던스값과 잔여용량과의 관계를 나타내는 그래프.
1 is a graph showing a relationship between an open circuit voltage and a remaining capacity of a battery;
2 is a view showing a capacity value of a battery according to a change in current value;
3 is a graph showing an impedance value measured while charging a battery according to the present invention;
Figure 4 is a graph showing the relationship between the impedance value and the remaining capacity according to the present invention.

먼저, 본 발명의 이해를 돕기 위해 배터리의 임피던스에 대해 설명한 후 본 발명의 실시예에 대하여 설명하고자 한다.First, an embodiment of the present invention will be described after describing the impedance of the battery in order to help understanding of the present invention.

배터리 임피던스에 대한 연구는 몇 가지의 목적 예를 들어, 전기화학 반응기구의 결정과 그에 상응하는 적절한 임피던스 모델 결정, 배터리의 전기적 매개변수의 예측, 제품의 품질 검사 등의 목적을 갖는다.The study of battery impedance has several objectives, for example, the determination of electrochemical reactors and correspondingly appropriate impedance models, the prediction of battery electrical parameters, and the inspection of product quality.

배터리의 임피던스 연구는 관여하는 과정이 매우 복잡하기 때문에 어려움이 많은 바, 시스템의 관점에서 보면 배터리는 비선형 특성을 보이고, 다중 매개변수를 가지며, 준비가역적이고, 거대와 미세 규모 양쪽 모두에 걸친 매개변수를 가진 거대한 통계적 개체이다.Impedance studies of batteries are challenging because the process involved is very complex. From the system's point of view, the batteries are nonlinear, have multiple parameters, are reversible, and are available on both large and fine scales. It is a huge statistical entity.

배터리 내부에서의 에너지 및 물질전달 과정은 미세구조를 크게 변화시키고 작업성능에 영향을 준다.The energy and mass transfer process inside the battery significantly changes the microstructure and affects work performance.

또한, 배터리 동작에 대한 분석은 전하이동 저항과 이중층 정전용량과 같은 임피던스 매개변수에 의존한다.The analysis of battery operation also depends on impedance parameters such as charge transfer resistance and double layer capacitance.

이런 매개변수들은 배터리의 내부 저항뿐만 아니라 각각의 전극특성과 연관된다.These parameters are associated with each electrode characteristic as well as the internal resistance of the battery.

이 임피던스 성분은 유효면적, 전극작용은 동적속도, 이온전달 등과 밀접하게 관련된다.This impedance component is closely related to the effective area, and the electrode action is closely related to the dynamic velocity and ion transfer.

일반적으로 배터리를 분해하지 않고 각각의 전극이나 전해액에 대한 접근이 불가능하기 때문이다.In general, it is impossible to access each electrode or electrolyte without disassembling the battery.

그러므로 좀 더 실제적인 접근은 정량적이고 비파괴적인 기술을 사용해서 임피던스 매개변수를 계산하는 것이고, 상기 매개변수들은 배터리의 설계, 수명, 성능, 특성 등과 직접적으로 관계한다.Therefore, a more practical approach is to calculate impedance parameters using quantitative and non-destructive techniques, which are directly related to the design, life, performance, and characteristics of the battery.

직류방법과 교류방법은 배터리의 저항성분과 반응성분의 총 임피던스를 측정하는데 사용된다.The direct current and alternating current methods are used to measure the total impedance of the resistive and reactive components of the battery.

본 발명에서는 이와 같은 배터리의 임피던스를 이용하여, 배터리 잔여용량(SOC) = 기준값 잔여용량(SOCRef) + 전류연산 잔여용량(SOCic)으로 계산한다.In the present invention, using the impedance of the battery, the battery residual capacity (SOC) = reference value residual capacity (SOC Ref ) + current operation residual capacity (SOC ic ) is calculated.

여기서 기준값 잔여용량(SOCRef)은 t=0일 때 개로전압을 기준으로 예측 또는 계산한 값이고, 전류연산 잔여용량(SOCic)은 기준값 잔여용량 이후에 전류측정을 통하여 계산한 값(∫Idt)으로서, 각 값에 대한 상세한 계산 방법은 다음과 같다.Here, the reference value residual capacity (SOC Ref ) is the value predicted or calculated based on the open circuit voltage when t = 0, and the current operation residual capacity (SOC ic ) is the value calculated by the current measurement after the reference value residual capacity (∫Idt ), The detailed calculation method for each value is as follows.

먼저, 기준값 잔여용량(SOCRef)의 예측 또는 계산에서 배터리의 내부 임피던스값은 고주파 영역과 저주파 영역에서 각각 측정하여 잔여용량 계산에 적용한다.First, in the prediction or calculation of the reference value residual capacity SOC Ref , the internal impedance value of the battery is measured in the high frequency region and the low frequency region, and applied to the residual capacity calculation.

즉 기준값 잔여용량(SOCRef) = 0.5*SOCm(at 1kHz) + 0.5*SOCm(at 100Hz)이다.That is, the reference value residual capacity (SOC Ref ) = 0.5 * SOC m (at 1kHz) + 0.5 * SOC m (at 100Hz).

통상적으로 배터리의 임피던스 측정은 10mHz에서 10kHz 범위에서 측정하나, 무인항공기에 사용되는 고출력 배터리는 리튬이온 폴리머 배터리에서 측정되는 임피던스를 고려할 때, 각각 의미있는 부분은 고주파 영역에서는 1kHz이며 저주파 영역에서는 100Hz이다.Normally, the impedance measurement of the battery is measured in the range of 10 mHz to 10 kHz, but the high power battery used in the unmanned aerial vehicle is 1 kHz in the high frequency region and 100 Hz in the low frequency region, considering the impedance measured in the lithium ion polymer battery. .

이를 고려해서 각각의 영역에서 계산한 값을 평균하여 기준값 잔여용량(SOCRef)을 계산한다.Taking this into account, calculate the SOC Ref by averaging the calculated values in each area.

이 방식을 적용함에 있어서 기본적인 가정은 아래와 같다.The basic assumptions in applying this method are as follows.

첫째 배터리의 충전(또는 방전) 상태에 따라 배터리 내부 임피던스 성분 값이 변화한다.First, the battery internal impedance component value changes depending on the state of charge (or discharge) of the battery.

둘째 고주파 영역(High Frequency)에서는 전극 내부의 전하 또는 전자 교환과 같은 빠른 반응에 대한 정보를 얻을 수 있다.Second, in the high frequency region, information on fast reaction such as charge or electron exchange in the electrode can be obtained.

셋째 저주파 영역(Low Frequency)에서는 전해액에서의 전하 이동과 같은 매우 느린 반응에 대한 정보를 얻을 수 있다.Third, in the low frequency region, information about very slow reactions such as charge transfer in the electrolyte can be obtained.

넷째 저항 성분은 분리막과 전해액의 저항, 전하이동 등에 대한 내용을 포함한다.The fourth resistance component includes the resistance of the separator and the electrolyte, charge transfer, and the like.

상기 충전 또는 방전과정에서 기준이 되는 잔여용량(SOCRef)에서 잔여용량(SOCm)과 측정된 고주파 및 저주파 임피던스의 관계는 각각 SOCm = aX + b이다.The relationship between the residual capacitance SOC m and the measured high frequency and low frequency impedance in the residual capacitance SOC Ref as a reference during the charging or discharging process is SOC m = aX + b, respectively.

여기서 X는 측정한 임피던스 값(고주파는 1kHz에서 측정한 값, 저주파는 100Hz에서 측정한 값)을, a는 모델에 사용된 직선의 기울기를, b는 y축과의 교점을 나타낸다.Where X is the measured impedance (high frequency is measured at 1 kHz, low frequency is measured at 100 Hz), a is the slope of the straight line used in the model, and b is the intersection with the y axis.

도 3은 배터리 방전(Discharged State) 상태에서 천천히 충전해가면서 측정한 임피던스를 나타낸다.3 shows impedance measured while slowly charging in a discharged state.

이것을 임피던스와 SOC와의 관계로 변환하면 도 4와 같다.This is converted into a relationship between impedance and SOC, as shown in FIG. 4.

다음 전류연산 잔여용량(SOCic) 즉, 배터리 용량의 변화값은 배터리를 방전 또는 충전하면서 시간 경과에 따른 전류를 측정하여 정확히 계산할 수 있다.The next SOC ic , that is, the change in battery capacity, can be accurately calculated by measuring the current over time while discharging or charging the battery.

즉, 배터리용량 변화값 = ∫Idt으로서, 측정된 전류값에 시간간격을 곱해서 누적하면 배터리 용량변화를 알 수 있다.In other words, as the battery capacity change value = ∫Idt, when the measured current value is multiplied by the time interval, the battery capacity change can be known.

Claims (4)

고주파와 상기 고주파보다 상대적으로 낮은 저주파에서 배터리의 임피던스를 각각 측정하여 t=0일 때 개로전압을 기준으로 하기 수학식 1에 의하여 기준값 잔여용량(SOCRef)을 획득하는 단계;
상기 기준값 잔여용량 이후에 전류 측정을 통해 하기 수학식 2에 의하여 전류연산 잔여용량(SOCic)을 획득하는 단계;
하기 수학식 3에 의하여 배터리 잔여용량을 획득하는 단계를 포함하는 것을 특징으로 하는 배터리의 잔여용량 측정방법.

[수학식 1]
기준값 잔여용량(SOCRef) = 0.5*SOCm(at 고주파) + 0.5*SOCm(at 저주파)
[수학식 2]
전류연산 잔여용량(SOCic) = ∫Idt
(여기서, I는 배터리를 방전 또는 충전하면서 측정한 전류, t는 시간)
[수학식 3]
배터리 잔여용량(SOC) = 기준값 잔여용량(SOCRef) + 전류연산 잔여용량(SOCic)
Measuring a impedance of the battery at a high frequency and a low frequency relatively lower than the high frequency, respectively, and obtaining a reference value residual capacity (SOC Ref ) by Equation 1 based on the open circuit voltage when t = 0;
Acquiring a current operation residual capacity SOC ic by Equation 2 through current measurement after the reference value residual capacity;
The remaining capacity measurement method of the battery comprising the step of obtaining a battery remaining capacity according to the following equation (3).

[Equation 1]
Reference Value Residual Capacity (SOC Ref ) = 0.5 * SOC m (at High Frequency) + 0.5 * SOC m (at Low Frequency)
[Equation 2]
Current calculation remaining capacity (SOC ic ) = ∫Idt
(Where I is the current measured while discharging or charging the battery, t is the time)
[Equation 3]
Battery remaining capacity (SOC) = Reference value remaining capacity (SOC Ref ) + Current calculation remaining capacity (SOC ic )
제 1 항에 있어서,
상기 잔여용량(SOC)과 고주파 및 저주파 임피던스의 관계는 하기 수학식 4를 만족시키는 것을 특징으로 하는 배터리의 잔여용량 측정방법.

[수학식 4]
SOCm = aX + b
(여기서, X는 고주파와 저주파에서 측정한 임피던스값, a는 모델에 사용된 직선의 기울기, b는 y축과의 교점)
The method of claim 1,
The remaining capacity (SOC) and the relationship between the high frequency and low frequency impedance satisfy the following equation (4).

[Equation 4]
SOC m = aX + b
Where X is the impedance measured at high and low frequencies, a is the slope of the straight line used in the model, and b is the intersection with the y axis.
제 1 항 또는 제 2 항에 있어서,
상기 배터리는 리튬이온 폴리머 배터리이고, 고주파는 1kHz, 저주파는 100Hz인 것을 특징으로 하는 배터리의 잔여용량 측정방법.
The method according to claim 1 or 2,
The battery is a lithium ion polymer battery, a high frequency of 1kHz, low frequency is a method of measuring the remaining capacity of the battery, characterized in that 100Hz.
삭제delete
KR1020100125173A 2010-12-08 2010-12-08 Prediction method of soc for battery KR101145993B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100125173A KR101145993B1 (en) 2010-12-08 2010-12-08 Prediction method of soc for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100125173A KR101145993B1 (en) 2010-12-08 2010-12-08 Prediction method of soc for battery

Publications (1)

Publication Number Publication Date
KR101145993B1 true KR101145993B1 (en) 2012-05-15

Family

ID=46272107

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100125173A KR101145993B1 (en) 2010-12-08 2010-12-08 Prediction method of soc for battery

Country Status (1)

Country Link
KR (1) KR101145993B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106842066A (en) * 2017-04-21 2017-06-13 惠州亿纬锂能股份有限公司 The detection method and device of a kind of discharge capacity of the cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05135806A (en) * 1991-05-31 1993-06-01 American Teleph & Telegr Co <Att> Method for determining remaining capacitance of storage battery
JPH1082843A (en) 1996-09-10 1998-03-31 Matsushita Electric Ind Co Ltd Residual capacity detecting method for secondary battery
KR100448840B1 (en) 2003-07-31 2004-09-18 주식회사 엘리코파워 Apparatus for Measuring Multi-Channel Impedance for Use in Testing Secondary Battery
JP2007012419A (en) 2005-06-30 2007-01-18 Toyota Motor Corp Fuel cell system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05135806A (en) * 1991-05-31 1993-06-01 American Teleph & Telegr Co <Att> Method for determining remaining capacitance of storage battery
JPH1082843A (en) 1996-09-10 1998-03-31 Matsushita Electric Ind Co Ltd Residual capacity detecting method for secondary battery
KR100448840B1 (en) 2003-07-31 2004-09-18 주식회사 엘리코파워 Apparatus for Measuring Multi-Channel Impedance for Use in Testing Secondary Battery
JP2007012419A (en) 2005-06-30 2007-01-18 Toyota Motor Corp Fuel cell system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106842066A (en) * 2017-04-21 2017-06-13 惠州亿纬锂能股份有限公司 The detection method and device of a kind of discharge capacity of the cell
CN106842066B (en) * 2017-04-21 2019-03-08 惠州亿纬锂能股份有限公司 A kind of detection method and device of discharge capacity of the cell

Similar Documents

Publication Publication Date Title
Pop et al. State-of-the-art of battery state-of-charge determination
Hahn et al. Quantitative validation of calendar aging models for lithium-ion batteries
Pop et al. Battery management systems: Accurate state-of-charge indication for battery-powered applications
Huang et al. An online battery impedance measurement method using DC–DC power converter control
Monem et al. Lithium-ion batteries: Evaluation study of different charging methodologies based on aging process
US9791519B2 (en) Apparatus and method for accurate energy device state-of-charge (SoC) monitoring and control using real-time state-of-health (SoH) data
Barcellona et al. Aging effect on the variation of Li-ion battery resistance as function of temperature and state of charge
US20200088806A1 (en) Systems and methods for determining battery state of charge
Dalal et al. Lithium-ion battery life prognostic health management system using particle filtering framework
JP5850492B2 (en) Battery system and battery evaluation method
JP6784351B2 (en) Equipment and methods for testing the performance of battery cells
CN108603918B (en) Device and method for testing performance of battery cell
US6262577B1 (en) Method of measuring quantities indicating state of electrochemical device and apparatus for the same
US9864012B2 (en) Charge control and termination of lithium sulfur cells and fuel gauging systems and methods
Kim et al. On-line state-of-health estimation of Lithium-ion battery cells using frequency excitation
KR101488828B1 (en) Apparatus for measuring a life time of secondary battery, electronic equipment comprising it and method for measuring a life time of secondary battery
JP6337233B2 (en) Battery evaluation method and battery characteristic evaluation apparatus
García-Plaza et al. Hysteresis effect influence on electrochemical battery modeling
JP2014224706A (en) Secondary battery diagnosis device and secondary battery diagnosis method
CN115128467A (en) Method and device for estimating negative electrode capacity of lithium battery
JP2013064697A (en) Secondary cell system
CN110687460A (en) Soc estimation method
Pop et al. State-of-the-art of battery state-of-charge determination
KR101145993B1 (en) Prediction method of soc for battery
KR20150034593A (en) Method and apparatus for state of charge estimation of battery

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee