KR101130818B1 - Method for preparing chiral amino acid from azlactones using bifunctional bis-cinchona alkaloid thiourea organo catalysts - Google Patents

Method for preparing chiral amino acid from azlactones using bifunctional bis-cinchona alkaloid thiourea organo catalysts Download PDF

Info

Publication number
KR101130818B1
KR101130818B1 KR1020090063047A KR20090063047A KR101130818B1 KR 101130818 B1 KR101130818 B1 KR 101130818B1 KR 1020090063047 A KR1020090063047 A KR 1020090063047A KR 20090063047 A KR20090063047 A KR 20090063047A KR 101130818 B1 KR101130818 B1 KR 101130818B1
Authority
KR
South Korea
Prior art keywords
amino acid
delete delete
chiral
acyl amino
formula
Prior art date
Application number
KR1020090063047A
Other languages
Korean (ko)
Other versions
KR20110005470A (en
Inventor
송충의
이지웅
류태희
배한용
오중석
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Priority to KR1020090063047A priority Critical patent/KR101130818B1/en
Publication of KR20110005470A publication Critical patent/KR20110005470A/en
Application granted granted Critical
Publication of KR101130818B1 publication Critical patent/KR101130818B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/16Preparation of optical isomers
    • C07C231/20Preparation of optical isomers by separation of optical isomers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B53/00Asymmetric syntheses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/45Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups
    • C07C233/46Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
    • C07C233/47Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom having the carbon atom of the carboxamide group bound to a hydrogen atom or to a carbon atom of an acyclic saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers

Abstract

본 발명은 라세믹 또는 키랄성 아즈락톤으로부터 높은 입체선택성을 갖는 키랄 아미노산 에스터를 수득하는 방법을 제공하며, 여기에 사용되는 유도체화된 이작용성 비스 신코나 알칼로이드 티오우레아 유기 키랄 촉매 화합물과 그의 제조방법을 제공한다.The present invention provides a process for obtaining chiral amino acid esters having high stereoselectivity from racemic or chiral azlactones, and the derivatized bifunctional biscincona alkaloid thiourea organic chiral catalyst compounds used therein and methods for their preparation. to provide.

현재까지 알려진 제조방법에 따르면, 높은 거울상 입체 선택성을 가지는 N- 아실 아미노산 에스터를 얻기 위하여 저온에서 장시간 반응을 수행해야 한다는 문제점이 있을 뿐만 아니라, 수득되는 화합물의 광학 선택성 또한 공업화에 적용시키기에 부족하였다. 본 발명에 따른 촉매 화합물은 신코나 알칼로이드로부터 쉽게 합성이 가능하며, 매우 경제적이며 간편한 방법으로 높은 광학선택성을 갖는 N-아실 아미노산 에스터를 수득할 수 있을 뿐 아니라 자연에 존재하지 않는 (R)-형태의 N-아실 아미노산 에스터를 높은 광학 순도로 제조할 수 있어 공업화에 유용한 기술로 활용될 것이 예상된다.According to the production methods known to date, not only has a problem of having to carry out a long reaction at low temperature in order to obtain an N-acyl amino acid ester having high enantiomeric selectivity, but also the optical selectivity of the obtained compound is also insufficient for industrial application. . The catalyst compound according to the present invention can be easily synthesized from cinnacoal alkaloids and can be obtained in a very economical and simple manner by obtaining an N-acyl amino acid ester having high optical selectivity, as well as (R) -form not present in nature. It is expected that the N-acyl amino acid ester of can be prepared with high optical purity and thus be used as a useful technique for industrialization.

Description

이작용성 비스 신코나 알칼로이드 티오우레아 유기 키랄 촉매 화합물을 이용한 아즈락톤으로부터의 키랄 아미노산 제조방법{METHOD FOR PREPARING CHIRAL AMINO ACID FROM AZLACTONES USING BIFUNCTIONAL BIS-CINCHONA ALKALOID THIOUREA ORGANO CATALYSTS}METHODS FOR PREPARING CHIRAL AMINO ACID FROM AZLACTONES USING BIFUNCTIONAL BIS-CINCHONA ALKALOID THIOUREA ORGANO CATALYSTS}

본 발명은 유도체화된 이작용성 비스 신코나 알칼로이드 티오우레아 유기 키랄 촉매 화합물과 이의 제조방법에 관한 것이며, 이를 이용하여 아즈락톤으로부터 높은 입체선택성을 갖는 키랄 아미노산 에스터를 수득하는 방법에 관한 것이다.FIELD OF THE INVENTION The present invention relates to derivatized bifunctional bis cinchona alkaloid thiourea organic chiral catalyst compounds and methods for their preparation, and to methods for obtaining chiral amino acid esters having high stereoselectivity from azlactone.

키랄 화합물은 특정 광학 활성을 갖는 화합물로서 제약업계 및 정밀화학 분야에서 이용되는 중요한 화합물로서, 최근 전 세계 의약품 시장에서 키랄 의약품이 차지하는 비중은 날로 증가하는 추세에 있다. 특히 다양한 광학구조가 섞여 있는 화합물(라세미체)에 비하여 광학적으로 순수한 화합물(순수 광학이성질체)은 생물학적 특성이 우수하여 의약품으로서의 활용도가 매우 높다. Chiral compounds are compounds having a specific optical activity and are important compounds used in the pharmaceutical industry and fine chemistry, and the proportion of chiral medicines in the global pharmaceutical market is increasing day by day. In particular, optically pure compounds (pure optical isomers) have high biological properties compared to compounds (racemates) in which various optical structures are mixed.

의약품 생산에 있어서 특히 중요한 순수한 광학 이성질체를 얻기 위한 유기 합성 방법으로는, 키랄 보조제를 사용하는 방법과 라세믹 화합물을 광학 분할하여 순수한 화합물을 얻는 방법이 사용되고 있다. 키랄 보조제를 사용하는 경우에는 일반적으로 자연에서 발견되는 화합물을 이용하므로 구조적 제한이 있으며, 촉매량이 아닌 당량으로 사용해야 한다. 라세믹 화합물의 분할방법에서는 분할제를 사용하며 원하지 않는 광학 이성질체는 버려질 수밖에 없으므로 수율이 50% 이하가 된다는 단점이 있다.As an organic synthesis method for obtaining pure optical isomers which are particularly important in the production of pharmaceuticals, a method of using a chiral adjuvant and a method of optically dividing a racemic compound to obtain a pure compound are used. In the case of using a chiral adjuvant, there is a structural limitation because it generally uses a compound found in nature, and should be used in an equivalent amount, not a catalytic amount. In the method of dividing the racemic compound, since the dividing agent is used and the unwanted optical isomer is inevitably discarded, the yield is 50% or less.

광학적으로 순수한 화합물 중에서도 자연에 존재하는 아미노산 및 그 유도체 들은 의약품의 개발에 있어서의 주 관심의 대상이 되고 있는데, 이는 의약품 개발의 주요 타겟이 아미노산들로 구성되는 단백질이기 때문이다. Among the optically pure compounds, naturally occurring amino acids and derivatives thereof have been of major interest in the development of medicines, since the main target of drug development is proteins composed of amino acids.

아즈락톤은 알파-수소의 산성도가 높아 다이나믹 키네틱 레졸루션에 적합한 기질이라 할 수 있다. 일반적인 키네틱 레졸루션에서는 원하지 않는 광학 이성질체는 버려야 했지만, 다이나믹 키네틱 레졸루션에서는 원하지 않는 광학 이성질체가 촉매에 의해 다시 라세믹 화합물로 변하게 되어 결국 사용하는 기질 모두를 원하는 광학 이성질체로 만들어낼 수 있다는 이점이 있다. Azlactone has a high acidity of alpha-hydrogen, making it a suitable substrate for dynamic kinetic resolution. In conventional kinetic resolution, unwanted optical isomers had to be discarded, but in dynamic kinetic resolution, unwanted optical isomers can be converted back into racemic compounds by a catalyst, which results in the creation of all the desired optical isomers.

지금까지 여러 촉매를 이용한 아즈락톤의 다이나믹 키네틱 레졸루션에 대한 보고가 있었다. 구체적으로 효소(Tetrahedron : Asymmetry, 2000, 1687), 티타늄 함유 복합체(Tetrahedron, 1999, 723), 사이클릭 디펩타이드(Tetrahedron : Asymmetry, 1999, 4715) 등을 촉매로 사용하는 시도가 있었으나, 사용할 수 있는 기질이 제한적이거나, 수율 및 광학선택성이 좋지 못했다. So far, there have been reports of the dynamic kinetic resolution of azlactone using various catalysts. Specifically, there have been attempts to use enzymes ( Tetrahedron : Asymmetry , 2000, 1687), titanium-containing complexes ( Tetrahedron , 1999, 723), and cyclic dipeptides ( Tetrahedron : Asymmetry , 1999, 4715) as catalysts. The substrate was limited or the yield and optical selectivity were poor.

최근 들어 Berkessel(Angew . Chem . Int Ed ., 2005, 44, 807 ; Chem . Commun ., 2005, 1898)과 Connon(J. Org . Chem ., 2008, 73, 6409) 그룹에서 이작용성 (티오)우레아를 유기촉매로 사용한 아즈락톤의 다이나믹 키네틱 레졸루션을 수행한 보고가 있었다. 그러나 이들이 사용한 이작용성 유기촉매는 촉매 활성과 이성질체의 선택성이 만족할만한 수준에 이르지 못할 뿐 아니라, 또한 사용한 (티오)우레아 기재의 유기촉매는 이작용성에 기인한 자기 응집(self-association)을 일으키는 문제가 있다. 이러한 자기 응집 현상으로 인하여 온도가 낮아지거나 농도가 증가됨에 따라 광학선택성이 낮아지게 되며, 이러한 문제는 상용화에 큰 장애가 되고 있다. Recently, Berkessel ( Angew . Chem . Int Ed ., 2005, 44, 807; Chem . Commun . , 2005, 1898) and Connon ( J. Org . Chem . , 2008, 73, 6409) have been reported to perform dynamic kinetic resolution of azlactone using bifunctional (thio) urea as an organic catalyst. However, the difunctional organic catalysts used do not reach satisfactory levels of catalytic activity and isomer selectivity, and the (thio) urea-based organic catalysts used also cause self-association due to bifunctionality. There is. Due to this self-aggregation phenomenon, the optical selectivity is lowered as the temperature is lowered or the concentration is increased, and this problem is a major obstacle to commercialization.

이처럼 지금까지 알려진 제조방법에 의하면, 높은 거울상 입체선택성을 가지는 N-아실 아미노산 에스터를 얻기 위해서 저온에서 장시간 반응을 수행해야 한다는 문제점이 있을 뿐만 아니라, 수득되는 화합물의 광학 선택성 역시 공업화에 적용시키기엔 부족하여, 보다 효율적인 촉매의 개발이 요구되고 있는 실정이다. As described above, according to the known production methods, not only does the reaction have to be carried out for a long time at low temperature in order to obtain N-acyl amino acid ester having high enantioselectivity, but also the optical selectivity of the obtained compound is insufficient for industrialization. Thus, the development of a more efficient catalyst is required.

즉, 광학선택성과 반응성이 높으면서도 용액상태에서 자기 응집이 일어나지 않는 새로운 타입의 유기촉매의 개발이 요구되고 있는 실정이다.In other words, there is a demand for the development of a new type of organic catalyst which has high optical selectivity and reactivity but does not occur in solution.

본 발명은 라세믹 아즈락톤과 친핵제인 알코올을 동시에 활성화 시킬 수 있는 이작용성 비스 신코나 알칼로이드 티오우레아 유기 키랄 촉매로서 새로운 구조 를 갖는 화합물 및 그의 제조방법을 제공하고자 한다. The present invention is to provide a compound having a novel structure as a bifunctional biscincona alkaloid thiourea organic chiral catalyst capable of simultaneously activating racemic azlactone and an alcohol which is a nucleophilic agent, and a method of preparing the same.

또한 본 발명은 다양한 구조의 키랄성 아미노산 에스터를 짧은 시간 내에 매우 높은 입체선택성으로 합성할 수 있는 새로운 제조방법을 제공하고자 한다. It is another object of the present invention to provide a novel method for synthesizing chiral amino acid esters of various structures with very high stereoselectivity within a short time.

특히 본 발명은 자연에 존재하는 (S)-형태의 N-아실 아미노산 에스터 뿐 아니라, 자연에 존재하지 않는 (R)-형태의 N-아실 아미노산 에스터도 높은 광학순도로 만들어 낼 수 있는, 경제적이며 간편한 새로운 제조방법을 제공하고자 한다.In particular, the present invention is economical and can produce not only natural (S) -form N-acyl amino acid esters but also non-naturally present (R) -form N-acyl amino acid esters with high optical purity. It is intended to provide a simple new manufacturing method.

본 발명자들은 이런 종래기술의 문제를 해결하기 위하여 예의 연구를 거듭한 결과, 신코나 알칼로이드의 구조를 변형시킨 새로운 구조의 비스 신코나 알칼로이드 티오우레아 유기 키랄 촉매 화합물을 합성함으로써 본 발명을 완성하게 되었다. The present inventors have intensively studied to solve the problems of the prior art, and thus, the present invention has been completed by synthesizing a biscincona alkaloid thiourea organic chiral catalyst compound of a novel structure in which the structure of the synacona alkaloid is modified.

본 발명에 따른 비스 신코나 알칼로이드 티오우레아 유기 키랄 촉매 화합물은, 티오우레아 작용기를 포함하는 유도체화된 이작용성 신코나 알칼로이드 촉매 화합물로서, 라세믹 아즈락톤과 친핵제인 알코올을 동시에 활성화 시킬 수 있는 이작용성을 나타낸다. Bis-Synkona alkaloid thiourea organic chiral catalyst compound according to the present invention is a derivatized bifunctional synkona alkaloid catalyst compound containing a thiourea functional group, which is capable of simultaneously activating racemic azlactone and a nucleophilic alcohol. Indicates.

본 발명은 또한 신코나 알칼로이드로부터 에피머화 반응에 의해 제조된 아민을 카보 티오 다이이미다졸 유도체와 반응시키는 단계를 포함하여 이루어진 새로운 비스 신코나 알칼로이드 티오우레아 유기 키랄 촉매 화합물의 제조방법을 제공한다. The present invention also provides a method for preparing a new bis syncona alkaloid thiourea organic chiral catalyst compound comprising reacting an amine prepared from an epimerization reaction from a synacona alkaloid with a carbothio diimidazole derivative.

본 발명의 제조 방법에 따르면, 라세믹 N-아실 아미노산 혹은 라세믹 아즈락 톤들로부터 다양한 구조의 키랄성 N-아실 아미노산 에스터를 짧은 시간 내에 매우 높은 입체선택성으로 합성할 수 있다. 또한 (S)형태의 N-아실 아미노산 또는 아즈락톤으로부터 (R)형태의 N-아실 아미노산 에스터를 합성하거나, (R)형태의 N-아실 아미노산 또는 아즈락톤으로부터 (S)형태의 N-아실 아미노산 에스터를 합성하는 것도, 짧은 시간 내에 매우 높은 입체선택성으로 가능하다. 이는 본 발명에 따른 유기 촉매의 라세미화 반응을 통해 라세믹 화합물 뿐만 아니라 광학활성을 갖는 화합물도 다이다믹 키네틱 레졸루션에 적용될 수 있음에 기인한다. 특히 본 발명에 따른 비스 신코나 알칼로이드 티오우레아 유기 키랄 촉매 화합물의 존재 하에 알코올을 이용하여 다이나믹 키네틱 레졸루션을 수행하면, 상온에서 3 내지 10시간 이라는 매우 온화한 조건에서 높은 광학선택성을 가지는 N-아실 아미노산 에스터를 제조할 수 있다.According to the preparation method of the present invention, chiral N-acyl amino acid esters of various structures can be synthesized from racemic N-acyl amino acids or racemic azlactones in a very short time with very high stereoselectivity. Furthermore, N-acyl amino acid ester of (R) form is synthesize | combined from N-acyl amino acid or azlactone of (S) form, or N-acyl amino acid of (S) form from (R) form N-acyl amino acid or azlactone. Synthesis of esters is also possible with very high stereoselectivity in a short time. This is due to the racemization of the organic catalyst according to the present invention that not only racemic compounds but also compounds with optical activity can be applied to dynamic kinetic resolution. Particularly, when dynamic kinetic resolution is performed using alcohol in the presence of bis-synkona alkaloid thiourea organic chiral catalyst compound according to the present invention, N-acyl amino acid ester having high optical selectivity under very mild conditions of 3 to 10 hours at room temperature Can be prepared.

특히 본 발명에 따른 새로운 유기촉매는 비스-신코나 형태의 구조를 가지는 촉매로서 촉매의 벌키한 입체적 효과 때문에, 현재까지 문제가 되었던 이작용성 유기촉매의 "자기 응집(self-aggregation or self-association)" 현상이 현저하게 억제되어 매우 높은 농도, 낮은 온도 하에서도 높은 입체선택성을 보여줄 수 있다. In particular, the new organic catalyst according to the present invention is a catalyst having a bis-cincona type structure, which is a "self-aggregation or self-association" of the bifunctional organic catalyst which has been a problem until now due to the bulky steric effect of the catalyst. "The phenomenon is remarkably suppressed and can show high stereoselectivity even at very high concentrations and at low temperatures.

또한 본 발명의 제조 방법에 따르면, 자연에 존재하는 (S)-형태의 N-아실 아미노산 에스터 뿐 아니라, 자연에 존재하지 않는 (R)-형태의 N-아실 아미노산 에스터도 높은 광학순도로 만들어 낼 수 있다. In addition, according to the production method of the present invention, not only the (S) -form N-acyl amino acid ester which exists in nature but also the (R) -form N-acyl amino acid ester which does not exist in nature can be produced with high optical purity. Can be.

이는 매우 경제적이며 간편한 방법으로서 공업화에 유용한 기술로 활용될 수 있을 것으로 예상된다. This is a very economical and convenient method is expected to be used as a useful technology for industrialization.

이하 본 발명을 좀 더 구체적으로 살펴본다. Hereinafter, the present invention will be described in more detail.

본 발명은 하기 화학식 1로 표기되는 유도체화된 이작용성 신코나 알칼로이드 기재 비스 신코나 알칼로이드 티오우레아 유기 키랄 촉매 화합물을 제공한다.The present invention provides a derivatized bifunctional syncona alkaloid-based bis syncona alkaloid thiourea organic chiral catalyst compound represented by the following formula (1).

Figure 112009042135907-pat00001
Figure 112009042135907-pat00001

R은 에틸 또는 -CH=CH2이고; R'은 -H 또는 알콕시기이다.R is ethyl or -CH = CH 2 ; R 'is -H or an alkoxy group.

특정 양태에서, 본 발명의 화합물은 R이 에틸인 화학식 1의 화합물이다.In certain embodiments, the compound of the invention is a compound of Formula 1, wherein R is ethyl.

특정 양태에서, 본 발명의 화합물은 R이 -CH=CH2인 화학식 1의 화합물이다.In certain embodiments, the compound of the invention is a compound of Formula 1, wherein R is -CH = CH 2 .

특정 양태에서, 본 발명의 화합물은 R'이 -H인 화학식 1의 화합물이다.In certain embodiments, the compound of the invention is a compound of Formula 1, wherein R 'is -H.

특정 양태에서, 본 발명의 화합물은 R'이 메톡시인 화학식 1의 화합물이다.In certain embodiments, the compound of the invention is a compound of Formula 1, wherein R 'is methoxy.

Figure 112011049688786-pat00049
Figure 112011049688786-pat00049

R은 에틸 또는 -CH=CH2이고; R'은 -H 또는 알콕시기이다.R is ethyl or -CH = CH 2 ; R 'is -H or an alkoxy group.

특정 양태에서, 본 발명의 화합물은 R이 에틸인 화학식 2의 화합물이다.In certain embodiments, the compound of the invention is a compound of Formula 2 wherein R is ethyl.

특정 양태에서, 본 발명의 화합물은 R이 -CH=CH2인 화학식 2의 화합물이다.In certain embodiments, the compound of the invention is a compound of Formula 2 wherein R is -CH = CH 2 .

특정 양태에서, 본 발명의 화합물은 R'이 -H인 화학식 2의 화합물이다.In certain embodiments, the compound of the invention is a compound of Formula 2 wherein R 'is -H.

특정 양태에서, 본 발명의 화합물은 R'이 메톡시인 화학식 2의 화합물이다.In certain embodiments, the compound of the present invention is a compound of Formula 2 wherein R 'is methoxy.

본 발명에 따른 상기 화학식 1 및 화학식 2의 비스 신코나 알칼로이드 티오우레아 유기 키랄 촉매 화합물은 비대칭 환경을 제공하여 아즈락톤과 친핵체를 동시에 활성화하는 이작용성 기능을 가진다. 좀 더 상세하세는, 퀴누클리딘의 질소원자는 염기 작용으로 아즈락톤의 라세미화반응을 촉진시키며 또한 친핵체를 활성화시키고, 티오우레아 부분의 수소원자는 라세믹 아즈락톤의 카르보닐기를 수소결합을 통해 활성화 시켜 반응을 촉진시키는 것으로 나타났다.The bis syncona alkaloid thiourea organic chiral catalyst compound of Formula 1 and Formula 2 according to the present invention has a bifunctional function of simultaneously activating azlactone and nucleophiles by providing an asymmetric environment. More specifically, the quinuclidin nitrogen atom acts as a base to promote the racemization of azlactone and to activate nucleophiles, The hydrogen atom of the thiourea moiety was shown to promote the reaction by activating the carbonyl group of racemic azlactone through hydrogen bonding.

본 발명은 아민을 카보닐 다이이미다졸 또는 카보티오 다이이미다졸과 반응시키는 단계를 포함하는 유도체화된 이작용성 키랄 유기촉매의 제조방법을 제공한다. 여기서 상기 아민은 신코나 알칼로이드로부터 에피머화 반응에 의하여 제조될 수 있다. The present invention provides a process for preparing a derivatized bifunctional chiral organic catalyst comprising reacting an amine with carbonyl diimidazole or carbothio diimidazole. Herein, the amine may be prepared by epimerization reaction from synacona alkaloids.

본 발명에 따른유기 촉매 화합물의 제조방법의 일 양태는 하기 반응식 1 또는 반응식 2로 나타내어질 수 있다.One aspect of the method for preparing an organic catalyst compound according to the present invention may be represented by the following Scheme 1 or Scheme 2.

Figure 112009042135907-pat00003
Figure 112009042135907-pat00003

Figure 112011049688786-pat00050
Figure 112011049688786-pat00050

상기 반응식 1 및 반응식 2에서, R 은 에틸 또는 -CH=CH2이고; R'은 -H 또는 알콕시기이다. In Scheme 1 and Scheme 2, R is ethyl or -CH = CH 2 ; R 'is -H or an alkoxy group.

특정 양태에서, 본 발명의 화합물은 R이 에틸인 화학식 1의 화합물이다. In certain embodiments, the compound of the invention is a compound of Formula 1, wherein R is ethyl.

특정 양태에서, 본 발명의 화합물은 R이 -CH=CH2인 화학식 1의 화합물이다.In certain embodiments, the compound of the invention is a compound of Formula 1, wherein R is -CH = CH 2 .

특정 양태에서, 본 발명의 화합물은 R'이 -H인 화학식 1의 화합물이다.In certain embodiments, the compound of the invention is a compound of Formula 1, wherein R 'is -H.

특정 양태에서, 본 발명의 화합물은 R'이 메톡시인 화학식 1의 화합물이다.In certain embodiments, the compound of the invention is a compound of Formula 1, wherein R 'is methoxy.

특정 양태에서, 본 발명의 화합물은 R이 에틸인 화학식 2의 화합물이다. In certain embodiments, the compound of the invention is a compound of Formula 2 wherein R is ethyl.

특정 양태에서, 본 발명의 화합물은 R이 -CH=CH2인 화학식 2의 화합물이다.In certain embodiments, the compound of the invention is a compound of Formula 2 wherein R is -CH = CH 2 .

특정 양태에서, 본 발명의 화합물은 R'이 -H인 화학식 2의 화합물이다.In certain embodiments, the compound of the invention is a compound of Formula 2 wherein R 'is -H.

특정 양태에서, 본 발명의 화합물은 R'이 메톡시인 화학식 2의 화합물이다.In certain embodiments, the compound of the present invention is a compound of Formula 2 wherein R 'is methoxy.

본 발명은 라세믹 N-아실 아미노산, 또는 라세믹 아즈락톤, 또는 키랄성을 갖는 N-아실 아미노산 또는 키랄성을 갖는 아즈락톤으로부터 고도의 입체선택성을 가지는 키랄 N-아실 아미노산 에스터를 제조하는 방법을 제공한다.The present invention provides a process for preparing chiral N-acyl amino acid esters having high stereoselectivity from racemic N-acyl amino acids, or racemic azlactones, or N-acyl amino acids with chirality or azlactones with chirality. .

본 발명에 따른 키랄 N-아실 아미노산 에스터의 제조방법은, 이작용성 신코나 알칼로이드 촉매 및 친핵체성 반응물을 배합하는 단계를 포함하는 입체 선택적 다이나믹 키네틱 레졸루션 반응으로서, 유기 용매 하에서 N-아실 아미노산 또는 아즈락톤을, 티오우레아 작용기를 포함하는 이작용성 키랄 유기 촉매의 존재 하에 친핵체와 반응시킴으로써 키랄 N-아실 아미노산 에스터를 수득하는 단계를 포함하여 이루어진다. 이 때 반응물로서의 N-아실 아미노산은 하기 화학식 3으로, 아즈락톤은 하기 화학식 4로 표기할 수 있다.The method for preparing a chiral N-acyl amino acid ester according to the present invention is a stereoselective dynamic kinetic resolution reaction comprising the step of combining a bifunctional synacona alkaloid catalyst and a nucleophilic reactant, wherein the N-acyl amino acid or azlactone is in an organic solvent. Reacting with a nucleophile in the presence of a bifunctional chiral organic catalyst comprising a thiourea functional group to obtain a chiral N-acyl amino acid ester. In this case, the N-acyl amino acid as a reactant may be represented by the following Chemical Formula 3, and azlactone may be represented by the following Chemical Formula 4.

Figure 112009042135907-pat00005
Figure 112009042135907-pat00005

Figure 112009042135907-pat00006
Figure 112009042135907-pat00006

상기 화학식 3 및 화학식 4에서, R 은 탄소수 1~10의 알킬기, 아릴기, 아릴기가 치환된 탄소수 1~10의 알킬기이며, R'는 탄소수 1~10의 알킬기, 아릴기 또는 탄소수 1~10의 알킬이 치환된 아릴기이다.In Formulas 3 and 4, R is an alkyl group having 1 to 10 carbon atoms, an aryl group, an alkyl group having 1 to 10 carbon atoms substituted with an aryl group, and R 'is an alkyl group having 1 to 10 carbon atoms, an aryl group or having 1 to 10 carbon atoms. Alkyl substituted aryl group.

이하, 본 발명에 따른 촉매 반응을 더욱 상세히 설명한다.Hereinafter, the catalytic reaction according to the present invention will be described in more detail.

본 발명에 의하면 아즈락톤을 적당한 유기용매에서, 상기 화학식 1 또는 화학식 2의 촉매와 친핵체를 첨가하여 교반하는 하기 반응식 3과 같은 반응을 수행함으로써 높은 거울상 이성질체 과잉의 키랄성 N-아실 아미노산 에스터를 제조할 수 있다. 해당 다이나믹 키네틱 레졸루션 반응의 최적화된 조건에서 85% 초과, 바람직하게는 90% 초과의 거울상 이성질체 과잉(ee)의 키랄성 N-아실 아미노산 에스터를 수득할 수 있다. 이때 라세믹 아즈락톤은 라세믹 N-아실 아미노산으로부터 간편하 게 얻을 수 있고, 또한 해당 다이나믹 키네틱 레졸루션 반응을 라세믹 N-아실 아미노산으로부터 시작하여 중간 정제공정 없이 반응을 수행함으로써 높은 거울상 이성질체 과잉의 키랄성 N-아실 아미노산 에스터를 제조할 수도 있다. According to the present invention, a high enantiomeric excess of chiral N-acyl amino acid ester can be prepared by carrying out a reaction of azlactone in a suitable organic solvent by adding a catalyst of Formula 1 or Formula 2 and a nucleophile and stirring. Can be. A chiral N-acyl amino acid ester of greater than 85%, preferably greater than 90%, enantiomeric excess (ee) can be obtained under optimized conditions of the corresponding dynamic kinetic resolution reaction. The racemic azlactone can be easily obtained from racemic N-acyl amino acids, and the enantiomeric excess of chirality can be obtained by starting the dynamic kinetic resolution reaction from racemic N-acyl amino acids and performing the reaction without intermediate purification. N-acyl amino acid esters may also be prepared.

또한 촉매 선택에 따라서 자연에 존재하는 (S)-형태 뿐만 아니라 자연에 존재하지 않아 얻어 내기 힘들었던 (R)-형태 역시 높은 광학순도로 얻을 수 있다. In addition, depending on the catalyst selection, not only the (S) -form which exists in nature but also the (R) -form which is difficult to obtain due to the nature can be obtained with high optical purity.

Figure 112009042135907-pat00007
Figure 112009042135907-pat00007

상기 반응식 3에서 치환된 아즈락톤의 치환기는 포화 탄화수소, 불포화 탄화수소, 혹은 방향족 탄화수소일 수 있다. Substituents of the azlactone substituted in Scheme 3 may be a saturated hydrocarbon, an unsaturated hydrocarbon, or an aromatic hydrocarbon.

본 발명에서 사용가능한 유기용매로는 비양자성 용매인 메틸 t-부틸 에테르, 다이에틸 에테르, 테트라하이드로 퓨란, 클로로포름, 디클로로 메탄, 벤젠, 톨루엔 등이 있으며, 바람직하게는 메틸 t-부틸 에테르, 클로로포름, 그리고 디클로로 메탄이 사용될 수 있다.Organic solvents usable in the present invention include aprotic solvents methyl t-butyl ether, diethyl ether, tetrahydrofuran, chloroform, dichloromethane, benzene, toluene and the like, preferably methyl t-butyl ether, chloroform, And dichloromethane may be used.

상기 반응식 3에서, 화학식 1 또는 화학식 2의 비스 신코나 알칼로이드 티오우레아 유기 키랄 촉매 화합물은 라세믹 아즈락톤에 대해서 0.01 내지 50 mol%, 바람직하게는 0.01 내지 20 mol% 및 가장 바람직하게는 0.01 내지 10 mol% 로 사용될 수 있다.In Scheme 3, the bis cinchona alkaloid thiourea organic chiral catalyst compound of Formula 1 or Formula 2 is 0.01 to 50 mol%, preferably 0.01 to 20 mol% and most preferably 0.01 to 10 relative to racemic azlactone. It can be used in mol%.

본 발명에서는 다이나믹 키네틱 레졸루션 반응을 위하여 친핵체로 알코올을 사용할 수 있다. 이 때 알코올로서 메탄올, 에탄올, 프로판올, 이소프로판올, 2-프로핀-1-올, 트리플루오로에탄올, 벤질 알코올, 알릴 알코올 등을 사용할 수 있으며 바람직하게는 메탄올과 알릴 알코올이 사용될 수 있다. In the present invention, alcohol can be used as a nucleophile for the dynamic kinetic resolution reaction. At this time, methanol, ethanol, propanol, isopropanol, 2-propyn-1-ol, trifluoroethanol, benzyl alcohol, allyl alcohol and the like can be used, and preferably methanol and allyl alcohol can be used.

알코올의 사용량은 아즈락톤에 대하여 1 내지 50 당량, 바람직하게는 1 내지 10 당량, 가장 바람직하게는 2 당량 이하로 사용될 수 있다.The amount of the alcohol may be used in an amount of 1 to 50 equivalents, preferably 1 to 10 equivalents, and most preferably 2 equivalents or less, based on the azlactone.

본 발명에서 반응온도는 -70 내지 100℃, 바람직하게는 -20 내지 30℃, 가장 바람직하게는 -20 내지 0℃에서 수행할 수 있다. In the present invention, the reaction temperature may be performed at -70 to 100 ° C, preferably -20 to 30 ° C, and most preferably at -20 to 0 ° C.

본 발명에 따른 제조방법에 따르면, N-아실 아미노산 또는 아즈락톤을 유기용매 중에서 다이나믹 키네틱 레졸루션을 통하여 다양한 구조의 키랄성 N-아실 아미노산 에스터를 매우 높은 입체선택성으로 합성할 수 있다. 특히 본 발명에 따른 이작용성 유기 키랄 촉매는, 티오우레아로 유도체화된 이작용성 신코나 알칼로이드 촉매로서 천연물로부터 쉽게 합성할 수 있다. According to the preparation method according to the present invention, chiral N-acyl amino acid esters of various structures can be synthesized with very high stereoselectivity through dynamic kinetic resolution of N-acyl amino acid or azlactone in an organic solvent. In particular, the bifunctional organic chiral catalyst according to the present invention can be easily synthesized from natural products as a bifunctional synko or alkaloid catalyst derivatized with thiourea.

특히 본 발명에 따른 제조방법은 자연에 존재하지 않는 (R)-형태의 N-아실 아미노산 에스터를 높은 광학순도로 만들어 낼 수 있다는 장점을 가지며, 매우 짧은 시간에 온화한 조건에서 가능할 뿐 아니라 매우 경제적이며 간편한 방법으로서 공업화에 유용한 기술로 활용될 것이 예상된다.In particular, the preparation method according to the present invention has the advantage of being able to produce (R) -type N-acyl amino acid esters which do not exist in nature with high optical purity, which is possible in mild conditions in a very short time and is very economical. It is expected to be used as a useful technique for industrialization as a simple method.

본 발명에 따른 유도체화된 이작용성 신코나 알칼로이드 유래의 키랄 유기 촉매를 다양한 구조로 제조하고 비교하였으며, 또한 다양한 라세믹 또는 키랄한 아즈락톤에 대해 알코올을 친핵체로 사용하여 다이나믹 키네틱 레졸루션 반응에 대해 조사하였다. 그 결과를 하기 실시예에서 상세히 설명한다. Chiral organic catalysts derived from the derivatized bifunctional syncona alkaloids according to the present invention were prepared and compared in various structures, and also investigated for dynamic kinetic resolution reaction using alcohol as nucleophile for various racemic or chiral azlactones. It was. The results are described in detail in the following examples.

본 발명의 실시예에서 수득된 N-아실 아미노산 에스터는 고성능 액체 크로마토그래피(HPLC)로 분석하여 거울상 이성질체 과잉을 결정하였다. 또한 각각의 촉매는 산-염기 추출 과정을 통해 용이하게 재사용할 수 있음이 밝혀졌다. The N-acyl amino acid esters obtained in the examples of the present invention were analyzed by high performance liquid chromatography (HPLC) to determine enantiomeric excess. It has also been found that each catalyst can be easily reused through an acid-base extraction process.

이하, 하기 실시예에 의하여 본 발명을 더욱 상세하게 설명하고자 한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위를 한정하는 것은 아니다. 본 발명이 속한 기술분야의 숙련된 기술자들은, 본 명세서에 기재되어 있는 발명의 특정 양태에 대해 동등한 더 이상의 실험 없이 인지하거나 확인할 수 있으며, 그러한 동등물들은 본 발명의 청구범위에 포함되어 있는 것으로 판단된다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the following examples are only for illustrating the present invention and do not limit the scope of the present invention. Those skilled in the art to which this invention pertains may recognize or identify, without further experimentation, equivalent to certain aspects of the invention described herein, such equivalents being deemed to be included in the claims of the invention. .

실시예Example

<< 유도체화된Derivatized 이작용성Bifunctional 키랄 유기 촉매 화합물의 제조>  Preparation of Chiral Organic Catalyst Compounds>

Organic Letters 2005, 7, 1967에 상세히 기술된 9-아미노(9-데옥시)에피신코나 알칼로이드로부터, 상기 반응식 1 또는 반응식 2의 방법을 통하여 화학식 1 또는 화학식 2로 표기되는 유기 촉매를 합성하였다. 예를 들어 설명하면, 다이하이 드로 신코나 알칼로이드 또는 신코나 알칼로이드를 트리페닐 포스핀과 다이아이소프로필 아조다이카르복실레이트를 이용하여 다이페닐 포스포릴 아자이드와 반응시켜 하이드록시기를 아민으로 치환한 후에 사이클로부텐디온 유도체와 반응시키고 분리 정제하여 제조할 수 있다. From the 9-amino (9-deoxy) epicincona alkaloids described in detail in Organic Letters 2005 , 7, 1967, an organic catalyst represented by Chemical Formula 1 or Chemical Formula 2 was synthesized through the method of Scheme 1 or 2. For example, dihydrin cinnaco alkaloid or cinnaco alkaloid is reacted with diphenyl phosphoryl azide using triphenyl phosphine and diisopropyl azodicarboxylate to replace the hydroxy group with an amine. It may be prepared by reacting with cyclobutenedione derivatives and separating and purifying them.

실시예Example 1:  One: BisBis -- QNQN -- TUTU 촉매의 제조 방법 Method of Preparation of Catalyst

Figure 112009042135907-pat00008
Figure 112009042135907-pat00008

상기 반응식 4에 따라, 실온에서 디클로로메탄(50 mL) 중의 9-아미노(9-데옥시)퀴닌(10 mmol) 용액에 1,1-사이오카보닐-다이이미다졸(4 mmol)을 첨가하고, 실온에서 철야 교반하였다. 생성된 촉매를 컬럼 크로마토그래피로 분리하여 에틸 아세테이트를 이용한 재결정으로 고체를 여과하고, 진공건조하여 Bis-QN-TU(82%)를 백색고체로 수득하였고, 이의 NMR 분석 결과를 도 1에 나타내었다.According to Scheme 4 above, 1,1-thiocarbonyl-diimidazole (4 mmol) is added to a solution of 9-amino (9-deoxy) quinine (10 mmol) in dichloromethane (50 mL) at room temperature, The mixture was stirred overnight at room temperature. The resulting catalyst was separated by column chromatography, the solid was filtered through recrystallization using ethyl acetate, and dried in vacuo to yield Bis-QN-TU (82%) as a white solid. The results of NMR analysis are shown in FIG. .

1H NMR (300 MHz, d 6-DMSO) δ 0.78-0.85 (m, 1H), 1.14-1.21 (m, 1H), 1.47-1.53 (m, 3H), 2.22 (s, 1H), 2.49-2.50 (m, 3H), 2.60-2.66 (m, 1H), 2.90- 3.20 (m, 5H), 3.90 (s, 3H), 4.88-4.97 (m, 2H), 5.62-5.81 (m, 2H), 7.30-7.39 (m, 2H), 7.81-7.94 (m, 3H), 8.65 (d, J = 4.5 Hz, 1H); 1 H NMR (300 MHz, d 6 -DMSO) δ 0.78-0.85 (m, 1H), 1.14-1.21 (m, 1H), 1.47-1.53 (m, 3H), 2.22 (s, 1H), 2.49-2.50 (m, 3H), 2.60-2.66 (m, 1H), 2.90-3.20 (m, 5H), 3.90 (s, 3H), 4.88-4.97 (m, 2H), 5.62-5.81 (m, 2H), 7.30 -7.39 (m, 2H), 7.81-7.94 (m, 3H), 8.65 (d, J = 4.5 Hz, 1H);

13C NMR(400MHz, d6-DMSO). 13 C NMR (400 MHz, d 6 -DMSO).

실시예Example 2:  2: BisBis -- HQNHQN -- TUTU 촉매의 제조방법 Preparation method of catalyst

Figure 112009042135907-pat00009
Figure 112009042135907-pat00009

상기 반응식 5에 따라, 실온에서 디클로로메탄(50 mL) 중의 9-아미노(9-데옥시)디하이드로퀴닌(10 mmol) 용액에 1,1-사이오카보닐-다이이미다졸(4 mmol)을 첨가하고, 실온에서 철야 교반하였다. 생성된 촉매를 컬럼 크로마토그래피로 분리하여 에틸 아세테이트를 이용한 재결정으로 고체를 여과하고, 진공건조하여 Bis-HQN-TU(78%)를 백색고체로 수득하였고, 이의 NMR 분석 결과를 도 2에 나타내었다.According to Scheme 5, 1,1-thiocarbonyl-diimidazole (4 mmol) was added to a solution of 9-amino (9-deoxy) dihydroquinine (10 mmol) in dichloromethane (50 mL) at room temperature. And it stirred at room temperature overnight. The resulting catalyst was separated by column chromatography, the solid was filtered through recrystallization using ethyl acetate, and dried in vacuo to yield Bis-HQN-TU (78%) as a white solid. The results of NMR analysis are shown in FIG. .

1H NMR (300 MHz, d 6-DMSO) δ 0.72-0.79 (m, 4H), 1.06-1.22 (m, 3H), 1.24-1.43 (m, 2H), 1.47-1.53 (m, 2H), 2.29-2.36 (m, 1H), 2.40-2.48 (m, 1H), 2.90-3.14 (m, 4H), 3.10 (s, 3H), 5.61 (d, J= 10.5 Hz, 1H), 7.29 (d, J = 4.5 Hz, 1H), 7.37 (dd, J = 2.6 and 9.2 Hz, 1H), 7.80-7.95 (m, 3H), 8.65 (d, J = 4.5 Hz, 1H); 1 H NMR (300 MHz, d 6 -DMSO) δ 0.72-0.79 (m, 4H), 1.06-1.22 (m, 3H), 1.24-1.43 (m, 2H), 1.47-1.53 (m, 2H), 2.29 -2.36 (m, 1H), 2.40-2.48 (m, 1H), 2.90-3.14 (m, 4H), 3.10 (s, 3H), 5.61 (d, J = 10.5 Hz, 1H), 7.29 (d, J = 4.5 Hz, 1H), 7.37 (dd, J = 2.6 and 9.2 Hz, 1H), 7.80-7.95 (m, 3H), 8.65 (d, J = 4.5 Hz, 1H);

13C NMR(400MHz, d6-DMSO). 13 C NMR (400 MHz, d 6 -DMSO).

실시예 3: Bis-QD-TU 촉매의 제조방법Example 3: Preparation of Bis-QD-TU Catalyst

Figure 112011049688786-pat00051
Figure 112011049688786-pat00051

상기 반응식 6에 따라, 실온에서 디클로로메탄(50 mL) 중의 9-아미노(9-데옥시)퀴니딘(10 mmol) 용액에 1,1-사이오카보닐-다이이미다졸(4 mmol)을 첨가하고, 실온에서 철야 교반하였다. 생성된 촉매를 컬럼 크로마토그래피로 분리하여 에틸 아세테이트를 이용한 재결정으로 고체를 여과하고, 진공건조하여 Bis-QD-TU(85%)를 백색고체로 수득하였고, 이의 NMR 분석 결과를 도 3에 나타내었다.According to Scheme 6, 1,1-thiocarbonyl-diimidazole (4 mmol) was added to a solution of 9-amino (9-deoxy) quinidine (10 mmol) in dichloromethane (50 mL) at room temperature. It stirred at room temperature overnight. The resulting catalyst was separated by column chromatography, the solid was filtered through recrystallization using ethyl acetate, and dried in vacuo to give Bis-QD-TU (85%) as a white solid. The results of NMR analysis are shown in FIG. .

1H NMR (300 MHz, d 6-DMSO) δ 0.77-0.86 (m, 1H), 1.11-1.18 (m, 1H), 1.42-1.51(m, 3H), 2.16-2.22 (m, 1H), 2.49 (s, 1H), 2.67-3.07 (m, 6H), 3.91 (s, 3H), 4.96-5.05 (m, 2H), 5.70-5.89 (m, 2H), 7.31-7.39 (m, 2H), 7.80-7.81 (m, 1H), 7.89-7.92 (m, 2H), 8.65 (d, J = 4.5 Hz, 1H); 1 H NMR (300 MHz, d 6 -DMSO) δ 0.77-0.86 (m, 1H), 1.11-1.18 (m, 1H), 1.42-1.51 (m, 3H), 2.16-2.22 (m, 1H), 2.49 (s, 1H), 2.67-3.07 (m, 6H), 3.91 (s, 3H), 4.96-5.05 (m, 2H), 5.70-5.89 (m, 2H), 7.31-7.39 (m, 2H), 7.80 -7.81 (m, 1 H), 7.89-7.92 (m, 2 H), 8.65 (d, J = 4.5 Hz, 1 H);

13C NMR(400MHz, d6-DMSO). 13 C NMR (400 MHz, d 6 -DMSO).

실시예Example 4:  4: BisBis -- HQDHQD -- TUTU 촉매의 제조방법 Preparation method of catalyst

Figure 112011049688786-pat00052
Figure 112011049688786-pat00052

상기 반응식 7에 따라, 실온에서 디클로로메탄(50 mL) 중의 9-아미노(9-데옥시)디하이드로퀴니딘(10 mmol) 용액에 1,1-사이오카보닐-다이이미다졸(4 mmol)을 첨가하고, 실온에서 철야 교반하였다. 생성된 촉매를 컬럼 크로마토그래피로 분리하여 에틸 아세테이트를 이용한 재결정으로 고체를 여과하고, 진공건조하여 Bis-HQD-TU(81%)를 백색고체로 수득하였다.According to Scheme 7, 1,1-thiocarbonyl-diimidazole (4 mmol) in 9-amino (9-deoxy) dihydroquinidine (10 mmol) solution in dichloromethane (50 mL) at room temperature was added. It was added and stirred overnight at room temperature. The resulting catalyst was separated by column chromatography, the solid was filtered through recrystallization with ethyl acetate and dried in vacuo to give Bis-HQD-TU (81%) as a white solid.

1H NMR (300 MHz, d 6-DMSO) δ 0.73 (t, 1H, J =6.4Hz), 1.04 (m, 1H), 1.29 (m, 1H), 2.46 (m, 1H), 2.74 (m, 1H), 3.00 (dd, J =8.6Hz, J =17.6Hz, 1H), 3.91 (m, 1H), 5.69 (d, J =6.2Hz, 1H), 7.37 (dd, 1H, J =2.4Hz, J =9.1Hz), 7.80 (d, 1H, J =2.0Hz), 7.92 (d, 1H, J =9.2Hz), 8.05 (s, 1H), 8.69 (d, 1H, J =4.4Hz). 1 H NMR (300 MHz, d 6 -DMSO) δ 0.73 (t, 1H, J = 6.4 Hz), 1.04 (m, 1H), 1.29 (m, 1H), 2.46 (m, 1H), 2.74 (m, 1H), 3.00 (dd, J = 8.6Hz, J = 17.6Hz, 1H), 3.91 (m, 1H), 5.69 (d, J = 6.2Hz, 1H), 7.37 (dd, 1H, J = 2.4Hz, J = 9.1 Hz), 7.80 (d, 1H, J = 2.0 Hz), 7.92 (d, 1H, J = 9.2 Hz), 8.05 (s, 1H), 8.69 (d, 1H, J = 4.4 Hz).

실시예Example 5:  5: BisBis -- CNCN -- TUTU 촉매의 제조방법 Preparation method of catalyst

Figure 112011049688786-pat00053
Figure 112011049688786-pat00053

상기 반응식 8에 따라, 실온에서 디클로로메탄(50 mL) 중의 9-아미노(9-데옥시)신코닌(10 mmol) 용액에 1,1-사이오카보닐-다이이미다졸(4 mmol)을 첨가하고, 실온에서 철야 교반하였다. 생성된 촉매를 컬럼 크로마토그래피로 분리하여 에틸 아세테이트를 이용한 재결정으로 고체를 여과하고, 진공건조하여 Bis-CN-TU(79%)를 백색고체로 수득하였다.According to Scheme 8 above, 1,1-thiocarbonyl-diimidazole (4 mmol) was added to a solution of 9-amino (9-deoxy) cinconin (10 mmol) in dichloromethane (50 mL) at room temperature. It stirred at room temperature overnight. The resulting catalyst was separated by column chromatography, the solid was filtered through recrystallization with ethyl acetate and dried in vacuo to give Bis-CN-TU (79%) as a white solid.

1H NMR (300 MHz, d 6-DMSO) δ 0.66-0.76 (m, 1H), 0.98-1.05 (m, 1H), 1.16 (t, J =7.1Hz ,1H), 1.40-1.44 (m, 3H), 1.97 (s, 1H), 2.14-2.16 (m, 1H), 2.70- 3.00 (m, 5H), 4.01 (dd, 1H, J =7.1Hz), 5.01-5.05 (m, 2H), 5.72-5.87 (m, 2H), 7.43-7.57 (m, 2H), 7.69-7.74 (m, 1H), 7.98-8.10 (m, 2H), 8.37 (s, 1H), 8.85 (s, 1H). 1 H NMR (300 MHz, d 6 -DMSO) δ 0.66-0.76 (m, 1H), 0.98-1.05 (m, 1H), 1.16 (t, J = 7.1 Hz, 1H), 1.40-1.44 (m, 3H ), 1.97 (s, 1H), 2.14-2.16 (m, 1H), 2.70-3.00 (m, 5H), 4.01 (dd, 1H, J = 7.1 Hz), 5.01-5.05 (m, 2H), 5.72- 5.87 (m, 2H), 7.43-7.57 (m, 2H), 7.69-7.74 (m, 1H), 7.98-8.10 (m, 2H), 8.37 (s, 1H), 8.85 (s, 1H).

실시예Example 6:  6: BisBis -- HCNHCN -- TUTU 촉매의 제조방법 Preparation method of catalyst

Figure 112011049688786-pat00054
Figure 112011049688786-pat00054

상기 반응식 9에 따라, 실온에서 디클로로메탄(50 mL) 중의 9-아미노(9-데옥시)디하이드로신코닌(10 mmol) 용액에 1,1-사이오카보닐-다이이미다졸(4 mmol)을 첨가하고, 실온에서 철야 교반하였다. 생성된 촉매를 컬럼 크로마토그래피로 분리하여 에틸 아세테이트를 이용한 재결정으로 고체를 여과하고, 진공건조하여 Bis-HCN-TU(83%)를 백색고체로 수득하였다.According to Scheme 9, 1,1-thiocarbonyl-diimidazole (4 mmol) was added to a solution of 9-amino (9-deoxy) dihydrocinconin (10 mmol) in dichloromethane (50 mL) at room temperature. It was added and stirred overnight at room temperature. The resulting catalyst was separated by column chromatography, the solid was filtered through recrystallization using ethyl acetate and dried in vacuo to give Bis-HCN-TU (83%) as a white solid.

1H NMR (300 MHz, d 6-DMSO)δ0.59-0.65 (m, 1H), 0.74 (t , J =6.4Hz, 2H), 0.97 (m, 1H), 1.13-1.36 (m, 5H), 2.34-2.38 (m, 1H), 2.73-2.95 (m, 3H), 5.63 (s, 1H), 7.43-7.58 (m, 1H), 7.43-7.74 (m, 1H), 7.99-8.09 (m, 1H), 8.37 (s, 1H), 8.85 (s, 1H). 1 H NMR (300 MHz, d 6 -DMSO) δ0.59-0.65 (m, 1H), 0.74 (t, J = 6.4 Hz, 2H), 0.97 (m, 1H), 1.13-1.36 (m, 5H) , 2.34-2.38 (m, 1H), 2.73-2.95 (m, 3H), 5.63 (s, 1H), 7.43-7.58 (m, 1H), 7.43-7.74 (m, 1H), 7.99-8.09 (m, 1H), 8.37 (s, 1 H), 8.85 (s, 1 H).

실시예Example 7:  7: BisBis -- CDCD -- TUTU 촉매의 제조방법 Preparation method of catalyst

Figure 112009042135907-pat00014
Figure 112009042135907-pat00014

상기 반응식 10에 따라, 실온에서 디클로로메탄(50 mL) 중의 9-아미노(9-데옥시)신코니딘(10 mmol) 용액에 1,1-사이오카보닐-다이이미다졸(4 mmol)을 첨가하고, 실온에서 철야 교반하였다. 생성된 촉매를 컬럼 크로마토그래피로 분리하여 에틸 아세테이트를 이용한 재결정으로 고체를 여과하고, 진공건조하여 Bis-CD-TU(86%)를 백색고체로 수득하였고, 이의 NMR 분석 결과를 도 4에 나타내었다.According to Scheme 10 above, 1,1-thiocarbonyl-diimidazole (4 mmol) was added to a solution of 9-amino (9-deoxy) cinconidine (10 mmol) in dichloromethane (50 mL) at room temperature. And it stirred at room temperature overnight. The resulting catalyst was separated by column chromatography, the solid was filtered through recrystallization using ethyl acetate, and dried in vacuo to give Bis-CD-TU (86%) as a white solid. The results of NMR analysis are shown in FIG. .

1H NMR (300 MHz, d 6-DMSO) δ 0.84-0.86(m, 1H), 1.10-1.11 (m, 1H), 1.44-1.52(m, 3H), 2.22 (s, 1H), 2.48-2.66 (m, 3H), 2.92-3.20 (m, 4H), 4.86-4.96 (m, 2H), 5.62-5.78 (m, 2H), 7.34 (d, J = 4.5 Hz, 1H), 7.51-7.54 (m, 1H), 7.67-7.72 (m, 1H), 7.92-8.02 (m, 2H), 8.40 (d, J = 8.5 Hz , 2H), 8.81 (d, J = 4.5 Hz , 1H); 1 H NMR (300 MHz, d 6 -DMSO) δ 0.84-0.86 (m, 1H), 1.10-1.11 (m, 1H), 1.44-1.52 (m, 3H), 2.22 (s, 1H), 2.48-2.66 (m, 3H), 2.92-3.20 (m, 4H), 4.86-4.96 (m, 2H), 5.62-5.78 (m, 2H), 7.34 (d, J = 4.5 Hz, 1H), 7.51-7.54 (m , 1H), 7.67-7.72 (m, 1H), 7.92-8.02 (m, 2H), 8.40 (d, J = 8.5 Hz, 2H), 8.81 (d, J = 4.5 Hz, 1H);

13C NMR(400MHz, d6-DMSO). 13 C NMR (400 MHz, d 6 -DMSO).

실시예Example 8:  8: BisBis -- HCDHCD -- TUTU 촉매의 제조방법 Preparation method of catalyst

Figure 112009042135907-pat00015
Figure 112009042135907-pat00015

상기 반응식 11에 따라, 실온에서 디클로로메탄(50 mL) 중의 9-아미노(9-데옥시)하이드로신코니딘(10 mmol) 용액에 1,1-사이오카보닐-다이이미다졸(4 mmol)을 첨가하고, 실온에서 철야 교반하였다. 생성된 촉매를 컬럼 크로마토그래피로 분리하여 에틸 아세테이트를 이용한 재결정으로 고체를 여과하고, 진공건조하여 Bis-HCD-TU(83%)를 백색고체로 수득하였고, 이의 NMR 분석 결과를 도 5에 나타내었다.According to Scheme 11, 1,1-thiocarbonyl-diimidazole (4 mmol) was added to a solution of 9-amino (9-deoxy) hydrocinconidine (10 mmol) in dichloromethane (50 mL) at room temperature. It was added and stirred overnight at room temperature. The resulting catalyst was separated by column chromatography, the solid was filtered through recrystallization using ethyl acetate, and dried in vacuo to give Bis-HCD-TU (83%) as a white solid. The results of NMR analysis are shown in FIG. .

1H NMR (300 MHz, d 6-DMSO) δ 0.72-0.76 (m, 4H), 1.04-1.21 (m, 3H), 1.34-1.36(m, 2H), 1.47-1.48 (m, 2H), 1.97 (s, 1H), 2.48-2.50 (m, 2H), 2.93-3.16 (m, 3H), 4.02-4.09 (q, J = 7 Hz, 1H), 5.58-5.61 (d, J = 10.4 Hz, 2H), 7.32-7.34 (d, J = 4.5 Hz ,2H), 7.51-7.56 (m, 1H), 7.67-7.72 (m, 1H), 7.90- 8.02 (m, 2H), 8.19-8.20 (s, 1H), 8.36-8.40 (d, J = 8.5 Hz, 1H), 8.80-8.81 (d, J = 4.5 Hz , 1H). 1 H NMR (300 MHz, d 6 -DMSO) δ 0.72-0.76 (m, 4H), 1.04-1.21 (m, 3H), 1.34-1.36 (m, 2H), 1.47-1.48 (m, 2H), 1.97 (s, 1H), 2.48-2.50 (m, 2H), 2.93-3.16 (m, 3H), 4.02-4.09 (q, J = 7 Hz, 1H), 5.58-5.61 (d, J = 10.4 Hz, 2H ), 7.32-7.34 (d, J = 4.5 Hz, 2H), 7.51-7.56 (m, 1H), 7.67-7.72 (m, 1H), 7.90-8.02 (m, 2H), 8.19-8.20 (s, 1H) ), 8.36-8.40 (d, J = 8.5 Hz, 1H), 8.80-8.81 (d, J = 4.5 Hz, 1H).

실시예 1 내지 8에 따라 수득된 유기 촉매 화합물을 하기 표 1에 나타내었다. The organic catalyst compounds obtained according to Examples 1 to 8 are shown in Table 1 below.

Figure 112011049688786-pat00055
Figure 112011049688786-pat00055

실시예Example 9 ~  9 to 실시예Example 18 18

촉매의 성능을 비교하기 위하여, 하기 반응식 12에 따라 라세믹 아즈락톤의 다이나믹 키네틱 레졸루션을 통하여 아미노산 에스터를 제조하였다. To compare the performance of the catalysts, amino acid esters were prepared via dynamic kinetic resolution of racemic azlactone according to Scheme 12 below.

Figure 112009042135907-pat00017
Figure 112009042135907-pat00017

실시예Example 9:  9: BisBis -- QNQN -- TUTU 를 사용한 아미노산 에스터의 제조(상온)Preparation of Amino Acid Ester Using (Room Temperature)

상온에서 아즈락톤(1a) 0.5 mmol을 디클로로 메탄 1 mL에 용해시킨 후 유기촉매(Bis-QN-TU)를 10 mol% 첨가하고 알릴 알코올을 2 당량을 한꺼번에 첨가하고 6시간 교반하였다. 이 반응을 묽은 염산 수용액(1N, 1 mL)를 사용하여 켄칭시켰다. 수층을 에틸아세테이트(2 X 5 mL)로 추출하고, 합쳐진 유기층을 MgSO4로 건조하고 농축시켰다. 잔사를 플래쉬 크로마토 그래피(노르말-핵세인 중에 15% 에틸아세테이트)로 정제하여 알릴에스터(2a, 97% 수율 ; 80% ee, (S)-form)를 수득하였다. 거울상 입체선택성은 고성능 액체크로마토그래피를 이용하여 측정하였다(CHIRALCEL OD-H, 9:1, 헥산:이소프로필 알코올, 1mL/분, t(부생성물) = 5.9 분, t(주생성물) = 9.9 분).0.5 mmol of azlactone (1a) was dissolved in 1 mL of dichloromethane at room temperature, 10 mol% of an organic catalyst (Bis-QN-TU) was added, and 2 equivalents of allyl alcohol were added at once and stirred for 6 hours. The reaction was quenched using dilute hydrochloric acid aqueous solution (1N, 1 mL). The aqueous layer was extracted with ethyl acetate (2 X 5 mL), and the combined organic layers were dried over MgSO 4 and concentrated. The residue was purified by flash chromatography (15% ethyl acetate in normal-nucleine) to give allyl ester (2a, 97% yield; 80% ee, (S) -form). Enantioselectivity was determined using high performance liquid chromatography (CHIRALCEL OD-H, 9: 1, hexanes: isopropyl alcohol, 1 mL / min, t (by-product) = 5.9 min, t (main product) = 9.9 min) ).

1H NMR (400 MHz, CDCl3) δ 0.99 (d, J = 6.8, 3H), 1.01 (d, J = 6.8, 3H), 2.26-2.34 (m, 1H), 4.61-4.71 (m, 2H), 4.81 (dd, J = 5.2, J = 8.8, 1H), 5.26 (dd, J = 1.2, J = 10.4, 1H), 5.35 (dd, J = 1.2, J = 17.4, 1H), 5.87-5.97 (m, 1H), 6.86 (d, J = 8.8, 1H), 7.39-7.51 (m, 3H), 7.79-7.82 (m, 2H) ppm; 1 H NMR (400 MHz, CDCl 3 ) δ 0.99 (d, J = 6.8, 3H), 1.01 (d, J = 6.8, 3H), 2.26-2.34 (m, 1H), 4.61-4.71 (m, 2H) , 4.81 (dd, J = 5.2, J = 8.8, 1H), 5.26 (dd, J = 1.2, J = 10.4, 1H), 5.35 (dd, J = 1.2, J = 17.4, 1H), 5.87-5.97 ( m, 1H), 6.86 (d, J = 8.8, 1H), 7.39-7.51 (m, 3H), 7.79-7.82 (m, 2H) ppm;

13C NMR (400 MHz, CDCl3) δ 17.83, 18.95, 31.41, 57.25, 65.72, 118.78, 126.82, 128.26, 131.22, 131.41, 133.77, 133.81, 167.03, 171.58. 13 C NMR (400 MHz, CDCl 3 ) δ 17.83, 18.95, 31.41, 57.25, 65.72, 118.78, 126.82, 128.26, 131.22, 131.41, 133.77, 133.81, 167.03, 171.58.

실시예Example 10:  10: BisBis -- HQNHQN -- TUTU 을 사용한 아미노산 에스터의 제조(상온)Preparation of Amino Acid Ester Using (Room Temperature)

상온에서 아즈락톤(1a) 0.5 mmol을 디클로로 메탄 1 mL에 용해시킨 후 유기촉매(Bis-HQN-TU)를 10 mol% 첨가하고 알릴 알코올을 2당량을 한꺼번에 첨가하고 24시간 교반하였다. 이 반응을 묽은 염산 수용액(1N, 1 mL)를 사용하여 켄칭시켰다. 수층을 에틸아세테이트(2 X 5 mL)로 추출하고, 합쳐진 유기층을 MgSO4로 건조하고 농축시켰다. 잔사를 플래쉬 크로마토 그래피(노르말-핵세인 중에 15% 에틸아세테이트)로 정제하여 알릴 에스터(2a, 96% 수율 ; 84% ee, (S)-form)를 수득하였다. 거울상 입체선택성은 고성능 액체크로마토그래피를 이용하여 측정하였다 (CHIRALCEL OD-H, 9:1, 헥산:이소프로필 알코올, 1mL/분, t(부생성물) = 5.9 분, t(주생성물) = 9.9 분).0.5 mmol of azlactone (1a) was dissolved in 1 mL of dichloromethane at room temperature, 10 mol% of an organic catalyst (Bis-HQN-TU) was added, and 2 equivalents of allyl alcohol were added together and stirred for 24 hours. The reaction was quenched using dilute hydrochloric acid aqueous solution (1N, 1 mL). The aqueous layer was extracted with ethyl acetate (2 X 5 mL), and the combined organic layers were dried over MgSO 4 and concentrated. The residue was purified by flash chromatography (15% ethyl acetate in normal-nucleine) to give allyl ester (2a, 96% yield; 84% ee, (S) -form). Enantioselectivity was determined using high performance liquid chromatography (CHIRALCEL OD-H, 9: 1, hexanes: isopropyl alcohol, 1 mL / min, t (by-product) = 5.9 min, t (main product) = 9.9 min) ).

1H NMR (400 MHz, CDCl3) δ 0.99 (d, J = 6.8, 3H), 1.01 (d, J = 6.8, 3H), 2.26-2.34 (m, 1H), 4.61-4.71 (m, 2H), 4.81 (dd, J = 5.2, J = 8.8, 1H), 5.26 (dd, J = 1.2, J = 10.4, 1H), 5.35 (dd, J = 1.2, J = 17.4, 1H), 5.87-5.97 (m, 1H), 6.86 (d, J = 8.8, 1H), 7.39-7.51 (m, 3H), 7.79-7.82 (m, 2H) ppm; 1 H NMR (400 MHz, CDCl 3 ) δ 0.99 (d, J = 6.8, 3H), 1.01 (d, J = 6.8, 3H), 2.26-2.34 (m, 1H), 4.61-4.71 (m, 2H) , 4.81 (dd, J = 5.2, J = 8.8, 1H), 5.26 (dd, J = 1.2, J = 10.4, 1H), 5.35 (dd, J = 1.2, J = 17.4, 1H), 5.87-5.97 ( m, 1H), 6.86 (d, J = 8.8, 1H), 7.39-7.51 (m, 3H), 7.79-7.82 (m, 2H) ppm;

13C NMR (400 MHz, CDCl3) δ 17.83, 18.95, 31.41, 57.25, 65.72, 118.78, 126.82, 128.26, 131.22, 131.41, 133.77, 133.81, 167.03, 171.58. 13 C NMR (400 MHz, CDCl 3 ) δ 17.83, 18.95, 31.41, 57.25, 65.72, 118.78, 126.82, 128.26, 131.22, 131.41, 133.77, 133.81, 167.03, 171.58.

실시예Example 11:  11: BisBis -- CDCD -- TUTU 를 사용한 아미노산 에스터의 제조(상온)Preparation of Amino Acid Ester Using (Room Temperature)

상온에서 아즈락톤(1a) 0.5 mmol을 디클로로 메탄 1 mL에 용해시킨 후 유기촉매(Bis-CD-TU)를 10 mol% 첨가하고 알릴 알코올을 2당량을 한꺼번에 첨가하고 24시간 교반하였다. 이 반응을 묽은 염산 수용액(1N, 1 mL)를 사용하여 켄칭시켰다. 수층을 에틸아세테이트(2 X 5 mL)로 추출하고, 합쳐진 유기층을 MgSO4로 건조하고 농축시켰다. 잔사를 플래쉬 크로마토 그래피(노르말-핵세인 중에 15% 에틸아세테이트)로 정제하여 알릴 에스터(2a, 67% 수율 ; 82% ee, (S)-form)를 수득하였다. 거울상 입체선택성은 고성능 액체크로마토그래피를 이용하여 측정하였다 (CHIRALCEL OD-H, 9:1, 헥산:이소프로필 알코올, 1mL/분, t(부생성물) = 5.9 분, t(주생성물) = 9.9 분).0.5 mmol of azlactone (1a) was dissolved in 1 mL of dichloromethane at room temperature, 10 mol% of an organic catalyst (Bis-CD-TU) was added, and 2 equivalents of allyl alcohol were added together and stirred for 24 hours. The reaction was quenched using dilute hydrochloric acid aqueous solution (1N, 1 mL). The aqueous layer was extracted with ethyl acetate (2 X 5 mL), and the combined organic layers were dried over MgSO 4 and concentrated. The residue was purified by flash chromatography (15% ethyl acetate in normal-nucleine) to give allyl ester (2a, 67% yield; 82% ee, (S) -form). Enantioselectivity was determined using high performance liquid chromatography (CHIRALCEL OD-H, 9: 1, hexanes: isopropyl alcohol, 1 mL / min, t (by-product) = 5.9 min, t (main product) = 9.9 min) ).

1H NMR (400 MHz, CDCl3) δ 0.99 (d, J = 6.8, 3H), 1.01 (d, J = 6.8, 3H), 2.26-2.34 (m, 1H), 4.61-4.71 (m, 2H), 4.81 (dd, J = 5.2, J = 8.8, 1H), 5.26 (dd, J = 1.2, J = 10.4, 1H), 5.35 (dd, J = 1.2, J = 17.4, 1H), 5.87-5.97 (m, 1H), 6.86 (d, J = 8.8, 1H), 7.39-7.51 (m, 3H), 7.79-7.82 (m, 2H) ppm; 1 H NMR (400 MHz, CDCl 3 ) δ 0.99 (d, J = 6.8, 3H), 1.01 (d, J = 6.8, 3H), 2.26-2.34 (m, 1H), 4.61-4.71 (m, 2H) , 4.81 (dd, J = 5.2, J = 8.8, 1H), 5.26 (dd, J = 1.2, J = 10.4, 1H), 5.35 (dd, J = 1.2, J = 17.4, 1H), 5.87-5.97 ( m, 1H), 6.86 (d, J = 8.8, 1H), 7.39-7.51 (m, 3H), 7.79-7.82 (m, 2H) ppm;

13C NMR (400 MHz, CDCl3) δ 17.83, 18.95, 31.41, 57.25, 65.72, 118.78, 126.82, 128.26, 131.22, 131.41, 133.77, 133.81, 167.03, 171.58. 13 C NMR (400 MHz, CDCl 3 ) δ 17.83, 18.95, 31.41, 57.25, 65.72, 118.78, 126.82, 128.26, 131.22, 131.41, 133.77, 133.81, 167.03, 171.58.

실시예Example 12:  12: BisBis -- HCDHCD -- TUTU 를 사용한 아미노산 에스터의 제조(상온)Preparation of Amino Acid Ester Using (Room Temperature)

상온에서 아즈락톤(1a) 0.5 mmol을 디클로로 메탄 1 mL에 용해시킨 후 유기촉매(Bis-HCD-Tu)를 10 mol% 첨가하고 알릴 알코올을 2당량을 한꺼번에 첨가하고 24시간 교반하였다. 이 반응을 묽은 염산 수용액(1N, 1 mL)을 사용하여 켄칭시켰다. 수층을 에틸아세테이트(2 X 5 mL)로 추출하고, 합쳐진 유기층을 MgSO4로 건조하고 농축시켰다. 잔사를 플래쉬 크로마토 그래피(노르말-핵세인 중에 15% 에틸아세테이트)로 정제하여 알릴 에스터(2a, 94% 수율 ; 85% ee, (S)-form)를 수득하였다. 거울상 입체선택성은 고성능 액체크로마토그래피를 이용하여 측정하였다 (CHIRALCEL OD-H, 9:1, 헥산:이소프로필 알코올, 1mL/분, t(부생성물) = 5.9 분, t(주생성물) = 9.9 분).0.5 mmol of azlactone (1a) was dissolved in 1 mL of dichloromethane at room temperature, 10 mol% of an organic catalyst (Bis-HCD-Tu) was added, and 2 equivalents of allyl alcohol were added together and stirred for 24 hours. The reaction was quenched using dilute hydrochloric acid aqueous solution (1N, 1 mL). The aqueous layer was extracted with ethyl acetate (2 X 5 mL), and the combined organic layers were dried over MgSO 4 and concentrated. The residue was purified by flash chromatography (15% ethyl acetate in normal-nucleine) to give allyl ester (2a, 94% yield; 85% ee, (S) -form). Enantioselectivity was determined using high performance liquid chromatography (CHIRALCEL OD-H, 9: 1, hexanes: isopropyl alcohol, 1 mL / min, t (by-product) = 5.9 min, t (main product) = 9.9 min) ).

1H NMR (400 MHz, CDCl3) δ 0.99 (d, J = 6.8, 3H), 1.01 (d, J = 6.8, 3H), 2.26-2.34 (m, 1H), 4.61-4.71 (m, 2H), 4.81 (dd, J = 5.2, J = 8.8, 1H), 5.26 (dd, J = 1.2, J = 10.4, 1H), 5.35 (dd, J = 1.2, J = 17.4, 1H), 5.87-5.97 (m, 1H), 6.86 (d, J = 8.8, 1H), 7.39-7.51 (m, 3H), 7.79-7.82 (m, 2H) ppm; 1 H NMR (400 MHz, CDCl 3 ) δ 0.99 (d, J = 6.8, 3H), 1.01 (d, J = 6.8, 3H), 2.26-2.34 (m, 1H), 4.61-4.71 (m, 2H) , 4.81 (dd, J = 5.2, J = 8.8, 1H), 5.26 (dd, J = 1.2, J = 10.4, 1H), 5.35 (dd, J = 1.2, J = 17.4, 1H), 5.87-5.97 ( m, 1H), 6.86 (d, J = 8.8, 1H), 7.39-7.51 (m, 3H), 7.79-7.82 (m, 2H) ppm;

13C NMR (400 MHz, CDCl3) δ 17.83, 18.95, 31.41, 57.25, 65.72, 118.78, 126.82, 128.26, 131.22, 131.41, 133.77, 133.81, 167.03, 171.58. 13 C NMR (400 MHz, CDCl 3 ) δ 17.83, 18.95, 31.41, 57.25, 65.72, 118.78, 126.82, 128.26, 131.22, 131.41, 133.77, 133.81, 167.03, 171.58.

실시예Example 13:  13: BisBis -- QDQD -- TUTU 를 사용한 아미노산 에스터의 제조(상온)Preparation of Amino Acid Ester Using (Room Temperature)

상온에서 아즈락톤(1a) 0.5 mmol을 디클로로 메탄 1 mL에 용해시킨 후 유기촉매(Bis-QD-TU)를 10 mol% 첨가하고 알릴 알코올을 2당량을 한꺼번에 첨가하고 24시간 교반하였다. 이 반응을 묽은 염산 수용액(1N, 1 mL)을 사용하여 켄칭시켰다. 수층을 에틸아세테이트(2 X 5 mL)로 추출하고, 합쳐진 유기층을 MgSO4로 건조하고 농축시켰다. 잔사를 플래쉬 크로마토 그래피(노르말-핵세인 중에 15% 에틸아세테이트)로 정제하여 알릴 에스터(2a, 59% 수율 ; 69% ee, (R)-form)를 수득하였다. 거울상 입체선택성은 고성능 액체크로마토그래피를 이용하여 측정하였다(CHIRALCEL OD-H, 9:1, 헥산:이소프로필 알코올, 1mL/분, t(주생성물) = 5.9 분, t(부생성물) = 9.9 분).0.5 mmol of azlactone (1a) was dissolved in 1 mL of dichloromethane at room temperature, 10 mol% of an organic catalyst (Bis-QD-TU) was added, and 2 equivalents of allyl alcohol were added together and stirred for 24 hours. The reaction was quenched using dilute hydrochloric acid aqueous solution (1N, 1 mL). The aqueous layer was extracted with ethyl acetate (2 X 5 mL), and the combined organic layers were dried over MgSO 4 and concentrated. The residue was purified by flash chromatography (15% ethyl acetate in normal-nucleine) to give allyl ester (2a, 59% yield; 69% ee, (R) -form). Enantioselectivity was determined using high performance liquid chromatography (CHIRALCEL OD-H, 9: 1, hexanes: isopropyl alcohol, 1 mL / min, t (main product) = 5.9 minutes, t (by-product) = 9.9 minutes) ).

1H NMR (400 MHz, CDCl3) δ 0.99 (d, J = 6.8, 3H), 1.01 (d, J = 6.8, 3H), 2.26-2.34 (m, 1H), 4.61-4.71 (m, 2H), 4.81 (dd, J = 5.2, J = 8.8, 1H), 5.26 (dd, J = 1.2, J = 10.4, 1H), 5.35 (dd, J = 1.2, J = 17.4, 1H), 5.87-5.97 (m, 1H), 6.86 (d, J = 8.8, 1H), 7.39-7.51 (m, 3H), 7.79-7.82 (m, 2H) ppm; 1 H NMR (400 MHz, CDCl 3 ) δ 0.99 (d, J = 6.8, 3H), 1.01 (d, J = 6.8, 3H), 2.26-2.34 (m, 1H), 4.61-4.71 (m, 2H) , 4.81 (dd, J = 5.2, J = 8.8, 1H), 5.26 (dd, J = 1.2, J = 10.4, 1H), 5.35 (dd, J = 1.2, J = 17.4, 1H), 5.87-5.97 ( m, 1H), 6.86 (d, J = 8.8, 1H), 7.39-7.51 (m, 3H), 7.79-7.82 (m, 2H) ppm;

13C NMR (400 MHz, CDCl3) δ 17.83, 18.95, 31.41, 57.25, 65.72, 118.78, 126.82, 128.26, 131.22, 131.41, 133.77, 133.81, 167.03, 171.58. 13 C NMR (400 MHz, CDCl 3 ) δ 17.83, 18.95, 31.41, 57.25, 65.72, 118.78, 126.82, 128.26, 131.22, 131.41, 133.77, 133.81, 167.03, 171.58.

실시예Example 14:  14: BisBis -- HQDHQD -- TUTU 를 사용한 아미노산 에스터의 제조(상온)Preparation of Amino Acid Ester Using (Room Temperature)

상온에서 아즈락톤(1a) 0.5 mmol을 디클로로 메탄 1 mL에 용해시킨 후 유기촉매(Bis-HQD-TU)를 10 mol% 첨가하고 알릴 알코올을 2 당량을 한꺼번에 첨가하고 24시간 교반하였다. 이 반응을 묽은 염산 수용액(1N, 1 mL)을 사용하여 켄칭시켰다. 수층을 에틸아세테이트(2 X 5 mL)로 추출하고, 합쳐진 유기층을 MgSO4로 건조하고 농축시켰다. 잔사를 플래쉬 크로마토 그래피(노르말-핵세인 중에 15% 에틸아세테이트)로 정제하여 알릴 에스터(2a, 62% 수율 ; 67% ee, (R)-form)를 수득하였다. 거울상 입체선택성은 고성능 액체크로마토그래피를 이용하여 측정하였다 (CHIRALCEL OD-H, 9:1, 헥산:이소프로필 알코올, 1mL/분, t(주생성물) = 5.9 분, t(부생성물) = 9.9 분).0.5 mmol of azlactone (1a) was dissolved in 1 mL of dichloromethane at room temperature, 10 mol% of an organic catalyst (Bis-HQD-TU) was added, and 2 equivalents of allyl alcohol were added at once and stirred for 24 hours. The reaction was quenched using dilute hydrochloric acid aqueous solution (1N, 1 mL). The aqueous layer was extracted with ethyl acetate (2 X 5 mL), and the combined organic layers were dried over MgSO 4 and concentrated. The residue was purified by flash chromatography (15% ethyl acetate in normal-nucleine) to give allyl ester (2a, 62% yield; 67% ee, (R) -form). Enantioselectivity was determined using high performance liquid chromatography (CHIRALCEL OD-H, 9: 1, hexanes: isopropyl alcohol, 1 mL / min, t (main product) = 5.9 min, t (by-product) = 9.9 min) ).

1H NMR (400 MHz, CDCl3) δ 0.99 (d, J = 6.8, 3H), 1.01 (d, J = 6.8, 3H), 2.26-2.34 (m, 1H), 4.61-4.71 (m, 2H), 4.81 (dd, J = 5.2, J = 8.8, 1H), 5.26 (dd, J = 1.2, J = 10.4, 1H), 5.35 (dd, J = 1.2, J = 17.4, 1H), 5.87-5.97 (m, 1H), 6.86 (d, J = 8.8, 1H), 7.39-7.51 (m, 3H), 7.79-7.82 (m, 2H) ppm; 1 H NMR (400 MHz, CDCl 3 ) δ 0.99 (d, J = 6.8, 3H), 1.01 (d, J = 6.8, 3H), 2.26-2.34 (m, 1H), 4.61-4.71 (m, 2H) , 4.81 (dd, J = 5.2, J = 8.8, 1H), 5.26 (dd, J = 1.2, J = 10.4, 1H), 5.35 (dd, J = 1.2, J = 17.4, 1H), 5.87-5.97 ( m, 1H), 6.86 (d, J = 8.8, 1H), 7.39-7.51 (m, 3H), 7.79-7.82 (m, 2H) ppm;

13C NMR (400 MHz, CDCl3) δ 17.83, 18.95, 31.41, 57.25, 65.72, 118.78, 126.82, 128.26, 131.22, 131.41, 133.77, 133.81, 167.03, 171.58. 13 C NMR (400 MHz, CDCl 3 ) δ 17.83, 18.95, 31.41, 57.25, 65.72, 118.78, 126.82, 128.26, 131.22, 131.41, 133.77, 133.81, 167.03, 171.58.

실시예Example 15:  15: BisBis -- CNCN -- TUTU 를 사용한 아미노산 에스터의 제조(상온)Preparation of Amino Acid Ester Using (Room Temperature)

상온에서 아즈락톤(1a) 0.5 mmol을 디클로로 메탄 1 mL에 용해시킨 후 유기촉매(Bis-CN-TU)를 10 mol% 첨가하고 알릴 알코올을 2 당량을 한꺼번에 첨가하고 24시간 교반하였다. 이 반응을 묽은 염산 수용액(1N, 1 mL)을 사용하여 켄칭시켰다. 수층을 에틸아세테이트(2 X 5 mL)로 추출하고, 합쳐진 유기층을 MgSO4로 건조하고 농축시켰다. 잔사를 플래쉬 크로마토 그래피(노르말-핵세인 중에 15% 에틸아세테이트)로 정제하여 알릴 에스터(2a, 68% 수율 ; 69% ee, (R)-form)를 수득하였다. 거울상 입체선택성은 고성능 액체크로마토그래피를 이용하여 측정하였다 (CHIRALCEL OD-H, 9:1, 헥산:이소프로필 알코올, 1mL/분, t(주생성물) = 5.9 분, t(부생성물) = 9.9 분).0.5 mmol of azlactone (1a) was dissolved in 1 mL of dichloromethane at room temperature, 10 mol% of an organic catalyst (Bis-CN-TU) was added, and 2 equivalents of allyl alcohol were added together and stirred for 24 hours. The reaction was quenched using dilute hydrochloric acid aqueous solution (1N, 1 mL). The aqueous layer was extracted with ethyl acetate (2 X 5 mL), and the combined organic layers were dried over MgSO 4 and concentrated. The residue was purified by flash chromatography (15% ethyl acetate in normal-nucleine) to give allyl ester (2a, 68% yield; 69% ee, (R) -form). Enantioselectivity was determined using high performance liquid chromatography (CHIRALCEL OD-H, 9: 1, hexanes: isopropyl alcohol, 1 mL / min, t (main product) = 5.9 min, t (by-product) = 9.9 min) ).

1H NMR (400 MHz, CDCl3) δ 0.99 (d, J = 6.8, 3H), 1.01 (d, J = 6.8, 3H), 2.26-2.34 (m, 1H), 4.61-4.71 (m, 2H), 4.81 (dd, J = 5.2, J = 8.8, 1H), 5.26 (dd, J = 1.2, J = 10.4, 1H), 5.35 (dd, J = 1.2, J = 17.4, 1H), 5.87-5.97 (m, 1H), 6.86 (d, J = 8.8, 1H), 7.39-7.51 (m, 3H), 7.79-7.82 (m, 2H) ppm; 1 H NMR (400 MHz, CDCl 3 ) δ 0.99 (d, J = 6.8, 3H), 1.01 (d, J = 6.8, 3H), 2.26-2.34 (m, 1H), 4.61-4.71 (m, 2H) , 4.81 (dd, J = 5.2, J = 8.8, 1H), 5.26 (dd, J = 1.2, J = 10.4, 1H), 5.35 (dd, J = 1.2, J = 17.4, 1H), 5.87-5.97 ( m, 1H), 6.86 (d, J = 8.8, 1H), 7.39-7.51 (m, 3H), 7.79-7.82 (m, 2H) ppm;

13C NMR (400 MHz, CDCl3) δ 17.83, 18.95, 31.41, 57.25, 65.72, 118.78, 126.82, 128.26, 131.22, 131.41, 133.77, 133.81, 167.03, 171.58. 13 C NMR (400 MHz, CDCl 3 ) δ 17.83, 18.95, 31.41, 57.25, 65.72, 118.78, 126.82, 128.26, 131.22, 131.41, 133.77, 133.81, 167.03, 171.58.

실시예Example 16:  16: BisBis -- HCNHCN -- TUTU 를 사용한 아미노산 에스터의 제조(상온)Preparation of Amino Acid Ester Using (Room Temperature)

상온에서 아즈락톤(1a) 0.5 mmol을 디클로로 메탄 1 mL에 용해시킨 후 유기촉매(Bis-HCN-Tu)를 10 mol% 첨가하고 알릴 알코올을 2 당량을 한꺼번에 첨가하고 24시간 교반하였다. 이 반응을 묽은 염산 수용액(1N, 1 mL)을 사용하여 켄칭시켰다. 수층을 에틸아세테이트(2 X 5 mL)로 추출하고, 합쳐진 유기층을 MgSO4로 건조하고 농축시켰다. 잔사를 플래쉬 크로마토 그래피(노르말-핵세인 중에 15% 에틸아세테이트)로 정제하여 알릴 에스터(2a, 51% 수율 ; 64% ee, (R)-form)를 수득하였다. 거울상 입체선택성은 고성능 액체크로마토그래피를 이용하여 측정하였다 (CHIRALCEL OD-H, 9:1, 헥산:이소프로필 알코올, 1mL/분, t(주생성물) = 5.9 분, t(부생성물) = 9.9 분).0.5 mmol of azlactone (1a) was dissolved in 1 mL of dichloromethane at room temperature, 10 mol% of an organic catalyst (Bis-HCN-Tu) was added, and 2 equivalents of allyl alcohol were added at once and stirred for 24 hours. The reaction was quenched using dilute hydrochloric acid aqueous solution (1N, 1 mL). The aqueous layer was extracted with ethyl acetate (2 X 5 mL), and the combined organic layers were dried over MgSO 4 and concentrated. The residue was purified by flash chromatography (15% ethyl acetate in normal-nucleine) to give allyl ester (2a, 51% yield; 64% ee, (R) -form). Enantioselectivity was determined using high performance liquid chromatography (CHIRALCEL OD-H, 9: 1, hexanes: isopropyl alcohol, 1 mL / min, t (main product) = 5.9 min, t (by-product) = 9.9 min) ).

1H NMR (400 MHz, CDCl3) δ 0.99 (d, J = 6.8, 3H), 1.01 (d, J = 6.8, 3H), 2.26-2.34 (m, 1H), 4.61-4.71 (m, 2H), 4.81 (dd, J = 5.2, J = 8.8, 1H), 5.26 (dd, J = 1.2, J = 10.4, 1H), 5.35 (dd, J = 1.2, J = 17.4, 1H), 5.87-5.97 (m, 1H), 6.86 (d, J = 8.8, 1H), 7.39-7.51 (m, 3H), 7.79-7.82 (m, 2H) ppm; 1 H NMR (400 MHz, CDCl 3 ) δ 0.99 (d, J = 6.8, 3H), 1.01 (d, J = 6.8, 3H), 2.26-2.34 (m, 1H), 4.61-4.71 (m, 2H) , 4.81 (dd, J = 5.2, J = 8.8, 1H), 5.26 (dd, J = 1.2, J = 10.4, 1H), 5.35 (dd, J = 1.2, J = 17.4, 1H), 5.87-5.97 ( m, 1H), 6.86 (d, J = 8.8, 1H), 7.39-7.51 (m, 3H), 7.79-7.82 (m, 2H) ppm;

13C NMR (400 MHz, CDCl3) δ 17.83, 18.95, 31.41, 57.25, 65.72, 118.78, 126.82, 128.26, 131.22, 131.41, 133.77, 133.81, 167.03, 171.58. 13 C NMR (400 MHz, CDCl 3 ) δ 17.83, 18.95, 31.41, 57.25, 65.72, 118.78, 126.82, 128.26, 131.22, 131.41, 133.77, 133.81, 167.03, 171.58.

실시예Example 17:  17: BisBis -- HQNHQN -- TUTU 를 사용한 아미노산 에스터의 제조(-20℃)Preparation of Amino Acid Ester (-20 ℃)

-20℃에서 아즈락톤(1a) 0.5 mmol을 디클로로 메탄 1 mL에 용해시킨 후 유기촉매(Bis-HQN-TU)를 10 mol% 첨가하고 알릴 알코올을 2 당량을 한꺼번에 첨가하고 동일온도에서 48시간 교반하였다. 이 반응을 묽은 염산 수용액(1N, 1 mL)을 사용하여 켄칭시켰다. 수층을 에틸아세테이트(2 X 5 mL)로 추출하고, 합쳐진 유기층을 MgSO4로 건조하고 농축시켰다. 잔사를 플래쉬 크로마토 그래피(노르말-핵세인 중에 15% 에틸아세테이트)로 정제하여 알릴에스터(2a, 96% 수율 ; 91% ee, (S)-form)를 수득하였다. 거울상 입체선택성은 고성능 액체크로마토그래피를 이용하여 측정하였다 (CHIRALCEL OD-H, 9:1, 헥산:이소프로필 알코올, 1mL/분, t(부생성물) = 5.9 분, t(주생성물) = 9.9 분).0.5 mmol of azlactone (1a) was dissolved in 1 mL of dichloromethane at -20 ° C, and then 10 mol% of an organic catalyst (Bis-HQN-TU) was added thereto, and 2 equivalents of allyl alcohol were added together and stirred at the same temperature for 48 hours. It was. The reaction was quenched using dilute hydrochloric acid aqueous solution (1N, 1 mL). The aqueous layer was extracted with ethyl acetate (2 X 5 mL), and the combined organic layers were dried over MgSO 4 and concentrated. The residue was purified by flash chromatography (15% ethyl acetate in normal-nucleine) to give allyl ester (2a, 96% yield; 91% ee, (S) -form). Enantioselectivity was determined using high performance liquid chromatography (CHIRALCEL OD-H, 9: 1, hexanes: isopropyl alcohol, 1 mL / min, t (by-product) = 5.9 min, t (main product) = 9.9 min) ).

1H NMR (400 MHz, CDCl3) δ 0.99 (d, J = 6.8, 3H), 1.01 (d, J = 6.8, 3H), 2.26-2.34 (m, 1H), 4.61-4.71 (m, 2H), 4.81 (dd, J = 5.2, J = 8.8, 1H), 5.26 (dd, J = 1.2, J = 10.4, 1H), 5.35 (dd, J = 1.2, J = 17.4, 1H), 5.87-5.97 (m, 1H), 6.86 (d, J = 8.8, 1H), 7.39-7.51 (m, 3H), 7.79-7.82 (m, 2H) ppm; 1 H NMR (400 MHz, CDCl 3 ) δ 0.99 (d, J = 6.8, 3H), 1.01 (d, J = 6.8, 3H), 2.26-2.34 (m, 1H), 4.61-4.71 (m, 2H) , 4.81 (dd, J = 5.2, J = 8.8, 1H), 5.26 (dd, J = 1.2, J = 10.4, 1H), 5.35 (dd, J = 1.2, J = 17.4, 1H), 5.87-5.97 ( m, 1H), 6.86 (d, J = 8.8, 1H), 7.39-7.51 (m, 3H), 7.79-7.82 (m, 2H) ppm;

13C NMR (400 MHz, CDCl3) δ 17.83, 18.95, 31.41, 57.25, 65.72, 118.78, 126.82, 128.26, 131.22, 131.41, 133.77, 133.81, 167.03, 171.58. 13 C NMR (400 MHz, CDCl 3 ) δ 17.83, 18.95, 31.41, 57.25, 65.72, 118.78, 126.82, 128.26, 131.22, 131.41, 133.77, 133.81, 167.03, 171.58.

실시예Example 18:  18: BisBis -- QDQD -- TUTU 를 사용한 아미노산 에스터의 제조(-20℃)Preparation of Amino Acid Ester (-20 ℃)

-20℃에서 아즈락톤(1a) 0.5 mmol을 디클로로 메탄 1 mL에 용해시킨 후 유기촉매(Bis-QD-Tu)를 20 mol% 첨가하고 알릴 알코올을 2당량을 한꺼번에 첨가하고 동일온도에서 48시간 교반하였다. 이 반응을 묽은 염산 수용액(1N, 1 mL)를 사용하여 켄칭시켰다. 수층을 에틸아세테이트(2 X 5 mL)로 추출하고, 합쳐진 유기층을 MgSO4로 건조하고 농축시켰다. 잔사를 플래쉬 크로마토 그래피(노르말-핵세인 중에 15% 에틸아세테이트)로 정제하여 알릴에스터(2a, 41% 수율 ; 77% ee, (R)-form)를 수득하였다. 거울상 입체선택성은 고성능 액체크로마토그래피를 이용하여 측정하였다 (CHIRALCEL OD-H, 9:1, 헥산:이소프로필 알코올, 1mL/분, t(주생성물) = 5.9 분, t(부생성물) = 9.9 분).0.5 mmol of azlactone (1a) was dissolved in 1 mL of dichloromethane at -20 ° C, followed by 20 mol% of an organic catalyst (Bis-QD-Tu), 2 equivalents of allyl alcohol at the same time, and stirring at the same temperature for 48 hours. It was. The reaction was quenched using dilute hydrochloric acid aqueous solution (1N, 1 mL). The aqueous layer was extracted with ethyl acetate (2 X 5 mL), and the combined organic layers were dried over MgSO 4 and concentrated. The residue was purified by flash chromatography (15% ethyl acetate in normal-nucleine) to give allyl ester (2a, 41% yield; 77% ee, (R) -form). Enantioselectivity was determined using high performance liquid chromatography (CHIRALCEL OD-H, 9: 1, hexanes: isopropyl alcohol, 1 mL / min, t (main product) = 5.9 min, t (by-product) = 9.9 min) ).

1H NMR (400 MHz, CDCl3) δ 0.99 (d, J = 6.8, 3H), 1.01 (d, J = 6.8, 3H), 2.26-2.34 (m, 1H), 4.61-4.71 (m, 2H), 4.81 (dd, J = 5.2, J = 8.8, 1H), 5.26 (dd, J = 1.2, J = 10.4, 1H), 5.35 (dd, J = 1.2, J = 17.4, 1H), 5.87-5.97 (m, 1H), 6.86 (d, J = 8.8, 1H), 7.39-7.51 (m, 3H), 7.79-7.82 (m, 2H) ppm; 1 H NMR (400 MHz, CDCl 3 ) δ 0.99 (d, J = 6.8, 3H), 1.01 (d, J = 6.8, 3H), 2.26-2.34 (m, 1H), 4.61-4.71 (m, 2H) , 4.81 (dd, J = 5.2, J = 8.8, 1H), 5.26 (dd, J = 1.2, J = 10.4, 1H), 5.35 (dd, J = 1.2, J = 17.4, 1H), 5.87-5.97 ( m, 1H), 6.86 (d, J = 8.8, 1H), 7.39-7.51 (m, 3H), 7.79-7.82 (m, 2H) ppm;

13C NMR (400 MHz, CDCl3) δ 17.83, 18.95, 31.41, 57.25, 65.72, 118.78, 126.82, 128.26, 131.22, 131.41, 133.77, 133.81, 167.03, 171.58. 13 C NMR (400 MHz, CDCl 3 ) δ 17.83, 18.95, 31.41, 57.25, 65.72, 118.78, 126.82, 128.26, 131.22, 131.41, 133.77, 133.81, 167.03, 171.58.

실시예Example 19 ~  19- 실시예Example 28 28

N-아실 아미노산으로부터 본 발명에 따른 촉매를 사용하여 아미노산 에스터 를 제조하였다. Amino acid esters were prepared from the N-acyl amino acids using the catalysts according to the invention.

Figure 112009042135907-pat00018
Figure 112009042135907-pat00018

실시예Example 19 19

상기 반응식 13에 따라 10-20℃에서 N-벤조일 발린 0.5 mmol과 디클로로 메탄 1 mL의 혼합물에 디사이클로헥실 카르보디이미드(DCC)를 1.05 당량 첨가하고, 상온에서 1시간 교반한 후, -20℃에서 유기촉매(Bis-HQN-TU)를 10 mol% 첨가하고 알릴 알코올을 2 당량을 한꺼번에 첨가하고 동일온도에서 48시간 교반하였다. 이 반응을 묽은 염산 수용액(1N, 1 mL)를 사용하여 켄칭시켰다. 수층을 에틸아세테이트(2 X 5 mL)로 추출하고, 합쳐진 유기층을 MgSO4로 건조하고 농축시켰다. 잔사를 플래쉬 크로마토 그래피(노르말-핵세인 중에 15% 에틸아세테이트)로 정제하여 알릴에스터(2a, 95% 수율 ; 91% ee, (S)-form)를 수득하였다. 거울상 입체선택성은 고성능 액체크로마토그래피를 이용하여 측정하였다 (CHIRALCEL OD-H, 9:1, 헥산:이소프로필 알코올, 1mL/분, t(부생성물) = 5.9 분, t(주생성물) = 9.9 분).According to Scheme 13, 1.05 equivalents of dicyclohexyl carbodiimide (DCC) was added to a mixture of 0.5 mmol of N-benzoyl valine and 1 mL of dichloromethane at 10-20 ° C, and stirred at room temperature for 1 hour, followed by -20 ° C. 10 mol% of an organic catalyst (Bis-HQN-TU) was added thereto, and 2 equivalents of allyl alcohol were added all at once and stirred at the same temperature for 48 hours. The reaction was quenched using dilute hydrochloric acid aqueous solution (1N, 1 mL). The aqueous layer was extracted with ethyl acetate (2 X 5 mL), and the combined organic layers were dried over MgSO 4 and concentrated. The residue was purified by flash chromatography (15% ethyl acetate in normal-nucleine) to give allyl ester (2a, 95% yield; 91% ee, (S) -form). Enantioselectivity was determined using high performance liquid chromatography (CHIRALCEL OD-H, 9: 1, hexanes: isopropyl alcohol, 1 mL / min, t (by-product) = 5.9 min, t (main product) = 9.9 min) ).

1H NMR (400 MHz, CDCl3) δ 0.99 (d, J = 6.8, 3H), 1.01 (d, J = 6.8, 3H), 2.26-2.34 (m, 1H), 4.61-4.71 (m, 2H), 4.81 (dd, J = 5.2, J = 8.8, 1H), 5.26 (dd, J = 1.2, J = 10.4, 1H), 5.35 (dd, J = 1.2, J = 17.4, 1H), 5.87-5.97 (m, 1H), 6.86 (d, J = 8.8, 1H), 7.39-7.51 (m, 3H), 7.79-7.82 (m, 2H) ppm; 1 H NMR (400 MHz, CDCl 3 ) δ 0.99 (d, J = 6.8, 3H), 1.01 (d, J = 6.8, 3H), 2.26-2.34 (m, 1H), 4.61-4.71 (m, 2H) , 4.81 (dd, J = 5.2, J = 8.8, 1H), 5.26 (dd, J = 1.2, J = 10.4, 1H), 5.35 (dd, J = 1.2, J = 17.4, 1H), 5.87-5.97 ( m, 1H), 6.86 (d, J = 8.8, 1H), 7.39-7.51 (m, 3H), 7.79-7.82 (m, 2H) ppm;

13C NMR (400 MHz, CDCl3) δ 17.83, 18.95, 31.41, 57.25, 65.72, 118.78, 126.82, 128.26, 131.22, 131.41, 133.77, 133.81, 167.03, 171.58. 13 C NMR (400 MHz, CDCl 3 ) δ 17.83, 18.95, 31.41, 57.25, 65.72, 118.78, 126.82, 128.26, 131.22, 131.41, 133.77, 133.81, 167.03, 171.58.

실시예Example 20 20

상기 반응식 13에 따라, 10-20℃에서 N-벤조일 발린 0.5 mmol과 디클로로 메탄 1 mL의 혼합물에 디사이클로헥실 카르보디이미드(DCC)를 1.05 당량 첨가하고, 상온에서 1시간 교반한 후, -20℃에서 유기촉매(Bis-QD-TU)를 20 mol% 첨가하고 알릴 알코올을 2당량을 한꺼번에 첨가하고 동일온도에서 48시간 교반하였다. 이 반응을 묽은 염산 수용액(1N, 1 mL)를 사용하여 켄칭시켰다. 수층을 에틸아세테이트(2 X 5 mL)로 추출하고, 합쳐진 유기층을 MgSO4로 건조하고 농축시켰다. 잔사를 플래쉬 크로마토 그래피(노르말-핵세인 중에 15% 에틸아세테이트)로 정제하여 알릴에스터(2a, 42% 수율 ; 78% ee, (R)-form)를 수득하였다. 거울상 입체선택성은 고성능 액체크로마토그래피를 이용하여 측정하였다 (CHIRALCEL OD-H, 9:1, 헥산:이소프로필 알코올, 1mL/분, t(주생성물) = 5.9 분, t(부생성물) = 9.9 분).According to Scheme 13, 1.05 equivalents of dicyclohexyl carbodiimide (DCC) was added to a mixture of 0.5 mmol of N-benzoyl valine and 1 mL of dichloromethane at 10-20 ° C, and stirred at room temperature for 1 hour, followed by -20 20 mol% of an organic catalyst (Bis-QD-TU) was added at 2 ° C, and 2 equivalents of allyl alcohol were added all at once and stirred at the same temperature for 48 hours. The reaction was quenched using dilute hydrochloric acid aqueous solution (1N, 1 mL). The aqueous layer was extracted with ethyl acetate (2 X 5 mL), and the combined organic layers were dried over MgSO 4 and concentrated. The residue was purified by flash chromatography (15% ethyl acetate in normal-nucleine) to give allyl ester (2a, 42% yield; 78% ee, (R) -form). Enantioselectivity was determined using high performance liquid chromatography (CHIRALCEL OD-H, 9: 1, hexanes: isopropyl alcohol, 1 mL / min, t (main product) = 5.9 min, t (by-product) = 9.9 min) ).

Figure 112009042135907-pat00019
Figure 112009042135907-pat00019

실시예Example 21 21

상기 반응식 14에 따라, 10-20℃에서 N-아실 아미노산(1b) 0.5 mmol과 디클로로 메탄 1 mL의 혼합물에 디사이클로헥실 카르보디이미드(DCC)를 1.05 당량 첨가하고, 상온에서 1시간 교반한 후, 상온에서 유기촉매(Bis-HCD-TU)를 10 mol% 첨가하고 알릴 알코올을 2 당량을 한꺼번에 첨가하고 동일온도에서 24시간 교반하였다. 이 반응을 묽은 염산 수용액(1N, 1 mL)를 사용하여 켄칭시켰다. 수층을 에틸아세테이트(2 X 5 mL)로 추출하고, 합쳐진 유기층을 MgSO4로 건조하고 농축시켰다. 잔사를 플래쉬 크로마토 그래피(노르말-핵세인 중에 15% 에틸아세테이트)로 정제하여 알릴 에스터(2b, 98% 수율 ; 82% ee, (S)-form)를 수득하였다. 거울상 입체선택성은 고성능 액체크로마토그래피를 이용하여 측정하였다 (CHIRALCEL OD-H, 9:1, 헥산:이소프로필 알코올, 1mL/분, t(부생성물) = 5.7 분, t(주생성물) = 12.8 분).According to Scheme 14, 1.05 equivalents of dicyclohexyl carbodiimide (DCC) was added to a mixture of 0.5 mmol of N-acyl amino acid (1b) and 1 mL of dichloromethane at 10-20 ° C, followed by stirring at room temperature for 1 hour. 10 mol% of an organic catalyst (Bis-HCD-TU) was added at room temperature, and 2 equivalents of allyl alcohol were added at once and stirred at the same temperature for 24 hours. The reaction was quenched using dilute hydrochloric acid aqueous solution (1N, 1 mL). The aqueous layer was extracted with ethyl acetate (2 X 5 mL), and the combined organic layers were dried over MgSO 4 and concentrated. The residue was purified by flash chromatography (15% ethyl acetate in normal-nucleine) to give allyl ester (2b, 98% yield; 82% ee, (S) -form). Enantioselectivity was determined using high performance liquid chromatography (CHIRALCEL OD-H, 9: 1, hexanes: isopropyl alcohol, 1 mL / min, t (by-product) = 5.7 min, t (main product) = 12.8 min) ).

1H NMR (400 MHz, CDCl3) δ 0.99 (d, J = 6.8, 3H), 1.01 (d, J = 6.8, 3H), 2.25-2.34 (m, 1H), 2.38 (s, 3H), 4.61-4.71 (m, 2H), 4.81 (dd, J = 4.8, J = 8.8, 1H), 5.26 (dd, J = 1.2, J = 11.2, 1H), 5.35 (dd, J = 1.2, J = 17.2, 1H), 5.87-5.97 (m, 1H) , 6.78 (d, J = 8.4, 1H), 7.21 (d, J = 8.0, 2H), 7.71 (d, J = 8.0, 2H) ppm; 1 H NMR (400 MHz, CDCl 3 ) δ 0.99 (d, J = 6.8, 3H), 1.01 (d, J = 6.8, 3H), 2.25-2.34 (m, 1H), 2.38 (s, 3H), 4.61 -4.71 (m, 2H), 4.81 (dd, J = 4.8, J = 8.8, 1H), 5.26 (dd, J = 1.2, J = 11.2, 1H), 5.35 (dd, J = 1.2, J = 17.2, 1H), 5.87-5.97 (m, 1H), 6.78 (d, J = 8.4, 1H), 7.21 (d, J = 8.0, 2H), 7.71 (d, J = 8.0, 2H) ppm;

13C NMR (400 MHz, CDCl3) δ 17.84, 18.96, 21.35, 31.47, 57.19, 65.70, 118.77, 126.83, 128.92, 130.95, 131.27, 141.82, 166.94, 171.66. 13 C NMR (400 MHz, CDCl 3 ) δ 17.84, 18.96, 21.35, 31.47, 57.19, 65.70, 118.77, 126.83, 128.92, 130.95, 131.27, 141.82, 166.94, 171.66.

Figure 112009042135907-pat00020
Figure 112009042135907-pat00020

실시예Example 22 22

상기 반응식 15에 따라, 10-20℃에서 N-아실 아미노산(1c) 0.5 mmol과 디클로로 메탄 1 mL의 혼합물에 디사이클로헥실 카르보디이미드(DCC)를 1.05 당량 첨가하고, 상온에서 1시간 교반한 후, 상온에서 유기촉매(Bis-HCD-TU)를 10 mol% 첨가하고 알릴 알코올을 2 당량을 한꺼번에 첨가하고 동일온도에서 24시간 교반하였다. 이 반응을 묽은 염산 수용액(1N, 1 mL)을 사용하여 켄칭시켰다. 수층을 에틸아세테이트(2 X 5 mL)로 추출하고, 합쳐진 유기층을 MgSO4로 건조하고 농축시켰다. 잔사를 플래쉬 크로마토 그래피(노르말-핵세인 중에 15% 에틸아세테이트)로 정제하여 알릴 에스터(2c, 99% 수율 ; 86% ee, (S)-form)를 수득하였다. 거울상 입체선택성은 고성능 액체크로마토그래피를 이용하여 측정하였다 (CHIRALCEL OD-H, 9:1, 헥산:이소 프로필 알코올, 1mL/분, t(주생성물) = 10.6 분, t(부생성물) = 13.3 분).According to Scheme 15, 1.05 equivalents of dicyclohexyl carbodiimide (DCC) was added to a mixture of 0.5 mmol of N-acyl amino acid (1c) and 1 mL of dichloromethane at 10-20 ° C, followed by stirring at room temperature for 1 hour. 10 mol% of an organic catalyst (Bis-HCD-TU) was added at room temperature, and 2 equivalents of allyl alcohol were added at once and stirred at the same temperature for 24 hours. The reaction was quenched using dilute hydrochloric acid aqueous solution (1N, 1 mL). The aqueous layer was extracted with ethyl acetate (2 X 5 mL), and the combined organic layers were dried over MgSO 4 and concentrated. The residue was purified by flash chromatography (15% ethyl acetate in normal-nucleine) to give allyl ester (2c, 99% yield; 86% ee, (S) -form). Enantioselectivity was determined using high performance liquid chromatography (CHIRALCEL OD-H, 9: 1, hexanes: isopropyl alcohol, 1 mL / min, t (main product) = 10.6 minutes, t (by-product) = 13.3 minutes) ).

1H NMR (400 MHz, CDCl3) δ 0.96 (d, J = 6.8, 3H), 1.07 (d, J = 6.8, 3H), 2.29-2.37 (m, 1H), 4.60-4.70 (m, 2H), 4.90 (dd, J = 1.2, J = 8.8, 1H), 5.26 (dd, J = 1.2, J = 10.6, 1H), 5.35 (dd, J = 1.2, J = 17.2, 1H), 5.87-5.97 (m, 1H) , 6.62 (d, J = 8.8, 1H), 7.41 (dd, J = 7.2, J = 8.0, 1H), 7.47-7.55 (m, 2H), 7.63 (d, J = 7.2, 1H), 7.83 (d, J = 8.0, 1H), 7.88 (d, J = 8.0, 1H), 8.32 (d, J = 8.0, 1H) ppm; 1 H NMR (400 MHz, CDCl 3 ) δ 0.96 (d, J = 6.8, 3H), 1.07 (d, J = 6.8, 3H), 2.29-2.37 (m, 1H), 4.60-4.70 (m, 2H) , 4.90 (dd, J = 1.2, J = 8.8, 1H), 5.26 (dd, J = 1.2, J = 10.6, 1H), 5.35 (dd, J = 1.2, J = 17.2, 1H), 5.87-5.97 ( m, 1H), 6.62 (d, J = 8.8, 1H), 7.41 (dd, J = 7.2, J = 8.0, 1H), 7.47-7.55 (m, 2H), 7.63 (d, J = 7.2, 1H) , 7.83 (d, J = 8.0, 1H), 7.88 (d, J = 8.0, 1H), 8.32 (d, J = 8.0, 1H) ppm;

13C NMR (400 MHz, CDCl3) δ 17.73, 19.16, 31.26, 57.31, 65.81, 118.89, 124.44, 124.94, 125.15, 126.20, 126.94, 128.06, 129.87, 130.57, 131.29, 133.36, 133.76, 169.11, 171.37. 13 C NMR (400 MHz, CDCl 3 ) δ 17.73, 19.16, 31.26, 57.31, 65.81, 118.89, 124.44, 124.94, 125.15, 126.20, 126.94, 128.06, 129.87, 130.57, 131.29, 133.36, 133.76, 169.11, 171.171.

Figure 112009042135907-pat00021
Figure 112009042135907-pat00021

실시예Example 23 23

상기 반응식 16에 따라, 10-20℃에서 N-아실 아미노산(1d) 0.5 mmol과 디클로로 메탄 1 mL의 혼합물에 디사이클로헥실 카르보디이미드(DCC)를 1.05 당량 첨가하고, 상온에서 1시간 교반한 후, 상온에서 유기촉매(Bis-HCD-TU)를 10 mol% 첨가 하고 알릴 알코올을 2 당량을 한꺼번에 첨가하고 동일온도에서 24시간 교반하였다. 이 반응을 묽은 염산 수용액(1N, 1 mL)를 사용하여 켄칭시켰다. 수층을 에틸아세테이트(2 X 5 mL)로 추출하고, 합쳐진 유기층을 MgSO4로 건조하고 농축시켰다. 잔사를 플래쉬 크로마토 그래피(노르말-핵세인 중에 15% 에틸아세테이트)로 정제하여 알릴 에스터(2d, 97% 수율 ; 86% ee, (S)-form)를 수득하였다. 거울상 입체선택성은 고성능 액체크로마토그래피를 이용하여 측정하였다 (CHIRALCEL OD-H, 9:1, 헥산:이소프로필 알코올, 1mL/분, t(부생성물) = 10.1 분, t(주생성물) = 16.6 분).According to Scheme 16, 1.05 equivalents of dicyclohexyl carbodiimide (DCC) was added to a mixture of 0.5 mmol of N-acyl amino acid (1d) and 1 mL of dichloromethane at 10-20 ° C, followed by stirring at room temperature for 1 hour. , 10 mol% of an organic catalyst (Bis-HCD-TU) was added at room temperature, and 2 equivalents of allyl alcohol were added all at once and stirred at the same temperature for 24 hours. The reaction was quenched using dilute hydrochloric acid aqueous solution (1N, 1 mL). The aqueous layer was extracted with ethyl acetate (2 X 5 mL), and the combined organic layers were dried over MgSO 4 and concentrated. The residue was purified by flash chromatography (15% ethyl acetate in normal-nucleine) to give allyl ester (2d, 97% yield; 86% ee, (S) -form). Enantioselectivity was determined using high performance liquid chromatography (CHIRALCEL OD-H, 9: 1, hexanes: isopropyl alcohol, 1 mL / min, t (by-product) = 10.1 min, t (main product) = 16.6 min) ).

1H NMR (400 MHz, CDCl3) δ 1.03 (d, J = 6.8, 3H), 1.06 (d, J = 6.8, 3H), 2.31-2.39 (m, 1H), 4.64-4.73 (m, 2H), 4.89 (dd, J = 4.8, J = 8.8, 1H), 5.27 (d, J = 10.4, 1H), 5.37 (d, J = 17.6, 1H), 5.88-5.98 (m, 1H), 6.92 (d, J = 8.4, 1H), 7.50-7.55 (m, 2H), 7.83-7.91 (m, 4H), 8.31 (s, 1H) ppm; 1 H NMR (400 MHz, CDCl 3 ) δ 1.03 (d, J = 6.8, 3H), 1.06 (d, J = 6.8, 3H), 2.31-2.39 (m, 1H), 4.64-4.73 (m, 2H) , 4.89 (dd, J = 4.8, J = 8.8, 1H), 5.27 (d, J = 10.4, 1H), 5.37 (d, J = 17.6, 1H), 5.88-5.98 (m, 1H), 6.92 (d , J = 8.4, 1H), 7.50-7.55 (m, 2H), 7.83-7.91 (m, 4H), 8.31 (s, 1H) ppm;

13C NMR (400 MHz, CDCl3) δ 17.98, 19.07, 31.65, 57.42, 65.90, 118.97, 123.44, 126.60, 127.40, 127.55, 128.30, 128.76, 131.08, 131.30, 132.32, 134.60, 167.14, 171.78. 13 C NMR (400 MHz, CDCl 3 ) δ 17.98, 19.07, 31.65, 57.42, 65.90, 118.97, 123.44, 126.60, 127.40, 127.55, 128.30, 128.76, 131.08, 131.30, 132.32, 134.60, 167.14, 171.78.

Figure 112009042135907-pat00022
Figure 112009042135907-pat00022

실시예Example 24 24

상기 반응식 17에 따라, 10-20℃에서 N-아실 아미노산(1e) 0.5 mmol과 디클로로 메탄 1 mL의 혼합물에 디사이클로헥실 카르보디이미드(DCC)를 1.05 당량 첨가하고, 상온에서 1시간 교반한 후, 상온에서 유기촉매(Bis-HCD-TU)를 10 mol% 첨가하고 알릴 알코올을 2 당량을 한꺼번에 첨가하고 동일온도에서 24시간 교반하였다. 이 반응을 묽은 염산 수용액(1N, 1 mL)를 사용하여 켄칭시켰다. 수층을 에틸아세테이트(2 X 5 mL)로 추출하고, 합쳐진 유기층을 MgSO4로 건조하고 농축시켰다. 잔사를 플래쉬 크로마토 그래피(노르말-핵세인 중에 15% 에틸아세테이트)로 정제하여 알릴 에스터(2e, 98% 수율 ; 82% ee, (S)-form)를 수득하였다. 거울상 입체선택성은 고성능 액체크로마토그래피를 이용하여 측정하였다 (CHIRALCEL OD-H, 9:1, 헥산:이소프로필 알코올, 1mL/분, t(주생성물) = 6.3 분, t(부생성물) = 24.0 분).According to Scheme 17, 1.05 equivalents of dicyclohexyl carbodiimide (DCC) was added to a mixture of 0.5 mmol of N-acyl amino acid (1e) and 1 mL of dichloromethane at 10-20 ° C, followed by stirring at room temperature for 1 hour. 10 mol% of an organic catalyst (Bis-HCD-TU) was added at room temperature, and 2 equivalents of allyl alcohol were added at once and stirred at the same temperature for 24 hours. The reaction was quenched using dilute hydrochloric acid aqueous solution (1N, 1 mL). The aqueous layer was extracted with ethyl acetate (2 X 5 mL), and the combined organic layers were dried over MgSO 4 and concentrated. The residue was purified by flash chromatography (15% ethyl acetate in normal-nucleine) to give allyl ester (2e, 98% yield; 82% ee, (S) -form). Enantioselectivity was determined using high performance liquid chromatography (CHIRALCEL OD-H, 9: 1, hexanes: isopropyl alcohol, 1 mL / min, t (main product) = 6.3 minutes, t (by-product) = 24.0 minutes) ).

1H NMR (400 MHz, CDCl3) δ 1.00 (dd, J = 7.2 and 8 Hz, 6H), 2.257-2.338 (m, 1H), 4.616-4.719 (m, 2H), 4.779 (dd, J = 5.2 and 8.8 Hz, 1H), 5.27 (dd, J = 1.2 and 10.4 Hz, 1H), 5.36 (dq, J = 17.2 and 1.6 Hz, 1H), 5.876-5.974 (m, 1H), 6.924 (br d, J = 8.8 Hz, 1H), 7.043-7.109 (m, 2H), 7.790-7.850 (m, 2H); 1 H NMR (400 MHz, CDCl 3 ) δ 1.00 (dd, J = 7.2 and 8 Hz, 6H), 2.257-2.338 (m, 1H), 4.616-4.719 (m, 2H), 4.779 (dd, J = 5.2 and 8.8 Hz, 1H), 5.27 (dd, J = 1.2 and 10.4 Hz, 1H), 5.36 (dq, J = 17.2 and 1.6 Hz, 1H), 5.876-5.974 (m, 1H), 6.924 (br d, J = 8.8 Hz, 1H), 7.043-7.109 (m, 2H), 7.790-7.850 (m, 2H);

13CNMR (100 MHz, CDCl3) δ 17.88, 18.92, 18.94, 57.40, 65.78, 115.15, 115.18, 115.37, 118.82, 129.20, 129.29, 129.92, 129.95, 131.21, 163.19, 165.70, 166.05, 171.67. 13 CNMR (100 MHz, CDCl 3 ) δ 17.88, 18.92, 18.94, 57.40, 65.78, 115.15, 115.18, 115.37, 118.82, 129.20, 129.29, 129.92, 129.95, 131.21, 163.19, 165.70, 166.05, 171.67.

Figure 112009042135907-pat00023
Figure 112009042135907-pat00023

실시예Example 25:  25: BisBis -- HCDHCD -- TUTU 를 사용한 아미노산 에스터의 제조(상온)Preparation of Amino Acid Ester Using (Room Temperature)

상기 반응식 18에 따라, 10-20℃에서 아즈락톤(1o) 0.5 mmol과 디클로로 메탄 1 mL에 용해시킨 후 유기촉매(Bis-HCD-TU)를 10 mol% 첨가하고 알릴 알코올을 2당량을 한꺼번에 첨가하고 24시간 교반하였다. 이 반응을 묽은 염산 수용액(1N, 1 mL)을 사용하여 켄칭시켰다. 수층을 에틸아세테이트(2 X 5 mL)로 추출하고, 합쳐진 유기층을 MgSO4로 건조하고 농축시켰다. 잔사를 플래쉬 크로마토 그래피(노르말-핵세인 중에 15% 에틸아세테이트)로 정제하여 알릴 에스터(2o, 94% 수율 ; 85% ee, (S)-form)를 수득하였다. 거울상 입체선택성은 고성능 액체크로마토그래피를 이용하여 측정하였다 (CHIRALCEL OD-H, 9:1, 헥산:이소프로필 알코올, 1mL/분, t(주생성물) = 5.9 분, t(부생성물) = 10.1 분).According to Scheme 18, 10 mmol of azlactone (1o) and 1 mL of dichloromethane were dissolved at 10-20 ° C., followed by addition of 10 mol% of an organic catalyst (Bis-HCD-TU) and 2 equivalents of allyl alcohol at once. And stirred for 24 hours. The reaction was quenched using dilute hydrochloric acid aqueous solution (1N, 1 mL). The aqueous layer was extracted with ethyl acetate (2 X 5 mL), and the combined organic layers were dried over MgSO 4 and concentrated. The residue was purified by flash chromatography (15% ethyl acetate in normal-nucleine) to give allyl ester (2o, 94% yield; 85% ee, (S) -form). Enantioselectivity was determined using high performance liquid chromatography (CHIRALCEL OD-H, 9: 1, hexanes: isopropyl alcohol, 1 mL / min, t (main product) = 5.9 min, t (by-product) = 10.1 min) ).

1H NMR (400 MHz, CDCl3) δ 1.00 (dd, J = 6.8 and 10 Hz, 6H), 2.26-2.34 (m, 1H), 4.60 4.71 (m, 2H), 4.81 (dd, J= 4.8 and 8.4 Hz, 1H), 5.26 (dd, J= 10.4 and 1.2 Hz, 1H), 5.35 (dq, J= 16.8 and 1.2 Hz, 1H), 5.85 5.97 (m, 1H), 6.86 (br d, J = 8.8 Hz, 1H), 7.38 7.43 (m, 2H), 7.46 7.51 (m, 1H), 7.78 7.83 (m, 1H); 1 H NMR (400 MHz, CDCl 3 ) δ 1.00 (dd, J = 6.8 and 10 Hz, 6H), 2.26-2.34 (m, 1H), 4.60 4.71 (m, 2H), 4.81 (dd, J = 4.8 and 8.4 Hz, 1H), 5.26 (dd, J = 10.4 and 1.2 Hz, 1H), 5.35 (dq, J = 16.8 and 1.2 Hz, 1H), 5.85 5.97 (m, 1H), 6.86 (br d, J = 8.8 Hz, 1H), 7.38 7.43 (m, 2H), 7.46 7.51 (m, 1H), 7.78 7.83 (m, 1H);

13C NMR (100 MHz, CDCl3) δ 17.84, 18.96, 21.35, 31.47, 57.19, 65.70, 118.77, 126.83, 128.92, 130.95, 131.27, 141.82, 166.94, 171.66. 13 C NMR (100 MHz, CDCl 3 ) δ 17.84, 18.96, 21.35, 31.47, 57.19, 65.70, 118.77, 126.83, 128.92, 130.95, 131.27, 141.82, 166.94, 171.66.

Figure 112009042135907-pat00024
Figure 112009042135907-pat00024

실시예Example 26:  26: BisBis -- HCDHCD -- TU 를TU 사용한 아미노산 에스터의 제조(상온) Preparation of used amino acid ester (room temperature)

상기 반응식 19에 따라 10-20℃에서 아즈락톤 0.5 mmol을 디클로로 메탄 1 mL에 용해시킨 후 유기촉매(Bis-HCD-TU)를 10 mol% 첨가하고 알릴 알코올을 2 당량을 한꺼번에 첨가하고 24시간 교반하였다. 이 반응을 묽은 염산 수용액(1N, 1 mL)을 사용하여 켄칭시켰다. 수층을 에틸아세테이트(2 X 5 mL)로 추출하고, 합쳐진 유 기층을 MgSO4로 건조하고 농축시켰다. 잔사를 플래쉬 크로마토 그래피(노르말-핵세인 중에 15% 에틸아세테이트)로 정제하여 알릴 에스터(2p, 96% 수율 ; 86% ee, (S)-form)를 수득하였다. 거울상 입체선택성은 고성능 액체크로마토그래피를 이용하여 측정하였다 (CHIRALCEL OD-H, 9:1, 헥산:이소프로필 알코올, 1mL/분, t(주생성물) = 10.3 분, t(부생성물) = 13.1 분).According to Scheme 19, 0.5 mmol of azlactone was dissolved in 1 mL of dichloromethane at 10-20 ° C., 10 mol% of an organic catalyst (Bis-HCD-TU) was added, and 2 equivalents of allyl alcohol were added together and stirred for 24 hours. It was. The reaction was quenched using dilute hydrochloric acid aqueous solution (1N, 1 mL). The aqueous layer was extracted with ethyl acetate (2 X 5 mL), and the combined organic layers were dried over MgSO 4 and concentrated. The residue was purified by flash chromatography (15% ethyl acetate in normal-nucleine) to give allyl ester (2p, 96% yield; 86% ee, (S) -form). Enantioselectivity was determined using high performance liquid chromatography (CHIRALCEL OD-H, 9: 1, hexanes: isopropyl alcohol, 1 mL / min, t (main product) = 10.3 minutes, t (by-product) = 13.1 minutes) ).

1H NMR (400 MHz, CDCl3) δ 0.96 (d, J= 7.2 Hz, 3H), 1.07 (d, J= 6.8 Hz, 3H), 2.28-2.37 (m, 1H), 4.55-4.70 (m, 2H), 4.90 (dd, J = 4.4 and 8.8 Hz, 1H), 5.26 (dd, J = 10.4 and 0.8 Hz, 1H), 5.36 (dd, J = 17.2 and 1.6 Hz, 1H), 5.87 5.99 (m, 1H), 6.62 (br d, J = 8.8 Hz, 1H), 7.41 (dd, J = 7 and 8 Hz, 1H), 7.46-7.55 (m, 1H), 7.63 (dd, J = 0.8 and 7.2 Hz, 2H), 7.81-7.89 (m, 2H), 8.32 (d, J = 8 Hz, 1H); 1 H NMR (400 MHz, CDCl 3 ) δ 0.96 (d, J = 7.2 Hz, 3H), 1.07 (d, J = 6.8 Hz, 3H), 2.28-2.37 (m, 1H), 4.55-4.70 (m, 2H), 4.90 (dd, J = 4.4 and 8.8 Hz, 1H), 5.26 (dd, J = 10.4 and 0.8 Hz, 1H), 5.36 (dd, J = 17.2 and 1.6 Hz, 1H), 5.87 5.99 (m, 1H), 6.62 (br d, J = 8.8 Hz, 1H), 7.41 (dd, J = 7 and 8 Hz, 1H), 7.46-7.55 (m, 1H), 7.63 (dd, J = 0.8 and 7.2 Hz, 2H), 7.81-7.89 (m, 2H), 8.32 (d, J = 8 Hz, 1H);

13C NMR (100 MHz, CDCl3) δ 17.73, 19.16, 31.26, 57.31, 65.81, 118.89, 124.44, 124.94, 125.15, 126.20, 126.94, 128.06, 129.87, 130.57, 131.29, 133.36, 133.76, 169.11, 171.37. 13 C NMR (100 MHz, CDCl 3 ) δ 17.73, 19.16, 31.26, 57.31, 65.81, 118.89, 124.44, 124.94, 125.15, 126.20, 126.94, 128.06, 129.87, 130.57, 131.29, 133.36, 133.76, 169.11, 171.171

Figure 112009042135907-pat00025
Figure 112009042135907-pat00025

실시예Example 27:  27: BisBis -- HCDHCD -- TU 를TU 사용한 아미노산 에스터의 제조(상온) Preparation of used amino acid ester (room temperature)

반응식 20에 따라 10-20℃에서 아즈락톤 0.5 mmol을 디클로로 메탄 1 mL에 용해시킨 후 유기촉매(Bis-HCD-TU)를 10 mol% 첨가하고 알릴 알코올을 2 당량을 한꺼번에 첨가하고 24시간 교반하였다. 이 반응을 묽은 염산 수용액(1N, 1 mL)을 사용하여 켄칭시켰다. 수층을 에틸아세테이트(2 X 5 mL)로 추출하고, 합쳐진 유기층을 MgSO4로 건조하고 농축시켰다. 잔사를 플래쉬 크로마토 그래피(노르말-핵세인 중에 15% 에틸아세테이트)로 정제하여 알릴 에스터(2q, 97% 수율 ; 86% ee, (S)-form)를 수득하였다. 거울상 입체선택성은 고성능 액체크로마토그래피를 이용하여 측정하였다 (CHIRALCEL OD-H, 9:1, 헥산:이소프로필 알코올, 1mL/분, t(주생성물) = 10.0 분, t(부생성물) = 16.6 분).According to Scheme 20, 0.5 mmol of azlactone was dissolved in 1 mL of dichloromethane at 10-20 ° C., 10 mol% of an organic catalyst (Bis-HCD-TU) was added, and 2 equivalents of allyl alcohol were added together and stirred for 24 hours. . The reaction was quenched using dilute hydrochloric acid aqueous solution (1N, 1 mL). The aqueous layer was extracted with ethyl acetate (2 X 5 mL), and the combined organic layers were dried over MgSO 4 and concentrated. The residue was purified by flash chromatography (15% ethyl acetate in normal-nucleine) to give allyl ester (2q, 97% yield; 86% ee, (S) -form). Enantioselectivity was determined using high performance liquid chromatography (CHIRALCEL OD-H, 9: 1, hexanes: isopropyl alcohol, 1 mL / min, t (main product) = 10.0 min, t (by-product) = 16.6 min) ).

1H NMR (400 MHz, CDCl3) δ 1.05 (dd, J = 6.8 and 7.2 Hz, 6H), 2.28-2.37 (m, 1H), 4.60-4.74 (m, 2H), 4.89 (dd, J = 4.8 and 8.8 Hz, 1H), 5.27 (d, J = 10.4 1H), 5.37 (d, J = 17.6, 1H), 5.88 5.99 (m, 1H), 6.92 (br d, J = 8.4 Hz, 1H), 7.49-7.57 (m, 2H), 7.83-7.91 (m, 4H), 8.31 (s, 1H); 1 H NMR (400 MHz, CDCl 3 ) δ 1.05 (dd, J = 6.8 and 7.2 Hz, 6H), 2.28-2.37 (m, 1H), 4.60-4.74 (m, 2H), 4.89 (dd, J = 4.8 and 8.8 Hz, 1H), 5.27 (d, J = 10.4 1H), 5.37 (d, J = 17.6, 1H), 5.88 5.99 (m, 1H), 6.92 (br d, J = 8.4 Hz, 1H), 7.49 -7.57 (m, 2H), 7.83-7.91 (m, 4H), 8.31 (s, 1H);

13C NMR (100 MHz, CDCl3) δ 17.98, 19.01, 31.65, 57.42, 65.90, 118.97, 123.44, 126.60, 127.40, 127.55, 128.30, 128.76, 131.08, 131.30, 132.32, 134.60, 167.14, 171.78. 13 C NMR (100 MHz, CDCl 3 ) δ 17.98, 19.01, 31.65, 57.42, 65.90, 118.97, 123.44, 126.60, 127.40, 127.55, 128.30, 128.76, 131.08, 131.30, 132.32, 134.60, 167.14, 171.78.

Figure 112009042135907-pat00026
Figure 112009042135907-pat00026

실시예Example 28:  28: BisBis -- HCDHCD -- TU 를TU 사용한 아미노산 에스터의 제조(상온) Preparation of used amino acid ester (room temperature)

반응식 21에 따라 10-20℃에서 아즈락톤 0.5 mmol을 디클로로 메탄 1 mL에 용해시킨 후 유기촉매(Bis-HCD-TU)를 10 mol% 첨가하고 알릴 알코올을 2 당량을 한꺼번에 첨가하고 24시간 교반하였다. 이 반응을 묽은 염산 수용액(1N, 1 mL)를 사용하여 켄칭시켰다. 수층을 에틸아세테이트(2 X 5 mL)로 추출하고, 합쳐진 유기층을 MgSO4로 건조하고 농축시켰다. 잔사를 플래쉬 크로마토 그래피(노르말-핵세인 중에 15% 에틸아세테이트)로 정제하여 알릴 에스터(2r, 90% 수율 ; 85% ee, (S)-form)를 수득하였다. 거울상 입체선택성은 고성능 액체크로마토그래피를 이용하여 측정하였다 (CHIRALCEL OD-H, 9:1, 헥산:이소프로필 알코올, 1mL/분, t(주생성물) = 5.7 분, t(부생성물) = 12.6 분).According to Scheme 21, 0.5 mmol of azlactone was dissolved in 1 mL of dichloromethane at 10-20 ° C., 10 mol% of an organic catalyst (Bis-HCD-TU) was added, and 2 equivalents of allyl alcohol were added together and stirred for 24 hours. . The reaction was quenched using dilute hydrochloric acid aqueous solution (1N, 1 mL). The aqueous layer was extracted with ethyl acetate (2 X 5 mL), and the combined organic layers were dried over MgSO 4 and concentrated. The residue was purified by flash chromatography (15% ethyl acetate in normal-nucleine) to give allyl ester (2r, 90% yield; 85% ee, (S) -form). Enantioselectivity was determined using high performance liquid chromatography (CHIRALCEL OD-H, 9: 1, hexanes: isopropyl alcohol, 1 mL / min, t (main product) = 5.7 minutes, t (by-product) = 12.6 minutes) ).

1H NMR (400 MHz, CDCl3) δ 1.00 (dd, J= 6.8 and 10 Hz, 6H), 2.25-2.34 (m, 1H), 2.38 (s, 3H), 4.59 4.71 (m, 2H), 4.81 (dd, J = 4.8 and 8.8 Hz, 1H), 5.26 (dq, J = 10 and 1.2 Hz, 1H), 5.35 (dq, J = 16.8 and 1.2 Hz, 1H), 5.86 6.00 (m, 1H), 6.78 (br d, J = 8.4 Hz, 1H), 7.21 (d, J = 8 Hz, 2H), 7.71 (d, J = 8 Hz, 2H); 1 H NMR (400 MHz, CDCl 3 ) δ 1.00 (dd, J = 6.8 and 10 Hz, 6H), 2.25-2.34 (m, 1H), 2.38 (s, 3H), 4.59 4.71 (m, 2H), 4.81 (dd, J = 4.8 and 8.8 Hz, 1H), 5.26 (dq, J = 10 and 1.2 Hz, 1H), 5.35 (dq, J = 16.8 and 1.2 Hz, 1H), 5.86 6.00 (m, 1H), 6.78 (br d, J = 8.4 Hz, 1H), 7.21 (d, J = 8 Hz, 2H), 7.71 (d, J = 8 Hz, 2H);

13C NMR (100 MHz, CDCl3) δ 17.84, 18.96, 21.35, 31.47, 57.19, 65.70, 118.77, 126.83, 128.92, 130.95, 131.27, 141.82, 166.94, 171.66. 13 C NMR (100 MHz, CDCl 3 ) δ 17.84, 18.96, 21.35, 31.47, 57.19, 65.70, 118.77, 126.83, 128.92, 130.95, 131.27, 141.82, 166.94, 171.66.

하기 표 2 및 표 3에 실시예 9 내지 28의 반응에 대한 수율 및 입체선택성을 나타내었다.Tables 2 and 3 below show the yield and stereoselectivity for the reactions of Examples 9-28.

Figure 112009042135907-pat00027
Figure 112009042135907-pat00027

상기 표 2에 나타낸 바와 같이 본 발명에 따른 bis-형태의 신코나 기재 유기 촉매를 사용하는 경우 비교적 짧은 시간에 높은 수율과 광학선택성을 얻을 수 있다는 것을 확인하였다. 특히 bis-형태의 신코나 기재 유기 촉매들중 Bis-HCD-TU의 경우 기존 촉매에 비해 상기 반응에서 뛰어난 효능을 보임을 알 수 있었다.As shown in Table 2, when using the bis-type synkona-based organic catalyst according to the present invention, it was confirmed that high yield and optical selectivity can be obtained in a relatively short time. In particular, Bis-HCD-TU of the bis-type synkona-based organic catalysts was found to show superior efficacy in the reaction compared to the conventional catalyst.

Figure 112009042135907-pat00028
Figure 112009042135907-pat00028

상기 표 3에서 확인할 수 있는 바와 같이 다양한 아미노산의 아즈락톤 또는 -아실 아미노산들은 기질의 성질과 무관하게 대부분 높은 광학선택성과 수득율을 타냄을 알 수 있다.As can be seen in Table 3 above, it can be seen that azlactone or -acyl amino acids of various amino acids show high optical selectivity and yield, regardless of the nature of the substrate.

도 1은 본 발명의 실시예 1에서 제조한 이작용성 키랄 유기촉매의 NMR 분석결과를 나타내는 그래프이다.1 is a graph showing the results of NMR analysis of the bifunctional chiral organic catalyst prepared in Example 1 of the present invention.

도 2는 본 발명의 실시예 2에서 제조한 이작용성 키랄 유기촉매의 NMR 분석결과를 나타내는 그래프이다.2 is a graph showing the results of NMR analysis of the bifunctional chiral organic catalyst prepared in Example 2 of the present invention.

도 3은 본 발명의 실시예 3에서 제조한 이작용성 키랄 유기촉매의 NMR 분석결과를 나타내는 그래프이다.3 is a graph showing the results of NMR analysis of the bifunctional chiral organic catalyst prepared in Example 3 of the present invention.

도 4는 본 발명의 실시예 7에서 제조한 이작용성 키랄 유기촉매의 NMR 분석결과를 나타내는 그래프이다.Figure 4 is a graph showing the NMR analysis of the bifunctional chiral organic catalyst prepared in Example 7 of the present invention.

도 5는 본 발명의 실시예 8에서 제조한 이작용성 키랄 유기촉매의 NMR 분석결과를 나타내는 그래프이다.5 is a graph showing the results of NMR analysis of the bifunctional chiral organic catalyst prepared in Example 8 of the present invention.

Claims (33)

삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete N-아실 아미노산 또는 라세믹 아즈락톤으로부터 키랄 N-아실 아미노산 에스터를 제조하는 방법으로서,A process for preparing chiral N-acyl amino acid esters from N-acyl amino acids or racemic azlactones, 유기 용매 하에서 N-아실 아미노산, 라세믹 아즈락톤 또는 (S)-아즈락톤 또는 (R)-아즈락톤을, 티오우레아를 포함하는 이작용성 키랄 유기 촉매의 존재 하에 친핵체와 반응시킴으로써 원하는 키랄 N-아실 아미노산 에스터를 수득하는 단계를 포함하고, N-acyl amino acids, racemic azlactones or (S) -azlactones or (R) -azlactones in organic solvents are reacted with the nucleophiles in the presence of a bifunctional chiral organic catalyst comprising thiourea to obtain the desired chiral N-acyl Obtaining an amino acid ester, 상기 티오우레아를 포함하는 이작용성 키랄 유기 촉매는 하기 화학식 1 또는 화학식 2로 표시되는 화합물인 것을 특징으로 하는 키랄 N-아실 아미노산 에스터의 제조방법.The bifunctional chiral organic catalyst including the thiourea is a method for producing a chiral N-acyl amino acid ester, characterized in that the compound represented by the following formula (1) or (2). [화학식 1][Formula 1]
Figure 112011049688786-pat00062
Figure 112011049688786-pat00062
상기 식에서, R은 에틸기 또는 -CH=CH2이고, R'는 수소 또는 메톡시기이다. Wherein R is an ethyl group or -CH = CH 2 and R 'is a hydrogen or methoxy group. [화학식 2][Formula 2]
Figure 112011049688786-pat00063
Figure 112011049688786-pat00063
상기 식에서, R은 에틸기 또는 -CH=CH2이고, R'는 수소 또는 메톡시기이다.Wherein R is an ethyl group or -CH = CH 2 and R 'is a hydrogen or methoxy group.
제25항에 있어서,The method of claim 25, 상기 N-아실 아미노산은 하기 화학식 3으로 표기되는 화합물이며, 상기 라세믹 아즈락톤 또는 (R) 혹은 (S)-아즈락톤은 하기 화학식 4로 표기되는 화합물인 것을 특징으로 하는 키랄 N-아실 아미노산 에스터의 제조방법:The N-acyl amino acid is a compound represented by the following Chemical Formula 3, and the racemic azlactone or (R) or (S) -azlactone is a compound represented by the following Chemical Formula 4, characterized in that the chiral N-acyl amino acid ester Manufacturing Method: [화학식 3](3)
Figure 112011049688786-pat00041
Figure 112011049688786-pat00041
[화학식 4] [Formula 4]
Figure 112011049688786-pat00042
Figure 112011049688786-pat00042
상기 화학식 3 및 화학식 4에서, R 은 탄소수 1~10의 알킬기, 아릴기, 아릴기가 치환된 탄소수 1~10의 알킬기이며, R'는 탄소수 1~10의 알킬기, 아릴기 또는 탄소수 1~10의 알킬이 치환된 아릴기이다.In Formulas 3 and 4, R is an alkyl group having 1 to 10 carbon atoms, an aryl group, an alkyl group having 1 to 10 carbon atoms substituted with an aryl group, and R 'is an alkyl group having 1 to 10 carbon atoms, an aryl group or having 1 to 10 carbon atoms. Alkyl substituted aryl group.
제25항에 있어서, The method of claim 25, 상기 친핵체가 알코올 또는 티올임을 특징으로 하는 키랄 N-아실 아미노산 에스터의 제조방법.Method for producing a chiral N-acyl amino acid ester, characterized in that the nucleophile is alcohol or thiol. 제25항에 있어서, The method of claim 25, 상기 친핵체가 알릴 알코올 또는 메탄올임을 특징으로 하는 키랄 N-아실 아미노산 에스터의 제조방법.Method for producing a chiral N-acyl amino acid ester, characterized in that the nucleophile is allyl alcohol or methanol. 제28항에 있어서, The method of claim 28, 상기 알릴 알코올 또는 메탄올의 사용량은, N-아실 아미노산 또는 라세믹 아즈락톤을 기준으로 1 내지 20 당량의 범위 내에서 사용되는 것을 특징으로 하는 키랄 N-아실 아미노산 에스터의 제조방법.The allyl alcohol or methanol is used in the range of 1 to 20 equivalents based on N-acyl amino acids or racemic azlactones. 제25항에 있어서, The method of claim 25, 상기 이작용성 키랄 유기 촉매는 하기 표 1의 화학식 중 선택된 것임을 특징으로 하는 키랄 N-아실 아미노산 에스터의 제조방법:Method for producing a chiral N-acyl amino acid ester, characterized in that the bifunctional chiral organic catalyst is selected from the formula of Table 1 below: [표 1] [Table 1]
Figure 112011049688786-pat00064
Figure 112011049688786-pat00064
제30항에 있어서,31. The method of claim 30, 상기 N-아실 아미노산은 하기 화학식 3으로 표기되는 화합물이고 상기 라세믹 아즈락톤은 하기 화학식 4로 표기되는 화합물이며, The N-acyl amino acid is a compound represented by the formula (3) and the racemic azlactone is a compound represented by the formula (4), 상기 친핵체는 알릴 알코올 또는 메탄올이며, 이작용성 키랄 유기촉매는 상기 표 1의 화학식 중 선택된 것인 키랄 N-아실 아미노산 에스터의 제조방법.The nucleophile is allyl alcohol or methanol, the difunctional chiral organic catalyst is selected from the formula of Table 1 wherein the chiral N-acyl amino acid ester. [화학식 3](3)
Figure 112011049688786-pat00065
Figure 112011049688786-pat00065
[화학식 4] [Formula 4]
Figure 112011049688786-pat00066
Figure 112011049688786-pat00066
상기 화학식 3 및 화학식 4에서, R은 탄소수 1~10의 알킬기, 아릴기, 아릴기가 치환된 탄소수 1~10의 알킬기이며, R'는 탄소수 1~10의 알킬기, 아릴기 또는 탄소수 1~10의 알킬이 치환된 아릴기이다.In Formulas 3 and 4, R is an alkyl group having 1 to 10 carbon atoms, an aryl group, an alkyl group having 1 to 10 carbon atoms substituted with an aryl group, and R 'is an alkyl group having 1 to 10 carbon atoms, an aryl group or having 1 to 10 carbon atoms. Alkyl substituted aryl group.
제25항에 있어서,The method of claim 25, 상기 이작용성 키랄 유기 촉매가, 프로키랄 화합물을 기준으로 0.01몰% 내지 30몰% 범위로 선택된 것임을 특징으로 하는 키랄 N-아실 아미노산 에스터의 제조방법.The bifunctional chiral organic catalyst is selected from the range of 0.01 mol% to 30 mol% based on the prochiral compound. 제25항에 있어서,The method of claim 25, 생성물의 키랄 비라세미 화합물의 거울상 이성질체 과잉이 70% 이상인 것을 특징으로 하는 제조 방법.The enantiomeric excess of the chiral viracemic compound of the product is at least 70%.
KR1020090063047A 2009-07-10 2009-07-10 Method for preparing chiral amino acid from azlactones using bifunctional bis-cinchona alkaloid thiourea organo catalysts KR101130818B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090063047A KR101130818B1 (en) 2009-07-10 2009-07-10 Method for preparing chiral amino acid from azlactones using bifunctional bis-cinchona alkaloid thiourea organo catalysts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090063047A KR101130818B1 (en) 2009-07-10 2009-07-10 Method for preparing chiral amino acid from azlactones using bifunctional bis-cinchona alkaloid thiourea organo catalysts

Publications (2)

Publication Number Publication Date
KR20110005470A KR20110005470A (en) 2011-01-18
KR101130818B1 true KR101130818B1 (en) 2012-04-12

Family

ID=43612626

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090063047A KR101130818B1 (en) 2009-07-10 2009-07-10 Method for preparing chiral amino acid from azlactones using bifunctional bis-cinchona alkaloid thiourea organo catalysts

Country Status (1)

Country Link
KR (1) KR101130818B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101386604B1 (en) * 2012-09-04 2014-04-29 순천향대학교 산학협력단 Method for preparation of chiral 1,5-diketone derivatives
CN105435845B (en) * 2015-11-18 2018-01-09 湖南工业大学 A kind of novel and multifunctional phosphine/amide ligands catalyst and its synthesis and application
WO2017200184A1 (en) * 2016-05-19 2017-11-23 영남대학교 산학협력단 Novel chiral phase-transfer catalyst, and method for preparing α-amino acid by using same
KR101823271B1 (en) 2016-05-19 2018-01-29 영남대학교 산학협력단 Novel chiral phase transfer catalyst and method for producing alpha-amino acid using the same
CN114988976B (en) * 2022-05-27 2023-07-25 常州大学 Method for synthesizing chiral cyclopentenones by organically catalyzing Nazarov cyclization

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Chem. Commun. 2005, pp.4481-4483. *
Chem. Commun. 2005, pp.4481-4483.*
J. Org. Chem. 2008, Vol.73, No.16, pp.6409-6412. *
J. Org. Chem. 2008, Vol.73, No.16, pp.6409-6412.*

Also Published As

Publication number Publication date
KR20110005470A (en) 2011-01-18

Similar Documents

Publication Publication Date Title
EP0526582A1 (en) Heterocyclic chiral ligands and method for catalytic asymmetric dihydroxylation of olefins
KR101130818B1 (en) Method for preparing chiral amino acid from azlactones using bifunctional bis-cinchona alkaloid thiourea organo catalysts
EP2321310B1 (en) Cinchona-based bifunctional organocatalysts and method for preparing chiral hemiesters using the same
JP2007182419A (en) Proline derivative and optically active anti-selection promoting catalyst
JP2001192383A (en) Catalytic asymmetrical dihydroxylation promoted by ligand
DE60102825T2 (en) KINETIC RACEMATING OF CHIRALER 2 AND 3 SUBSTITUTED CARBOXYLIC ACIDS
JP4649645B2 (en) Process for producing optically active alcohol compounds
KR101871567B1 (en) METHOD FOR SYNTHESIZING β-AMINO-DITHIOESTER COMPOUND AND β-AMINO-DITHIOESTER COMPOUND SYNTHESIZED BY THE METHOD
JP5622019B2 (en) Asymmetric organic molecular catalyst having amino alcohol derivative salt structure and method for producing optically active compound using said asymmetric organic molecular catalyst
KR100743617B1 (en) Process for the preparation of chiral 3-hydroxy pyrrolidine compound and derivatives thereof having high optical purity
CN113754604B (en) Nitrogen-containing chiral ligand and application thereof in asymmetric oxidation reaction of thioether
JP5283867B2 (en) Method for producing optically active β-hydroxycarboxylic acid derivative
JP3547590B2 (en) Asymmetric zirconium catalyst
JP2008007457A (en) POST-TREATMENT METHOD OF beta-HYDROXYCARBONYL COMPOUND
JP3855295B2 (en) Method for producing bisoxazolines
KR101163994B1 (en) Highly enantioselective bifunctional organocatalysts, preparation method thereof, and method for preparing chiral amino acid from azlactones using the same
KR101073679B1 (en) Polymer supported bifunctional organocatalyst and Method for preparing chiral hemiesters by using the same
WO2002012171A1 (en) Method for preparing chiral compound by asymmetric ring opening reactions of epoxides
JP2003261490A (en) NEW CHIRAL ZIRCONIUM CATALYST AND METHOD FOR PRODUCING OPTICALLY ACTIVE ANTI-alpha-METHYL-beta-AMINOCARBONYL COMPOUND
JP6906227B2 (en) Halogen bond donor / organic base complex compound and acid base complex catalyst
JP3542708B2 (en) Method for producing optically active amino alcohols
JP2005247715A (en) Method for synthesizing ligand
KR100472572B1 (en) Preparation of Chiral Compounds by Asymmetric Ring Opening of Racemates
JP4524845B2 (en) Method for producing optically active allyl alcohol derivative having amino group, and optically active compound
US20030236226A1 (en) Catalytic asymmetric cyanosilylation of ketones, aldehydes, thioketones, thioaldehydes, imines and hydrazones

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150115

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160113

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170308

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20181218

Year of fee payment: 7

R401 Registration of restoration
FPAY Annual fee payment

Payment date: 20190305

Year of fee payment: 8