KR101119173B1 - Method for manufacturing steel product with different strength using laser quenching and quenched steel used the method - Google Patents

Method for manufacturing steel product with different strength using laser quenching and quenched steel used the method Download PDF

Info

Publication number
KR101119173B1
KR101119173B1 KR1020110100174A KR20110100174A KR101119173B1 KR 101119173 B1 KR101119173 B1 KR 101119173B1 KR 1020110100174 A KR1020110100174 A KR 1020110100174A KR 20110100174 A KR20110100174 A KR 20110100174A KR 101119173 B1 KR101119173 B1 KR 101119173B1
Authority
KR
South Korea
Prior art keywords
plating layer
laser
heat treatment
less
steel
Prior art date
Application number
KR1020110100174A
Other languages
Korean (ko)
Inventor
임희중
남승만
이보룡
김경보
정연일
Original Assignee
현대하이스코 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대하이스코 주식회사 filed Critical 현대하이스코 주식회사
Priority to KR1020110100174A priority Critical patent/KR101119173B1/en
Priority to CN201180073901.8A priority patent/CN103842527A/en
Priority to US14/343,955 priority patent/US20140227553A1/en
Priority to PCT/KR2011/007703 priority patent/WO2013047939A1/en
Priority to JP2014533173A priority patent/JP5898772B2/en
Priority to EP11873399.7A priority patent/EP2762577B1/en
Application granted granted Critical
Publication of KR101119173B1 publication Critical patent/KR101119173B1/en
Priority to US14/683,933 priority patent/US20150211086A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12674Ge- or Si-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/1275Next to Group VIII or IB metal-base component
    • Y10T428/12757Fe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12937Co- or Ni-base component next to Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Abstract

PURPOSE: A method for manufacturing a steel product having different strengths through laser quenching and quenched steel used for the same are provided to easily reinforce a portion of a material without a pre-process. CONSTITUTION: A method for manufacturing a steel product having different strengths through laser quenching is as follows. A material, which comprises C of 0.1~0.5%, Si of 0.1~0.5%, Mn of 0.5~3.0%, P of 0.1%, S of 0.05% or less (except 0), Cr of 0.01~1.0%, Al of 0.1% or less (except 0), Ti of 0.2% or less (except 0), B of 0.0005~0.08%, and Fe and inevitable impurities of the remaining amount, is prepared. Selected one among an Al plating layer, an Al-Si plating layer, a Zn-Ni plating layer, a Zn plating layer, a Zn-Al plating layer, and a high-temperature oxidation resistant resin layer is formed on the surface of the material. The material is molded into a molded product(201) of a desired shape. The portion of the molded product, which requires high strength, is reinforced through laser quenching.

Description

레이저 열처리를 이용한 이종강도를 갖는 강 제품 제조 방법 및 이에 이용되는 열처리 경화강 {METHOD FOR MANUFACTURING STEEL PRODUCT WITH DIFFERENT STRENGTH USING LASER QUENCHING AND QUENCHED STEEL USED THE METHOD}METHOD FOR MANUFACTURING STEEL PRODUCT WITH DIFFERENT STRENGTH USING LASER QUENCHING AND QUENCHED STEEL USED THE METHOD}

본 발명은 자동차용 시트 프레임, 범퍼 백빔과 같은 강 제품을 제조하는 방법에 관한 것으로, 보다 상세하게는 레이저 열처리를 이용하여 단일 소재로 이종강도를 갖는 강 제품 제조 방법 및 이에 이용되는 열처리 경화강에 관한 것이다.
The present invention relates to a method for manufacturing a steel product such as a seat frame for automobiles, a bumper back beam, and more particularly, to a method for manufacturing a steel product having heterogeneous strength as a single material using laser heat treatment, and to a heat-treated hardened steel used therein. It is about.

최근 들어, 자동차용 부품은 연비 개선을 위해 점차 경량화 및 고강도화되고 있다. 이러한 경량화 및 고강도화는 소재의 합금 성분 및 열처리 등의 공정 등을 통하여 실현되고 있다. In recent years, automotive parts are becoming lighter and higher in strength to improve fuel efficiency. Such weight reduction and high strength have been realized through processes such as alloy components and heat treatment of materials.

최근, 자동차 부품 제조 기술이 발달함에 따라 핫스탬핑(Hot Stamping) 기술이 개발되었다. 핫스탬핑 기술은 인장강도 약 500MPa 정도의 소재를 900℃ 정도 가열한 상태에서 원하는 형상으로의 성형과 동시에 급냉하여 미세조직을 마르텐사이트화하여 1000MPa 이상의 인장강도를 갖는 고강도 부품을 제조할 수 있는 기술이다. Recently, hot stamping technology has been developed with the development of automobile parts manufacturing technology. Hot stamping technology is a technology that can manufacture high-strength parts with tensile strength of 1000 MPa or more by rapidly cooling the material of about 500 MPa in tensile strength to 900 ° C and forming a desired shape in a state where it is rapidly cooled. .

이러한 핫스탬핑이 적용된 문헌으로는 대한민국 특허공개공보 제10-2009-0086970호 (2009.08.14. 공개), 대한민국 등록특허공보 제10-0765723(2007.10.11. 공고) 등이 있다. Documents to which such hot stamping has been applied include Korean Patent Publication No. 10-2009-0086970 (published Aug. 14, 2009) and Korean Patent Publication No. 10-0765723 (published on October 11, 2007).

그러나, 상기 문헌들에 기재되어 있는 바와 같이, 핫스탬핑 기술은 주로 소재 전체의 고강도화에 이용되고 있을 뿐, 국부적인 고강도화에 적용되기는 어렵다. However, as described in the above documents, the hot stamping technique is mainly used for the high strength of the whole material, and is hardly applied to the local high strength.

한편, 대한민국 특허공개공보 제 10-2011-0062428호(2011.06.10. 공개)에는 국부강화 핫스탬핑 방법이 기재되어 있다. 그러나, 핫스탬빙 방법으로 국부강화를 하기 위해서는, 핫스탬핑 이전에 국부강화가 되지 않을 부분에 단열재를 적용하는 등의 예비 공정을 거쳐야 하는 문제점이 있다.
Meanwhile, Korean Patent Publication No. 10-2011-0062428 (published on June 10, 2011) discloses a method of locally strengthening hot stamping. However, in order to locally strengthen the hot stamping method, there is a problem that a preliminary process, such as applying an insulating material to a portion that will not be locally strengthened before hot stamping, is required.

본 발명의 목적은 별도의 예비 공정 없이, 단일 소재로 이종강도를 갖는 강 제품을 제조할 수 있는 방법을 제공하는 것이다. It is an object of the present invention to provide a method for producing steel products having heterogeneous strength from a single material, without a separate preliminary process.

본 발명의 다른 목적은 상기 강 제품 제조 방법에 적용될 수 있는 열처리 경화강을 제공하는 것이다.
Another object of the present invention is to provide a heat treated hardened steel that can be applied to the steel product manufacturing method.

상기 하나의 목적을 달성하기 위한 본 발명의 실시예에 따른 강 제품 제조 방법은 (a) 중량%로, 탄소(C) : 0.1 ~ 0.5 %, 실리콘(Si) : 0.1 ~ 0.5 %, 망간(Mn) : 0.5 ~ 3.0 %, 인(P) : 0.1 % 이하, 황(S) : 0.05 % 이하, 크롬(Cr) : 0.01 ~ 1.0 %, 알루미늄(Al) : 0.1 % 이하, 티타늄(Ti) : 0.2 % 이하, 보론(B) : 0.0005 ~ 0.08 % 및 나머지 Fe와 불가피한 불순물로 이루어지는 소재를 마련하는 단계; (b) 상기 소재를 미리 정해진 형상으로 성형하여 성형체를 제조하는 단계; 및 (c) 상기 성형체에서 고강도가 요구되는 부분(이하, 고강도부라 한다)에 레이저 열처리를 실시하여, 상기 고강도부를 국부적으로 강화시키는 단계;를 포함하는 것을 특징으로 한다.
Steel product manufacturing method according to an embodiment of the present invention for achieving the above object is (a) wt%, carbon (C): 0.1 ~ 0.5%, silicon (Si): 0.1 ~ 0.5%, manganese (Mn ): 0.5 to 3.0%, phosphorus (P): 0.1% or less, sulfur (S): 0.05% or less, chromium (Cr): 0.01 to 1.0%, aluminum (Al): 0.1% or less, titanium (Ti): 0.2 % Or less, boron (B): preparing a material consisting of 0.0005 ~ 0.08% and the remaining Fe and inevitable impurities; (b) forming a molded body by molding the material into a predetermined shape; And (c) performing a laser heat treatment on a portion where high strength is required in the molded body (hereinafter referred to as a high strength portion) to locally strengthen the high strength portion.

상기 다른 목적을 달성하기 위한 본 발명의 실시예에 따른 열처리 경화강은 중량%로, 탄소(C) : 0.1 ~ 0.5 %, 실리콘(Si) : 0.1 ~ 0.5 %, 망간(Mn) : 0.5 ~ 3.0 %, 인(P) : 0.1 % 이하, 황(S) : 0.05 % 이하, 크롬(Cr) : 0.01 ~ 1.0 %, 알루미늄(Al) : 0.1 % 이하, 티타늄(Ti) : 0.2 % 이하, 보론(B) : 0.0005 ~ 0.08 % 및 나머지 Fe와 불가피한 불순물로 이루어지고, 열처리 전에 인장강도 400~990MPa 및 연신율 10~40%를 가지며, 열처리 후에 인장강도 1200~1900MPa 및 연신율 1~13%를 갖는 것을 특징으로 한다. Heat-treated hardened steel according to an embodiment of the present invention for achieving the other object by weight, carbon (C): 0.1 ~ 0.5%, silicon (Si): 0.1 ~ 0.5%, manganese (Mn): 0.5 ~ 3.0 %, Phosphorus (P): 0.1% or less, sulfur (S): 0.05% or less, chromium (Cr): 0.01 to 1.0%, aluminum (Al): 0.1% or less, titanium (Ti): 0.2% or less, boron ( B): It is composed of 0.0005 ~ 0.08% and the remaining Fe and inevitable impurities, has a tensile strength of 400 ~ 990MPa and elongation 10 ~ 40% before heat treatment, and has a tensile strength 1200 ~ 1900MPa and elongation 1 ~ 13% after heat treatment It is done.

상기 강의 표면에는 Al 도금층, Al-Si 도금층, Zn-Ni 도금층, Zn 도금층, Zn-Al 도금층 및 고온내산화 수지코팅층 중에서 선택되는 층이 형성되어 있을 수 있다.
On the surface of the steel, a layer selected from an Al plating layer, an Al-Si plating layer, a Zn-Ni plating layer, a Zn plating layer, a Zn-Al plating layer, and a high temperature oxidation resistant resin coating layer may be formed.

본 발명에 따른 강 제품 제조 방법은 레이저 열처리를 이용함으로써 예비 공정 없이도 쉽게 단일 소재에 대한 국부강화가 가능하다. 따라서, 본 발명에 따른 강 제품 제조 방법은 이종강도가 요구되는 자동차용 시트 프레임, 범퍼 백빔 등의 제조에 활용할 수 있다. The steel product manufacturing method according to the present invention can be easily localized to a single material by using a laser heat treatment without a preliminary process. Therefore, the steel product manufacturing method according to the present invention can be utilized for the production of a seat frame for automobiles, bumper back beams, etc., which require different strengths.

또한, 본 발명에 따른 강 제품 제조 방법은 레이저 열처리를 통하여 고강도화가 가능함에 따라 보강재 생략이 가능하며, 이에 따라 경량화를 추구할 수 있다.
In addition, the steel product manufacturing method according to the present invention can be omitted by the reinforcement as it is possible to increase the strength through laser heat treatment, it can be pursued to be lightweight.

도 1은 본 발명의 실시예에 따른 강 제품 제조 방법을 개략적으로 나타내는 순서도이다.
도 2는 본 발명에 적용되는 레이저 열처리의 예를 나타낸 것이다.
1 is a flow chart schematically showing a method for manufacturing a steel product according to an embodiment of the present invention.
Figure 2 shows an example of the laser heat treatment applied to the present invention.

본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어 있는 실시예들 및 도면을 참조하면 명확해질 것이다. BRIEF DESCRIPTION OF THE DRAWINGS The advantages and features of the present invention, and how to accomplish them, will become apparent with reference to the embodiments and drawings described in detail below.

그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.However, it is to be understood that the present invention is not limited to the disclosed embodiments, but may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. It is intended that the disclosure of the present invention be limited only by the terms of the appended claims.

이하, 본 발명에 따른 레이저 열처리를 이용한 이종강도를 갖는 강 제품 제조 방법 및 이에 이용되는 열처리 경화강에 대하여 상세히 설명하기로 한다.
Hereinafter, a method for manufacturing a steel product having heterogeneous strength using a laser heat treatment according to the present invention and a heat treatment hardened steel used therein will be described in detail.

도 1은 본 발명의 실시예에 따른 강 제품 제조 방법을 개략적으로 나타내는 순서도이다.1 is a flow chart schematically showing a method for manufacturing a steel product according to an embodiment of the present invention.

도 1을 참조하면, 도시된 강 제품 제조 방법은 소재 마련 단계(S110), 성형체 제조 단계(S120) 및 레이저 열처리 단계(S130)를 포함한다.
Referring to FIG. 1, the illustrated steel product manufacturing method includes a material preparation step S110, a molded article manufacturing step S120, and a laser heat treatment step S130.

소재 마련Creative

소재 마련 단계에서는 중량%로, 탄소(C) : 0.1 ~ 0.5 %, 실리콘(Si) : 0.1 ~ 0.5 %, 망간(Mn) : 0.5 ~ 3.0 %, 인(P) : 0.1 % 이하, 황(S) : 0.05 % 이하, 크롬(Cr) : 0.01 ~ 1.0 %, 알루미늄(Al) : 0.1 % 이하, 티타늄(Ti) : 0.2 % 이하, 보론(B) : 0.0005 ~ 0.08 % 및 나머지 Fe와 불가피한 불순물로 이루어지는 소재를 마련한다. In the material preparation step, in weight%, carbon (C): 0.1 to 0.5%, silicon (Si): 0.1 to 0.5%, manganese (Mn): 0.5 to 3.0%, phosphorus (P): 0.1% or less, sulfur (S) ): 0.05% or less, Chromium (Cr): 0.01 ~ 1.0%, Aluminum (Al): 0.1% or less, Titanium (Ti): 0.2% or less, Boron (B): 0.0005 ~ 0.08% and other Fe and unavoidable impurities Provide the material to be made.

또한, 상기 소재는 블랭크의 형태가 될 수 있으며, 열간압연재 혹은 냉간압연재가 이용될 수 있다. In addition, the material may be in the form of a blank, hot rolled material or cold rolled material may be used.

또한, 상기 소재의 표면에는 레이저 열처리 과정에서 표면 산화 혹은 탈탄을 방지하기 위하여, Al 도금층, Al-Si 도금층, Zn-Ni 도금층, Zn 도금층, Zn-Al 도금층, 고온내산화 수지코팅층 등이 형성되어 있을 수 있다.
In addition, in order to prevent surface oxidation or decarburization in the laser heat treatment process, an Al plating layer, an Al-Si plating layer, a Zn-Ni plating layer, a Zn plating layer, a Zn-Al plating layer, and a high temperature oxidation resistant resin coating layer may be formed on the surface of the material. There may be.

한편, 자동차용 범퍼 백빔과 같은 강 제품에 적용되는 소재는, 일정 수준의 강도를 가지면서도, 성형성이 우수하고, 열처리에 의하여 초고강도화될 수 있는 열처리 경화강으로 마련되는 것이 바람직하다. On the other hand, the material to be applied to steel products, such as a bumper back beam for automobiles, it is preferable to be provided with a heat-treated hardened steel having a certain level of strength, excellent moldability, which can be super-high strength by heat treatment.

상기 제시된 조성을 갖는 열처리 경화강의 경우, 슬라브 재가열, Ar3 이상에서의 열간압연 및 500~600℃ 정도의 권취온도가 적용되는 통상의 열연공정 혹은 600~900℃ 정도의 소둔온도가 적용되는 통상의 냉연공정에 의하여 인장강도 400~990MPa 및 연신율 10~40%를 가질 수 있다.
In the case of the heat-treated hardened steel having the above-described composition, the slab reheating, hot rolling at Ar3 or higher, and a conventional hot rolling process in which a winding temperature of about 500 to 600 ° C. is applied, or a conventional cold rolling process in which an annealing temperature of about 600 to 900 ° C. is applied By it may have a tensile strength of 400 ~ 990MPa and elongation 10 ~ 40%.

또한, 상기 조성을 갖는 열처리 경화강은 보론(B)이 첨가되어 있다. 따라서, 상기 조성을 갖는 열처리 경화강은 레이저 열처리 등의 열처리에 의하여 인장강도 1200~1900MPa 및 연신율 1~13%를 가질 수 있다.
In addition, boron (B) is added to the heat-hardened hardened steel which has the said composition. Therefore, the heat treated hardened steel having the composition may have a tensile strength of 1200 to 1900 MPa and an elongation of 1 to 13% by heat treatment such as laser heat treatment.

이하, 본 발명에 따른 열처리 경화강에 포함되는 각 성분의 함량 및 첨가 이유에 대하여 설명한다. Hereinafter, the content of each component included in the heat treated hardened steel according to the present invention and the reason for addition thereof will be described.

탄소(C)Carbon (C)

탄소(C)는 강의 강도 확보를 위해 첨가한다. 또한 탄소는 오스테나이트 상에 농화되는 양에 따라 오스테나이트 상을 안정화시키는 역할을 한다. Carbon (C) is added to secure the strength of the steel. Carbon also serves to stabilize the austenite phase depending on the amount of the austenite phase that is concentrated.

상기 탄소는 강 전체 중량의 0.1 ~ 0.5 중량%로 첨가되는 것이 바람직하다. 탄소의 첨가량이 0.1 중량% 미만일 경우 충분한 강도를 확보하기 어렵다. 반대로, 탄소의 함량이 0.5 중량%를 초과하면 강도는 증가하나 인성 및 용접성이 크게 저하될 수 있다.
The carbon is preferably added in 0.1 to 0.5% by weight of the total weight of the steel. If the added amount of carbon is less than 0.1% by weight, it is difficult to secure sufficient strength. On the contrary, when the content of carbon exceeds 0.5% by weight, the strength is increased, but toughness and weldability may be greatly reduced.

실리콘(Si)Silicon (Si)

실리콘(Si)은 탈산제로 작용하며, 고용강화에 의하여 강의 강도 향상에 기여한다. Silicon (Si) acts as a deoxidizer and contributes to the strength improvement of steel by solid solution strengthening.

상기 실리콘은 강 전체 중량의 0.1 ~ 0.5 중량%로 첨가되는 것이 바람직하다. 실리콘의 첨가량이 0.1 중량% 미만일 경우, 그 첨가 효과가 불충분하다. 반대로, 실리콘의 첨가량이 0.5중량%를 초과하는 경우, 용접성 및 도금 특성이 저하될 수 있다.
The silicon is preferably added in 0.1 to 0.5% by weight of the total weight of the steel. If the amount of silicone added is less than 0.1% by weight, the effect of addition is insufficient. In contrast, when the amount of silicon added exceeds 0.5% by weight, weldability and plating characteristics may be degraded.

망간(Mn)Manganese (Mn)

망간(Mn)은 오스테나이트 안정화를 통하여 강도 향상에 기여한다. Manganese (Mn) contributes to strength enhancement through austenite stabilization.

상기 망간은 강 전체 중량의 0.5 ~ 3.0 중량%로 첨가되는 것이 바람직하다. 망간의 첨가량이 0.5중량% 미만일 경우 그 첨가 효과가 불충분하다. 반대로, 망간의 첨가량이 3.0중량%를 초과하는 경우, 용접성이 저하되고 인성이 열화되는 문제점이 있다.
The manganese is preferably added at 0.5 to 3.0% by weight of the total weight of the steel. If the added amount of manganese is less than 0.5% by weight, the effect of addition is insufficient. On the contrary, when the amount of manganese exceeds 3.0 wt%, there is a problem that the weldability is lowered and the toughness is deteriorated.

인(P), 황(S) Phosphorus (P), Sulfur (S)

인(P)은 강도 향상에 기여하나, 과다 함유될 경우, 편석에 의하여 강 재질을 열화시키며, 용접성을 악화시킬 수 있다. 이에 본 발명에서는 인의 함량을 강 전체 중량의 0.1중량% 이하로 제한하였다. Phosphorus (P) contributes to strength improvement, but when excessively contained, deterioration of the steel material due to segregation and deterioration of weldability. Therefore, in the present invention, the phosphorus content is limited to 0.1% by weight or less of the total weight of the steel.

또한, 황(S)은 가공성 향상에 일부 기여하나, 과다 함유될 경우, MnS 개재물의 과다 생성이 문제시된다. 이에, 본 발명에서는 황의 함량을 강 전체 중량의 0.05 중량% 이하로 제한하였다.
In addition, sulfur (S) contributes in part to the improvement of workability, but when excessively contained, excessive generation of MnS inclusions is problematic. Thus, in the present invention, the sulfur content is limited to 0.05% by weight or less of the total weight of the steel.

크롬(Cr)Chrome (Cr)

크롬(Cr)은 페라이트 결정립을 안정화하여 연신율을 향상시키며, 오스테나이트 상 내 탄소 농화량을 증진하여 오스테나이트 상을 안정화시킴으로써 강도 향상에 기여한다. Chromium (Cr) stabilizes ferrite grains to improve elongation, and contributes to strength improvement by stabilizing austenite phase by enhancing carbon concentration in austenite phase.

상기 크롬은 강 전체 중량의 0.01 ~ 1.0 중량%로 첨가되는 것이 바람직하다. 크롬의 함량이 0.01 중량% 미만일 경우, 그 첨가 효과가 불충분하다. 반대로, 크롬의 함량이 1.0 중량%를 초과하면, 도금성이 저하되는 문제점이 있다.
The chromium is preferably added in 0.01 to 1.0% by weight of the total weight of the steel. If the content of chromium is less than 0.01% by weight, the effect of addition thereof is insufficient. On the contrary, when the content of chromium exceeds 1.0% by weight, there is a problem that the plating property is lowered.

알루미늄(Al)Aluminum (Al)

알루미늄(Al) 수소취성을 방지하는 역할을 하며, 연성 및 도금성 향상에 유효하다. 다만, 알루미늄이 0.1 중량%를 초과하여 첨가될 경우, 과다한 개재물을 형성하여 강의 연성 및 인성을 저해할 수 있다. It prevents aluminum (Al) hydrogen embrittlement and is effective for improving ductility and plating property. However, when aluminum is added in excess of 0.1% by weight, excessive inclusions may be formed to inhibit ductility and toughness of the steel.

따라서, 알루미늄은 강 전체 중량의 0.1 중량% 이하로 첨가되는 것이 바람직하다.
Therefore, aluminum is preferably added at 0.1% by weight or less of the total weight of the steel.

티타늄(Ti)Titanium (Ti)

티타늄(Ti)은 탄질화물 형성 원소로서, 강도 향상에 기여한다. 다만, 티타늄의 첨가량이 0.2 중량%를 초과하면 인성 저하를 초래할 수 있다. Titanium (Ti) is a carbonitride-forming element and contributes to strength improvement. However, when the added amount of titanium exceeds 0.2% by weight, it may cause a decrease in toughness.

따라서, 티타늄은 강 전체 중량의 0.2 중량% 이하로 첨가되는 것이 바람직하다.
Therefore, titanium is preferably added at 0.2% by weight or less of the total weight of the steel.

보론(B)Boron (B)

보론(B)은 강력한 소입성 원소로서 0.0005 중량% 이상만 첨가되어도 열처리 후 강의 초고강도화에 기여한다. Boron (B) is a strong hardenable element, and even if only 0.0005% by weight or more is added, it contributes to the ultra high strength of the steel after heat treatment.

상기 보론은 강 전체 중량의 0.0005 ~ 0.08 중량%로 첨가되는 것이 바람직하다. 보론의 첨가량이 0.0005 중량% 미만일 경우, 그 첨가 효과가 불충분하다. 반대로, 보론의 첨가량이 0.08 중량%를 초과하는 경우, 과도한 소입성 상승으로 인성이 크게 저하되는 문제점이 있다.
The boron is preferably added in 0.0005 to 0.08% by weight of the total weight of the steel. When the addition amount of boron is less than 0.0005% by weight, the addition effect is insufficient. On the contrary, when the addition amount of boron exceeds 0.08% by weight, there is a problem that the toughness is greatly reduced due to excessive increase in the hardenability.

성형체 제조Molded article manufacturing

다음으로, 성형체 제조 단계(S120)에서는 상기 소재를 미리 정해진 형상으로 성형하여 성형체를 제조한다. Next, in the molded body manufacturing step (S120) to form a molded body by molding the material into a predetermined shape.

성형은 냉간 성형 등이 이용될 수 있다. As the molding, cold molding or the like may be used.

한편, 본 단계(S120)에서 반드시 모든 성형이 이루어져야 하는 것은 아니며, 레이저 열처리 이후에도 트리밍, 피어싱 등 일부 성형이 이루어질 수 있다.
On the other hand, not all the molding must be made in this step (S120), even after laser heat treatment, some molding, such as trimming, piercing can be made.

레이저 열처리(국부강화)Laser heat treatment (local hardening)

다음으로, 레이저 열처리 단계(S120)에서는 성형체에서 고강도가 요구되는 부분(이하, 고강도부라 한다)에 레이저 열처리를 실시하여, 상기 고강도부를 국부적으로 강화시킨다. Next, in the laser heat treatment step (S120), laser heat treatment is performed on a portion (hereinafter, referred to as a high strength portion) in which a high strength is required in the molded body to locally strengthen the high strength portion.

여기서, 고강도부는 자동차용 범퍼 백빔에서 센터부와 같이 응력이 집중되는 부분, 시트 프레임에 적용되는 레일, 베이스, 리클라이나 암에서 응력이 집중되는 부분 등이 될 수 있다. Here, the high-strength portion may be a portion where stress is concentrated, such as a center portion, in a bumper back beam for a vehicle, a portion where stress is concentrated in a rail, a base, a recliner, or an arm applied to a seat frame.

레이저 열처리는 다이오드 레이저와 같은 레이저를 고강도부에 조사하여 상기 고강도부를 Ac3 온도 이상, 대략 Ac3+200℃로 국부적으로 가열한 후, Ms 온도 이하, 대략 Ms ~ Ms-200℃까지 냉각하는 방식으로 실시될 수 있다. Laser heat treatment is performed by irradiating a laser, such as a diode laser, to a high intensity portion and locally heating the high intensity portion to an Ac3 temperature or more, approximately Ac3 + 200 ° C, and then cooling it to an Ms temperature or less and approximately Ms to Ms-200 ° C. Can be.

냉각은 5 ~ 300 ℃/sec의 냉각속도로 실시되는 것이 바람직하다. 냉각 속도가 5℃/sec 미만일 경우, 충분한 강도 확보가 어렵다. 반대로, 냉각속도가 300℃/sec를 초과하면 인성 및 연성 확보가 어렵다. Cooling is preferably carried out at a cooling rate of 5 ~ 300 ℃ / sec. If the cooling rate is less than 5 ° C / sec, it is difficult to secure sufficient strength. On the contrary, when the cooling rate exceeds 300 ° C / sec, it is difficult to secure toughness and ductility.

레이저 열처리는 고강도부의 인장강도가 1200~1900MPa가 되도록, 레이저 조사 시간 및 레이저 강도를 조절할 수 있다. 예를 들어 고강도부의 인장강도가 1900MPa 정도가 되도록 하기 위해서 레이저 조사시간을 길게 하거나 또는 레이저 강도를 높일 수 있다. 반대로, 고강도부의 인장강도가 1200MPa 정도가 되도록 하기 위해서 레이저 조사시간을 상대적으로 짧게 하거나 또는 레이저 강도를 상대적으로 낮출 수 있다. Laser heat treatment can control the laser irradiation time and the laser intensity so that the tensile strength of the high-strength portion is 1200 ~ 1900MPa. For example, the laser irradiation time can be lengthened or the laser intensity can be increased so that the tensile strength of the high strength portion is about 1900 MPa. On the contrary, in order to make the tensile strength of the high strength portion about 1200 MPa, the laser irradiation time may be relatively short or the laser intensity may be relatively low.

즉, 레이저 열처리에서 레이저 조사시간 및 레이저 강도는 목표로 하는 고강도부의 강도에 따라 달라질 수 있다. 또한, 레이저 열처리에서 레이저 조사 시간 및 레이저 강도는 레이저 열처리에 이용되는 레이저 조사 장치에 따라서도 달라질 수 있다. That is, the laser irradiation time and the laser intensity in the laser heat treatment may vary depending on the intensity of the high intensity target portion. In addition, the laser irradiation time and the laser intensity in the laser heat treatment may vary depending on the laser irradiation apparatus used for the laser heat treatment.

도 2는 본 발명에 적용되는 레이저 열처리의 예를 나타낸 것이다. Figure 2 shows an example of the laser heat treatment applied to the present invention.

도 2를 참조하면, 레이저 열처리를 위한 레이저 조사는 레이저 빔(210)을 고정 지그 장치(220)에 고정된 성형체(201)의 고강도부에 조사함으로써 실시될 수 있다. 열(heat)은 레이저 빔이 직접 조사되는 부분으로부터 그에 인접한 부분으로 전도되면서 일정 부분이 고온으로 가열될 수 있다.
Referring to FIG. 2, laser irradiation for laser heat treatment may be performed by irradiating the high intensity portion of the molded body 201 fixed to the fixed jig device 220 with the laser beam 210. Heat may be heated to a high temperature while a portion of the laser beam is conducted directly from the portion to which the laser beam is directly irradiated.

실시예Example

이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다. Hereinafter, the configuration and operation of the present invention through the preferred embodiment of the present invention will be described in more detail. However, this is presented as a preferred example of the present invention and in no sense can be construed as limiting the present invention.

여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.
Details that are not described herein will be omitted since those skilled in the art can sufficiently infer technically.

1. 시편의 제조 1. Preparation of Specimen

하기 표 1에 기재된 조성 및 하기 표 2에 기재된 온도에서 소둔 처리된 냉연시편을 마련하였다. 이후, 시편 1~10에 대하여 레이저 열처리를 실시하였다. 레이저 열처리는 다이오드 레이저 장치(유로비젼 제조)를 이용하여 각 시편의 중앙부의 온도가 950℃가 되도록 한 후, 50℃/sec의 평균냉각속도로 100℃까지 냉각하였다.To prepare a cold-rolled specimen annealing at the composition shown in Table 1 and the temperature shown in Table 2 below. Thereafter, laser treatment was performed on specimens 1 to 10. The laser heat treatment was performed by using a diode laser device (Eurovision Co., Ltd.) so that the temperature at the center of each specimen was 950 ° C, and then cooled to 100 ° C at an average cooling rate of 50 ° C / sec.

[표 1] (단위 중량%) TABLE 1 (Unit weight%)

Figure 112011076853588-pat00001
Figure 112011076853588-pat00001

시편 1~10에 대하여, 레이저 열처리가 실시되기 전에 시편의 중앙부의 기계적 특성(A), 레이저 열처리 이후, 레이저 열처리가 이루어진 시편 중앙부의 기계적 특성(B) 및 레이저 열처리가 이루어지지 않은 시편 가장자리 부분의 기계적 특성(C)을 측정하였다. For specimens 1 to 10, the mechanical properties (A) at the center of the specimen before laser heat treatment, the mechanical properties (B) at the center of the specimen after laser heat treatment, and the edges of the specimens not subjected to laser heat treatment. Mechanical properties (C) were measured.

기계적 특성은 인장강도(TS) 및 연신율(El)을 측정하였으며, 그 결과를 표 2에 나타내었다. Mechanical properties were measured in tensile strength (TS) and elongation (El), the results are shown in Table 2.

[표 2]TABLE 2

Figure 112011076853588-pat00002
Figure 112011076853588-pat00002

표 2를 참조하면, 시편 1~10의 경우, 레이저 열처리 이후, 레이저 열처리가 이루어진 부분의 경우, 인장강도가 1200~1900MPa로 초고강도화가 되었으며, 레이저 열처리가 이루어지지 않은 부분은 열처리 전의 물성과 마찬가지로 인장강도 400~990MPa 및 연신율 10~40%를 나타내었다. Referring to Table 2, in the case of specimens 1 to 10, after the laser heat treatment, in the case where the laser heat treatment was performed, the tensile strength was 1200 to 1900 MPa, and the ultra-high strength was applied. Tensile strength of 400-990MPa and elongation 10-40% were shown.

따라서, 본 발명에 따른 강 부품 제조 방법의 경우, 자동차용 범퍼 백빔과 같이 이종강도가 요구되는 부품에 적용될 수 있다. 이에 따라, 별도의 보강재를 사용하는 것을 생략할 수 있어, 경량화에 기여할 수 있다. 또한, 레이저 열처리만으로도 국부강화가 가능하므로, 단일 소재에 이종강도를 부여하기 위한 별도의 예비공정을 요하지 않는다.
Therefore, in the case of the steel component manufacturing method according to the present invention, it can be applied to parts requiring heterogeneous strength, such as a bumper back beam for automobiles. Thereby, using a separate reinforcement can be skipped and it can contribute to weight reduction. In addition, since localization is possible only by laser heat treatment, a separate preliminary step for imparting heterogeneous strength to a single material is not required.

본 발명은 도면에 도시된 실시예를 참고로 하여 설명되었으나, 이는 예시적인 것에 불과하며, 당해 기술이 속하는 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다.Although the present invention has been described with reference to the embodiments shown in the drawings, this is merely exemplary, and those skilled in the art to which the art belongs can make various modifications and other equivalent embodiments therefrom. I will understand.

따라서, 본 발명의 진정한 기술적 보호범위는 아래의 특허청구범위에 의해서 정하여져야 할 것이다.
Therefore, the true technical protection scope of the present invention will be defined by the claims below.

S110 : 소재 마련 단계
S120 : 성형체 제조 단계
S130 : 레이저 열처리 단계
201 : 성형체
210 : 레이저 빔
220 : 고정 지그 장치
S110: Material Preparation Step
S120: step of forming molded product
S130: Laser Heat Treatment Step
201: molded body
210: laser beam
220: fixed jig device

Claims (7)

삭제delete (a) 중량%로, 탄소(C) : 0.1 ~ 0.5 %, 실리콘(Si) : 0.1 ~ 0.5 %, 망간(Mn) : 0.5 ~ 3.0 %, 인(P) : 0% 초과 내지 0.1 % 이하, 황(S) : 0% 초과 내지 0.05 % 이하, 크롬(Cr) : 0.01 ~ 1.0 %, 알루미늄(Al) : 0% 초과 내지 0.1 % 이하, 티타늄(Ti) : 0% 초과 내지 0.2 % 이하, 보론(B) : 0.0005 ~ 0.08 % 및 나머지 Fe와 불가피한 불순물로 이루어지고, Al 도금층, Al-Si 도금층, Zn-Ni 도금층, Zn 도금층, Zn-Al 도금층 및 고온내산화 수지코팅층 중에서 선택되는 층이 표면에 형성되어 있는 소재를 마련하는 단계;
(b) 상기 소재를 미리 정해진 형상으로 성형하여 성형체를 제조하는 단계; 및
(c) 상기 성형체에서 고강도가 요구되는 부분(이하, 고강도부라 한다)에 레이저 열처리를 실시하여, 상기 고강도부를 국부적으로 강화시키는 단계;를 포함하는 것을 특징으로 하는 강 제품 제조 방법.
(a) in weight%, carbon (C): 0.1 to 0.5%, silicon (Si): 0.1 to 0.5%, manganese (Mn): 0.5 to 3.0%, phosphorus (P): more than 0% to 0.1%, Sulfur (S): more than 0% to 0.05%, chromium (Cr): 0.01 to 1.0%, aluminum (Al): more than 0% to 0.1%, titanium (Ti): more than 0% to 0.2% or less, boron (B): 0.0005 to 0.08% and the remaining Fe and unavoidable impurities, the surface selected from Al plating layer, Al-Si plating layer, Zn-Ni plating layer, Zn plating layer, Zn-Al plating layer and high temperature resistant resin coating layer surface Providing a material formed on the substrate;
(b) forming a molded body by molding the material into a predetermined shape; And
(c) performing a laser heat treatment on a portion of the molded body that requires high strength (hereinafter referred to as a high strength portion) to locally strengthen the high strength portion.
제2항에 있어서,
상기 (c) 단계에서, 상기 레이저 열처리는
상기 고강도부에 레이저를 조사하여 상기 고강도부를 Ac3 온도 이상으로 가열한 후, 5 ~ 300 ℃/sec의 냉각속도로 Ms 온도 이하까지 냉각하는 것을 특징으로 하는 강 제품 제조 방법.
The method of claim 2,
In the step (c), the laser heat treatment is
And irradiating a laser to the high strength portion to heat the high strength portion to an Ac3 temperature or more, and then cooling the steel product to an Ms temperature or less at a cooling rate of 5 to 300 ° C / sec.
제2항에 있어서,
상기 (a) 단계에서, 상기 소재는
인장강도 400~990MPa 및 연신율 10~40%를 갖는 것을 특징으로 하는 강 제품 제조 방법.
The method of claim 2,
In the step (a), the material is
A steel product manufacturing method characterized by having a tensile strength of 400 ~ 990MPa and elongation 10 ~ 40%.
제4항에 있어서,
상기 (c) 단계에서, 상기 레이저 열처리는
상기 고강도부의 인장강도가 1200~1900MPa가 되도록, 레이저 조사 시간 및 레이저 강도를 조절하는 것을 특징으로 하는 강 제품 제조 방법.
The method of claim 4, wherein
In the step (c), the laser heat treatment is
The method of manufacturing a steel product, characterized in that to control the laser irradiation time and the laser intensity so that the tensile strength of the high-strength portion is 1200 ~ 1900MPa.
삭제delete 중량%로, 탄소(C) : 0.1 ~ 0.5 %, 실리콘(Si) : 0.1 ~ 0.5 %, 망간(Mn) : 0.5 ~ 3.0 %, 인(P) : 0 % 초과 내지 0.1 % 이하, 황(S) : 0 % 초과 내지 0.05 % 이하, 크롬(Cr) : 0.01 ~ 1.0 %, 알루미늄(Al) : 0 % 초과 내지 0.1 % 이하, 티타늄(Ti) : 0 % 초과 내지 0.2 % 이하, 보론(B) : 0.0005 ~ 0.08 % 및 나머지 Fe와 불가피한 불순물로 이루어지고,
Al 도금층, Al-Si 도금층, Zn-Ni 도금층, Zn 도금층, Zn-Al 도금층 및 고온내산화 수지코팅층 중에서 선택되는 층이 표면에 형성되어 있으며,
열처리 전에 인장강도 400~990MPa 및 연신율 10~40%를 가지며,
열처리 후에 인장강도 1200~1900MPa 및 연신율 1~13%를 갖는 것을 특징으로 하는 열처리 경화강.
By weight%, carbon (C): 0.1 to 0.5%, silicon (Si): 0.1 to 0.5%, manganese (Mn): 0.5 to 3.0%, phosphorus (P): more than 0% to 0.1%, sulfur (S ): Greater than 0% to 0.05%, chromium (Cr): 0.01 to 1.0%, aluminum (Al): greater than 0% to 0.1%, titanium (Ti): greater than 0% to 0.2% or less, boron (B) : Consisting of 0.0005 to 0.08% and the remaining Fe and inevitable impurities,
A layer selected from Al plating layer, Al-Si plating layer, Zn-Ni plating layer, Zn plating layer, Zn-Al plating layer and high temperature oxidation resistant resin coating layer is formed on the surface,
It has tensile strength 400 ~ 990MPa and elongation 10 ~ 40% before heat treatment,
Heat-treated hardened steel characterized by having a tensile strength of 1200 ~ 1900MPa and an elongation of 1 to 13% after heat treatment.
KR1020110100174A 2011-09-30 2011-09-30 Method for manufacturing steel product with different strength using laser quenching and quenched steel used the method KR101119173B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020110100174A KR101119173B1 (en) 2011-09-30 2011-09-30 Method for manufacturing steel product with different strength using laser quenching and quenched steel used the method
CN201180073901.8A CN103842527A (en) 2011-09-30 2011-10-17 Preparation method of steel product having different strengths using laser heat treatment, and heat hardened steel used therein
US14/343,955 US20140227553A1 (en) 2011-09-30 2011-10-17 Preparation method of steel product having different strengths using laser heat treatment, and heat hardened steel used therein
PCT/KR2011/007703 WO2013047939A1 (en) 2011-09-30 2011-10-17 Preparation method of steel product having different strengths using laser heat treatment, and heat hardened steel used therein
JP2014533173A JP5898772B2 (en) 2011-09-30 2011-10-17 Method for producing steel products having different strengths using laser heat treatment and heat-treated hardened steel used therefor
EP11873399.7A EP2762577B1 (en) 2011-09-30 2011-10-17 Preparation method of steel product having different strengths using laser heat treatment
US14/683,933 US20150211086A1 (en) 2011-09-30 2015-04-10 Preparation method of steel product having different strengths using laser heat treatment, and heat hardened steel used therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110100174A KR101119173B1 (en) 2011-09-30 2011-09-30 Method for manufacturing steel product with different strength using laser quenching and quenched steel used the method

Publications (1)

Publication Number Publication Date
KR101119173B1 true KR101119173B1 (en) 2012-02-22

Family

ID=45840592

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110100174A KR101119173B1 (en) 2011-09-30 2011-09-30 Method for manufacturing steel product with different strength using laser quenching and quenched steel used the method

Country Status (6)

Country Link
US (2) US20140227553A1 (en)
EP (1) EP2762577B1 (en)
JP (1) JP5898772B2 (en)
KR (1) KR101119173B1 (en)
CN (1) CN103842527A (en)
WO (1) WO2013047939A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101505244B1 (en) 2012-07-30 2015-03-23 현대제철 주식회사 Method of heat treating steel component and methof of manufacturing track link using the same
WO2019132376A1 (en) * 2017-12-26 2019-07-04 주식회사 포스코 Laser-hardened low carbon steel sheet and manufacturing method therefor
KR20230074980A (en) 2021-11-22 2023-05-31 주식회사 포스코 Steel sheet having multi-strength and manufacturing method the same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9708685B2 (en) 2013-11-25 2017-07-18 Magna International Inc. Structural component including a tempered transition zone
TWI488925B (en) * 2014-09-16 2015-06-21 China Steel Corp Anti - high temperature oxidation coating steel plate and its hot stamping method
CN104946987A (en) * 2015-05-28 2015-09-30 武汉钢铁(集团)公司 High-strength finish rolled steel bar and production method thereof
WO2017021440A1 (en) * 2015-08-04 2017-02-09 Autotech Engineering A.I.E. Reinforced structural components
KR101758517B1 (en) * 2015-12-23 2017-07-14 주식회사 포스코 Heat treatment apparatus and method for steel strip
US10294552B2 (en) 2016-01-27 2019-05-21 GM Global Technology Operations LLC Rapidly solidified high-temperature aluminum iron silicon alloys
US10260131B2 (en) 2016-08-09 2019-04-16 GM Global Technology Operations LLC Forming high-strength, lightweight alloys
DE102016219278A1 (en) * 2016-10-05 2018-04-05 Bayerische Motoren Werke Aktiengesellschaft Process for producing a high-strength tube part
CN111733314A (en) * 2019-03-25 2020-10-02 长城汽车股份有限公司 Reinforcing method for outer panel of vehicle door

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0146799B1 (en) * 1995-05-18 1998-11-02 김만제 Method for manufacturing stabilizer
KR20020031709A (en) * 2000-10-23 2002-05-03 이계안 A composition for manufacturing steel sheets having ultra high strength by local hardening
KR20100001335A (en) * 2008-06-26 2010-01-06 현대제철 주식회사 Heat-treatment hardening steel-sheet having excellent low-temperature impact toughnss, and method for producing the same
KR20100107771A (en) * 2009-03-26 2010-10-06 현대제철 주식회사 Lower arm of car and manufacturing method thereof

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60245730A (en) * 1984-05-18 1985-12-05 Nippon Steel Corp Manufacture of partially hardened steel sheet
EP0585843A3 (en) * 1992-08-28 1996-06-26 Toyota Motor Co Ltd High-formability steel plate with a great potential for strength enhancement by high-density energy treatment
JPH07173528A (en) * 1993-12-16 1995-07-11 Nippon Steel Corp Production of high strength press-formed product
JPH1060523A (en) * 1996-08-13 1998-03-03 Kobe Steel Ltd Method for increasing strength of steel by irradiation of high density energy
JPH1060522A (en) * 1996-08-13 1998-03-03 Kobe Steel Ltd High workability steel sheet excellent in high strengthening characteristics by irradiation of high density energy
FR2825375B1 (en) * 2001-05-31 2004-04-09 Renault METHOD AND DEVICE FOR LOCALIZED REINFORCEMENT OF A STRUCTURAL SHEET
JP2004114912A (en) * 2002-09-27 2004-04-15 Sumitomo Metal Ind Ltd Forming member having excellent axial crush resistant characteristic
JP4845000B2 (en) * 2004-05-26 2011-12-28 株式会社ジーテクト Quenching article quenching device and quenching article quenching method
JP2005342776A (en) * 2004-06-07 2005-12-15 Nippon Steel Corp Method for manufacturing high-strength component, and high-strength component
KR100765723B1 (en) 2006-06-07 2007-10-11 현대하이스코 주식회사 Manufacturing method of high strength reinforcement for motors using hot stamping
CN101583486B (en) 2006-10-30 2014-08-27 安赛乐米塔尔法国公司 Coated steel strips, methods of making the same, methods of using the same, stamping blanks prepared from the same, stamped products prepared from the same, and articles of manufacture which contains
KR101010971B1 (en) * 2008-03-24 2011-01-26 주식회사 포스코 Steel sheet for forming having low temperature heat treatment property, method for manufacturing the same, method for manufacturing parts using the same and parts manufactured by the method
US20090242086A1 (en) * 2008-03-31 2009-10-01 Honda Motor Co., Ltd. Microstructural optimization of automotive structures
JP5119475B2 (en) * 2008-05-14 2013-01-16 新日鐵住金株式会社 Center pillar reinforcing member and manufacturing method thereof
KR20120091327A (en) * 2009-11-06 2012-08-17 존슨 컨트롤스 테크놀러지 컴퍼니 Seat structural component tailored for strength
KR101125387B1 (en) 2009-12-03 2012-03-27 현대자동차주식회사 Partial-strengthening hot-stamping method for improving impact resistance of vehicle parts
KR101033767B1 (en) * 2010-11-03 2011-05-09 현대하이스코 주식회사 Automobile part manufacturing method using quenched steel sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0146799B1 (en) * 1995-05-18 1998-11-02 김만제 Method for manufacturing stabilizer
KR20020031709A (en) * 2000-10-23 2002-05-03 이계안 A composition for manufacturing steel sheets having ultra high strength by local hardening
KR20100001335A (en) * 2008-06-26 2010-01-06 현대제철 주식회사 Heat-treatment hardening steel-sheet having excellent low-temperature impact toughnss, and method for producing the same
KR20100107771A (en) * 2009-03-26 2010-10-06 현대제철 주식회사 Lower arm of car and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101505244B1 (en) 2012-07-30 2015-03-23 현대제철 주식회사 Method of heat treating steel component and methof of manufacturing track link using the same
WO2019132376A1 (en) * 2017-12-26 2019-07-04 주식회사 포스코 Laser-hardened low carbon steel sheet and manufacturing method therefor
KR20230074980A (en) 2021-11-22 2023-05-31 주식회사 포스코 Steel sheet having multi-strength and manufacturing method the same

Also Published As

Publication number Publication date
US20150211086A1 (en) 2015-07-30
WO2013047939A1 (en) 2013-04-04
EP2762577A4 (en) 2014-09-24
JP5898772B2 (en) 2016-04-06
US20140227553A1 (en) 2014-08-14
CN103842527A (en) 2014-06-04
EP2762577A1 (en) 2014-08-06
JP2014534334A (en) 2014-12-18
EP2762577B1 (en) 2016-04-27

Similar Documents

Publication Publication Date Title
KR101119173B1 (en) Method for manufacturing steel product with different strength using laser quenching and quenched steel used the method
CA2725210C (en) Method for producing a formed steel part having a predominantly ferritic-bainitic structure
JP5756774B2 (en) Steel sheet for hot pressing, press-formed product, and method for producing press-formed product
KR101568549B1 (en) Steel sheet for hot press formed product having high bendability and ultra high strength, hot press formed product using the same and method for manufacturing the same
KR101318060B1 (en) Hot stamping product with advanced toughness and method of manufacturing the same
WO2017219427A1 (en) Treatment process for obtaining graded performance and member thereof
KR101108838B1 (en) Quenched steel with excellent crashworthiness and method of manufacturing quenched parts using the quenched steel
KR101027285B1 (en) High strength steel sheet for hot forming with excellent heat treatment property, hot formed hardening member and manufacturing methods thereof
WO2013133166A1 (en) Steel sheet for hot pressing use, press-molded article, and method for producing press-molded article
WO2015037061A1 (en) Hot-pressing steel plate, press-molded article, and method for manufacturing press-molded article
RU2633416C1 (en) Method for manufacturing article formed by stamping and article moulded by stamping
ES2853925T3 (en) Hot rolled steel strip and manufacturing procedure
US20160222482A1 (en) Hot-pressing steel plate, press-molded article, and method for manufacturing press-molded article
JP2013185245A (en) Method for manufacturing press-molded product and the press-molded product
JP5655338B2 (en) Partially tempered softened steel sheet and press-formed parts using the steel sheet
JP2010131672A (en) Method for producing workpiece, workpiece and use of workpiece
KR101938073B1 (en) Steel for hot stamping and manufacturing method thoereof
KR101677398B1 (en) Steels for hot forming and method of manufacturion component using thereof
EP3473735B1 (en) Treatment process for obtaining graded performance and member thereof
EP2215280B1 (en) High tensile steel for deep drawing and manufacturing method thereof
JP5802155B2 (en) Manufacturing method of press-molded product and press-molded product
KR20140042110A (en) Steel product and method of manufacturing the same
JP2000080418A (en) Production of thin steel sheet for working
KR100368241B1 (en) A method for manufacturing hot rolled trip steels with excellent flange formability
KR20230074980A (en) Steel sheet having multi-strength and manufacturing method the same

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150102

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160113

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20161228

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180108

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190103

Year of fee payment: 8