KR101115184B1 - Production method of automatic oxygen generating insole using the green environmental solid material - Google Patents

Production method of automatic oxygen generating insole using the green environmental solid material Download PDF

Info

Publication number
KR101115184B1
KR101115184B1 KR1020100041806A KR20100041806A KR101115184B1 KR 101115184 B1 KR101115184 B1 KR 101115184B1 KR 1020100041806 A KR1020100041806 A KR 1020100041806A KR 20100041806 A KR20100041806 A KR 20100041806A KR 101115184 B1 KR101115184 B1 KR 101115184B1
Authority
KR
South Korea
Prior art keywords
weight
parts
oxygen
mixture
generating
Prior art date
Application number
KR1020100041806A
Other languages
Korean (ko)
Other versions
KR20110122360A (en
Inventor
성대동
Original Assignee
국승원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국승원 filed Critical 국승원
Priority to KR1020100041806A priority Critical patent/KR101115184B1/en
Publication of KR20110122360A publication Critical patent/KR20110122360A/en
Application granted granted Critical
Publication of KR101115184B1 publication Critical patent/KR101115184B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/38Oxides or hydroxides of elements of Groups 1 or 11 of the Periodic Table
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/45Oxides or hydroxides of elements of Groups 3 or 13 of the Periodic Table; Aluminates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/77Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/13Physical properties anti-allergenic or anti-bacterial
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2501/00Wearing apparel
    • D10B2501/02Underwear
    • D10B2501/021Hosiery; Panti-hose
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2501/00Wearing apparel
    • D10B2501/04Outerwear; Protective garments
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2501/00Wearing apparel
    • D10B2501/04Outerwear; Protective garments
    • D10B2501/043Footwear
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2503/00Domestic or personal
    • D10B2503/04Floor or wall coverings; Carpets

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은 산소를 발생하는 기능성 섬유직물과 그 제조방법에 관한 것으로, 그 목적은 산소를 일정하게 발생시켜 혈행(血行)을 촉진시키고, 이를 통해 인체대사활동을 원활하게 하며, 활동 중에 소모되는 산소를 피부 또는 호흡을 통해 직접 공급하여 신경반사를 통해 췌장의 기능을 활성화시킴과 동시에, 산소가 부족하여 생기는 기혈 (氣血)의 정체를 막아주고, 발의 저림, 차가움, 열, 무거움을 해결해 줄 수 있는 산소를 발생하는 기능성 섬유직물과 그 제조방법을 제공하는 것이다.
본 발명은 섬유직물에 산소발생 혼합물을 도포 부착시키되, 상기 산소발생 혼합물은 potassium superoxide 분말 100 중량부, sodium superoxide 분말 45~55 중량부, 수산화알루미늄 85~95 중량부, polyethylene glycole 280~320 중량부, 제올라이트 85~95 중량부, calcium superoxide 75~85 중량부, 이산화철 35~45 중량부를 포함하도록 되어 있다.
The present invention relates to a functional fiber fabric that generates oxygen and a method of manufacturing the same, the purpose of which is to generate oxygen constantly to promote blood circulation (血 行), thereby smoothing the human metabolic activity, oxygen consumed during the activity It can be supplied directly through the skin or respiration to activate the pancreas function through neural reflex, and at the same time prevent the congestion of blood donation caused by lack of oxygen, and can solve the numbness of the feet, cold, heat and heaviness. It is to provide a functional fiber fabric that generates oxygen present and a method of manufacturing the same.
In the present invention, the oxygen generating mixture is applied to the textile fabric, and the oxygen generating mixture is 100 parts by weight of potassium superoxide powder, 45 to 55 parts by weight of sodium superoxide powder, 85 to 95 parts by weight of aluminum hydroxide, and 280 to 320 parts by weight of polyethylene glycole. 85 to 95 parts by weight of zeolite, 75 to 85 parts by weight of calcium superoxide, and 35 to 45 parts by weight of iron dioxide.

Description

산소를 발생하는 기능성 섬유직물과 그 제조방법{Production method of automatic oxygen generating insole using the green environmental solid material}Functional fiber fabrics that generate oxygen and a method of manufacturing the same {Production method of automatic oxygen generating insole using the green environmental solid material}

본 발명은 산소를 발생하는 기능성 섬유직물과 그 제조방법에 관한 것으로, 인체에 무해한 친환경고체로서 산소를 발생하는 물질을 녹색안정제와 함께 가공하여 특수 가공된 천에 입힘으로써, 보행 중, 작업중, 또는 운동할 때 신체에서 발생하는 땀을 제거하는 동시에 살균, 항바이러스 작용을 극대화하고 피로를 풀어 주어 생체 대사를 원활하게 할 수 있는 산소를 발생하는 기능성 섬유직물과 그 제조방법에 관한 것이다.
The present invention relates to a functional fiber fabric that generates oxygen and a method of manufacturing the same, which is a harmless human-friendly solid that processes oxygen-generating materials together with a green stabilizer and coats it with a specially processed cloth, while walking, working, or The present invention relates to a functional fiber fabric that generates oxygen that can smoothly metabolize the body by maximizing sterilization and antiviral action while releasing sweat while exercising, and releasing fatigue.

최근 급속한 사회발전과 더불어 생활수준이 향상됨에 따라 친환경, 위생 등의 웰빙 소재에 대한 요구가 사회적으로 증가되고 있으며, 직접적으로 신체에 접촉하는 다양한 직물에 대하여서도 동일한 욕구가 반영되어 있다.Recently, with the rapid development of society and the improvement of living standards, the demand for well-being materials such as ecology and hygiene is increasing socially, and the same desire is reflected in various fabrics that directly contact the body.

특히 스포츠에 대한 관심이 높은 현대인들은 피부에 직접적으로 접촉되는 피복, 신발 및 스포츠웨어에 대한 관심이 증가되고, 많은 소비자들은 운동중에도 보온성과 쾌적감을 제공하는 기능성 섬유를 원하고 있으며 이에 따라 다양한 기능을 가지는 소위, "기능성 직물"에 대한 수요가 증대하고 있고, 이러한 소비자의 욕구에 부응하여 항균, 방취, 치유(힐링:healing) 효과를 가지는 직물의 개발이 본격화되고 있다.In particular, modern people with high interest in sports have increased interest in clothing, shoes, and sportswear that are in direct contact with the skin, and many consumers want functional fibers that provide warmth and comfort during exercise. Eggplant, the demand for so-called "functional fabrics" is increasing, and in response to the needs of consumers, the development of fabrics having antibacterial, deodorant, healing (healing) effect is in earnest.

특히 인체의 발은 인체의 건강과 직결된다. 동양은 물론이고 서양의학에서도 발에는 인간의 오장육부가 모두 연결되어 있다고 기술하고 있다. 따라서 발은 제2의 심장이라고 불린다. 발바닥에 있는 각 신경반응지점과 경락을 다스려서 관절염, 근골격통증, 피부질환, 신경혈관 및 당뇨합병증을 다스리는 의학은 5000년 전부터 중국, 이집트, 인도 등에서 치료법에 활용되고 있다.In particular, the foot of the human body is directly connected to the health of the human body. Not only in the East, but also in Western medicine, the feet describe that all five human viscera are connected. Thus the foot is called the second heart. Medicines that control arthritis, musculoskeletal pain, skin diseases, neurovascular and diabetic complications by controlling each nerve reaction point and meridians on the sole of the foot have been used for treatment in China, Egypt and India since 5000 years ago.

인체에서 발은 아침 기상과 동시에 저녁에 취침 때까지 무거운 인체를 지탱하고 균형을 잡아준다. 이렇게 중요한 발의 기능에 맞는 신발을 제조하는 기술은 신발산업을 첨단산업으로 도약시켜 각종 기능성 신발이 발명, 제조, 판매되고 있다. 최근에는 인체의 체중과 지구 중력과의 최적 비율을 활용하여 제조한 신발이 몸의 신진대사는 물론 혈액순환을 좋게 하고, 혈당을 조절하여 당뇨로 인한 합병증을 완화하고 어린이의 키 성장에도 도움이 되는 신발이 선보여 건강에 도움을 주고 있다. 보행이나 운동 및 작업 시 인체에 미치는 발과 신발의 역학적 관계를 과학적으로 설계하고 친환경적으로 만든 건강 신발이 국내외 많은 신발제조업체에서 제조 판매되고 있다. 이들 기능성 신발은 대부분 항균성을 높여 무좀을 예방 혹은 치료하거나 신발의 통풍성을 강조하며 인체의 균형을 잡아주는 역할을 하는 단순기능을 신발에 적용한 것으로 이러한 신발이 다양하게 생산 판매되고 실제로 효과가 크게 나타나 소비자들에게 인정받고 있다. 현재 시중에 생산. 판매되는 기능성 신발은 신체의 각 부위별 체형균형을 잡아 주거나 항균성 재료를 부착한 제품으로서 신발이라는 고정된 공간에서 혹사하는 발의 건강을 근원적으로 해결해 주지는 못한다.In the human body, the foot supports and balances the heavy body until the morning wakes up and at night. The technology for manufacturing shoes that fit the functions of these important feet leaps the footwear industry into a high-tech industry, and various functional shoes are invented, manufactured, and sold. Recently, shoes manufactured using the optimal ratio between the body's weight and earth's gravity have been used to improve the body's metabolism, improve blood circulation, control blood sugar, reduce complications caused by diabetes, and help children's height growth. Shoes are introduced to help health. Health shoes, which are scientifically designed and eco-friendly, have been manufactured and sold by many domestic and overseas shoe manufacturers. Most of these functional shoes have antibacterial properties to prevent or treat athlete's foot, emphasize the breathability of shoes, and apply simple functions to balance the human body. These shoes are produced and sold in various ways and have a great effect. It is recognized by the people. Produced on the market now. The functional shoes sold are those that balance the body shape of each part of the body or attach antibacterial materials, and do not fundamentally solve the excessive health of the feet in the fixed space of the shoes.

우리 인체의 피부는 항상 공기에 노출되어 산소를 받아들이고 땀을 배출해야 하는 구조로 되어 있으나, 신발이라는 공간에 갇혀있는 발에 있는 피부는 항상 산소가 부족하고 산소의 부족은 인체대사활동에 지장을 준다. 지금도 인도에서는 발 건강을 위하여 많은 사람들이 맨발로 다니고 있으며, 신발에 갇혀있는 발에 산소를 직접공급하면 발에 있는 피부 세포에 산소 분자가 제공되어 인체의 대사활동을 도와줄 수 있다.The skin of our human body is always exposed to the air to accept oxygen and release sweat, but the skin on the feet trapped in the space of shoes always lacks oxygen and the lack of oxygen interferes with human metabolic activity. . Even in India, many people go barefoot for foot health, and supplying oxygen directly to the feet trapped in shoes provides oxygen molecules to the skin cells in the feet, which can help the body's metabolism.

그러나 신발 밑창에 산소발생기능을 접목하여 혈행을 촉진시키고 인체대사활동을 도와주는 신발은 국내는 물론 외국에서도 아직 생산되지 않고 있다. 비록 신발에 산소를 직접 보급하는 재료나 기구는 아직 없을지라도 코나 입에 산소를 직접 공급하기 위한 산소 발생장치나 기구 및 재료는 많이 보급되어 있다. However, shoes that promote blood circulation and help metabolic activity by incorporating oxygen-producing functions into the soles of shoes are not produced in Korea as well as in foreign countries. Although there are no materials or devices that directly supply oxygen to shoes, oxygen generators, devices, and materials for supplying oxygen directly to the nose or mouth are widely available.

상기 산소 발생장치 중 가장 간단한 산소 공급 장치는 산소 기체를 통에 넣어 직접 제공하는 것이 있고 다른 방법은 산소기체를 낼 수 있는 금속 과산화물을 사용하는 것이다. 그러나 이러한 방법들은 신발이라는 특수한 공간과 환경에 적용시키기 어려운 실정이다. 현재 화재 진압 시 소방관들이 착용하는 산소마스크에 쓰이거나 혹은 휴대용 산소발생재료로 쓰이는 산소발생장치는 미국인 Blum과 Mei가 특허출원(특허명: Hand-held potassium super oxide oxygen generating apparatus:미국 특허번호: 20060280656, A1, 출원날자: 2006년 12월 14일) 한 것과 미국 거주 교포 박상길이 특허 출원한 비상용산소마스크(특허명: Emergency oxygen mask: 미국 특허번호: 20070144513 A1, 출원일 : 2007년 6월 28일) 와 미국인 Whitley, Roger가 미국특허청에 특허출원한 단순화한 의료용 산소발생장치(특허명: Simplified dual mode medical oxygen concentrator: 미국특허번호: 20050161043 A1, 출원일 : 2005년 6월 28일)의 특허발명 등이 있다. 이들 장치는 알칼리금속의 과산화물로 구성되어 있다. The simplest oxygen supply device of the oxygen generator is to provide oxygen gas directly into the barrel and another method is to use a metal peroxide capable of producing oxygen gas. However, these methods are difficult to apply to the special space and environment of shoes. Oxygen generators, which are used in oxygen masks worn by firefighters or used as portable oxygen-generating materials, are currently patented by American Blum and Mei (Patent name: Hand-held potassium super oxide oxygen generating apparatus: US Pat. No .: 20060280656, A1, filed on December 14, 2006) and an emergency oxygen mask (Patent name: Emergency oxygen mask: US Patent No .: 20070144513 A1, filed on June 28, 2007) and American Simplified dual mode medical oxygen concentrator (US Patent No .: 20050161043 A1, filing date: June 28, 2005), filed with Whitley, Roger in the US Patent Office. These devices consist of peroxides of alkali metals.

단순히 산소발생만을 목적으로 하는 산소발생재료의 특허는 미국 거주 교포 노만균이 특허 출원한 산소발생재료조성(특허명: Oxygen generating composition: 미국특허번호: 20050287224 A1, 출원일 : 2005년 12월 29일)과 일본인 타카미치 몬마(Monma, Takamichi)가 일본 특허청에 특허 출원한 단순산소발생기(특허명: Simple oxygen producer: 일본특허청 특허번호: JP 80-51537, 출원일 : 1981년 11월 19일) 및 러시아인 Ferapontov Ju A.와 Zhdanov D. V. 그리고 Gladyshev N. F. 가 공동으로 러시아 특허청에 출원한 연속산소발생장치(특허명: Regenerative product and a method for preparation thereof: 러시아특허번호: RU2210416(C1), 출원일 : 2003년 8월 20일)가 있다. 산소통을 직접 사용하지 않고 안전하게 산소를 발생시키는 장치와 재료에 대한 연구는 이산화티타늄에 광촉매를 사용하여 산소를 발생시키는 연구(Claudia Gomes Silva, Younnes Bouizi, Vincente Fornes and Hermenegildo Garcia, Layered Double Hydroxides as Highly Efficient Photocatalysis for Visible Light Oxygen Generation from Water, Journal of the American Chemical Society, 2009, 131, 13833-13839.)와 석유부산물로 더럽혀진 생체치료용 휴대용 산소발생장치에 대한 연구(Yasemin Kacar Kunukcu, In bioremediation of groundwater contaminated with petroleum constituents using oxygen release compounds (ORCs), Environmental & Ecological Toxicology: Environmental Health, 2007, 14, 839-845)등이 있다. 최근에는 휴대가 간편하면서 동시에 산소분자를 안정적으로 공급할 수 있는 방법으로 산소분자를 발생시키는 산소분자원천물질을 탄소로 주위를 둘러 싼 나노분자를 이용하여 산소를 생산할 수 있는 연구(Jisheng Zhou, Huaihe Song, Xiaohong Chen, Linjie Zhi, Shubin Yang, Junping Huo and Wantai Yang, Chemistry of Materials, 2009, 21, 2935-2940)가 보고된 바 있다. 그리고 산소를 발생하는 금속산화물을 다공성 탄소로 둘러싼 나노구조물의 제조방법에 대한 연구(Porous Carbon and Carbon/Metal Oxide Microfibers with Well-Controlled Pore Structure and Interface, Journal of the American Chemical Society, 2008, 130, 5034-5035)도 보고되었다. 이상에서 살펴 본 산소 발생장치 및 재료에 대한 기존 특허와 연구결과는 신발에 적용하기가 어렵다. 지금까지 특허 출원된 휴대용 산소발생장치 및 재료는 손에 들거나 혹은 등에 지고 다니기에는 편리하나 신발 밑창에 적용하기는 어렵다. 예를 들면 미국인 Blum과 Mei가 특허 출원한 Hand-held potassium super oxide oxygen generating apparatus는 potassium super oxide를 재료로 사용한 것으로 potassium superoxide(KO2)는 수분에 민감하고 동시에 이산화탄소와 반응하여 탄산칼륨을 생산한다. 발은 걷거나 움직일 때 많은 수분을 발생하고 동시에 발의 피부로부터 이산화탄소가 배출된다. 이때 potassium superoxide는 쉽게 땀과 이산화탄소와 반응하여 탄산칼륨(K2CO3)이 생성되기 때문에 깨끗한 산소만을 발의 피부에 전달하기가 쉽지 않다. 그리고 Whitley, Roger가 출원한 단순화한 의료용 산소발생장치는 소형휴대용산소발생장치에 공기를 연속적으로 주입시키는 펌프가 있어 이 펌프를 돌리는 휴대용 연료전지를 사용하기 때문에 신발창에 이러한 기기를 적용하기 어렵다. 노만균과 타카미치 몬마 그리고 Ferapontov Ju A.와 Zhdanov D. V. 와 Gladyshev N. F.가 공동으로 특허출원한 산소발생재료조성도 특수 장치로 구성된 기기가 물속에서 작동되도록 설계되어 이산화티타늄이 빛의 광자(photon)와 반응하여 산소를 발생시키기 때문에 신발에 적용하기가 어렵다. 한편 Yasemin Kacar KunukcuJisheng Zhou 와, Huaihe Song, Xiaohong Chen, Linjie Zhi, Shubin Yang, Junping Huo 및 Wantai Yang이 공동으로 연구 발표한 산소발생장치는 탄소 나노구조물을 이용하기 때문에 안정성과 산소발생의 연속성에는 좋으나 신발에 적용하기에는 천문학적인 비용이 들어 상품성이 떨어진다.
Patents for oxygen generating materials for the purpose of oxygen generation only include the oxygen generating materials (Patent name: Oxygen generating composition: US Patent No .: 20050287224 A1, filing date: December 29, 2005) and Japanese Simple oxygen producer (patent name: Simple oxygen producer: Japan Patent Office Patent Number: JP 80-51537, filed November 19, 1981) filed with Japan Patent Office by Monma, Takamichi and Russian Ferapontov Ju A. There is a continuous oxygen generator (patent name: Regenerative product and a method for preparation): Russian Patent No .: RU2210416 (C1), filed August 20, 2003, jointly filed with Zhdanov DV and Gladyshev NF. Research on devices and materials that safely generate oxygen without using oxygen cylinders has been carried out by using photocatalysts on titanium dioxide to produce oxygen (Claudia Gomes Silva, Younnes Bouizi, Vincente Fornes and Hermenegildo Garcia, Layered Double Hydroxides as Highly Efficient). Photocatalysis for Visible Light Oxygen Generation from Water, Journal of the American Chemical Society, 2009, 131 , 13833-13839. And a study of portable oxygen generators for biotherapies soiled with petroleum by-products (Yasemin Kacar Kunukcu, In bioremediation of groundwater contaminated with petroleum constituents using oxygen release compounds (ORCs), Environmental & Ecological Toxicology: Environmental Health, 2007, 14 , 839-845). In recent years, research has been carried out to produce oxygen using nano-molecules surrounded by carbon as an oxygen source resource that generates oxygen molecules in a way that is portable and stable to supply oxygen molecules (Jisheng Zhou, Huaihe Song , Xiaohong Chen, Linjie Zhi, Shubin Yang, Junping Huo and Wantai Yang, Chemistry of Materials, 2009, 21, 2935-2940. And a method for preparing nanostructures surrounded by oxygen-causing metal oxides with porous carbon (Porous Carbon and Carbon / Metal Oxide Microfibers with Well-Controlled Pore Structural and Interface, Journal of the American Chemical Society, 2008 , 130 , 5034-5035) have also been reported. Existing patents and results of oxygen generators and materials discussed above are difficult to apply to shoes. Portable oxygen generators and materials that have been patented so far are convenient to carry or carry on the back, but are difficult to apply to shoe soles. For example, the American hand-held potassium super oxide oxygen generating apparatus, patented by Blum and Mei, uses potassium super oxide as a material, and potassium superoxide (KO 2 ) is sensitive to moisture and simultaneously reacts with carbon dioxide to produce potassium carbonate. . The foot generates a lot of water when walking or moving, and at the same time carbon dioxide is released from the skin of the foot. At this time, potassium superoxide easily reacts with sweat and carbon dioxide to produce potassium carbonate (K 2 CO 3 ), so it is not easy to deliver only clean oxygen to the skin of the foot. And the simplified medical oxygen generator filed by Whitley, Roger has a pump that continuously injects air into a small portable oxygen generator, which makes it difficult to apply such a device to a shoe sole because it uses a portable fuel cell that runs the pump. Oxygen-generating material composition, jointly applied by Norman Kyun, Takamichi Monma, Ferapontov Ju A., Zhdanov DV and Gladyshev NF, is also designed to operate in water, so that titanium dioxide reacts with photons of light. It is difficult to apply to shoes because it generates oxygen. Oxygen generators, jointly announced by Yasemin Kacar KunukcuJisheng Zhou, Huaihe Song, Xiaohong Chen, Linjie Zhi, Shubin Yang, Junping Huo, and Wantai Yang, use carbon nanostructures, which is good for stability and continuity of oxygen generation. It is costly for astronomical applications to apply to the market.

본 발명은 상기와 같은 문제점을 해소하기 위한 것으로, 그 목적은 산소를 일정하게 발생시켜 혈행(血行)을 촉진시키고, 이를 통해 인체대사활동을 원활하게 하며, 활동 중에 소모되는 산소를 피부 또는 호흡을 통해 직접 공급하여 신경반사를 통해 췌장의 기능을 활성화시킴과 동시에, 산소가 부족하여 생기는 기혈 (氣血)의 정체를 막아주고, 발의 저림, 차가움, 열, 무거움을 해결해 줄 수 있는 산소를 발생하는 기능성 섬유직물과 그 제조방법을 제공하는 것이다. The present invention is to solve the above problems, the purpose is to generate oxygen constantly to promote blood circulation (행 行), thereby smoothing the human metabolic activity, the oxygen consumed during the activity of the skin or breathing It is supplied directly through the nerves to activate the pancreas function, while at the same time prevents the congestion of blood (생기) caused by the lack of oxygen, and generates oxygen to solve the numbness of the feet, cold, heat, heaviness To provide a functional textile fabric and a method of manufacturing the same.

본 발명의 또다른 목적은 친환경적이면서 가격이 상대적으로 저렴한 금속 과산화물을 주재료로 하고 금속과산화물로 부터 발생되는 산소분자의 단위 시간당 발생속도를 일정하게 유지해 주는 친환경적인 안정제를 첨가하여 자동적으로 일정속도로 산소발생을 유도할 수 있는 산소를 발생하는 기능성 섬유직물과 그 제조방법을 제공하는 것이다. Another object of the present invention is to provide oxygen at a constant rate automatically by adding eco-friendly stabilizer that maintains a constant rate per unit time of oxygen molecules generated from the metal peroxide as the main material and metal peroxide, which is eco-friendly and relatively inexpensive It is to provide a functional fiber fabric that generates oxygen that can induce generation and a method of manufacturing the same.

본 발명의 또다른 목적은 친환경적인 수분제거제를 첨가하여 금속산화물이 발의 피부에 직접 산소를 제공하기 전에 금속산화물이 발에서 나오는 땀과 반응하여 분해되는 과정을 방지하고 이를 통해 산소발생 시간을 향상시킬 수 있는 산소를 발생하는 기능성 섬유직물과 그 제조방법을 제공하는 것이다. Another object of the present invention is to add an eco-friendly moisture remover to prevent the metal oxide reacts with the sweat from the foot and decomposes before the metal oxide provides oxygen directly to the skin of the foot, thereby improving the oxygen generation time. It is to provide a functional fiber fabric that can generate oxygen and a method for producing the same.

본 발명의 또다른 목적은 산소발생과 동시에 세균과 박테리아로부터 발 등의 신체를 보호할 수 있는 산소를 발생하는 기능성 섬유직물과 그 제조방법을 제공하는 것이다.
Still another object of the present invention is to provide a functional fiber fabric which generates oxygen capable of protecting the body such as feet and bacteria from bacteria and bacteria simultaneously with the generation of oxygen and a method of manufacturing the same.

본 발명은 섬유직물에 산소발생 혼합물을 도포 부착시키되,The present invention by applying the oxygen generating mixture to the textile fabric,

상기 산소발생 혼합물은 potassium superoxide 분말 100 중량부, sodium superoxide 분말 45~55 중량부, 수산화알루미늄 85~95 중량부, polyethylene glycole 280~320 중량부, 탄산칼슘 25~30중량부, 실리카젤 20~25중량부, 제올라이트 20~25 중량부, aromatic heavy oil 280~320중량부, calcium superoxide 75~85 중량부, 이산화철 35~45 중량부로 이루어져 있다.
The oxygen generating mixture is 100 parts by weight of potassium superoxide powder, 45-55 parts by weight of sodium superoxide powder, 85-95 parts by weight of aluminum hydroxide, 280-320 parts by weight of polyethylene glycole, 25-30 parts by weight of calcium carbonate, silica gel 20-25 It is composed of 20 parts by weight, 20 to 25 parts by weight of zeolite, 280 to 320 parts by weight of aromatic heavy oil, 75 to 85 parts by weight of calcium superoxide, and 35 to 45 parts by weight of iron dioxide.

이와 같이 본 발명은 인체에 무해한 친환경고체물질만을 이용하여 산소를 자동발생시킴으로써, 신체에 직접적으로 접촉되어도 무해하고, 산소의 공급을 지속적으로 할 수 있다.As described above, the present invention automatically generates oxygen using only environmentally friendly solid materials that are harmless to the human body, so that it is harmless even when directly in contact with the body, and the supply of oxygen can be continued.

또한, 본 발명은 10가지 화합물의 유효성분을 함유한 산소자동발생재료(산소발생 혼합물)를 섬유직물에 일정면적과 두께로 부착하여 산소 발생을 지속적으로 유도하였기 때문에 발생한 산소가 발 등의 피부에 작용하여 피부 세포에 산소분자가 직접 공급되어 인체의 대사활동을 도와준다.In addition, the present invention attached oxygen autogenous material (oxygen generating mixture) containing the active ingredients of the 10 compounds to the textile fabric in a certain area and thickness to induce the generation of oxygen continuously oxygen generated on the skin such as feet Oxygen molecules are directly supplied to skin cells to help the body's metabolic activity.

또한 본 발명은 운동 중이거나 작업 중에 연속적으로 산소를 제공하여 혈행(血行)을 촉진시켜 인체대사를 도와준다. In another aspect, the present invention provides continuous oxygen during exercise or work to promote blood circulation (血 行) to help human body metabolism.

또한, 본 발명은 친환경적으로 제조하였기 때문에 일정 기간 사용 후 폐기 시에도 환경오염이 없으며, 친환경적으로 연(蓮)잎에서 추출한 천연 항균 및 항바이러스 추출물이 첨가되어, 우수한 항균 및 살균효과를 구비한다. In addition, since the present invention is manufactured in an environmentally friendly manner, there is no environmental pollution even after disposal for a certain period of time, and natural antibacterial and antiviral extracts extracted from lotus leaf are added to the environment, and thus have excellent antibacterial and bactericidal effects.

또한, 본 발명은 인체에 무해한 친환경고체물질만을 이용하여 산소를 자동발생시킴으로써, 신체에 직접적으로 접촉되어도 무해하고, 산소의 공급을 지속적으로 할 수 있다. 즉, 일반적으로 산소를 발생하는 물질은 대부분 인체에 치명적인 독성을 가하는 맹독성물질입니다. 예를 들면 오존과 과산화수소, 기타 유기과산화물등은 산소를 발생하지만 인체에 치명적인 영향을 주는데 반하여, 본 발명에 따른 친환경고체물질은 화합계에서 친환경물질, 혹은 녹색물질이라 부르는 친환경고체물질을 의미하는 것으로, 이러한 친환경고체물질은 인체에 해가 없는 산소발생 물질을 엄선하여 학술적으로 인체에 무해한 것이 증명된 화합물로써, 화학제품이 아니고 천연식물에서 추출하고 인체에 무해한 물질이므로, 인체에 직접적으로 접촉되어도 무해하고, 지속적인 산소공급이 가능하여, 신진대사를 촉진시키는 효과가 있다. In addition, the present invention by automatically generating oxygen using only environmentally friendly solid material harmless to the human body, it is harmless even if it is in direct contact with the body, it is possible to continue the supply of oxygen. In other words, oxygen-producing substances are generally poisonous toxins that are fatal to humans. For example, while ozone, hydrogen peroxide, and other organic peroxides generate oxygen but have a fatal effect on the human body, the eco-friendly solid material according to the present invention refers to an eco-friendly solid material or an eco-friendly solid material called a green material in the compound system. These eco-friendly solid materials are compounds that prove to be harmless to the human body by carefully selecting oxygen-generating substances that are harmless to the human body. They are not chemical products but are extracted from natural plants and are harmless to the human body. And, it is possible to supply a continuous oxygen, has the effect of promoting metabolism.

또한, 본 발명은 신발밑창, 양말, 의복, 방석, 매트, 운동복 등등 신체가 접촉되는 부위에 모두 적용될 수 있어, 산업적으로도 매우 큰 파급효과를 구비하는 등 많은 효과가 있다.
In addition, the present invention can be applied to all parts of the body contact, such as shoe soles, socks, clothes, cushions, mats, sportswear, etc., there are many effects such as having a very large ripple effect in the industry.

도 1 은 본 발명에 따른 제조과정을 보인 블록예시도1 is a block diagram showing a manufacturing process according to the present invention

본 발명은 섬유직물에 산소발생 혼합물을 도포 부착시키되,The present invention by applying the oxygen generating mixture to the textile fabric,

상기 산소발생 혼합물은 potassium superoxide 100 중량부, sodium superoxide 45~55 중량부, 수산화알루미늄 85~95 중량부, aromatic heavy oil 280~320 중량부, polyethylene glycole 280~320 중량부, 탄산칼슘(powder, 10㎛) 25~30중량부와 실리카젤(230~400mesh:~0.8㎤/g:surface area 550) 20~25중량부, 제올라이트 20~25 중량부, calcium superoxide 75~85 중량부, 이산화철 35~45 중량부를 포함한다. The oxygen generating mixture is 100 parts by weight of potassium superoxide, 45-55 parts by weight of sodium superoxide, 85-95 parts by weight of aluminum hydroxide, 280-320 parts by weight of aromatic heavy oil, 280-320 parts by weight of polyethylene glycole, calcium carbonate (powder, 10 Μm) 25-30 parts by weight and silica gel (230-400mesh: ~ 0.8 cm 3 / g: surface area 550) 20-25 parts by weight, zeolite 20-25 parts by weight, calcium superoxide 75-85 parts by weight, iron dioxide 35- by weight 45 parts by weight.

또한, 본 발명은 천연항균 및 항바이러스 추출물 7~13중량부를 더 포함한다.
In addition, the present invention further comprises 7 to 13 parts by weight of natural antibacterial and antiviral extract.

상기 산소발생 혼합물은 친환경 고체물질인 금속이온의 과산화물을 이용하여 친환경 녹생화학(green chemistry) 안정제를 이용하여 형성한 것으로, 연속적으로 산소를 제공하여 혈행을 촉진시켜 인체대사활동을 원활하게 한다.
The oxygen-generating mixture is formed using environmentally friendly green chemistry stabilizers using peroxides of metal ions, which are environmentally-friendly solid materials, and continuously provide oxygen to facilitate blood metabolism.

본 발명은 친환경적이면서 가격이 저렴한 금속 과산화물을 주재료로 하고 금속과산화물로부터 발생되는 산소분자의 단위 시간당 발생속도를 일정하게 유지하는 안정제를 첨가하여 자동적으로 산소발생을 유도하게 하였다. In the present invention, eco-friendly and inexpensive metal peroxides are used as main materials, and a stabilizer for maintaining a constant generation rate per unit time of oxygen molecules generated from the metal peroxides is automatically induced to generate oxygen.

또한, 본 발명은 안정제로 인체에 무해한 탄산칼슘, 실리카 젤, 제올라이트와 polyethyleneglycole을 첨가하여 산소발생을 돕게 만들어 추가하였다. In addition, the present invention was added to make the oxygen by adding a calcium carbonate, silica gel, zeolite and polyethyleneglycole harmless to the human body as a stabilizer.

또한, 본 발명은 금속산화물이 발의 피부에 직접 산소를 제공하기 전에 금속산화물이 발에서 나오는 땀과 반응하여 분해되는 과정을 막기 위하여 친환경적인 수분제거제를 첨가하였다.
In addition, the present invention added an eco-friendly moisture remover to prevent the metal oxide reacts with the sweat from the foot and decomposes before the metal oxide provides oxygen directly to the skin of the foot.

즉, 본 발명은 K2O, NaO2, CaO2 등 금속과산화물은 산소를 발생하는 주 원료물질이고, 그 외에는 전부 수분제거제와 안정제이다. That is, in the present invention, metal peroxides such as K 2 O, NaO 2, and CaO 2 are the main raw materials for generating oxygen, and all of them are moisture removers and stabilizers.

즉, 상기 실리카 젤, 산화알루미늄은 수분제거제이며, 상기 제올라이트는 실리카젤과 산화알루미늄 등의 수분제거제와 금속과산화물이 직접 반응하는 것을 방지하고 금속과산화물과 수분제거제가 안정되게 존재할 수 있도록 하는 역할을 하는 안정제 기능을 구비한다. That is, the silica gel and aluminum oxide are moisture removers, and the zeolite serves to prevent the metal peroxide from directly reacting with the moisture remover such as silica gel and aluminum oxide and to stably exist the metal peroxide and the moisture remover. It has a stabilizer function.

또한, polyethleneglycole과 aromatic heavy oil은 상기의 물질들이 콜로이드 상태로 존재하도록 하여 신발을 장시간 신고 있어도 일정량의 산소를 지속적으로 발에 가해 주는 완충제 역할뿐만 아니라, polyethyleneglycole과 aromatic heavy oil은 섬유직물과 접착되도록 하는 기능을 구비한다.
In addition, polyethleneglycole and aromatic heavy oil allow the above substances to exist in the colloidal state, so that polyethyleneglycole and aromatic heavy oil adhere to the textile fabric as well as a buffer that continuously applies a certain amount of oxygen to the foot even after wearing shoes for a long time. With functions.

또한, 본 발명은 산소발생과 동시에 세균과 박테리아로부터 신체를 보호하기 위하여 천연항균 및 항바이러스 추출물로, 연(蓮)잎에서 추출한 친환경적인 천연 살균제, Nelumbo nucifera와 α-longifolene, pterodontoside를 첨가하였다.
In addition, the present invention was added to the natural antibacterial and antiviral extracts to protect the body from bacteria and bacteria at the same time as the generation of oxygen, environmentally friendly natural fungicides extracted from lotus leaf, Nelumbo nucifera and α-longifolene, pterodontoside.

상기 섬유직물은 천연섬유직물, 합성섬유직물, 고어텍스 등의 기능성 천 또는 polytetrafluoroethylene천을 사용하며, 바람직하게는 기능성 섬유직물을 사용한다. 특히, 상기 polytetrafluoroethylene천은 산소발생 혼합물로부터 발생되는 산소가 일정하게 발생 또한 쉽게 배출되어 피부에 쉽게 접촉되게 하고, 공기 중 질소와 기타 이산화탄소 등은 쉽게 공기 중으로 배출되는 기능을 구비한다.
The textile fabric is a functional cloth or polytetrafluoroethylene cloth, such as natural fiber fabrics, synthetic fiber fabrics, Gore-Tex, preferably functional fiber fabrics. In particular, the polytetrafluoroethylene cloth has a function that the oxygen generated from the oxygen-generating mixture is constantly generated and easily discharged to be in easy contact with the skin, and nitrogen and other carbon dioxide in the air are easily discharged into the air.

이하, 본 발명의 기능성 섬유에 대한 제조방법을 설명하면 다음과 같다. Hereinafter, the manufacturing method for the functional fiber of the present invention will be described.

본 발명은 potassium superoxide, sodium superoxide를 혼합하고 polyethylen glycole에 분산시켜 1차혼합물을 생성하는 1차혼합물 생성단계;The present invention is a mixture of potassium superoxide, sodium superoxide and dispersed in polyethylen glycole to produce a primary mixture to produce a primary mixture;

상기 1차혼합물에 수산화알루미늄을 가하여 2차혼합물을 생성하는 2차혼합물 생성단계;Generating a secondary mixture by adding aluminum hydroxide to the primary mixture to produce a secondary mixture;

상기 2차혼합물인 polyethylene glycole 분산액에 탄산칼슘, 실리카젤과 제올라이트을 넣고 여기에 aromatic heavy oil을 혼합한 콜로이드용액에 분산시켜 콜로이드 분산혼합액을 생성하는 분산혼합액 생성단계;A dispersion mixture generating step of adding a calcium carbonate, silica gel and zeolite to the polyethylene glycole dispersion which is the secondary mixture and dispersing it in a colloidal solution mixed with aromatic heavy oil to produce a colloidal dispersion mixture;

상기 분산혼합액에 calcium superoxide, 이산화철을 혼합하여 산소발생 혼합물을 생성하는 혼합물 생성단계;A mixture generation step of generating an oxygen-generating mixture by mixing calcium superoxide and iron dioxide with the dispersion mixture;

상기 산소발생 혼합물을 섬유직물 표면에 도포하여 부착하는 코팅단계를 포함하도록 되어 있다.
It is to include a coating step of applying by applying the oxygen generating mixture to the surface of the textile fabric.

또한, 상기 코팅단계는 산소발생 혼합물이 코팅된 섬유직물에 천연항균 및 항바이러스 추출물을 도포하는 항균처리단계를 더 포함한다.
In addition, the coating step further includes an antibacterial treatment step of applying a natural antibacterial and antiviral extract on the fiber fabric coated with the oxygen-generating mixture.

상기 1차혼합물 생성단계는 친환경적이고 인체에 무해한 potassium superoxide 100중량부를 rubber grinding mill에서 서서히 분말로 한다. 또한, 친환경적이고 인체에 무해한 sodium superoxide 45~55중량부를 rubber grinding mill에서 천천히 분말로 만든다. 이때, 상기 potassium superoxide, sodium superoxide의 분말화 과정은 금속 grinding mill은 위험하므로, 사용하지 아니한다. The primary mixture production step is gradually made into powder in a rubber grinding mill 100 parts by weight of environmentally friendly and harmless potassium superoxide. In addition, 45 to 55 parts by weight of sodium superoxide, which is environmentally friendly and harmless to humans, is slowly powdered in a rubber grinding mill. At this time, the powdering process of the potassium superoxide, sodium superoxide is not used because the metal grinding mill is dangerous.

80rpm의 속도로 작동하는 교반기 안에 위에서 만든 potassium superoxide 100중량부와 sodium superoxide 45~55중량부를 혼합하고, 인체에 무해한 안정제인 polyethylen glycole 280~320중량부(부피비로 약 3:1)를 자석 교반기로 서서히 저어 주면서 potassium superoxide와 sodoum superoxide 혼합물 분말을 유도관을 통해 10g/min의 속도로 분산시켜 1차혼합용액을 생성한다.
100 parts by weight of potassium superoxide and 45 to 55 parts by weight of sodium superoxide are mixed in a stirrer operating at 80 rpm, and 280 to 320 parts by weight (about 3: 1 by volume) of a stabilizer that is harmless to humans is mixed with a magnetic stirrer. Stir slowly and disperse the powder mixture of potassium superoxide and sodoum superoxide at a rate of 10 g / min through an induction tube to produce a primary mixed solution.

(KO2 + NaO2) in PE(polyethylene glycole: C2n+2H4n+6On+2) → Dispersion
(KO 2 + NaO 2 ) in PE (polyethylene glycole: C 2n + 2 H 4n + 6 O n + 2 ) → Dispersion

상기 2차혼합물 생성단계는 생성된 1차혼합용액을 70rpm으로 저어 주면서 별도의 유도관을 통하여 완전히 건조한(drying oven에서 2시간 이상 가열한 후 진공 냉각시킴) 수산화알루미늄 85~95중량부를 8g/min 의 속도로 가하여 2차혼합물을 생성한다.
In the step of producing the secondary mixture, 85-95 parts by weight of aluminum hydroxide 8 g / min is completely dried (heated in a drying oven for at least 2 hours and vacuum-cooled) through a separate induction tube while stirring the produced primary mixture solution at 70 rpm. The mixture is added at a rate of to produce a secondary mixture.

(KO2 + NaO2) in PE(polyethylene glycole: C2n+2H4n+6On+2) → Dispersion → Al2O3 powder (particle size: 10㎛)
(KO 2 + NaO 2 ) in PE (polyethylene glycole: C 2n + 2 H 4n + 6 O n + 2 ) → Dispersion → Al 2 O 3 powder (particle size: 10㎛)

상기 분산혼합액 생성단계는 2차혼합물인 polyethylene glycole 분산액에 탄산칼슘 25~30중량부와 실리카젤 20~25중량부 및 제올라이트 20~25중량부를 넣고 여기에 aromatic heavy oil을 혼합한 콜로이드용액에 분산시킨다. 상기 분산혼합액 생성단계는 2차혼합물을 50~80rpm의 속도로 저어 주면서 aromatic heavy oil 170~190중량부를 별도의 유도관을 통하여 가하여 콜로이드 분산혼합액을 생성한다. In the dispersing mixture generating step, 25-30 parts by weight of calcium carbonate, 20-25 parts by weight of silica gel and 20-25 parts by weight of zeolite are dispersed in a polyethylene glycole dispersion, which is a secondary mixture, and dispersed in a colloidal solution mixed with aromatic heavy oil. . The dispersion mixture generating step is to stir the secondary mixture at a speed of 50 ~ 80rpm while adding 170 ~ 190 parts by weight of aromatic heavy oil through a separate induction tube to generate a colloidal dispersion mixture.

즉, 2차혼합물을 50~80rpm의 속도로 저어 주면서 제올라이트 (BioChemika : product No. 96096: particle size< 45㎛) 20~25중량부와 탄산칼슘(powder, 10㎛) 25~30중량부와 실리카젤(230~400mesh:~0.8㎤/g:surface area 550) 20~25중량부를 넣고 여기에 aromatic heavy 별도의 유도관을 통하여 가한다.
That is, 20-25 parts by weight of zeolite (BioChemika: product No. 96096: particle size <45㎛), 25-30 parts by weight of calcium carbonate (powder, 10㎛) and silica while stirring the secondary mixture at a speed of 50 ~ 80rpm 20 to 25 parts by weight of gel (230 ~ 400mesh: ~ 0.8 cm 3 / g: surface area 550) is added to the aromatic heavy through a separate induction tube.

(KO2 + NaO2) in PE(polyethylene glycole: C2n+2H4n+6On+2)→ Dispersion → Al2O3 powder (particle size: 10㎛)→Zeolite (grain size: 1.8㎛ STPP) + CaCO3 (powder, 10㎛) +SiO2 (230~400mesh:~0.8㎤/g:surface area 550)
(KO 2 + NaO 2 ) in PE (polyethylene glycole: C 2n + 2 H 4n + 6 O n + 2 ) → Dispersion → Al 2 O 3 powder (particle size: 10㎛) → Zeolite (grain size: 1.8㎛ STPP ) + CaCO 3 (powder, 10㎛) + SiO 2 (230 ~ 400mesh: ~ 0.8 cm3 / g: surface area 550)

상기 혼합물 생성단계는 2차분산혼합액을 36rpm의 속도로 서서히 저어주면서 여기에 별도의 유도관을 통해 calcium superoxide 75~85중량부를 서서히 가하고, 다른 유도관을 통하여 이산화철 35~45중량부를 서서히 가하여 산소발생 혼합물을 생성한다.
The mixture production step is slowly stirring the secondary dispersion mixture at a speed of 36rpm while slowly adding 75 ~ 85 parts by weight of calcium superoxide through a separate induction tube, and slowly adding 35 ~ 45 parts by weight of iron dioxide through another induction tube Generate the generating mixture.

(KO2 + NaO2) in PE(polyethylene glycole: C2n+2H4n+6On+2) → Dispersion → Al2O3 powder (particle size: 10㎛) → Zeolite (grain size: 1.8㎛ STPP) + CaCO3 (powder, 10㎛) +SiO2 (230~400mesh:~0.8㎤/g:surface area 550) → (CaO2+Fe2O3)
(KO 2 + NaO 2 ) in PE (polyethylene glycole: C 2n + 2 H 4n + 6 O n + 2 ) → Dispersion → Al 2 O 3 powder (particle size: 10㎛) → Zeolite (grain size: 1.8㎛ STPP ) + CaCO 3 (powder, 10㎛) + SiO 2 (230 ~ 400mesh: ~ 0.8cm 3 / g: surface area 550) → (CaO 2 + Fe 2 O 3 )

상기 코팅단계는 섬유직물의 표면에 산소발생 혼합물을 부착하는 단계로, 산소발생 혼합물을 섬유직물에 밀링을 이용하여 고르게 도포하고, 상기 산소발생 혼합물이 도포된 섬유직물을 진공펌프에 연결시켜 진공감압하에서 45℃로 20분 동안 가열한다. 이때, 상기 밀링의 속도는 70rpm이하로 하여 고르게 도포하고, 가열 온도는 50℃이상으로 올리면 위험하므로 주의하여야 한다.
The coating step is a step of attaching the oxygen generating mixture to the surface of the textile fabric, the oxygen generating mixture is evenly applied to the textile fabric by milling, and the vacuum fabric pressure is reduced by connecting the textile fabric coated with the oxygen generating mixture to a vacuum pump Under heat to 45 ° C. for 20 minutes. At this time, the speed of the milling is applied evenly to the 70rpm or less, and care should be taken because the heating temperature is raised to 50 ℃ or more.

상기 항균처리단계는 산소발생 혼합물의 도포 후, 처리되는 단계로, 유해 세균과 박테리아 및 바이러스로부터 인체를 보호하기 위하여 친환경적으로 연(蓮)잎에서 추출한 천연 살균제, Nelumbo nucifera, α-longifolene, pterodontoside를 가하는 단계로, 산소발생 혼합물 100중량부가 코팅된 섬유직물에 연(蓮)잎에서 추출한 천연항균 및 항바이러스 추출물 7~13중량부를 밀링으로 도포한다. 상기와 같은 천연항균 및 항바이러스 추출물의 중량비율은 천연항균 및 항바이러스 추출물을 필요 이상으로 처리할 경우, 오히려 발의 건강을 해칠 수 있으므로, 이를 방지하기 위한 최적배합비율을 규정한 것이다. The antimicrobial treatment step is to be treated after application of the oxygen generating mixture, in order to protect the human body from harmful bacteria, bacteria and viruses, environmentally friendly natural fungicides extracted from lotus leaf, Nelumbo nucifera, α-longifolene, pterodontoside In the step of addition, 7 to 13 parts by weight of the natural antibacterial and antiviral extracts extracted from the lotus leaf is applied to the coated textile fabric 100 parts by weight of the oxygen generating mixture by milling. The weight ratio of the natural antibacterial and antiviral extracts as described above, if the natural antibacterial and antiviral extracts are treated more than necessary, rather it may damage the health of the foot, it is to define the optimum ratio to prevent this.

또한, 상기 천연항균 및 항바이러스 추출물은 Nelumbo nucifera 4~6중량부, α-longifolene 2~4중량부, pterodontoside 1~3중량부로 이루어져 있다.
In addition, the natural antibacterial and antiviral extract is composed of 4 to 6 parts by weight of Nelumbo nucifera, 2 to 4 parts by weight of α-longifolene, and 1 to 3 parts by weight of pterodontoside.

또한, 상기 천연항균 및 항바이러스 추출물은 항균처리단계 없이 코팅단계 이전에 산소발생 혼합물에 혼합되어 섬유직물의 표면에 부착될 수 있다. In addition, the natural antibacterial and antiviral extract may be mixed in the oxygen generating mixture prior to the coating step without the antibacterial treatment step and attached to the surface of the fabric.

상기 Nulembo nucifera와 α-longifolene, pterodotoside는 연잎에서만 추출 가능한 독성이 없는 천연항균, 항바이러스 화합물로, 본 발명은 연잎에서 Nulembo nucifera와 α-longifolene, pterodotoside 만 정확하게 분리 추출하여 사용한다. The Nulembo nucifera and α-longifolene, pterodotoside is a natural antibacterial, antiviral compound that can not be extracted only from the lotus leaf, the present invention is used to accurately extract and extract only Nulembo nucifera and α-longifolene, pterodotoside from the lotus leaf.

상기 연(蓮)잎으로부터의 천연항균 및 항바이러스 추출물은 다음과 같이 추출한다. 둥근 플라스크에 Soxhlet 추출기를 연결하고 둥근 플라스크에 냉암소에서 잘 건조한 연(蓮)잎 100중량부를 각각 1.0~2.0㎜ 크기로 잘게 부수어 2차 증류수 500중량부를 가한 다음 100℃의 온도에서 추출한다. 증류수에서 추출한 추출물을 glass filter로 여과하고, 또다른 둥근플라스크에 위에서 추출하고 남은 여액 위에 있는 연(蓮)잎 고체 성분에 무수에탄올(C2H5OH) 110~130중량부 가하고 Soxhlet 추출기를 연결하여 80℃의 온도에서 추출한 후, 무수에탄올에서 추출한 추출물을 glass filter로 여과한다. Natural antibacterial and antiviral extracts from the lotus leaf are extracted as follows. Connect the Soxhlet extractor to the round flask and crush 100 parts by weight of the dried dry leaves in a cold dark place into 1.0∼2.0 mm sizes, add 500 parts by weight of secondary distilled water, and extract at a temperature of 100 ℃. Filter the extract extracted from distilled water with a glass filter, extract it from above in another round flask, add 110-130 parts by weight of anhydrous ethanol (C 2 H 5 OH) to the soft leaf solid component on the remaining filtrate, and connect the Soxhlet extractor. After extraction at a temperature of 80 ℃, the extract extracted from anhydrous ethanol is filtered with a glass filter.

상기 2차증류수에서 추출한 성분과 무수에탄올에서 추출한 성분을 합치고 고성능 분취용 액체크로마토그래피 상에서 분취하고, 분취물에 미량 함유된 Nelumbo nucifera 과 α-longifolene 및, pterodontoside를 획득한다.
The components extracted from the secondary distilled water and the components extracted from anhydrous ethanol are combined and fractionated on a high performance preparative liquid chromatography to obtain Nelumbo nucifera and α-longifolene and pterodontoside contained in traces in the aliquot.

이와 같은 천연항균 및 항바이러스 추출물 추출과정을 특정수치에 의해 좀더 상세하게 설명하면, 1000㎖의 둥근 플라스크에 Soxhlet 추출기를 연결하고 둥근 플라스크에 냉암소에서 잘 건조한 연(蓮)잎 100g을 각각 1.0~2.0㎜ 크기로 잘게 부수어 2차 증류수 500㎖를 가한 다음 100℃의 온도에서 추출한다. 증류수에서 추출한 추출물을 glass filter로 여과하고, 또다른 1000㎖의 둥근플라스크에 위에서 추출하고 남은 여액위에 있는 연(蓮)잎 고체 성분에 무수에탄올(C2H5OH) 120㎖를 가하고 Soxhlet 추출기를 연결하여 80℃의 온도에서 추출한 후, 무수에탄올에서 추출한 추출물을 glass filter로 여과한다. The natural antibacterial and antiviral extract extraction process will be described in more detail by specific values. Connect a Soxhlet extractor to a 1000 ml round flask, and add 100 g of dried leaves to the round flask. Break down to a size of 2.0 mm, add 500 mL of secondary distilled water, and extract at a temperature of 100 ° C. The extract extracted from distilled water was filtered with a glass filter, and extracted from the above in another 1000 ml round flask, and 120 ml of anhydrous ethanol (C 2 H 5 OH) was added to the solid component of the lotus leaf on the remaining filtrate. After connection and extraction at a temperature of 80 ℃, the extract extracted from anhydrous ethanol is filtered with a glass filter.

상기 2차증류수에서 추출한 성분과 무수에탄올에서 추출한 성분을 합치고 고성능 분취용 액체크로마토그래피 상에서 분취하고, 분취물에 미량 함유된 Nelumbo nucifera 과 α-longifolene 및, pterodontoside를 획득한다.
The components extracted from the secondary distilled water and the components extracted from anhydrous ethanol are combined and fractionated on a high performance preparative liquid chromatography to obtain Nelumbo nucifera and α-longifolene and pterodontoside contained in traces in the aliquot.

상기와 같이 연(蓮)잎으로부터 추출한 Nelumbo nucifera과 α-longifolene 및, pterodontoside 의 수득율은 아래의 [표1]과 같다. The yields of Nelumbo nucifera and α-longifolene and pterodontoside extracted from lotus leaf as described above are shown in Table 1 below.

[표1]Table 1

Figure 112010028807280-pat00001

Figure 112010028807280-pat00001

상기와 같이 이루어진 본 발명의 기능성 섬유직물은 신발밑창, 양발, 바지, 외투 등의 피복, 매트, 매트커버, 방석 등등 다양한 소재분야에 변형되어 적용될 수 있으며, 이들 소재들로부터 산소가 자동적으로 공급되어, 인체에 유익한 효과 및 신진대사를 원활하게 해주게 된다.
Functional textile fabric of the present invention made as described above can be applied to various material fields such as shoe soles, feet, pants, coats, coats, mats, mat covers, cushions, etc., oxygen is automatically supplied from these materials It will be beneficial to the human body and smooth the metabolism.

이하 본 발명을 실시예에 의해 상세히 설명하면 다음과 같다. Hereinafter, the present invention will be described in detail by way of examples.

실시예 1Example 1

potassium superoxide 100g을 rubber grinding mill에서 서서히 분말화하고, sodium superoxide 50g을 rubber grinding mill에서 천천히 분말로 만든 후, 80rpm의 속도로 작동하는 교반기 안에 위에서 만든 potassium superoxide 100g과 sodium superoxide 50g을 혼합하였다. 100 g of potassium superoxide was slowly powdered in a rubber grinding mill, 50 g of sodium superoxide was slowly powdered in a rubber grinding mill, and then 100 g of potassium superoxide and 50 g of sodium superoxide were mixed in a stirrer operating at a speed of 80 rpm.

polyethylen glycole 300㎖을 자석 교반기로 서서히 저어 주면서 potassium superoxide와 sodoum superoxide 혼합물 분말을 유도관을 통해 10g/min 의 속도로 분산시켜 1차혼합용액을 생성하였다. Stirring 300 ml of polyethylen glycole slowly with a magnetic stirrer, the mixture of potassium superoxide and sodoum superoxide powder was dispersed at a rate of 10 g / min through an induction tube to produce a primary mixed solution.

상기 생성된 1차혼합용액을 70rpm으로 저어 주면서 별도의 유도관을 통하여 완전히 건조한 (drying oven에서 2시간 이상 가열한 후 진공 냉각시킴) 수산화알루미늄 90g을 8g/min 의 속도로 가하여 2차혼합물을 생성하였다. Stir the produced primary mixed solution at 70 rpm and completely dry through a separate induction pipe (heated in a drying oven for 2 hours or more and vacuum cooled) to add 90 g of aluminum hydroxide at a rate of 8 g / min to generate a secondary mixture. It was.

상기 생성된 2차혼합물 540g을 80rpm의 속도로 저어 주면서 제올라이트 (BioChemika : product No. 96096: particle size< 45㎛) 25중량부와 탄산칼슘(powder, 10㎛) 30중량부와 실리카젤(230~400mesh:~0.8cm3/g:surface area 550) 25중량부를 넣고 여기에 aromatic heavy oil 180g을 별도의 유도관을 통하여 가하여 콜로이드 분산혼합액을 생성하였다.
Stirring the resulting secondary mixture 540g at a speed of 80rpm while zeolite (BioChemika: product No. 96096: particle size <45㎛) 25 parts by weight and calcium carbonate (powder, 10㎛) 30 parts by weight and silica gel (230 ~ 400mesh: ~ 0.8cm 3 / g: surface area 550) 25 parts by weight was added thereto, and 180 g of aromatic heavy oil was added through a separate induction tube to generate a colloidal dispersion mixture.

상기 생성된 콜로이드 분산혼합액을 50rpm의 속도로 저어 주면서 제올라이트 (BioChemika : product No. 96096: particle size< 45) 90g을 별도의 유도관을 통하여 로 가하여 2차분산혼합액을 생성하였다. The colloidal dispersion mixture was stirred at a rate of 50 rpm, and 90 g of zeolite (BioChemika: product No. 96096: particle size <45) was added to a separate induction tube to generate a second dispersion mixture.

상기 생성된 2차분산혼합액을 36rpm의 속도로 서서히 저어주면서 여기에 별도의 유도관을 통해 calcium superoxide 81g을 서서히 가하고, 다른 유도관을 통하여 이산화철 40.5g을 서서히 가하여 산소발생 혼합물을 생성하였다.
While slowly stirring the resulting secondary dispersion mixture at a speed of 36 rpm, calcium superoxide 81g was slowly added thereto through a separate induction tube, and 40.5 g of iron dioxide was slowly added through another induction tube to generate an oxygen generating mixture.

실시예 2. Example 2.

상기 실시예 1 에 따라 생성된 산소발생 혼합물 40g을 세로 22㎝, 가로 8㎝으로 재단된 polytetrafluoroethylene 천 위에 70rpm의 속도로 회전하는 밀링 상에서 도포한 후, 연(蓮)잎에서 추출한 Nelumbo nucifera 2.0g과 α-longifolene 1.2g 및, pterodontoside 0.8g을 밀링으로 도포하였다. 이때, Polytetrafluoroethylene 천의 두께는 1.0~1.2㎜로 하였다. 40 g of the oxygen-generating mixture produced according to Example 1 was applied on a milling machine rotating at a speed of 70 rpm on a polytetrafluoroethylene cloth cut to 22 cm in length and 8 cm in width, followed by 2.0 g of Nelumbo nucifera extracted from lotus leaf and 1.2 g of α-longifolene and 0.8 g of pterodontoside were applied by milling. At this time, the thickness of the polytetrafluoroethylene cloth was 1.0-1.2 mm.

상기와 같이 산소발생 혼합물 및 천연항균 및 항바이러스 추출물이 도포된 천을 진공감압하에서 45℃로 20분 동안 가열한 후 냉각데시케이터에서 실온까지 냉각하였으며, 이를 시료로 사용하여 측정 시간당 산소발생량을 Bacon F. Chow와 Kamerling, S. E.의 방법 ( Bacon F. Chow; Kamerling, S. E. The Journal of Biological Chemistry, 1933, pp 69-79.) 과 Troy Schmidtke; Daniel White 및 Craig Woolard 방법 (Troy Schmidtke; Daniel White; Craig Woolard, Journal of Hazardous Materials, B64, 1999, pp157-165.)에 따라 측정하였다. The oxygen-coated mixture and the natural antibacterial and antiviral extract-coated fabric were heated to 45 ° C. under vacuum pressure for 20 minutes as described above, and then cooled to room temperature in a cooling desiccator. F. Chow and Kamerling, SE (Bacon F. Chow; Kamerling, SE The Journal of Biological Chemistry , 1933, pp 69-79.) And Troy Schmidtke; Measurements were made according to the Daniel White and Craig Woolard methods (Troy Schmidtke; Daniel White; Craig Woolard, Journal of Hazardous Materials , B64 , 1999, pp157-165.).

상기 시료는 가로 1.5㎝, 세로 3.0㎝로 가위로 잘라내었으며, 잘라낸 시료 3.0g을 50㎖ 둥근플라스크에 넣고 자석젓게로 서서히 저어 주면서 플라스크를 환류냉각관에 연결하고, 환류냉각관의 위 부분을 막고 환류냉각관의 상부를 리비히 냉각 유도관에 연결하여 발생한 산소를 오른쪽에 100㎖의 메스실린더로 이동시켰으며, 유도관 주위를 냉각수로 냉각시키고 100㎖ 메스실린더안에 phosphate buffer 20㎖와 0.05M 짜리 oleic acid 2.0㎖ 및 0.1 M짜리 potassium hexacyanoferrate 0.2㎖를 채웠다. The sample was cut out with scissors in 1.5 cm width and 3.0 cm length, and 3.0 g of the cut sample was placed in a 50 ml round flask, and the flask was slowly stirred with a magnetic stirrer, and the flask was connected to the reflux cooling tube. The upper part of the reflux condenser was connected to the Liebig refrigeration conduit and the oxygen generated was transferred to a 100 ml measuring cylinder on the right side, and cooled around the induction tube with cooling water and 20 ml of phosphate buffer and 0.05 M oleic in the 100 ml measuring cylinder. 2.0 ml of acid and 0.2 ml of 0.1 M potassium hexacyanoferrate were charged.

초시계로 반응시작 후 일정 시간이 경과할 때 오른쪽 메스실린더에 있는 액체의 눈금이 밀려 내려간 점을 읽어 산소 발생량을 측정한 결과는 아래의 [표2], [표3], 및 [표4]과 같다. After a certain time has elapsed since the start of the reaction with a stopwatch, the result of measuring the amount of oxygen generated by reading the point where the scale of the liquid in the right measuring cylinder has been pushed down is shown in [Table 2], [Table 3], and [Table 4]. same.

이때, 산소발생은 다음 [화학식1]에서와 같이 반응이 진행되었으며, 처음 반응에 가해 준 반응물, 2㏖ 비의 KO2 2㏖ 비의 NaO2 1㏖ 비인 CaO2 에 대해 발생한 산소의 양 (7/2O2 ㏖)을 측정한 것이다. At this time, the oxygen generation reaction proceeded as shown in the following [Formula 1], the reactant was added to the first reaction, 2 mol ratio KO 2 and 2 mol ratio of NaO 2 and The amount of oxygen generated (7 / 2O 2 mol) to CaO 2 in a 1 mol ratio is measured.

[화학식1][Formula 1]

2KO2 + 2NaO2 + CaO2 + 3CO2 → K2CO3 + Na2CO3 + CaCO3 +7/2O2
2KO 2 + 2 NaO 2 + CaO 2 + 3 CO 2 → K 2 CO 3 + Na 2 CO 3 + CaCO 3 + 7 / 2O 2

[표2][Table 2]

Figure 112010028807280-pat00002
Figure 112010028807280-pat00002

[표3][Table 3]

Figure 112010028807280-pat00003
Figure 112010028807280-pat00003

[표4]Table 4

Figure 112010028807280-pat00004

Figure 112010028807280-pat00004

상기 [표2]는 에서 보는 바와 같이 본 발명에 따른 산소를 발생하는 기능성 섬유는 단위 시간 당 산소 발생량이 일정함을 알 수 있다. [표2]에서 O2/K4Fe(CN)6의 비율은 측정시간 최초 20분에서 0.35를 보이나 그 이후 30분부터 20분 내지 30분 60분 간격으로 측정하여 단위 시간 당 생성량을 환산하면 1.16~1.32로 거의 일정한 비율을 보인다. As shown in [Table 2], the functional fiber generating oxygen according to the present invention can be seen that the amount of oxygen generated per unit time is constant. In [Table 2], the ratio of O 2 / K 4 Fe (CN) 6 is 0.35 in the first 20 minutes of measurement time, but is measured at 30 to 20 minutes and 30 minutes from thereafter. 1.16 ~ 1.32 shows almost constant ratio.

또한, 상기 [표3]에서는 K3Fe(CN)6의 농도를 [표2]에 비해 10분의 1로 줄였으나 [표2]와 마찬가지로 단위 시간 당 생성비율은 최초 30분 이 후부터는 1.02~1.03으로 거의 일정함을 보였다. [표4]에서는 K3Fe(CN)6의 농도를 [표2]에 비해 20분의 1로 줄였으나 [표2]와 마찬가지로 단위 시간당 생성비율은 최초 30분 이 후부터는 0.84~0.87로 거의 일정하였다. 이러한 결과는 본 발명에 따른 산소를 발생하는 기능성 섬유에서 발생하는 단위 시간 당 산소 발생량이 일정함을 증명한다.
In addition, in [Table 3], the concentration of K 3 Fe (CN) 6 was reduced to one tenth of that of [Table 2]. However, as in [Table 2], the production rate per unit time was 1.02∼ after the first 30 minutes. It was almost constant at 1.03. In [Table 4], the concentration of K 3 Fe (CN) 6 was reduced to 1/20 compared to [Table 2], but as in [Table 2], the production rate per unit time was almost constant from 0.84 to 0.87 after the first 30 minutes. It was. These results demonstrate that the oxygen generation amount per unit time generated in the oxygen-generating functional fiber according to the present invention is constant.

실시예 3Example 3

상기 실시예 2 와 동일한 방법에 의해 제조된 시료를 사용하여 항균, 항바이러스효과를 다음과 같이 관측하였다. Barrow, G. I. (Barrow G. I.; Feltham R. K. A. Manual for the Identification of Medical Bacteria, Cambridge University Press, Cambridge, UK. 1933.)과 Krogstad, D. J. (Krogstad, D. J.; Moellering, R. C. Combinations of Antibiotics, Mechanisms of Interaction against Bacteria, Chapter 11. In: Antibiotics in Laboratory Medicine, Lorian V. Ed., Williams and Wilkins, Baltimore/London, 1990: pp. 298-331.) 및 Sarkar, SA. (Sarkar, A.; Kumar, K. A.; Dutta, N. K.; Chakraborty, P.; Dastidar, S. G. Evaluation of in vitro and in vivo Antibacterial Activity of Dobutamine Hydrochloride, Indian Journal of Medical and microbiology, 2003, 21 (3), pp. 172-178.)와 Lopez, A. I. ( Lopez, A. I.; Reins, R. Y.; McDermott, A. M.; Trautner, B. W,; Chengzhi, C. Antibacterial Activity and Cytotoxicity of PEGylated Poly ( Amidoamine) Dendrimers, ㏖ecular Biosystems, 2009, Vol.5, pp.1148-1156.)의 방법에 따라 항균, 항바이러스 효과를 측정하였다.
Using a sample prepared by the same method as in Example 2, the antimicrobial and antiviral effects were observed as follows. Barrow, GI (Barrow GI; Feltham RKA Manual for the Identification of Medical Bacteria , Cambridge University Press, Cambridge, UK.1933.) And Krogstad, DJ (Krogstad, DJ; Moellering, RC Combinations of Antibiotics, Mechanisms of Interaction against Bacteria , Chapter 11.In: Antibiotics in Laboratory Medicine , Lorian V. Ed., Williams and Wilkins, Baltimore / London, 1990: pp. 298-331.) And Sarkar, SA. (Sarkar, A .; Kumar, KA; Dutta, NK; Chakraborty, P .; Dastidar, SG Evaluation of in vitro and in vivo Antibacterial Activity of Dobutamine Hydrochloride , Indian Journal of Medical and microbiology , 2003, 21 (3), pp 172-178.) And Lopez, AI (Lopez, AI; Reins, RY; McDermott, AM; Trautner, B. W ,; Chengzhi, C. Antibacterial Activity and Cytotoxicity of PEGylated Poly (Amidoamine) Dendrimers, Molecular Biosystems, 2009, Vol . 5 , pp.1148-1156.) Was measured for the antimicrobial and antiviral effect.

항균제 감수성 검사를 위하여 [표5]에 보는 바와 같이 8종의 박테리아를 Barrow 와 Feltham의 방법(Barrow G. I.; Feltham R. K. A. Manual for the Identification of Medical Bacteria, Cambridge University Press, Cambridge, UK. 1933.)에 따라 박테리아의 특성을 확인한 후 peptone 용액에서 minimum inhibitory concentration(MIC)를 측정하였다. For antimicrobial susceptibility testing, eight bacteria were screened according to Barrow GI; Feltham RKA Manual for the Identification of Medical Bacteria , Cambridge University Press, Cambridge, UK.1933. After confirming the characteristics of the bacteria, the minimum inhibitory concentration (MIC) was measured in the peptone solution.

Peptone 용액은 다음과 같이 제조하였다. Oxoid사 제품 peptone 1.0%(w/v) 를 순수 NaCl (100% 짜리)을 3차 증류수에 녹여 만든 0.5%(w/v) 혼합액에 섞고, 여기에 Oxoid사 제품, nutrient broth 1.0%(w/v)와 Hugo사 제품, Mueller Hinton broth agar 0.5%(w/v)를 혼합하였다. 위 혼합용액을 pH 7.2~7.4 범위에서 조절하여 미생물배지(nutrient agar)를 만들었다. Peptone solution was prepared as follows. Oxoid company's peptone 1.0% (w / v) is mixed with 0.5% (w / v) mixture made by dissolving pure NaCl (100%) in tertiary distilled water, and Oxoid company's nutrient broth 1.0% (w / v) v) and Hugo, Mueller Hinton broth agar 0.5% (w / v) was mixed. The mixed solution was adjusted to pH 7.2 ~ 7.4 to make a nutrient agar.

항균제 감수성 검사는 앞에서 만든 미생물배지를 이용한 한천 희석법(agar dilution method)으로 수행하였다. 양이온이 첨가된 Mueller-Hinton broth agar (pH 7.2~7.4)에 항균제를 단계적으로 희석하여 각 시험관에 첨가하였다. Macrodilution broth 법에 따라 106 CFU의 균주 (strain)를 0.1㎖로 표준화시킨 용액에 앞서 만든 양이온이 첨가된 Mueller-Hinton agar(pH 7.2~7.4)를 가하여 각각의 농도가 10, 20, 50 100㎎/㎖가 되게 하였다.
Antimicrobial susceptibility test was performed by the agar dilution method using the microbial medium prepared previously. The antimicrobial agent was diluted stepwise in Mueller-Hinton broth agar (pH 7.2 ~ 7.4) containing cations and added to each test tube. According to the macrodilution broth method, the concentration of 10, 20 and 50 100 mg was added by adding Mueller-Hinton agar (pH 7.2 to 7.4) containing the cation added to the solution prepared by standardizing the strain of 10 6 CFU to 0.1 ml. / Ml.

상기 시료를 가로 0.5㎝, 세로 0.5㎝로 가위로 잘라내고, 이를 시료의 농도가 각각 10, 20, 50, 100 ㎎/㎖가 되도록 환산하여 nutrient agar에 녹여 앞서 만든 시험관에 가하고 37℃로 유지된 Incubator 안에서 72시간 동안 항온하였다. 항균, 항바이러스 감수성 효과는 다음 [표 5]와 같이 관측되었다. Cut the sample into scissors 0.5cm long and 0.5cm long, and convert it to a concentration of 10, 20, 50 and 100 mg / ml, respectively, and dissolve it in nutrient agar. The incubator was incubated for 72 hours. Antimicrobial and antiviral susceptibility effects were observed in the following [Table 5].

[표5][Table 5]

Figure 112010028807280-pat00005

Figure 112010028807280-pat00005

상기 [표5]는 항균 및 항바이러스효과를 Minimum Inhibitory Concentration: MIC ㎎/㎖로 나타낸 것으로, [Table 5] shows the antimicrobial and antiviral effects as Minimum Inhibitory Concentration: MIC ㎎ / ㎖,

산소발생 혼합물만을 입힌 소재보다는 산소발생 혼합물과 천연항균 및 항바이러스 추출물을 도포한 소재의 항균, 항바이러스 효율이 크게 나타남을 알 수 있다. 예로서 박테리아 P. aeruginosa 경우, 산소발생 혼합물만을 입힌 소재에서 항균 및 항바이러스 효과를 나타내는 MIC는 85㎎/㎖를 보인다. 그러나 산소발생 혼합물과 동시에 천연항균 및 항바이러스 추출물을 도포한 소재의 항균, 항바이러스 효과를 나타내는 MIC는 아주 작은 값, 22~29㎎/㎖를 보인다. It can be seen that the antibacterial and antiviral efficiencies of the oxygen-coated mixture and the material coated with the natural antibacterial and antiviral extracts are greater than those of the oxygen-coated mixture alone. For example, in the case of bacteria P. aeruginosa , the MIC, which exhibits antimicrobial and antiviral effects, on a material coated only with an oxygen-generating mixture shows 85 mg / ml. However, the MIC showing the antimicrobial and antiviral effects of the material coated with the natural antibacterial and antiviral extracts at the same time as the oxygen-generating mixture shows a very small value, 22-29mg / ml.

이와 같이 모든 세균과 바이러스에서 산소발생 혼합물과 동시에 천연항균 및 항바이러스 추출물을 도포한 소재의 항균, 항바이러스 효과를 나타내는 MIC는 아주 작은 값을 보인다. As such, the MIC showing the antimicrobial and antiviral effects of the material coated with the natural antibacterial and antiviral extracts simultaneously with the oxygen-generating mixture in all bacteria and viruses shows very small values.

또한 [표 5]에서 보면 천연항균 및 항바이러스 추출물의 환산 농도가 10, 20, 50, 100 ㎎/㎖로 변할 때 항균 및 항바이러스의 MIC값은 농도가 묽을 때보다도 농도가 50㎎/㎖로 진하게 될 때 MIC값은 감소한다. 그러나 농도가 100㎎/㎖로 증가하면 오히려 MIC값은 증가한다. 이것은 본 발명에서 제조한 산소발생 혼합물과 동시에 천연항균 및 항바이러스 추출물을 도포한 소재의 항균, 항바이러스 효과는 50㎎/㎖의 농도일 때가 최적조건임을 나타내 준다. In addition, in Table 5, when the converted concentrations of the natural antibacterial and antiviral extracts were changed to 10, 20, 50, and 100 mg / ml, the MIC values of the antimicrobial and antiviral concentrations were 50 mg / ml than when the concentrations were diluted. MIC value decreases when it becomes thick. However, as the concentration increased to 100 mg / ml, the MIC value increased. This indicates that the antimicrobial and antiviral effects of the material coated with the natural antibacterial and antiviral extracts at the same time as the oxygen-generating mixture prepared in the present invention are optimal at a concentration of 50 mg / ml.

이상의 결과에서 보면 산소발생 혼합물과 동시에 천연항균 및 항바이러스 추출물을 도포한 소재는 자동적으로 일정한 시간 간격으로 산소를 발생하여 인체의 건강을 도와주고 항균, 항바이러스 효과를 나타내는 이상적인 것임을 알 수 있다.
From the above results, it can be seen that the material coated with the natural antibacterial and antiviral extracts at the same time as the oxygen generating mixture automatically generates oxygen at regular time intervals to help the human health and show antibacterial and antiviral effects.

본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위내에 있게 된다.The present invention is not limited to the above-described specific preferred embodiments, and various modifications can be made by any person having ordinary skill in the art without departing from the gist of the present invention claimed in the claims. Of course, such changes will fall within the scope of the claims.

Claims (13)

섬유직물에 산소발생 혼합물을 도포 부착시키되,
상기 산소발생 혼합물은 potassium superoxide 분말 100 중량부, sodium superoxide 분말 45~55 중량부, 수산화알루미늄 85~95 중량부, aromatic heavy oil 280~320 중량부, polyethylene glycole 280~320 중량부, 탄산칼슘 25~30중량부, 실리카젤 20~25중량부, 제올라이트 20~25중량부, calcium superoxide 75~85 중량부, 이산화철 35~45 중량부로 이루어진 것을 특징으로 하는 산소를 발생하는 기능성 섬유직물.
Apply an oxygen-generating mixture to the fabric,
The oxygen generating mixture is 100 parts by weight of potassium superoxide powder, 45 to 55 parts by weight of sodium superoxide powder, 85 to 95 parts by weight of aluminum hydroxide, 280 to 320 parts by weight of aromatic heavy oil, 280 to 320 parts by weight of polyethylene glycole, calcium carbonate 25 to An oxygen-generating functional textile fabric comprising 30 parts by weight, 20 to 25 parts by weight of silica gel, 20 to 25 parts by weight of zeolite, 75 to 85 parts by weight of calcium superoxide, and 35 to 45 parts by weight of iron dioxide.
청구항 1 에 있어서;
상기 섬유직물은 천연섬유직물, 합성섬유직물, 고어텍스, 기능성 천 또는 polytetrafluoroethylene천 중 선택된 하나인 것을 특징으로 하는 산소를 발생하는 기능성 섬유직물.
The method of claim 1,
The fiber fabric is a functional fiber fabric that generates oxygen, characterized in that selected from natural fiber fabrics, synthetic fiber fabrics, Gore-Tex, functional cloth or polytetrafluoroethylene cloth.
청구항 1 에 있어서;
상기 산소발생 혼합물은 천연항균 및 항바이러스 추출물 7~13중량부를 더 포함하는 것을 특징으로 하는 산소를 발생하는 기능성 섬유직물.
The method of claim 1,
The oxygen-generating mixture is a functional fiber fabric for generating oxygen, characterized in that it further comprises 7 to 13 parts by weight of natural antibacterial and antiviral extract.
청구항 3 에 있어서;
상기 천연항균 및 항바이러스 추출물은 Nelumbo nucifera 4~6중량부, α-longifolene 2~4중량부, pterodontoside 1~3중량부로 이루어진 것을 특징으로 하는 산소를 발생하는 기능성 섬유직물.
The method of claim 3,
The natural antibacterial and antiviral extract is a functional fiber fabric that generates oxygen, characterized in that 4 to 6 parts by weight of Nelumbo nucifera, 2 to 4 parts by weight of α-longifolene, and 1 to 3 parts by weight of pterodontoside.
청구항 1 내지 청구항 4 중 어느 한 항에 있어서;
상기 기능성 섬유직물은 신발밑창, 양말, 피복, 방석, 매트인 것을 특징으로 하는 산소를 발생하는 기능성 섬유직물.
The method according to any one of claims 1 to 4;
The functional textile fabric is a functional fiber fabric that generates oxygen, characterized in that the sole, socks, cloth, cushion, mat.
potassium superoxide, sodium superoxide를 혼합하고 polyethylen glycole에 분산시켜 1차혼합물을 생성하는 1차혼합물 생성단계;
상기 1차혼합물에 수산화알루미늄을 가하여 2차혼합물을 생성하는 2차혼합물 생성단계;
상기 2차혼합물의 polyethylene glycole 분산액에 탄산칼슘, 실리카젤과 제올라이트을 넣고 여기에 aromatic heavy oil을 혼합한 콜로이드용액에 분산시켜 콜로이드 분산혼합액을 생성하는 분산혼합액 생성단계;
상기 분산혼합액에 calcium superoxide, 이산화철을 혼합하여 산소발생 혼합물을 생성하는 혼합물 생성단계;
상기 산소발생 혼합물을 섬유직물 표면에 도포하여 부착하는 코팅단계를 포함하는 것을 특징으로 하는 산소를 발생하는 기능성 섬유직물 제조방법.
a primary mixture generating step of mixing potassium superoxide and sodium superoxide and dispersing in polyethylen glycole to produce a primary mixture;
Generating a secondary mixture by adding aluminum hydroxide to the primary mixture to produce a secondary mixture;
A dispersion mixture generating step of adding calcium carbonate, silica gel and zeolite to the polyethylene glycole dispersion of the secondary mixture and dispersing it in a colloidal solution mixed with aromatic heavy oil to produce a colloidal dispersion mixture;
A mixture generation step of generating an oxygen-generating mixture by mixing calcium superoxide and iron dioxide with the dispersion mixture;
Method for producing a functional fiber fabric for generating oxygen, characterized in that it comprises a coating step of applying by applying the oxygen generating mixture on the surface of the textile fabric.
청구항 6 에 있어서;
상기 산소발생 혼합물은 potassium superoxide 분말 100 중량부, sodium superoxide 분말 45~55 중량부, 수산화알루미늄 85~95 중량부, aromatic heavy oil 280~320 중량부, polyethylene glycole 280~320 중량부, 탄산칼슘 25~30중량부, 실리카젤 20~25중량부, 제올라이트 20~25중량부, calcium superoxide 75~85 중량부, 이산화철 35~45 중량부로 이루어진 것을 특징으로 하는 산소를 발생하는 기능성 섬유직물 제조방법.
The method according to claim 6;
The oxygen generating mixture is 100 parts by weight of potassium superoxide powder, 45 to 55 parts by weight of sodium superoxide powder, 85 to 95 parts by weight of aluminum hydroxide, 280 to 320 parts by weight of aromatic heavy oil, 280 to 320 parts by weight of polyethylene glycole, calcium carbonate 25 to 30 parts by weight, silica gel 20 to 25 parts by weight, zeolite 20 to 25 parts by weight, calcium superoxide 75 to 85 parts by weight, iron dioxide 35 to 45 parts by weight, characterized in that oxygen producing functional fiber fabric manufacturing method.
청구항 6 에 있어서;
상기 1차혼합물 생성단계는 potassium superoxide 100중량부를 rubber grinding mill에서 분말화하고, sodium superoxide 45~55중량부를 rubber grinding mill에서 분말화하며, 교반기에서 potassium superoxide 100중량부와 sodium superoxide 45~55중량부를 혼합하고, polyethylen glycole 280~320중량부를 자석 교반기로 저어 주면서 potassium superoxide와 sodoum superoxide 혼합물 분말을 유도관을 통해 10g/min의 속도로 분산시켜 1차혼합용액을 생성하는 것을 특징으로 하는 산소를 발생하는 기능성 섬유직물 제조방법.
The method according to claim 6;
The primary mixture production step is 100 parts by weight of potassium superoxide powdered in a rubber grinding mill, 45 to 55 parts by weight sodium superoxide powder in a rubber grinding mill, 100 parts by weight of potassium superoxide and 45 to 55 parts by weight of sodium superoxide in a stirrer Mixing and stirring 280-320 parts by weight of polyethylen glycole with a magnetic stirrer while dispersing the potassium superoxide and sodoum superoxide mixture powder at a rate of 10 g / min through an induction tube to generate the oxygen, characterized in that to produce a primary mixed solution Functional textile fabric manufacturing method.
청구항 6 에 있어서;
상기 2차혼합물 생성단계는 생성된 1차혼합용액을 믹싱하면서 별도의 유도관을 통하여 완전히 건조한(drying oven에서 2시간 이상 가열한 후 진공 냉각시킴) 수산화알루미늄 85~95중량부를 가하여 2차혼합물을 생성하는 것을 특징으로 하는 산소를 발생하는 기능성 섬유직물 제조방법.
The method according to claim 6;
In the step of producing the secondary mixture, the secondary mixture is added by adding 85 to 95 parts by weight of aluminum hydroxide, completely mixed (heated in a drying oven for at least 2 hours, and vacuum-cooled) through a separate induction pipe while mixing the generated primary mixture solution. Method for producing a functional textile fabric generating oxygen, characterized in that to produce.
청구항 6 에 있어서;
상기 코팅단계는 산소발생 혼합물을 섬유직물에 밀링을 이용하여 도포하고, 상기 산소발생 혼합물이 도포된 섬유직물을 진공펌프에 연결시켜 진공감압하에서 45℃로 20분 동안 가열한 것을 특징으로 하는 산소를 발생하는 기능성 섬유직물 제조방법.
The method according to claim 6;
In the coating step, the oxygen-generating mixture is applied to the fiber fabric by milling, and the oxygen-generating mixture is coated with the fabric to which the oxygen-coated oxygen is heated for 20 minutes at 45 ° C. under reduced pressure. Method for producing functional textile fabrics.
청구항 6 에 있어서;
상기 코팅단계는 산소발생 혼합물이 코팅된 섬유직물에 천연항균 및 항바이러스 추출물을 도포하는 항균처리단계를 더 포함하는 것을 특징으로 하는 산소를 발생하는 기능성 섬유직물 제조방법.
The method according to claim 6;
The coating step is a method for producing a functional textile fabric producing oxygen, characterized in that it further comprises an antibacterial treatment step of applying a natural antibacterial and antiviral extract to the fiber fabric coated with the oxygen generating mixture.
청구항 11 에 있어서;
상기 천연항균 및 항바이러스 추출물은 냉암소에서 잘 건조한 연(蓮)잎 100중량부를 각각 1.0~2.0㎜ 크기로 잘게 부수고, 2차 증류수 500중량부를 가하여 100℃의 온도에서 추출하며,
증류수에서 추출한 추출물을 glass filter로 여과하고,
추출하고 남은 여액 위에 있는 연(蓮)잎 고체 성분에 무수에탄올(C2H5OH) 110~130중량부 가하고 Soxhlet 추출기를 연결하여 80℃의 온도에서 추출한 후, 무수에탄올에서 추출한 추출물을 glass filter로 여과하며,
상기 2차증류수에서 추출한 성분과 무수에탄올에서 추출한 성분을 합치어 고성능 분취용 액체크로마토그래피 상에서 분취하고, 분취물에 미량 함유된 Nelumbo nucifera 과 α-longifolene 및, pterodontoside를 획득하는 것을 특징으로 하는 산소를 발생하는 기능성 섬유직물 제조방법.
The method of claim 11;
The natural antibacterial and antiviral extracts are finely crushed into 100 parts by weight of 1.0 to 2.0 mm of dried dry leaves in a cool dark place, and extracted at a temperature of 100 ° C. by adding 500 parts by weight of secondary distilled water.
The extract extracted from distilled water is filtered with a glass filter,
110-130 parts by weight of anhydrous ethanol (C 2 H 5 OH) was added to the lead leaf solid component on the remaining filtrate, and the Soxhlet extractor was connected and extracted at a temperature of 80 ° C. Filtered with
The components extracted from the secondary distilled water and the components extracted from anhydrous ethanol are combined and fractionated on a high performance preparative liquid chromatography, and a small amount of Nelumbo nucifera and α-longifolene contained in the aliquot and oxygen, characterized in that pterodontoside is obtained. Method for producing functional textile fabrics.
청구항 11 또는 청구항 12 에 있어서;
상기 천연항균 및 항바이러스 추출물은 Nelumbo nucifera 4~6중량부, α-longifolene 2~4중량부, pterodontoside 1~3중량부로 이루어진 것을 특징으로 하는 산소를 발생하는 기능성 섬유직물 제조방법.
The method according to claim 11 or 12;
The natural antibacterial and antiviral extract is Nelumbo nucifera 4 to 6 parts by weight, α-longifolene 2 to 4 parts by weight, pterodontoside 1 to 3 parts by weight of oxygen-producing functional textile fabric manufacturing method.
KR1020100041806A 2010-05-04 2010-05-04 Production method of automatic oxygen generating insole using the green environmental solid material KR101115184B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100041806A KR101115184B1 (en) 2010-05-04 2010-05-04 Production method of automatic oxygen generating insole using the green environmental solid material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100041806A KR101115184B1 (en) 2010-05-04 2010-05-04 Production method of automatic oxygen generating insole using the green environmental solid material

Publications (2)

Publication Number Publication Date
KR20110122360A KR20110122360A (en) 2011-11-10
KR101115184B1 true KR101115184B1 (en) 2012-02-24

Family

ID=45392906

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100041806A KR101115184B1 (en) 2010-05-04 2010-05-04 Production method of automatic oxygen generating insole using the green environmental solid material

Country Status (1)

Country Link
KR (1) KR101115184B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102531174B1 (en) 2020-05-22 2023-05-10 주식회사 아모그린텍 Antiviral textile
KR102159946B1 (en) * 2020-06-05 2020-09-25 박미자 Manufacturing method for eco-friendly building interior and exterior materials using agricultural wastes of herbaceous plants containing lignocellulose and mineral binders, and eco-friendly building interior and exterior materials manufactured by the same
KR102538016B1 (en) * 2020-12-14 2023-05-31 방지철 System of oxygen generator stiker with antibacterial and composition and mrthod thereof
KR102660893B1 (en) * 2021-10-22 2024-04-29 한국철도기술연구원 Antibacterial and Antiviral coating composition and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4032293A (en) 1974-09-09 1977-06-28 The United States Of America As Represented By The Secretary Of Agriculture Preparation of stable strong base cellulosic anion exchangers with red-ox potentials
KR20020079276A (en) * 2001-04-14 2002-10-19 이태호 dyeing use by germanium
KR100398696B1 (en) 2003-04-10 2003-09-19 Chung Woo Textile Co Ltd High functional coating fabric containing nano inorganic particles and method of manufacturing the same
JP2007262621A (en) 2006-03-29 2007-10-11 Fujitsu Ltd Fiber having photocatalytic ability, cloth using the fiber, and cloth product using the cloth

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4032293A (en) 1974-09-09 1977-06-28 The United States Of America As Represented By The Secretary Of Agriculture Preparation of stable strong base cellulosic anion exchangers with red-ox potentials
KR20020079276A (en) * 2001-04-14 2002-10-19 이태호 dyeing use by germanium
KR100398696B1 (en) 2003-04-10 2003-09-19 Chung Woo Textile Co Ltd High functional coating fabric containing nano inorganic particles and method of manufacturing the same
JP2007262621A (en) 2006-03-29 2007-10-11 Fujitsu Ltd Fiber having photocatalytic ability, cloth using the fiber, and cloth product using the cloth

Also Published As

Publication number Publication date
KR20110122360A (en) 2011-11-10

Similar Documents

Publication Publication Date Title
KR101115184B1 (en) Production method of automatic oxygen generating insole using the green environmental solid material
CN106702724B (en) Functional fabric and method for producing same
CN107675292B (en) A kind of nano-silver bamboo charcoal fiber and its Bactericidal underwear product
CN201139120Y (en) Nano-far infrared negative ion antimicrobial water-proof moisture permeable abrasion resistant skidproof multifunctional sport footwear
KR20080067805A (en) Slipsole comprising functional bioceramic layer
KR101225040B1 (en) Patient clothes with skin disease prevention and treatment
KR101032519B1 (en) Production method of automatic oxygen generating insole using the green environmental solid material
KR101834634B1 (en) Silica as a main component Sanitary manufacturing method using the antibacterial composition of matter and their composite material
KR101599774B1 (en) Method for producing natural pigment composition containing terra alba and uses thereof
KR100803654B1 (en) Far infrared ray-modeling mask
CN102772314A (en) Hetian jade mask and preparation method thereof
CN106074229B (en) Mineral A powder
CN101638845A (en) Chip with composite functions of inducing anion, transmitting far infrared ray and resisting bacterium
KR102176052B1 (en) The composition of skin hypoallergenic fiber processing agent
KR101990486B1 (en) Manufacturing method of functional hygienic band using kaolin
KR20100028860A (en) Shoes spread pad with antibiotic deodorantand and manufacturing method thereof
KR100943231B1 (en) Manufacturing method of negativ ion emitting fibric
CN106388012B (en) A kind of healthy socks and preparation method thereof of far infrared sterilization
WO2010143818A2 (en) Antimicrobial, deodorising, anti-soiling and anion-releasing functional clean overclothing and patient garments
KR100603429B1 (en) Composition for alleviation of pain of work-related musculoskeletal disorders and socks made therefrom
KR102555334B1 (en) Shoes insole
KR200390778Y1 (en) Nano silver and perfume contain
KR101164125B1 (en) Tinea pedis and eczema remedy the mineral substance and manufacture method thereof
CN102174725A (en) Novel sunlight heating clothes, underwear and shoes
CN101810384A (en) Health-care shoe pad

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150203

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160202

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170203

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190807

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20200303

Year of fee payment: 9

R401 Registration of restoration