KR101108990B1 - Transgenic esculent plants producing high amount of S-adenosylmethionine and use thereof, and a method for controlling physiological cycle of plant by changing amount of S-adenosylmethionine - Google Patents

Transgenic esculent plants producing high amount of S-adenosylmethionine and use thereof, and a method for controlling physiological cycle of plant by changing amount of S-adenosylmethionine Download PDF

Info

Publication number
KR101108990B1
KR101108990B1 KR1020070065218A KR20070065218A KR101108990B1 KR 101108990 B1 KR101108990 B1 KR 101108990B1 KR 1020070065218 A KR1020070065218 A KR 1020070065218A KR 20070065218 A KR20070065218 A KR 20070065218A KR 101108990 B1 KR101108990 B1 KR 101108990B1
Authority
KR
South Korea
Prior art keywords
adenosylmethionine
plant
sam
gene
potato
Prior art date
Application number
KR1020070065218A
Other languages
Korean (ko)
Other versions
KR20090001096A (en
Inventor
서주원
김태종
신수경
김순희
서효원
이정윤
안원경
Original Assignee
대한민국(농촌진흥청장)
명지대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국(농촌진흥청장), 명지대학교 산학협력단 filed Critical 대한민국(농촌진흥청장)
Priority to KR1020070065218A priority Critical patent/KR101108990B1/en
Publication of KR20090001096A publication Critical patent/KR20090001096A/en
Application granted granted Critical
Publication of KR101108990B1 publication Critical patent/KR101108990B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8257Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits for the production of primary gene products, e.g. pharmaceutical products, interferon
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8249Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving ethylene biosynthesis, senescence or fruit development, e.g. modified tomato ripening, cut flower shelf-life
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0018Culture media for cell or tissue culture
    • C12N5/0025Culture media for plant cell or plant tissue culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/04Plant cells or tissues

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Botany (AREA)
  • Nutrition Science (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

본 발명은 고 함량의 에스-아데노실메티오닌을 생산하는 식용식물과 그 용도 및, 에스-아데노실메티오닌 함량 변화를 통한 식물의 생리주기 조절방법에 관한 것으로, 솔라늄 브레비덴스(Solanum brevidense) 유래의 에스-아데노실메티오닌 생합성 효소의 코딩 유전자를 식용식물에 도입하여 형질전환시켜 에스-아데노실메티오닌을 과다발현하는 식용식물 형질전환체를 제조하는 뛰어난 효과가 있다. 본 발명의 에스-아데노실메티오닌을 과다 발현하는 식용식물 형질전환체는 에스-아데노실메티오닌을 음식을 통해 손쉽게 섭취하여 병의 예방을 가능하게 하는 효과가 있다. 또한, 본 발명은 유전적으로 에스-아데노실메티오닌의 합성을 조절하여 식물의 생장 생리주기를 조절함으로써 농업에 유용한 식물 개량에 뛰어난 효과가 있다.The present invention relates to an edible plant for producing a high content of S- adenosyl methionine and its use, and to a method of regulating the menstrual cycle of plants by changing the content of S- adenosyl methionine , derived from solanum brevidense There is an excellent effect of producing an edible plant transformant that overexpresses S-adenosylmethionine by introducing and transforming a coding gene of the S-adenosylmethionine biosynthetic enzyme of into an edible plant. Edible plant transformant over-expressing the S- adenosyl methionine of the present invention is effective to enable the prevention of the disease by easily ingesting the S- adenosyl methionine through food. In addition, the present invention has an excellent effect on improving plants useful for agriculture by controlling the growth cycle of the plant by genetically controlling the synthesis of S- adenosylmethionine.

솔라늄 브레비덴스, 형질전환작물, 에스-아데노실메티오닌, 에스-아데노실메티오닌의 생합성 효소, 감자 자심품종, 애기장대 Solanium Brevidens, Transformation Crop, S-adenosylmethionine, Biosynthetic Enzyme of S-adenosylmethionine, Potato Japonica Varieties, Arabidopsis

Description

고 함량의 에스-아데노실메티오닌을 생산하는 식용식물과 그 용도 및, 에스-아데노실메티오닌 함량 변화를 통한 식물의 생리주기 조절방법{Transgenic esculent plants producing high amount of S-adenosylmethionine and use thereof, and a method for controlling physiological cycle of plant by changing amount of S-adenosylmethionine}Transgenic esculent plants producing high amount of S-adenosylmethionine and use according to the edible plant producing high content of S-adenosylmethionine, and its use method for controlling physiological cycle of plant by changing amount of S-adenosylmethionine}

도 1은 식물에서의 SAM의 생합성 및 대사경로를 도시한 것이다.1 shows the biosynthesis and metabolic pathways of SAM in plants.

도 2는 클로닝된 SbSAMs 유전자의 전기영동 사진도를 도시한 것이다.2 is cloned An electrophoretic picture of the SbSAMs gene is shown.

도 3은 솔라늄 브레비덴스(Solanum brevidense)로 부터 분리한 SAM-s 유전자의 염기서열을 도시한 것이다.Figure 3 shows the nucleotide sequence of the SAM-s gene isolated from Solanum brevidense ( Solanum brevidense ).

도 4는 솔라늄 브레비덴스(Solanum brevidense) 유래 SAM-s 효소의 아미노산 서열을 비교한 결과를 나타낸 것이다.4 is a solarium bredides ( Solanum brevidense ) The result of comparing the amino acid sequence of the derived SAM-s enzyme is shown.

도 5는 솔라늄 브레비덴스(Solanum brevidense) 유래 SAM-s 효소의 상동성 분석 결과를 도시한 것이다. 5 is a solarium bredides ( Solanum brevidense ) The results of homology analysis of the derived SAM-s enzyme are shown.

도 6은 벡터에 클로닝 된 솔라늄 브레비덴스(Solanum brevidense) 유래 SAM-s 유전자의 전기영동 사진도를 도시한 것이다.6 is a solarium bredides ( Solanum cloned into a vector). brevidense ) shows electrophoretic photographs of the SAM-s gene.

도 7은 솔라늄 브레비덴스(Solanum brevidense) 유래 SAM-s 효소의 분리 정제 후 SDS-PAGE 의 젤 사진도를 도시한 것이다. Figure 7 is a solarium bredides ( Solanum brevidense ) shows gel photograph of SDS-PAGE after separation and purification of SAM-s enzyme.

도 8은 대장균에서 발현시킨 솔라늄 브레비덴스(Solanum brevidense) 유래 SAM-s의 기능 분석 결과를 나타낸 것이다. Figure 8 is a Solanum ( Solanum) expressed in E. coli brevidense ) The results of functional analysis of the derived SAM-s are shown.

도 9는 솔라늄 브레비덴스(Solanum brevidense) 유래 SAM-s 유전자가 클로닝된 플라스미드의 구조를 도시한 것이다. 9 is Solanum Brevidens ( Solanum) brevidense ) The structure of the plasmid cloned with the derived SAM-s gene is shown.

도 10은 감자 자심의 형질전환 후 재분화 모습을 도시한 것이다. Figure 10 shows the regeneration after the transformation of potato magnetic core.

도 11은 재분화된 감자로부터 형질전환된 T-DNA의 PCR 증폭 결과를 나타낸 것이다. Figure 11 shows the results of PCR amplification of transformed T-DNA from redivided potatoes.

도 12는 형질전환 감자 자심의 competitive duplex-PCR 증폭 결과를 도시한 것이다. 12 shows the results of competitive duplex-PCR amplification of transgenic potato cores.

도 13은 형질전환 감자 자심의 노던 블랏 분석 결과를 도시한 것이다.13 shows the results of Northern blot analysis of transgenic potato cores.

도 14는 수중 재배 방법을 사용한 형질전환 감자 자심의 씨감자 형성 과정을 도시한 것이다.Figure 14 shows the seed potato forming process of the transformed potato magnetic core using the underwater cultivation method.

도 15는 감자 괴경에서 SAM의 함량의 증가 확인 결과를 나타낸 것이다.Figure 15 shows the results confirmed the increase in the content of SAM in potato tubers.

도 16은 솔라늄 브레비덴스(S. brevidense)에서 클로닝한 SAM-s 유전자 벡터의 구조 지도를 나타낸 것이다.Figure 16 shows the structural map of the SAM-s gene vector cloned from S. brevidense ( S. brevidense ).

도 17은 SAM-s 유전자를 과다발현하는 애기장대 스크리닝을 위한 PCR 젤 사진도를 도시한 것이다.Figure 17 shows a PCR gel photograph for Arabidopsis screening overexpressing the SAM-s gene.

도 18은 SAM-s 유전자를 과다발현하는 애기장대의 32일 성장 모습을 도시한 것이다.Figure 18 shows the 32-day growth of the Arabidopsis overexpressing the SAM-s gene.

도 19는 SAM-s 유전자를 과다발현하는 애기장대의 42일 성장 모습을 도시한 것이다.Figure 19 shows the 42-day growth of the Arabidopsis overexpressing the SAM-s gene.

본 발명은 고 함량의 에스-아데노실메티오닌을 생산하는 식용식물과 그 용도 및, 에스-아데노실메티오닌 함량 변화를 통한 식물의 생리주기 조절방법에 관한 것이다. 보다 상세하게는, 본 발명은 솔라늄 브레비덴스(Solanum brevidense) 유래의 에스-아데노실메티오닌 생합성 효소를 코딩하는 유전자를 식용식물에 도입하여 형질전환시킴으로써 에스-아데노실메티오닌을 과다발현하여 음식을 통해 손쉽게 섭취하도록 하여 각종 질병을 예방하는데 응용될 수 있는 식물 형질전환체를 제조하고, 식물체내 에스-아데노실메티오닌의 함량을 변화시킴으로써 식물의 생장 생리주기를 조절하는 방법에 관한 것이다.The present invention relates to an edible plant for producing a high content of es- adenosyl methionine and its use, and to a method for regulating the menstrual cycle of plants by changing the content of es- adenosyl methionine. More specifically, the present invention is a solanum bredides ( Solanum) brevidense ) Plants that can be applied to prevent various diseases by overexpressing S-adenosylmethionine and easily ingesting it through food by introducing and transforming genes encoding S-adenosylmethionine biosynthetic enzymes derived from brevidense ) into food plants. The present invention relates to a method of preparing a transformant and controlling the growth cycle of a plant by changing the content of es-adenosylmethionine in the plant.

에스-아데노실메티오닌(S-adenosylmethionine(SAM))은 그의 합성효소 (SAM synthetase(SAM-s))에 의하여 ATP로부터 아데노신이 필수 아미노산인 메티오닌과 결합하여 생성된 생체물질로 동물, 식물, 미생물의 생체 내에서 메틸 공여체로 사용된다(Lu, S. C.(2000), Int . J. Biochem . Cell Biol ., 32: 391-399). 지금까지 밝혀진 SAM의 생체 기능은 핵산의 메틸화, 단백질의 메틸화에 의한 유전자 발현 조절, 생체막의 유동성에 중요한 역할을 하는 인산화콜린의 형성, 생리 활성을 가진 생체 저 분자 물질의 생합성 과정 중에 메틸화의 공동인자로서의 작용, 아민기, 라이보실기, 아민알킬기의 원료로의 사용, 5' 탈산아데노실 라디칼 반응에의 사용 등 이 있다(Fontecave, M., M. Atta, and E. Mulliez(2004), Trends . Biochem . Sci ., 29: 243-249). 최근에는 효모와 바실러스에서 세포 내에 SAM의 축적에 의해 형태분화가 저해됨이 보고되고 있으며(Rooke, A., M. McDaniel, F. J. Grundy, I. Artsimovitch, and T. M. Henkin(2003), Proc . Natl . Acad . Sci . USA , 100: 3083-3088. Hilti, N., R. Graub, M. Jorg, P. Arnold, A. M. Schweingruber, and M. E. Schweingruber(2000), Yeast , 16:1-10), 그에 따르는 기능들을 밝히는 연구들이 진행되고 있다. S-adenosylmethionine (SAM) is a biological substance produced by binding adenosine to methionine, an essential amino acid, from ATP by its synthetase (SAM synthetase (SAM-s)). Used as a methyl donor in vivo (Lu, SC (2000), Int . J. Biochem . Cell Biol ., 32: 391-399). SAM's bio functions have been found to be cofactors of methylation during the process of methylation of nucleic acids, regulation of gene expression by methylation of proteins, formation of choline phosphate, which plays an important role in fluidity of biofilms, and biosynthesis of biomolecules with bioactivity. As a raw material, the use of amine groups, ribosyl groups, aminealkyl groups as raw materials, and 5 'deoxidation adenosyl radical reactions (Fontecave, M., M. Atta, and E. Mulliez (2004), Trends ) . Biochem Sci, 29:.. 243-249). Recently, morphogenesis is inhibited by the accumulation of SAM in cells in yeast and Bacillus (Rooke, A., M. McDaniel, FJ Grundy, I. Artsimovitch, and TM Henkin (2003), Proc . Natl . Acad . .. Sci USA, 100: 3083-3088 Hilti, N., R. Graub, M. Jorg, P. Arnold, AM Schweingruber, and ME Schweingruber (2000), Yeast, 16:. 1-10), functions accompanying Research is underway to identify them.

현재, SAM은 동물의 신경전달물질인 아세틸콜린(acetylcholine)을 증가시켜 항 우울증을 증진시켜 현재 건강식품제로 사용되고 있다. 알츠하이머병 환자에서 뇌세포 내의 SAM 함량이 정상인에 비해 급격히 줄어드는 점을 착안하여 SAM을 알츠하이머병 치료제로서 개발하고 있다(Fava M, Rosenbaum JF, MacLaughlin R, Falk WE, Pollack MH, Cohen LS, Jones L, Pill L (1990) J Psychiatr Res 24: 177-184; Bressa GM (1994), Acta Neurol Scand 154(suppl): 74). 이러한 치료제를 부분적으로 대체할 수 있는 SAM 고함량 기능성 식품이 개발된다면 그 경제적 효과는 매우 크다. 현재 뚜렷한 치매치료제가 개발되어 있지 않은 시점에서 SAM 함량이 높은 작물의 치매 예방효과가 입증되면 경제적 효과는 물론이고 금전으로 환산할 수 없는 삶의 질을 제공할 수 있을 것이다. Currently, SAM is used as a health food by increasing anti-depression by increasing acetylcholine, an animal neurotransmitter. In view of the sharp decrease of SAM content in brain cells in patients with Alzheimer's disease, SAM has been developed as a treatment for Alzheimer's disease (Fava M, Rosenbaum JF, MacLaughlin R, Falk WE, Pollack MH, Cohen LS, Jones L, Pill L (1990) J Psychiatr Res 24: 177-184; Bressa GM (1994), Acta Neurol Scand 154 (suppl): 74. If a SAM high functional food is developed that can partially replace such a therapeutic agent, the economic effect is great. If no dementia treatment is currently developed, the prevention of dementia in crops with high SAM content could provide economic as well as quality of life that cannot be converted into money.

또한 SAM은 간에서의 독소물질의 무독화에도 작용하여 간 기능 개선 효과가 증명되고 있는 등 관련 연구가 활발히 이루어지고 있다(Fern ghortdez-Checa JC, Colell A, Garccia-Ruiz C (2002) Alcohol. 27:179-183.; Lieber CS (2002) S- adenosyl-L-methionine: Am J Clin Nutr 76: 1183-1187.; Ji C, Deng Q, Kaplowitz N (2004) Hepatology . 40: 442-451). 한편, SAM은 국내에서는 식품원료로써 법적 지위를 인정받지 못하는 물질이지만 간 기능 개선 질환용 치료약물로 경구용이나 주사제로 폭넓게 사용되어온 물질이다. 현재 미국과 EU 등에서는 식이보충용 식품원료로 널리 사용되고 있는데, 특히 알코올성 장애에 관한 연구 논문(Stickel F, Hoehn B, Schuppan D, Seitz HK (2003) Aliment Pharmacol Ther . 18: 357-373; Stickel F, Seitz HK, Hahn EG, Schuppan D (2003) J. Gastroenterol. 41: 333-42)은 최근에도 연간 수백 편씩 발표되고 있는 중으로 앞으로도 지속적인 관심을 받을 원료로 주목받고 있다. 이와 같이 SAM이 빈번히 발생하는 현대병의 치료제로 사용하고 있기 때문에 인위적으로 SAM을 과다 생산하는 기능성 작물(과채류)이 개발되면 병 예방에 크게 기여할 것이다.In addition, SAM has been active in detoxifying toxins in the liver and has been actively studied to improve liver function (Fern ghortdez-Checa JC, Colell A, Garccia-Ruiz C (2002) Alcohol . 27 Lieber CS (2002) S-adenosyl-L-methionine: Am J Clin : 179-183. Nutr 76: 1183-1187 .; Ji C, Deng Q, Kaplowitz N (2004) Hepatology . 40: 442-451). On the other hand, SAM is a substance that is not recognized legal status as a food raw material in Korea, but has been widely used for oral or injection as a therapeutic drug for liver function improving disease. Currently, it is widely used as a dietary supplement in the United States and the EU, especially research articles on alcoholic disorders (Stickel F, Hoehn B, Schuppan D, Seitz HK (2003) Aliment ) Pharmacol Ther . 18: 357-373; Stickel F, Seitz HK, Hahn EG, Schuppan D (2003) J. Gastroenterol . 41: 333-42) has been published several hundred times a year in recent years, attracting attention as a raw material that will continue to receive attention. As SAM is used as a treatment for modern diseases that frequently occur, if a functional crop (fruit vegetable) artificially overproducing SAM is developed, it will greatly contribute to disease prevention.

그리고, 도 1에 도시된 바와 같이 식물에서 SAM은 생장에 깊이 관여하는 식물호르몬 에틸렌과 폴리아민의 전구체이다. 에틸렌은 전구체인 SAM이 1-아미노시클로프로판-1-카르복실레이트 신타아제(1-aminocyclopropane-1-carboxylate(ACC) syntase)에 의하여 ACC로 변환되어 생성되며, 폴리아민은 SAM이 SAM 디카르복실라아제와 퓨트레신 아미노트랜스퍼라아제(putrescine aminotransferase)에 변환을 거쳐 생성된다. 에틸렌은 가스형 식물 호르몬으로 대부분의 식물생장을 억제하고 노화를 촉진한다. 한편 폴리아민은 노화를 지연시키는 생리활성 물질이다. 이처럼 에틸렌과 폴리아민은 SAM을 전구체로 공유하고 메티오닌의 재생경로에 위치하고 있지만 식물의 생산성과 기능을 좌우하는 노화에 상반되는 생리작용을 나타내고 있다.And, as shown in Figure 1 SAM in the plant is a precursor of plant hormone ethylene and polyamines deeply involved in growth. Ethylene is produced by converting SAM, a precursor, into ACC by 1-aminocyclopropane-1-carboxylate (ACC) syntase, and polyamine is SAM dicarboxylase. Produced after conversion to an azeta and putrescine aminotransferase. Ethylene is a gaseous plant hormone that inhibits most plant growth and promotes aging. Polyamines, on the other hand, are bioactive substances that delay aging. As such, ethylene and polyamines share SAM as a precursor and are located in the regeneration pathway of methionine, but exhibit physiological effects contrary to aging that affect plant productivity and function.

본 발명자들은 최근 미생물에서 SAM이 신호전달 단백질에 직접 결합하여 스트레스를 극복할 수 있는 이차대사산물의 분비를 촉진한다는 SAM의 새로운 생리기능을 세계 최초로 발견하였다(Kim, D. J., J. H. Huh, Y. Y. Yang, C. M. Kang, I. H. Lee, C. G. Hyun, S. K. Hong, and J. W. Suh(2003), J. Bacteriol., 185: 592-60). 이러한 스트레스 내성 신호전달 단백질 군은 식물에서도 존재하기 때문에 SAM에 의해 식물의 생리가 조절될 가능성이 있으므로 식물에 대한 이러한 연구는 생물종을 뛰어넘는 SAM의 새로운 생리기능을 밝히게 되는 계기가 될 것이며 나아가 환경 스트레스 내성 식물을 개발하는 단초를 제공해 줄 것이다. 도시와 공업의 급속한 증대로 지금 전 세계적으로 유효 경작지가 점점 줄어들고 있어 척박한 환경에서도 작물이 자랄 수 있도록 작물을 변형시키는 연구도 진행 중이다. 이처럼 농업 환경이 위협받고 있는 현 시점에서 농업환경에 알맞은 생리가 조절된 작물 개발을 통한 농업 생산성 향상은 절실히 필요하다. The present inventors recently discovered the world's first new physiological function of SAM that promotes the secretion of secondary metabolites that directly bind to signaling proteins in microorganisms to overcome stress (Kim, DJ, JH Huh, YY Yang, CM Kang, IH Lee, CG Hyun, SK Hong, and JW Suh (2003), J. Bacteriol ., 185: 592-60). Since these stress-resistant signaling protein groups are also present in plants, their physiology may be regulated by SAM, so this study of plants will reveal the new physiological function of SAM beyond species. It will give you a chance to develop stress resistant plants. With the rapid growth of cities and industries, there is a diminishing amount of effective arable land all over the world, and research is underway to transform crops so that they can grow in harsh environments. As the agricultural environment is threatened, the improvement of agricultural productivity through the development of physiologically controlled crops suitable for the agricultural environment is urgently needed.

한편, 감자는 형질전환 연구의 초기세대부터 연구재료로 많이 이용되어왔고(An G. Ebert PR, Mitra A, Ha SB (1988) Binary Vectors. In : Gelvin SB, Schilperoort RA, Verma DPS, Plant Molecular Biology Manual. Kluwer Academic Publisher, Boston, PMAN-A3: 1-19; De Block M (1988) Theor Appl Genet 76:767-774), 비교적 형질전환이 잘 이루어지는 것으로 알려져다. 그러나 감자의 기내 재분화와 형질전환을 위해서는 감자의 품종과 조직에 따라 서로 다른 호르몬의 조성과 배양 조건이 많은 차이를 보인다(D'Amato F (1975) The problem of genetic stability in plant tissue and cell cultures. Crop Genetic Resources for Today and Tomorrow. Cambridge Univ Press. pp 333-348; De Block M (1988) Theor Appl Genet 76:767-774; Dobigny A, Ambroise A, Haicour R, David C, Rossignol L, Sihachakr D (1995) Plant Cell Tiss Org Cult 40:225-230). 감자의 경우 잎 조직 (De Block M (1988) Theor Appl Genet 76:767-774)이나 괴경 조직 (Sheerman S, Bevan MW (1988) Plant Cell Rep 7: 13-16.; Stiekema WJ, Heidekamp F, Louwerse JD, Verhoeven HA, Dijkhuis P (1988) Plant Cell Rep 7: 47-50) 등을 재료로 이용하여 형질전환에 이용하고 있으나 사용되는 조직에 따라 재현성과 형질전환율 등이 다를 뿐만 아니라 품종에 따라서도 많은 차이를 보이고 있음을 보고한 바 있다. 우리나라에서도 최근까지 감자를 이용한 형질전환 연구들이 많이 보고되고 있으나(Choi KH, Jeon JH, Kim HS, Joung YH, Yang DC, Joung H (1996) Korean J Plant tissue culture 23:97-101; Joung YH, Jeon JH, Choi KH, Kim HS, Joung H (1996) Kor J Plant tiss cult 23:77-81; Yuom JW, Jeon JH, Jung JY, Lee BC, Kang WJ, Kim MS, Kim CJ, Joung H, Kim HS (2002) Korean J Plant Biotechnology 29: 93-98) 극히 일부 품종에 제한되고 있고 품종별로 다르게 나타날 수 있는 감자의 재분화 조건이나 형질전환 조건을 규명한 보고는 확인되지 않고 있다. 최근까지 국내외에서 형질전환 연구재료(Yuom JW, Jeon JH, Jung JY, Lee BC, Kang WJ, Kim MS, Kim CJ, Joung H, Kim HS (2002) Korean J Plant Biotechnology 29: 93-98)로 많이 이용되고 있는 데시리(Desiree)와 같은 일부 감자 품종의 경우 재분화나 형질전환 효율이 다른 감자 품종에 비해 탁월한 것으로 알려져 있지만 (Choi KH, Jeon JH, Kim HS, Joung YH, Yang DC, Joung H (1996) Korean J Plant tissue culture 23:97-101), 현재 우리나라에서는 재배되고 있지 않은 품종으로 형질전환 이 후 실용화 등에 문제가 있다. 형질전환체의 유전적 고정을 위한 별도의 육종 과정을 거치지 않아도 되는 감자의 경우 개발된 이 후 실용화를 위해서는 우리나라에서 재배할 수 있는 품종을 재료로 이용하는 것이 필요하다.
지금까지 애기장대(Arabidopsis) 유래의 2종의 에스-아데노실메티오닌 생합성유전자(SAM-s) gene을 담배(Tabacco)에 무작위 발현시킨 것이 보고된 바 있고(W. Boerjan et al., The plant cell, vol 6, 1994), 또, 페튜니아에서 분리한 SAM-s 유전자 cDNA가 발표된 바 있으나(A Izhaki et al, plant physiol, 1995), 감자 품종으로부터 분리한 SAM-s 유전자를 감자의 형질전환에 적합하게 운반체를 제작하여 형질전환시키고 그 특성을 확인한 보고는 전무하였다.
다만, 최종 본 발명자들은 농촌진흥청 고냉지 시험장의 의뢰로 야생종 감자 솔라늄 팔러스트리(Solanum Palustre) 유래의 SAM-s 유전자를 분리하여 NCBI Gene Bank, AY635050으로 최초로 공동발표한 바 있으며, 그 후 본 발명자들은 또 다른 야생 근연종 감자 솔라늄 브레비덴스(Solanum brevidens)로부터 SAM-s 유전자를 국내외 최초로 분리하고 국내 유전자 등록처에 등록한 바 있다. 본 발명은 상기 야생 근연종 감자 솔라늄 브레비덴스 유래의 SAM-s 유전자의 감자 자심품종 및 애기장대식물에 형질전환시키고 그 작물학적 특성을 확인하여 본 발명을 완성하였다.
On the other hand, potato has been used as a research material since the early generation of transformation research (An G. Ebert PR, Mitra A, Ha SB (1988) Binary Vectors.In: Gelvin SB, Schilperoort RA, Verma DPS, Plant Molecular Biology Kluwer Academic Publisher, Boston, PMAN-A3: 1-19; De Block M (1988) Theor Appl Genet 76: 767-774), which are known to be relatively transgenic. However, for the in-flight regeneration and transformation of potatoes, there are many differences in the composition and culture conditions of different hormones according to potato varieties and tissues (D'Amato F (1975) The problem of genetic stability in plant tissue and cell cultures. Crop Genetic Resources for Today and Tomorrow.Cambridge Univ Press.pp 333-348; De Block M (1988) Theor Appl Genet 76: 767-774; Dobigny A, Ambroise A, Haicour R, David C, Rossignol L, Sihachakr D ( 1995) Plant Cell Tiss Org Cult 40: 225-230. For potatoes, leaf tissue (De Block M (1988) Theor Appl Genet 76: 767-774) or tuber tissue (Sheerman S, Bevan MW (1988) Plant Cell Rep 7: 13-16 .; Stiekema WJ, Heidekamp F, Louwerse JD, Verhoeven HA, Dijkhuis P (1988) Plant Cell Rep 7: 47-50), etc. are used for transformation, but the reproducibility and transformation rate vary depending on the tissue used, It has been reported that there is a difference. In Korea, there have been many reports of transformation using potatoes (Choi KH, Jeon JH, Kim HS, Joung YH, Yang DC, Joung H (1996) Korean J Plant tissue culture 23: 97-101; Joung YH, Jeon JH, Choi KH, Kim HS, Joung H (1996) Kor J Plant tiss cult 23: 77-81; Yuom JW, Jeon JH, Jung JY, Lee BC, Kang WJ, Kim MS, Kim CJ, Joung H, Kim HS (2002) Korean J Plant Biotechnology 29: 93-98) There have been no reports confirming potato re-differentiation conditions or transformation conditions that are restricted to a few varieties and that may differ from one variety to another. Until recently, many domestic and foreign transformation research materials (Yuom JW, Jeon JH, Jung JY, Lee BC, Kang WJ, Kim MS, Kim CJ, Joung H, Kim HS (2002) Korean J Plant Biotechnology 29: 93-98) Some potato varieties, such as Desiree, are known to have superior regeneration or transformation efficiency over other potato varieties (Choi KH, Jeon JH, Kim HS, Joung YH, Yang DC, Joung H (1996). ) Korean J Plant tissue culture 23: 97-101), which is not currently cultivated in Korea, has problems with its practical use after transformation. Potatoes that do not have to go through a separate breeding process for genetic fixation of the transformants are developed for practical use, and it is necessary to use varieties that can be grown in Korea as materials.
To date, random expression of two S-adenosylmethionine biosynthetic genes (SAM-s) genes derived from Arabidopsis in tobacco (Tabacco) has been reported (W. Boerjan et al., The plant cell , vol 6, 1994). In addition, a SAM-s gene cDNA isolated from petunia has been published (A Izhaki et al, plant physiol, 1995). There have been no reports of suitable carriers transformed and characterized.
However, the present inventors separated the SAM-s gene from the wild potato potato Solanium Palustre at the request of the Rural Development Administration's high-cold test site and co-published it for the first time as NCBI Gene Bank, AY635050. The SAM-s gene was isolated from another wild species of potato, Solanum brevidens, for the first time at home and abroad, and was registered in the Korean registry. The present invention transformed the potato seedling varieties and the Arabidopsis of the SAM-s gene derived from the wild related species potato solanium brevidens and confirmed the agronomic characteristics to complete the present invention.

따라서, 본 발명의 목적은 상기 야생 근연종 감자인 솔라늄 브레비덴스(Solanum brevidense) 유래의 SAM-s 유전자를 사용하여 에스-아데노실메티오닌의 함량을 증가시킨 형질전환 감자를 제공하고자 한다.Accordingly, an object of the present invention is to provide a transformed potato having an increased content of S-adenosylmethionine by using the SAM-s gene derived from the solanium brevidense, the wild related species potato.

본 발명의 다른 목적은 상기 신기능성 작물의 용도를 제공하고자 한다.Another object of the present invention is to provide a use of the new functional crops.

본 발명의 또 다른 목적은 상기와 같이 에스-아데노실메티오닌의 합성을 유전학적으로 조절함으로써 식물의 생리주기를 변화시켜 농업 생산성을 개선하는 방법을 제공하고자 한다. It is another object of the present invention to provide a method of improving agricultural productivity by changing a plant's menstrual cycle by genetically controlling the synthesis of S-adenosylmethionine as described above.

본 발명의 상기 목적은 솔라늄 브레비덴스(Solanum brevidense)로 부터 분리한 에스-아데노실메티오닌 생합성 효소를 코딩하는 유전자의 염기서열을 분석하고, 상기 유전자가 탑재된 식물체 형질전환용 운반체를 제작하고, 상기 운반체는 아그로박테리움을 이용하여 감자 자심품종 또는 애기장대에 감염시켜 형질전환시키고, 상기 형질전환체들은 상토로 옮겨 순화시켜 에스-아데노실메티오닌의 함량을 확인하고, 식물의 성장모습을 조사하여 SAM 과다 발현에 따른 생리주기에 미치는 영향을 조사함으로써 달성하였다.The object of the present invention is to analyze the nucleotide sequence of the gene encoding the S-adenosylmethionine biosynthesis enzyme isolated from the Solanum brevidense ( Solanium brevidense ), to prepare a carrier for plant transformation on which the gene is mounted , The carrier is transformed by infecting the potato self-cultivation varieties or Arabidopsis using Agrobacterium, and the transformants are transferred to the soil to be purified to check the content of S- adenosylmethionine, and to investigate the growth pattern of the plant This was accomplished by investigating the effects on the menstrual cycle following SAM overexpression.

본 발명은 솔라늄 브레비덴스(Solanum brevidense)로 부터 에스-아데노실메 티오닌 생합성 효소를 코딩하는 유전자의 분리 및 염기서열 분석단계; 식물체 형질전환용 운반체 제작단계; 감자 또는 애기장대를 이용한 형질전환 단계; 및, 형질전환체의 에스-아데노실메티오닌 함량의 확인 및 성장모습의 조사단계로 구성된다.The present invention comprises the steps of isolation and sequencing of genes encoding S-adenosylmethionine biosynthesis enzymes from solanum brevidense ; Manufacturing a carrier for plant transformation; Transformation step using potato or Arabidopsis; And the step of identifying the S-adenosylmethionine content of the transformant and examining the growth pattern.

본 발명은 우울증, 알츠하이머병, 치매, 독소물질의 무독화 등의 병에 유용할 것으로 기대되는 후보물질인 에스-아데노실메티오닌의 함량을 증가시킨 작물을 개발하여 응용함으로써 손쉽게 에스-아데노실메티오닌의 생산이 가능하며 음식을 통한 손쉬운 섭취로 병의 예방을 가능하게 할 수 있다. 그의 예로서 밝혀진 SAM-s와 SAM 대사관련 유전자를 감자의 괴경에 과다발현하여 간 기능저하 및 치매에 임상적 효과가 있는 SAM과 폴리아민을 많이 생성하는 고기능성 작물을 개발하였다. The present invention can be easily applied by developing and applying crops having increased contents of S-adenosylmethionine, a candidate substance expected to be useful for diseases such as depression, Alzheimer's disease, dementia, and detoxification of toxins. Production is possible, and the easy intake of food through the disease can be prevented. An over-expression of SAM-s and SAM metabolism-related genes identified as an example was developed in potato tubers to develop high-functional crops that produce many SAMs and polyamines that have clinical effects on liver deterioration and dementia.

본 발명은 서열목록 서열번호 1에 기재된 솔라늄 브레비덴스(Solanum brevidense) 유래의 에스-아데노실메티오닌 생합성효소의 코딩 유전자를 식용식물에 도입하여 형질전환시키는 단계를 포함하는 에스-아데노실메티오닌 함량이 증진된 식용식물의 제조방법을 제공함을 특징으로 한다.S-adenosylmethionine content comprising the step of transforming by introducing the coding gene of the S- adenosylmethionine biosynthesis derived from Solanum brevidense in SEQ ID NO: It is characterized by providing a method for producing this enhanced edible plant.

본 발명에서 사용하는 상기 식용식물의 종류는 열을 가하지 않고 섭취하는 야채식물로, 예를 들어, 배추, 토마토, 상추, 감자, 고구마 등 국내에서 재배할 수 있는 식물이면 어느 것이나 가능하나, 실시예에서는 감자를 사용하였다.The type of the edible plant used in the present invention is a vegetable plant ingested without applying heat, for example, any plant that can be grown in Korea, such as cabbage, tomatoes, lettuce, potatoes, sweet potatoes, but can be In potato was used.

본 발명의 다른 특징은 에스-아데노실메티오닌의 식물체 내 함량을 조절함으로써 식물의 생리주기를 조절하는 방법을 제공한다.Another feature of the invention provides a method of controlling the menstrual cycle of a plant by controlling the plant content of S-adenosylmethionine.

에스-아데노실메티오닌의 식물체 내 함량 조절은 서열목록 서열번호 1에 기재된 솔라늄 브레비덴스(Solanum brevidense) 유래의 에스-아데노실메티오닌 생합 성효소의 코딩 유전자를 식물에 도입하여 형질전환시켜 에스-아데노실메티오닌의 생산량이 증가하도록 하는 것이다. In-plant content control of S-adenosylmethionine was performed using the solanum brevidens described in SEQ ID NO: 1. brevidense ) is to introduce a gene encoding the S- adenosyl methionine biosynthetic enzyme derived from the plant to be transformed to increase the production of S- adenosyl methionine.

본 발명의 식물 생리주기 조절의 특성을 확인하기 위해 애기장대(Arabidopsis thaliana L.) 식물체를 사용하였다. Arabidopsis thaliana L. plants were used to confirm the characteristics of the plant menstrual cycle control of the present invention.

SAM-s 유전자를 도입하여 형질전환된 애기장대는 꽃이 핀 후에 잎의 낙엽화가 빨리 진행되고 식물 호르몬인 에틸렌의 생합성이 증대되는 특징을 나타냈다.The Arabidopsis transformed by introducing the SAM-s gene exhibited rapid defoliation after flowering and increased biosynthesis of the plant hormone ethylene.

이하, 본 발명의 구체적인 구성을 실시예를 통해 설명하지만, 본 발명의 권리범위가 이들 실시예에만 한정되는 것은 아니다.Hereinafter, the specific configuration of the present invention will be described through Examples, but the scope of the present invention is not limited to these Examples.

[실시예][Example]

실시예Example 1:  One: 야생근연종Wild species 감자( potato( SolanumSolanum brevidensebrevidense )로부터 )from SAMSAM -s 유전자 분리 및 분석-s Gene Isolation and Analysis

야생근연종 감자 솔라늄 브레비덴스(S. brevidense)의 cDNA 라이브러리는 통상의 방법에 따라 인 비보 싱글 클론 익시젼에 의해 pBluescript SK(+/-) 벡터에 서브클로닝하였고, 클로닝된 신규의 SbSAMs 유전자의 전기영동 결과는 도 2에 도시하였다. 레인 11이 SbSAMs 클론이며, 제한효소는 EcoRI/XhoI을 사용하였다.
제작된 SbSAMs 전장 유전자를 특이적인 프라이머 35S 프로모터 특이적인 5‘-프라이머 (5´-GCTCCTACAAATGCCATCA-3´)와 SbSAMs 특이적인인 3’-프라이머 (5´-GATAGTGGGATTGTGCGTCA-3´)를 가지고 PCR법을 이용하여 유전자를 증폭하였다. 또한 증폭된 산물을 염기서열 분석법을 활용하여 서열을 다른 식물종의 SAMs 관련 유전자들의 염기서열과 비교 분석 하였다(도 3).
The cDNA library of S. brevidense of wild relative potato potato S. brevidense was subcloned into the pBluescript SK (+/-) vector by in vivo monoclonal engagement according to a conventional method, and cloned the novel SbSAMs gene. The electrophoresis result of is shown in FIG. Lane 11 is a SbSAMs clone and the restriction enzyme Eco RI / Xho I was used.
The SbSAMs full-length gene was prepared using PCR with a primer 35S promoter-specific 5'-primer (5'-GCTCCTACAAATGCCATCA-3´) and a SbSAMs specific 3'-primer (5'-GATAGTGGGATTGTGCGTCA-3´). To amplify the gene. In addition, the amplified product was analyzed using the sequencing method to compare the sequence with the nucleotide sequence of the SAMs related genes of other plant species (Fig. 3).

SAM-s 유전자 염기서열을 포함하는 발현서열표지(Expressed Sequence Tag; EST)(도 2)로부터 이 유전자의 오픈 리딩 프레임(Open Reading Frame; ORF) 서열을 확인하였으며, 최종 분석된 염기서열을 국내 유전자 등록처(GeneIn KS109049)에 등록하였다(도 3). An Open Reading Frame (ORF) sequence of the gene was identified from an Expressed Sequence Tag (EST) (FIG. 2) including a SAM-s gene sequence, and the final analyzed sequence was a domestic gene. It was registered with the register (GeneIn KS109049) (Fig. 3).

판독된 염기서열은 web-site http://www.ncbi.nlh.nih.gov/Blast 검색엔진을 이용하여 GenBank, EMBL 와 DDBJ의 데이터베이스 검색을 통해 기존 보고된 유전자 들과의 유사성 비교를 하였다. The nucleotide sequences read were compared for similarity with previously reported genes by searching GenBank, EMBL and DDBJ databases using the web-site http://www.ncbi.nlh.nih.gov/Blast search engine.

비교된 유전자간 아미노산 서열의 비교는 기존 등록된 토마토(Z24741) 페튜니아(AF170798), 애기장대(M55077), 배추(AF379014) 및 담배(AF127243)의 유전자 아미노산 서열을 비교하였다. Comparison of the compared intergenic amino acid sequences compared the gene amino acid sequences of the previously registered tomato (Z24741) petunia (AF170798), Arabidopsis (M55077), Chinese cabbage (AF379014) and tobacco (AF127243).

최초 cDNA 라이브러리부터 부분적으로 염기서열이 분석된 EST중 SAM 생합성 유전자로 판단되는 클론의 염기서열을 완전 해독한 결과 총 1532bp의 서열 내에 1182bp의 SAM 생합성 효소 유전자의 ORF가 포함된 것을 확인하였다. When the base sequence of the clone determined to be the SAM biosynthesis gene was partially decoded from the first cDNA library, the ORF of the 1182 bp SAM biosynthetic enzyme gene was included in the total sequence of 1532 bp.

이들이 해독될 경우 발현될 총 394개의 아미노산 서열을 기존 다른 종의 식물로부터 분석되어 등록된 유전자들의 아미노산들과 유사도를 비교해 본 결과 동일 과 식물 간에는 약 93% 이상, 다른 과의 식물과는 약 88% 이상의 상동성을 나타내어 SAM-s 유전자임을 판단할 수 있었다(도 4 및 도 5). A total of 394 amino acid sequences to be expressed when they are deciphered were analyzed from plants of other species and compared with amino acids of the registered genes.At least 93% between plants of the same family and 88% of plants of other families The above homology was shown to determine the SAM-s gene (FIGS. 4 and 5).

클로닝된 SbSAMs 유전자의 ORF의 발현 산물이 실제 기질들이 포함된 기내 반응액에서 최종산물인 SAM을 합성할 수 있는지를 확인하기 위해, 인 비트로 트랜슬레이션 분석(in vitro translation assay)을 수행하였다. 인 비트로 트랜슬레이션용 운반체인 pET28a(+)의 클로닝 사이트에 SbSAMs 유전자가 삽입된 운반체를 구축하기 위해, 프라이머 F: 5'-GAATTCATGGAAACTTTCCTATTCACCTCCG-3'와 프라이머 R:5'-CTCGAGTGGGGGTTTTCCCACTTGAGGGGCT-3'를 이용한 PCR로 SbSAMs 유전자의 ORF을 증폭하고, 운반체와 PCR 산물을 각각 제한효소 EcoRI과 XhoI으로 처리하여 라이게이션 하였다. 이 후 E. coli BL21 (DE3)에 형질전환하여 증폭된 플라스미드를 분리한 다음 제한효소 EcoRI과 XhoI으로 처리하여 인서트 사이즈를 확인한 결과 목표 유전자 가 성공적으로 삽입되었음이 확인되었다(도 6).To ensure that the expression product of ORF of the cloned gene can be synthesized SbSAMs the final product of SAM on the plane containing the reaction solution to the actual substrate, in vitro translation analysis (in In vitro translation assay was performed. To the cloning site of pET28a (+), the carrier for in vitro translation To construct the carrier with the SbSAMs gene inserted, amplify the ORF of the SbSAMs gene by PCR using primers F: 5'-GAATTCATGGAAACTTTCCTATTCACCTCCG-3 'and primer R: 5'-CTCGAGTGGGGGTTTTCCCACTTGAGGGGCT-3', and the carrier and PCR products were respectively amplified. Restriction enzyme Ligation was performed with Eco RI and Xho I. Subsequently, E. coli BL21 (DE3) was transformed to isolate the amplified plasmid, followed by restriction enzymes. Treatment with Eco RI and Xho I confirmed the insert size and confirmed that the target gene was successfully inserted (FIG. 6).

인 비트로 트랜슬레이션을 수행하기 위해 구축된 운반체를 E. coli BL21 (DE3)에 형질전환시켜 발현된 단백질을 Sepex G10 Gel (파마시아)을 이용하여 회수하여 10% SDS-PAGE를 통하여 발현된 단백질의 크기를 확인하고 그 결과를 도 7에 도시하였다. 도 7에서 M은 분자량 사이즈 마커, B는 1mM IPTG로 유도 전, A는 1mM IPTG로 유도 후, SN은 상등액, De는 잔사물(debris), W4는 wash 4, E는 500mM 이미다졸 용출액을 나타낸다.A carrier constructed to perform in vitro translation was transformed into E. coli BL21 (DE3), and the expressed protein was recovered using Sepex G10 Gel (Pharmacia) to recover the expressed protein via 10% SDS-PAGE. The size was confirmed and the result is shown in FIG. 7. In Figure 7, M is the molecular weight size marker, B is before induction with 1mM IPTG, A is 1mM IPTG after induction, SN is the supernatant, De is the residues (debris), W4 is wash 4, E is 500mM imidazole eluate .

도 7에 나타난 바와 같이, 쿠마시 브릴리안트 블루 용액에 염색하여 47.3kDa의 단백질 밴드가 확인되어 SbSAMs 효소 단백질이 정상적으로 발현되었음을 알 수 있었다. As shown in FIG. 7, the protein band of 47.3 kDa was confirmed by staining the Coomassie Brilliant Blue solution, indicating that the SbSAMs enzyme protein was normally expressed.

세파덱스 젤(Sepedex Gel)에서 회수된 효소단백질 15㎕(60㎍)을 생물학적 완충액(biological buffer)인 HEPES-K+ 50mM에 50mM KCl, 10mM MgCl2, 5mM DTT, 5mM ATP와 10mM L-메티오닌 등 기질이 포함된 반응액을 37℃에서 2시간 동안 반응시켜 목표 산물인 SAM이 정상적으로 합성하는지를 확인하여 보았다. 0.2㎛ pore size의 필터로 부분 정제한 다음 HPLC(High Performance Liquid Chromatography, waters)로 분리하여 O.D. 259nm에서 0.5mM SAM으로 확인한 피크와 일치된 분획을 확인하였다. 도 8에서 1은 5mM SAM 표준물질, 2는 SbSAMs과의 반응 산물, 3은 효소가 포함되지 않은 네거티브 컨트롤을 나타낸다. 15 μl (60 μg) of the enzyme protein recovered from Sephadex Gel was added to the biological buffer HEPES-K + 50 mM in 50 mM KCl, 10 mM MgCl 2 , 5 mM DTT, 5 mM ATP and 10 mM L-methionine. The reaction solution containing the substrate was reacted for 2 hours at 37 ℃ to check whether the target product SAM is synthesized normally. Partial purification was performed with a 0.2 μm pore filter and then separated by HPLC (High Performance Liquid Chromatography, waters) to identify the fractions consistent with the peaks identified by 0.5 mM SAM at OD 259 nm. In FIG. 8, 1 is a 5 mM SAM standard, 2 is a reaction product with SbSAMs, and 3 is a negative control containing no enzyme.

도 8에 나타난 바와 같이, 반응 산물의 양은 비교적 적게 나타났으나, 발현 단백질을 처리하지 않았던 대조 처리에서는 확인되지 않은 SAM 피크가 확인되어 정상적인 활성을 나타냄을 알 수 있었다.As shown in FIG. 8, the amount of the reaction product was relatively low, but in the control treatment that did not process the expressed protein, an unidentified SAM peak was confirmed to show normal activity.

실시예Example 2: 감자 형질전환체의 제조 2: Preparation of Potato Transformant

상기 실시예 1에서 분리한 솔라늄 브레비덴스(Solanum brevidense) 유래의 SAM-s 유전자에 의한 형질전환체를 제작하기 위해, 식물 대상은 감자 "자심" 품종을 선정하였다. Solanium bredides ( Solanum) isolated in Example 1 To produce transformants with SAM-s genes derived from brevidense ), plant subjects were selected for potato "Jasim" varieties.

식물 형질전환용 운반체를 제작하기 위해, 식물체 형질전환용 운반체 pBI121의 MCS 부위에 위치한 XbaI 사이트와 리포터 유전자인 GUS(β-glucronidase) 부위를 제거할 수 있는 SacI로 처리하여 PCR로 동일 어댑터(adaptor)가 부착된 SbSAM 생합성 유전자를 각각 동일한 제한효소로 처리하여 라이게이션시켜 운반체 pBISAM-1을 구축하였다(도 9A). In order to manufacture a plant transformation carrier, the same adapter (by PCR) was treated with an Xba I site located at the MCS site of the plant transformation carrier pBI121 and Sac I which can remove the reporter gene GUS (β-glucronidase) site. SbSAM biosynthetic genes to which the adapter was attached were ligated with the same restriction enzyme to construct the carrier pBISAM-1 (FIG. 9A).

구축된 운반체 pBISAM-1을 E. coli DH5a에 형질전환하여 증폭한 후 회수하여 Xba I/Sac I으로 2중 절단한 후 1% (w/v) 아가로우즈 젤에서 인서트 사이즈를 확인한 결과 목표 유전자가 성공적으로 도입되었음이 확인되었다(도 9B). 도 9B에서 M은 λ/Hind III 사이즈 마커, 레인 1은 효소를 처리하지 않은 플라스미드 벡터, 레인 2는 Xba I/Sac I 로 절단 후 결과를 나타낸 것이다. The resulting carrier pBISAM-1 was transformed into E. coli DH5a, amplified, recovered, double-cut with Xba I / Sac I, and then inserted into a 1% (w / v) agarose gel. It was confirmed that was successfully introduced (FIG. 9B). In Figure 9B, M is λ / Hind III size marker, lane 1 is enzyme-free plasmid vector, lane 2 is Xba I / Sac Results are shown after cleavage with I.

식물체 형질전환용 운반체 pBI121의 구조유전자 중 조직화학적 리포터 유전자인 GUS 유전자를 운반체 제작 과정에서 제거한 이유는 감자의 형질전환 과정에서 유해성 여부가 아직까지 확인되지 않은 외래유전자의 수를 감소시키고, 감자의 영 양체 번식특성으로 인해 형질전환체의 유전적 분리(segregation)에 대한 연구가 필요하지 않기 때문이었다. 또한 형질전환된 감자를 이용한 포장 시험에서 GUS trans gene이 감자의 수량과 식물체 활력을 감소시킨다는 기존의 연구결과들이 보고된바 있다(Belknap, WR, Corsini D, Pavek JJ, Synder GW, Rockhold DR, Vayda M.E (1994) Amer . potato J. 71: 285-296; Dale, PJ, MacPortlan, HC (1992) Theor . Appl. Genet. 84: 585-591; Davies, HV (1996) Potato Res. 39: 411-427). 실제로 몬산토(Monsanto) 회사에서 개발되어 품종화된 형질전환 콩인 라운드업 레디(Roundup Ready)의 경우 GUS 유전자가 없는 계통들이 확인되었다(Diane, BL, Padgette SR (1992) Petition for determination of non-regulated status: soybeans with a Roundup ReadyTM gene. USDA-ARS-FCR Report). 아울러 발현된 이 후에 세포 내에 지속적으로 축적되는 GUS 유전자의 발현이 다른 효소의 작용이나 대사과정을 방해할 가능성이 크므로 특별히 유전자의 발현연구를 할 경우를 제외하고는 트랜스진(transgene)에서 제거되는 것이 바람직할 것으로 판단되었기 때문이다.The reason why GUS gene, which is a histochemical reporter gene, among the structural genes of the plant transformation carrier pBI121 was removed during the vehicle manufacturing process was to reduce the number of foreign genes that have not been identified as harmful during potato transformation, Because of the traits of quantum breeding, no studies on the genetic segregation of the transformants were necessary. In addition, previous studies have reported that GUS trans genes reduce potato yield and plant vitality in field trials using transformed potatoes (Belknap, WR, Corsini D, Pavek JJ, Synder GW, Rockhold DR, Vayda). ME (1994) Amer . Potato J. 71: 285-296; Dale, PJ, MacPortlan, HC (1992) Theor . Appl. Genet . 84: 585-591; Davies, HV (1996) Potato Res . 39: 411-427). In fact, for Roundup Ready, a transgenic soybean developed and cultivated by the Monsanto company, strains without the GUS gene were identified (Diane, BL, Padgette SR (1992) Petition for determination of non-regulated status : soybeans with a Roundup Ready TM gene. USDA-ARS-FCR Report). In addition, since expression of GUS gene that is continuously accumulated in cells after expression is likely to interfere with the action or metabolic process of other enzymes, it is removed from the transgene except in the case of special expression study. It was because it was judged that it would be desirable.

형질전환을 위한 대상 품종인 자심의 잎으로부터 재분화 효율이 가장 좋은 배지 조성은 정 등(Joung YH, Jeon JH, Choi KH, Kim HS, Joung H (1996) Kor J Plant tiss cult 23:77-81)에 의해 보고된 M5 배지 조성(배지조성은 상기 논문 참조)을 자심 품종의 형질전환 실험에 활용하였다. The media composition with the highest regeneration efficiency from the leaves of Jasimsim, the target variety for transformation, was Jung et al. (Joung YH, Jeon JH, Choi KH, Kim HS, Joung H (1996) K or J Plant tiss cult 23: 77-81 The M5 medium composition (medium composition, see above) reported by) was used for the transformation experiments of Jasimsim varieties.

아그로박테리움(Agrobacterium)의 형질전환은 아그로박테리움(Agrobacterium) LBA4404 균주에 Holster 등 (Holster MD, de Waele A, Depicker E, Messens M, Montagu V, Schell J (1978) Mol Gen Genet 163: 81-187)과 An 등 (An G. Ebert PR, Mitra A, Ha SB (1988) Binary Vectors. In : Gelvin SB, Schilperoort RA, Verma DPS, Plant Molecular Biology Manual. Kluwer Academic Publisher, Boston, PMAN-A3: 1-19)의 방법을 다소 변형한 공지된 freeze-thaw 방법을 이용하여 형질전환하였다. 상기 공지의 YEB 배지(10g/L Yeast extract, 10g/L의 Peptone 5중량%의 Sucrose함유)에서 30±1℃로 밤새 배양한 아그로박테리움(Agrobacterium) LBA4404 배양액 0.5mL을 새로운 배지 20mL에 첨가하여 5~6시간, 30±1℃로 배양한 후 원심분리 하였다. 회수된 세포에 YEB 배지 4mL을 첨가하여 현탁한 후 다시 원심분리 하였다. 회수된 세포에 800㎕의 YEB 배지를 첨가하여 현탁한 후 소형원심분리용 튜브에 200㎕씩 분주하였다. 세포를 분주한 튜브를 1~2 분간 얼음 위에 놓아 냉각시킨 후 -70℃ 초저온냉동고에서 급속냉동하여 5분간 방치한 후, 37℃에서 3분간 녹여서 컴피턴트 세포(competent cell)를 준비했다. 준비된 컴피턴트 세포 200㎕에 YEB 배지 90㎕와 형질전환하고자 하는 DNA 5㎍을 섞은 후 -70℃에서 5분간 얼리고 37±1℃에서 25분간 녹인 다음 30℃에서 1시간 배양하였다. 배양된 혼합액에 5mL의 YEB 배지를 넣고 30℃에서 1시간 현탁배양한 후 원심분리하여 모아진 세포에 YEB 배지 200㎕를 넣어 현탁한 후 100㎕씩 항생제를 포함한 YEB 고체배지에 도말한 후 30±1℃에 48시간 배양하여 형질전환된 콜로니를 선발하였다.Transformation of Agrobacterium (Agrobacterium) is Agrobacterium (Agrobacterium) Holster such as the strain LBA4404 (Holster MD, de Waele A, Depicker E, Messens M, Montagu V, Schell J (1978) Mol Gen Genet 163: 81- 187) and An et al. (An G. Ebert PR, Mitra A, Ha SB (1988) Binary Vectors.In: Gelvin SB, Schilperoort RA, Verma DPS, Plant Molecular Biology Manual.Kluwer Academic Publisher, Boston, PMAN-A3: 1 The method of -19) was transformed using a well-known freeze-thaw method with a slight modification. Overnight incubation at (Sucrose content of 5% by weight of Peptone 10g / L Yeast extract, 10g / L) of the known YEB medium at 30 ± 1 ℃ Agrobacterium (Agrobacterium) 0.5 mL of LBA4404 culture was added to 20 mL of fresh medium, followed by incubation at 30 ± 1 ° C. for 5-6 hours, followed by centrifugation. 4 mL of YEB medium was added to the recovered cells, suspended, and centrifuged again. 800 µl of YEB medium was added to the recovered cells and suspended, and 200 µl was dispensed into small centrifuge tubes. After dispensing the cells, the tube was placed on ice for 1 to 2 minutes to cool, then rapidly frozen in a -70 ° C. cryogenic freezer for 5 minutes, and then dissolved at 37 ° C. for 3 minutes to prepare competent cells. After mixing 90 μl of YEB medium and 5 μg of DNA to be transformed into 200 μl of the prepared competent cells, they were frozen at −70 ° C. for 5 minutes, dissolved at 37 ± 1 ° C. for 25 minutes, and incubated at 30 ° C. for 1 hour. 5mL of YEB medium was added to the culture mixture, suspended incubation at 30 ° C for 1 hour, centrifuged, and 200µl of YEB medium was collected in the collected cells, and then suspended in YEB medium containing 100µl of antibiotics. Transformed colonies were selected by incubating for 48 hours at ℃.

자심 품종의 감자는 줄기와 괴경의 표피와 육색이 자주색이며, 기내식물체의 경우도 이러한 특성을 유지한다. 그러나 형질전환 과정 중 재분화 식물체에서 줄기 표면의 색이 자주색을 띠지 않는 개체도 확인되었는데 이러한 현상에 대한 원인은 확인할 수 없었다. 다만, 일반적으로 자심 품종의 자주색 발현은 일교차가 큰 조건에서 잘 이루어진다는 점을 감안해 볼 때, 스트레스와 관련된 식물호르몬인 에틸렌 전구물질로의 작용, 혹은 그 반대의 작용을 하는 폴리아민류의 전구물질로서의 작용에 의한 것으로 추측해 볼 수 있다.Jassim varieties have purple and purple skins and stems on stems and tubers. However, during the transformation process, individuals whose reddish vegetation did not have a purple surface were identified. However, the cause of this phenomenon could not be determined. However, in general, purple expression of Jasimsim varieties is well performed under high cross-sectional conditions, and thus, polyamines, which act as ethylene precursors, or vice versa, are stress-related plant hormones. It can be assumed to be due to the action.

실험예Experimental Example 1: 형질전환된 감자의 조직배양을 통한 무성번식 1: Asexual reproduction through tissue culture of transformed potatoes

형질전환된 감자의 기내 선발과 검정을 위해, 선발용 항생제 카나마이신과 카베니실린(cabenicillin)이 포함된 배지에서 재분화된 신초의 발근을 유도하기 위해 식물생장 조절제가 포함되지 않은 공지된 1× MS배지(Murashige T., SKoog F., 1962. Plant, 15, 473-497에 따름)로 옮겨 완전한 식물체를 유도하였다(도 10). 도 10의 A와 B는 생장조절상에서 3000-3500 Lux의 형광등 하에서 카나마이신이 포함된 공지된 PSM 배지(본 발명자 이정윤 외 4, 식물공학회지 제30권 제1호, 2003, 27-33에 따름)에서 캘러스를 유도한 결과를 도시한 것이고, C는 호르몬이 첨가되지 않은 상기 MS 배지에서 재분화된 신초의 기내 증식 및 발근 유도 결과를 도시한 것이고, D는 일반 상토에서 재배한 T2 예상 형질전환체를 도시한 것이다. For in-flight selection and assay of transformed potatoes, known 1 × MS medium without plant growth regulators to induce rooting of re-differentiated shoots in a medium containing antibiotics kanamycin and cabenicillin (According to Murashige T., SKoog F., 1962. Plant, 15, 473-497) to induce complete plants (FIG. 10). Figure 10 A and B is a known PSM medium containing kanamycin under fluorescent lamp of 3000-3500 Lux on growth control (according to the inventors Lee, Jung Yun et al. 4, Journal of Plant Engineering Vol. 30, No. 1, 2003, 27-33) Shows the results of inducing callus in, C shows the in-flight proliferation and rooting induction of the re-differentiated shoots in the MS medium without hormones, D shows the T2 predicted transformants grown in normal soil It is shown.

완전한 식물체를 유도한 다음 각각의 재분화된 개체별로 단엽을 채취하고 DNA을 추출하였다. 형질전환된 T-DNA 중 삽입된 목표유전자 양쪽말단에 위치한 CaMV 35S 프로모터 부위와 NOS 터미네이터 부위를 증폭할 수 있는 프라이머들(35S-S: GCTCCTACAAATGCCATCA; 35S-AS, GATAGTGGGATTGTGCGTCA; NOS-S, GAATCCTGTTGCCGG TCTTG; NOS-AS, TTATCCTAGTTTGCGCGCTA)을 활용한 PCR(조건:pre-denaturation, 94℃/5min; denaturing, 94℃/20sec; annealing, 50℃/20sec; expansion, 72℃/1min (40 사이클) 및 full extension; 72℃, 5분)을 수행하여 형질전환 여부를 판단하였다. After induction of complete plants, single leaves were extracted from each subdivided individual and DNA was extracted. Primers capable of amplifying the CaMV 35S promoter site and the NOS terminator site located at both ends of the inserted target gene in the transformed T-DNA (35S-S: GCTCCTACAAATGCCATCA; 35S-AS, GATAGTGGGATTGTGCGTCA; NOS-S, GAATCCTGTTGCCGG TCTTG; PCR using NOS-AS, TTATCCTAGTTTGCGCGCTA (conditions: pre-denaturation, 94 ° C./5 min; denaturing, 94 ° C./20 sec; annealing, 50 ° C./20 sec; expansion, 72 ° C./1 min (40 cycles) and full extension; 72 ℃, 5 minutes) was performed to determine the transformation.

도 11에 나타난 바와 같이, 1차 선발된 예상 형질전환체들은 T2 세대에서도 대부분 형질전환이 되었음을 확인할 수 있었다. As shown in Figure 11, the first selected predicted transformants were confirmed that most of the transformation in the T2 generation.

본 실험에서 사용된 PCR 방법은 GMO 판별을 위해 EU에서 추천한 프로토콜(Promega Note, 1998)에 의한 프라이머들을 사용하였으며, PCR 조건도 동일한 과정으로 수행하였다. PCR을 통한 형질전환체의 판별과정에서 내재유전자(internal control DNA)의 증폭 과정은 결과의 신뢰성 확보에 필수적인 과정이다 (Meyer R (1999) Food Control 10: 391-399). 이는 운반체 특이 유전자만을 증폭하여 검정하는 방법은 작물에 대한 특이성과 정확한 PCR 수행 여부를 판단할 수 없어 결과에 대한 신뢰도가 낮아지게 되기 때문이다. The PCR method used in this experiment used primers according to the protocol recommended by the EU (Promega Note, 1998) for GMO determination, and PCR conditions were performed in the same process. The process of amplifying the internal control DNA in the process of identifying transformants by PCR is essential for ensuring the reliability of the results (Meyer R (1999) Food. Control 10: 391-399). This is because the method of amplifying only the carrier-specific genes and assaying can not determine the specificity of the crops and whether the PCR is performed correctly, which lowers the reliability of the results.

따라서 본 실시예에서는 1차 스크리닝된 재분화 식물체들의 형질전환 여부를 보다 정확히 판단하기 위해 감자 특이적인 DNA를 증폭할 수 있도록 고안된 내재유전자(internal control)용 PCR 프라이머(감자의 내재 유전자: rAGU4A, 5'-GACTCGATAACAGGCTCCA-3'; 35S-S:5'-GCTCCTACAAATGCCATCA-3'; 35S-AS, 5'-GATAGTGGGATTGTGCGTCA-3'; NOS-S, 5'-GAATC CTGTTGCCGGTCTTG-3'; NOS-AS, 5'-TTATCCTAGTTTGCGCGCTA-3'; 식물생명공학회지 29(4): 235-240.참조)를 사용하였다. 먼저 rAGU4A 프라이머와 35S-AS 프라이머 조합으로 확인하여 내재 유전자가 벡터 안에 삽입되어 있는지를 확인한 후, NOS-S 프라이머와 NOS-AS 프라이머를 이용하여 내재 유전자의 방향성을 확인하여 판별의 정확도를 높였다(도 12). PCR 조건은 도 11과 같다. Therefore, in this Example, PCR primers for internal control (internal genes of potatoes: rAGU4A, 5 ′) designed to amplify potato-specific DNA in order to more accurately determine whether the primary screened regeneration plants are transformed. -GACTCGATAACAGGCTCCA-3 '; 35S-S: 5'-GCTCCTACAAATGCCATCA-3'; 35S-AS, 5'-GATAGTGGGATTGTGCGTCA-3 '; NOS-S, 5'-GAATC CTGTTGCCGGTCTTG-3'; NOS-AS, 5'- TTATCCTAGTTTGCGCGCTA-3 '; Journal of Plant Biotechnology 29 (4): 235-240. First, the combination of the rAGU4A primer and the 35S-AS primer was used to confirm whether the endogenous gene was inserted into the vector, and then the NOS-S primer and the NOS-AS primer were used to confirm the orientation of the endogenous gene. 12). PCR conditions are shown in FIG. 11.

실험예Experimental Example 2: 형질전환 감자의 도입유전자 발현수준 비교 2: Comparison of Transgene Expression Levels of Transgenic Potatoes

SbSAMs로 형질전환된 자심 품종의 감자 계통에서 발현되는 전사체(transcript)의 수준을 확인하기 위해, PCR 및 duplex-competitive PCR로 검정한 개체들로부터 추출된 총 RNA를 이용한 노던 블랏 분석을 수행하였다(도 13). 도 13에서 레인 1-2는 비형질전환체 자심품종, 레인 3-9는 솔라늄 브레비덴스(Solanum brevidense) 유래의 에스-아데노실메티오닌 생합성 효소를 코딩하는 유전자로 형질전환된 자심 품종을 나타낸 것이다. Northern blot analysis was performed using total RNA extracted from individuals tested by PCR and duplex-competitive PCR to determine the levels of transcripts expressed in potato strains of Jasim varieties transformed with SbSAMs ( 13). In Figure 13 lane 1-2 is a non-transformant self- cultivation varieties, lanes 3-9 shows a Jasim variety transformed with a gene encoding the S- adenosylmethionine biosynthetic enzyme derived from Solanum brevidense ( Solanum brevidense ) will be.

도 13에 나타난 바와 같이, DIG 프로브를 이용한 최종 검출 결과 비형질전환체에서도 소량의 전사체가 확인되었는데, 이는 감자 고유의 SAM-s 유전자 전사체의 검출 결과로 판단된다. 형질전환체로 선발된 개체 중에서도 대조구와 비슷하거나 발현량이 적은 경우(도 13의 레인 2, 4, 5와 8)는 염색체상의 비번역(non-translative) 부위에 도입된 결과로 판단되며 이 결과를 근거로 증식계통 중에서 제거하였다. As shown in FIG. 13, a small amount of transcript was also detected in the non-transformant as a result of the final detection using the DIG probe, which is judged to be the detection result of the potato-specific SAM-s gene transcript. Among the individuals selected as transformants, similar or less expression level (lanes 2, 4, 5, and 8 in FIG. 13) was determined as a result of introduction into non-translative sites on the chromosome. In the growth system.

실험예Experimental Example 3:  3: SbSAMsSbSAMs 유전자가 도입된 형질전환 감자의 증식 Proliferation of Transgenic Potatoes Incorporated with Genes

1차 PCR로 검정되어 선발된 형질전환체들은 상토로 옮겨 순화시킨 다음 지상부를 생장시켜 약 90일 후 소괴경을 얻을 수 있었다(도 14). 수중 재배 방법을 사용한 형질전환 감자 자심품종의 씨감자 형성과정을 도 14에 도시하였다. 도 14의 1은 수중재배시스템에서 형질전환 감자의 생육 상태를 나타낸 것이고, 2는 수중재배베드에서 형질전환 감자의 소괴경을 나타낸 것이고, 3은 형질전환 자심 품종에서 수확한 감자를 나타낸 것이다. Transformants selected by assay by primary PCR were transferred to the topsoil, purified, and then grown above ground to obtain a tuber tube after about 90 days (FIG. 14). Seed potato forming process of the transformed potato seedling varieties using the underwater cultivation method is shown in FIG. 14 shows the growth of the transformed potato in the aquaculture system, 2 shows the tuber of the transformed potato in the underwater culture bed, 3 shows the potato harvested from the transformed Jasim variety.

상기로부터 얻은 괴경을 분석한 결과 비형질전환감자가 SAM이 분석되지 않는 것이 비해 본 발명의 실시예에서 만들어진 형질전환 감자는 SAM의 함량이 쉽게 검출할 수 있었을 정도로 증가함을 확인하였다(도 15).As a result of analyzing tubers obtained from the above, it was confirmed that the transformed potato produced in the Examples of the present invention increased the amount of SAM easily detected, as compared with the non-transformed potato in which the SAM was not analyzed (FIG. 15). .

실시예Example 3:  3: 에스s -- 아데노실메티오닌의Adenosylmethionine 식물체 내 함량에 따른 식물 생리주기 조절 Control of plant menstrual cycle according to the content of plant

애기장대에는 4개의 SAM-s 유전자가 존재하며, 그 기능이 다를 것이라고 예상된다. 또한 SAM은 식물체 내의 생리 조절 물질의 전구체로 사용되기 때문에 SAM을 생합성하는 유전자를 과다 발현하였을 때에 생리적 변화가 클 것으로 기대하였다.There are four SAM-s genes in Arabidopsis, and their function is expected to be different. In addition, since SAM is used as a precursor of physiological control substances in plants, it was expected that physiological changes would be large when the genes overexpressing SAM were overexpressed.

이점에 착안하여, 본 발명자들은 감자 솔라늄 브레비덴스(Solanum brevidense) NCBI GenBank AY635050에서 클로닝한 SAM-s 유전자를 상기 실시예 2에 기재한 아그로박테리움 튜머파시엔스를 매개로 한 형질전환법(Agrobacterium tumefacients-mediated transformation)을 사용하여 애기장대에 형질전환하였다.In view of the advantage, the present inventors have found that SAM-s gene cloned from potato solar titanium breather non Dense (Solanum brevidense) NCBI GenBank AY635050 in Example 2 The Arabidopsis was transformed using the Agrobacterium tumefacients- mediated transformation described above.

식물 형질전환용 운반체를 제작하기 위해, 식물체 형질전환용 운반체 pBI121의 MCS 부위에 위치한 BamHI과 SacI 사이트에 어댑터(adaptor)가 부착된 SbSAM 생합성 유전자를 각각 동일한 제한효소로 처리하여 라이게이션시켜 운반체를 구축하였다(도 16). In order to manufacture a plant transformation carrier, the Bam HI and the SbSAM biosynthesis genes with adapters attached to the Sac I site at the MCS region of the plant transformation carrier pBI121 were treated with the same restriction enzymes and ligated to each other. Was constructed (FIG. 16).

종배양(Seed culture)한 아그로박테리움을 항생제가 들어간 1L YEB에 1mL 가량 넣어 28℃에서 하룻밤 배양 한 뒤에 원심분리하여 균체만을 회수하였다. 형질전환용 B5 1L에 균체를 다시 현탁하여 40㎕/L의 Silwet L-77을 첨가하였다. 2L 비이커에 위 용액을 적당히 넣고 1-2분가량 식물을 침지 시켜준 뒤 비닐 백으로 덮어서 고정시켰다(3일후 비닐 벗김). Seed cultured Agrobacterium in 1L YEB containing antibiotics in about 1mL incubated overnight at 28 ℃ and centrifuged to recover only the cells. The cells were resuspended in 1 L of transforming B5 and 40 μl / L of Silwet L-77 was added. The solution was placed in a 2 L beaker and the plant was immersed for 1-2 minutes and then covered with a plastic bag to fix the vinyl (after 3 days).

형질 전환된 개체로부터 씨를 얻어 항생제 선별 방법을 통해 F1 세대에 81개의 라인의 씨앗을 확보하였다. 그 중에서, SAM-s 유전자가 염색체 안에 삽입된 개체를 확인하고자 하였다. 확보한 81개 라인의 씨앗을 각각 10~20 여개 발아하여 카나마이신이 첨가된 MS 배지에서 살아남은 개체만을 토양에 옮겨서 배양하였다. 성장한 개체의 잎을 채취하여 게놈 DNA를 분리하였고, SAM-s 유전자가 삽입되었는지 확인하기 위하여 PCR을 수행하였다(실시예 1의 실험예 1의 조건과 동일). 도 17에서 M은 100bp 래더, W1, W2 및 W3는 각각 야생형 1, 2 및 3, 레인 1은 1-4, 2: 5-2, 3: 5-3, 4: 6-3, 5: 8-3, 6: 9-4, 7: 9-5, 8: 14-8, 9: 16-8, 10: 19-2, 11: 22-1, 12: 22-2, 13: 23-1, 14: 24-3, 15: 24-4, 16: 25-1, 17: 36-4, 18: 39-3, 19: 54-9, 20: 58-6, 21: 59-1, 22: 59-2, 23: 59-3, 24: 59-5, 25: 64-2, 26: 64-4, 27: 76-6, 28: 76-8을 나타낸 것이다.Seeds were obtained from the transformed individuals to obtain 81 lines of seeds in the F1 generation through antibiotic screening. Among them, we tried to identify individuals whose SAM-s gene was inserted into chromosomes. About 10 to 20 seeds were germinated in each of the obtained 81 lines, and only the surviving individuals in MS medium containing kanamycin were transferred to the soil and cultured. Genomic DNA was isolated from the leaves of the grown individuals, and PCR was performed to confirm that the SAM-s gene was inserted (the same conditions as in Experiment 1 of Example 1). In Figure 17, M is 100bp ladder, W1, W2 and W3 are wild type 1, 2 and 3, lane 1 is 1-4, 2: 5-2, 3: 5-3, 4: 6-3, 5: 8 -3, 6: 9-4, 7: 9-5, 8: 14-8, 9: 16-8, 10: 19-2, 11: 22-1, 12: 22-2, 13: 23-1 , 14: 24-3, 15: 24-4, 16: 25-1, 17: 36-4, 18: 39-3, 19: 54-9, 20: 58-6, 21: 59-1, 22 : 59-2, 23: 59-3, 24: 59-5, 25: 64-2, 26: 64-4, 27: 76-6, 28: 76-8.

도 17에 나타난 바와 같이, 야생형에서는 형질전환체에만 있는 35S 프로모터에 의한 PCR 산물인 195 bp의 밴드를 찾아 볼 수 없었다. 그러나 28개의 형질전환 개체 중에서 1번 레인의 식물 1-4 라인만 제외하고는 모두 SAM-s가 형질전환이 됐음을 확인할 수 있다. As shown in FIG. 17, in the wild type, a band of 195 bp, which is a PCR product by the 35S promoter in the transformant, was not found. However, all of the 28 transgenic individuals except for plant 1-4 lines in lane 1 can be confirmed that the transformed SAM-s.

이후에 서던 블랏팅을 통하여 몇 카피가 들어갔는지 확인하였다.Thereafter, Southern blotting was used to determine the number of copies entered.

이렇게 선별된 SAM -s 유전자를 과다 발현한 애기장대를 키워가면서 성장 모 습을 관찰하였다. Thus going to the selected SAM -s gene grow the overexpressed Arabidopsis thaliana was observed a growth base s.

도 18과 도 19에 나타난 바와 같이, 발아와 초기의 성장에는 변화가 없었으나 야생형에 비해서 SAM-s를 과다 발현한 애기장대 잎의 낙엽화가 꽃이 핀 후에 빨리 진행되는 것을 발견할 수 있었다. As shown in FIG. 18 and FIG. 19, there was no change in germination and initial growth, but it was found that defoliation of Arabidopsis leaves overexpressing SAM-s progressed rapidly after flowering.

실험예Experimental Example 1: 애기장대 형질전환체의 무성번식 1: Asexual reproduction of Arabidopsis transformants

절편체로 이용할 모주는 성장한 개체의 잎의 주맥을 절편체로 이용하여 MS 기본배지에서 기내배양하거나, 5℃에서 보관해둔 종자를 파종하여 증식한다.The parent strain to be used as the explants is grown on the basis of the stem of the growing individual as an explant in the in-flight culture in MS basic medium, or sowing the seed stored at 5 ℃.

종자를 파종하는 경우, 5℃에서 보관해둔 종자를 70% 에탄올과 5% 소디움 하이포클로라이드 용액에 각각 10분간 살균 처리한 후, 멸균수를 이용하여 수회 수세하였다. 수세한 종자를 MS 기본배지에 파종한 다음, 생장조절상(온도 23±1℃, 상대습도 70?80%, 2,000 형광조명, 광주기 16시간, 고려기기, 서울)에서 3~4주 육성한 후 잎이 5~6장인 유식물을 골라 배양용기당 4개씩 치상하였다. 이후 삽목 형태로 영양번식을 통하여 증식하여 관리하였다.In the case of seed sowing, the seeds stored at 5 ° C. were sterilized for 10 minutes in 70% ethanol and 5% sodium hypochloride solution, and washed with sterile water several times. Seeds were washed in MS medium and grown for 3 ~ 4 weeks in growth control phase (temperature 23 ± 1 ℃, relative humidity 70 ~ 80%, 2,000 fluorescent lights, photoperiod 16 hours, Korea Instruments, Seoul). After that, 5 ~ 6 leaves were selected and seeded 4 per culture vessel. After that, it was managed by propagation through nutrient breeding in the form of cutting.

상기 실시예 및 실험예를 통해 살펴본 바와 같이, 본 발명은 고 함량의 에스-아데노실메티오닌을 생산하는 식용식물과 그 용도 및, 에스-아데노실메티오닌 함량 변화를 통한 식물의 생리주기 조절방법에 관한 것으로, 솔라늄 브레비덴스(Solanum brevidense) 유래의 에스-아데노실메티오닌 생합성 효소의 코딩 유전자를 식용식물에 도입하여 형질전환시켜 에스-아데노실메티오닌을 과다발현하는 식용 식물 형질전환체를 제조하는 뛰어난 효과가 있다. 본 발명의 에스-아데노실메티오닌을 과다 발현하는 식용식물 형질전환체는 에스-아데노실메티오닌을 음식을 통해 손쉽게 섭취하여 병의 예방을 가능하게 하는 효과가 있다. 또한, 본 발명은 유전적으로 에스-아데노실메티오닌의 합성을 조절하여 식물의 생장 생리주기를 조절함으로써 농업에 유용한 식물 개량에 뛰어난 효과가 있다. 따라서, 본 발명은 농업상 매우 유용한 발명인 것이다. As described through the above Examples and Experimental Examples, the present invention relates to an edible plant for producing high content of es-adenosylmethionine and its use, and to a method for regulating the menstrual cycle of plants by changing the content of es-adenosylmethionine By introducing a coding gene of S-adenosylmethionine biosynthetic enzyme derived from Solanum brevidense into edible plants, it is excellent for producing an edible plant transformant that overexpresses S-adenosylmethionine. It works. Edible plant transformant over-expressing the S- adenosyl methionine of the present invention is effective to enable the prevention of the disease by easily ingesting the S- adenosyl methionine through food. In addition, the present invention has an excellent effect on improving plants useful for agriculture by controlling the growth cycle of the plant by genetically controlling the synthesis of S- adenosylmethionine. Therefore, the present invention is a very useful invention for agriculture.

<110> Myongji University Industry and Academia Cooperation RURAL DEVELOPMENT ADMINISTRATION <120> Transgenic esculent plants producing high amount of S-adenosylmethionine and use thereof, and a method for controlling physiological cycle of plant by changing amount of S-adenosylmethionine <160> 2 <170> KopatentIn 1.71 <210> 1 <211> 1523 <212> DNA <213> Solanum brevidens <220> <221> gene <222> (1)..(1523) <223> S-adenosyl methionine synthase <220> <221> CDS <222> (109)..(1287) <400> 1 acgaggcaaa gaggtttttt ctctcaaggg gtataaagat tgctcctttc cgacatttct 60 aaacctcttt ttctattagt tcgctgttgg gttccctttt tcttgaga atg gaa act 117 Met Glu Thr 1 ttc cta ttc acc tcc gag tct gtg aac gag ggt cac cca gac aag ctc 165 Phe Leu Phe Thr Ser Glu Ser Val Asn Glu Gly His Pro Asp Lys Leu 5 10 15 tgt gat cag atc tct gat gca gtt ctt gat gcc tgc ctt gag caa gat 213 Cys Asp Gln Ile Ser Asp Ala Val Leu Asp Ala Cys Leu Glu Gln Asp 20 25 30 35 cct gag agc aaa gtt gca tgt gaa act tgc acc aag acc aac ttg gtc 261 Pro Glu Ser Lys Val Ala Cys Glu Thr Cys Thr Lys Thr Asn Leu Val 40 45 50 atg gtc ttt ggt gag atc aca acc aag gct att gta gac tat gag aaa 309 Met Val Phe Gly Glu Ile Thr Thr Lys Ala Ile Val Asp Tyr Glu Lys 55 60 65 atc gtg cgt gac aca tgc cgt aac att gga ttt gtt tct gat gat gtt 357 Ile Val Arg Asp Thr Cys Arg Asn Ile Gly Phe Val Ser Asp Asp Val 70 75 80 ggt ctt gat gcc gac aac tgc aag gtc ctt gtt tac att gag cag caa 405 Gly Leu Asp Ala Asp Asn Cys Lys Val Leu Val Tyr Ile Glu Gln Gln 85 90 95 agt cct gat att gct caa ggt gtc cac ggc cat ctg acc aaa cgc cct 453 Ser Pro Asp Ile Ala Gln Gly Val His Gly His Leu Thr Lys Arg Pro 100 105 110 115 gag gag att ggt gct ggt gac cag ggt cac atg ttt ggc tat gcc acc 501 Glu Glu Ile Gly Ala Gly Asp Gln Gly His Met Phe Gly Tyr Ala Thr 120 125 130 gat gag acc cct gaa tta atg cct ctc agt cac gtg ctt gca act aaa 549 Asp Glu Thr Pro Glu Leu Met Pro Leu Ser His Val Leu Ala Thr Lys 135 140 145 ctt ggt gcc cgc ctt aca gaa gtt cgc aag aat ggc acc tgc cgc tgg 597 Leu Gly Ala Arg Leu Thr Glu Val Arg Lys Asn Gly Thr Cys Arg Trp 150 155 160 ttg aag cct gat ggc aaa act caa gtt act gtt gag tac tgc aat gac 645 Leu Lys Pro Asp Gly Lys Thr Gln Val Thr Val Glu Tyr Cys Asn Asp 165 170 175 aat ggt gcc atg att cca att agg gtc cac act gtt ctc atc tcc act 693 Asn Gly Ala Met Ile Pro Ile Arg Val His Thr Val Leu Ile Ser Thr 180 185 190 195 caa cac gat gag act gtt aca aat gat gag att gcc cgc gac ctt aag 741 Gln His Asp Glu Thr Val Thr Asn Asp Glu Ile Ala Arg Asp Leu Lys 200 205 210 gag cat gct atc aag cca gtc atc cca gag aag tac ctt gac gag aag 789 Glu His Ala Ile Lys Pro Val Ile Pro Glu Lys Tyr Leu Asp Glu Lys 215 220 225 aca atc ttc cac ctt aac cca tct ggc cga ttt gtt att ggt gga cct 837 Thr Ile Phe His Leu Asn Pro Ser Gly Arg Phe Val Ile Gly Gly Pro 230 235 240 cat ggt gat gct ggt ctc act ggt cgt aaa atc atc att gac act tat 885 His Gly Asp Ala Gly Leu Thr Gly Arg Lys Ile Ile Ile Asp Thr Tyr 245 250 255 ggt ggt tgg ggt gcc cat ggt ggt ggt gca ttc tct ggc aag gac cca 933 Gly Gly Trp Gly Ala His Gly Gly Gly Ala Phe Ser Gly Lys Asp Pro 260 265 270 275 acc aag gtt gac agg agt ggt gca tac att gta agg cag gct gca aag 981 Thr Lys Val Asp Arg Ser Gly Ala Tyr Ile Val Arg Gln Ala Ala Lys 280 285 290 agt att gta gct agt gga ctc gct cgc aga tgc atc gtg cag gtt tct 1029 Ser Ile Val Ala Ser Gly Leu Ala Arg Arg Cys Ile Val Gln Val Ser 295 300 305 tat gcc atc ggt gtg cct gag cca ttg tct gta ttc gtt gac acc tat 1077 Tyr Ala Ile Gly Val Pro Glu Pro Leu Ser Val Phe Val Asp Thr Tyr 310 315 320 ggc act gga aag atc ccc gac agg gaa att ttg aag atc gtt aag gag 1125 Gly Thr Gly Lys Ile Pro Asp Arg Glu Ile Leu Lys Ile Val Lys Glu 325 330 335 aac ttc gac ttc aga cct gga atg atg tcc att aac ttg gat ttg aag 1173 Asn Phe Asp Phe Arg Pro Gly Met Met Ser Ile Asn Leu Asp Leu Lys 340 345 350 355 agg ggt ggc aat ggg aga ttc ttg aaa act gct gcc tat ggt cat ttt 1221 Arg Gly Gly Asn Gly Arg Phe Leu Lys Thr Ala Ala Tyr Gly His Phe 360 365 370 gga cgt gac gac gct gat ttc aca tgg gaa gtt gtc aag ccc ctc aag 1269 Gly Arg Asp Asp Ala Asp Phe Thr Trp Glu Val Val Lys Pro Leu Lys 375 380 385 tgg gaa aac ccc caa gac taa taagtgtctg aaagtgcttg cctatgtttt 1320 Trp Glu Asn Pro Gln Asp 390 ttttctcttt gttgtttgct tgtggcttta gaatcccctg tgtttgcttg tctatgtatt 1380 ttctcttttg accctttttt tgctattgtc ctgtttccat tgtgttggaa cttggatatc 1440 ttaggccttg gaatattaag gaaaaaaaac tattattata tacataaaaa ttagtgcatt 1500 tgtggaaaaa aaaaaaaaaa aaa 1523 <210> 2 <211> 393 <212> PRT <213> Solanum brevidens <400> 2 Met Glu Thr Phe Leu Phe Thr Ser Glu Ser Val Asn Glu Gly His Pro 1 5 10 15 Asp Lys Leu Cys Asp Gln Ile Ser Asp Ala Val Leu Asp Ala Cys Leu 20 25 30 Glu Gln Asp Pro Glu Ser Lys Val Ala Cys Glu Thr Cys Thr Lys Thr 35 40 45 Asn Leu Val Met Val Phe Gly Glu Ile Thr Thr Lys Ala Ile Val Asp 50 55 60 Tyr Glu Lys Ile Val Arg Asp Thr Cys Arg Asn Ile Gly Phe Val Ser 65 70 75 80 Asp Asp Val Gly Leu Asp Ala Asp Asn Cys Lys Val Leu Val Tyr Ile 85 90 95 Glu Gln Gln Ser Pro Asp Ile Ala Gln Gly Val His Gly His Leu Thr 100 105 110 Lys Arg Pro Glu Glu Ile Gly Ala Gly Asp Gln Gly His Met Phe Gly 115 120 125 Tyr Ala Thr Asp Glu Thr Pro Glu Leu Met Pro Leu Ser His Val Leu 130 135 140 Ala Thr Lys Leu Gly Ala Arg Leu Thr Glu Val Arg Lys Asn Gly Thr 145 150 155 160 Cys Arg Trp Leu Lys Pro Asp Gly Lys Thr Gln Val Thr Val Glu Tyr 165 170 175 Cys Asn Asp Asn Gly Ala Met Ile Pro Ile Arg Val His Thr Val Leu 180 185 190 Ile Ser Thr Gln His Asp Glu Thr Val Thr Asn Asp Glu Ile Ala Arg 195 200 205 Asp Leu Lys Glu His Ala Ile Lys Pro Val Ile Pro Glu Lys Tyr Leu 210 215 220 Asp Glu Lys Thr Ile Phe His Leu Asn Pro Ser Gly Arg Phe Val Ile 225 230 235 240 Gly Gly Pro His Gly Asp Ala Gly Leu Thr Gly Arg Lys Ile Ile Ile 245 250 255 Asp Thr Tyr Gly Gly Trp Gly Ala His Gly Gly Gly Ala Phe Ser Gly 260 265 270 Lys Asp Pro Thr Lys Val Asp Arg Ser Gly Ala Tyr Ile Val Arg Gln 275 280 285 Ala Ala Lys Ser Ile Val Ala Ser Gly Leu Ala Arg Arg Cys Ile Val 290 295 300 Gln Val Ser Tyr Ala Ile Gly Val Pro Glu Pro Leu Ser Val Phe Val 305 310 315 320 Asp Thr Tyr Gly Thr Gly Lys Ile Pro Asp Arg Glu Ile Leu Lys Ile 325 330 335 Val Lys Glu Asn Phe Asp Phe Arg Pro Gly Met Met Ser Ile Asn Leu 340 345 350 Asp Leu Lys Arg Gly Gly Asn Gly Arg Phe Leu Lys Thr Ala Ala Tyr 355 360 365 Gly His Phe Gly Arg Asp Asp Ala Asp Phe Thr Trp Glu Val Val Lys 370 375 380 Pro Leu Lys Trp Glu Asn Pro Gln Asp 385 390 <110> Myongji University Industry and Academia Cooperation          RURAL DEVELOPMENT ADMINISTRATION <120> Transgenic esculent plants producing high amount of          S-adenosylmethionine and use according, and a method for          controlling physiological cycle of plant by changing amount of          S-adenosylmethionine <160> 2 <170> KopatentIn 1.71 <210> 1 <211> 1523 <212> DNA <213> Solanum brevidens <220> <221> gene (222) (1) .. (1523) <223> S-adenosyl methionine synthase <220> <221> CDS (109). (1287) <400> 1 acgaggcaaa gaggtttttt ctctcaaggg gtataaagat tgctcctttc cgacatttct 60 aaacctcttt ttctattagt tcgctgttgg gttccctttt tcttgaga atg gaa act 117                                                        Met glu thr                                                          One ttc cta ttc acc tcc gag tct gtg aac gag ggt cac cca gac aag ctc 165 Phe Leu Phe Thr Ser Glu Ser Val Asn Glu Gly His Pro Asp Lys Leu       5 10 15 tgt gat cag atc tct gat gca gtt ctt gat gcc tgc ctt gag caa gat 213 Cys Asp Gln Ile Ser Asp Ala Val Leu Asp Ala Cys Leu Glu Gln Asp  20 25 30 35 cct gag agc aaa gtt gca tgt gaa act tgc acc aag acc aac ttg gtc 261 Pro Glu Ser Lys Val Ala Cys Glu Thr Cys Thr Lys Thr Asn Leu Val                  40 45 50 atg gtc ttt ggt gag atc aca acc aag gct att gta gac tat gag aaa 309 Met Val Phe Gly Glu Ile Thr Thr Lys Ala Ile Val Asp Tyr Glu Lys              55 60 65 atc gtg cgt gac aca tgc cgt aac att gga ttt gtt tct gat gat gtt 357 Ile Val Arg Asp Thr Cys Arg Asn Ile Gly Phe Val Ser Asp Asp Val          70 75 80 ggt ctt gat gcc gac aac tgc aag gtc ctt gtt tac att gag cag caa 405 Gly Leu Asp Ala Asp Asn Cys Lys Val Leu Val Tyr Ile Glu Gln Gln      85 90 95 agt cct gat att gct caa ggt gtc cac ggc cat ctg acc aaa cgc cct 453 Ser Pro Asp Ile Ala Gln Gly Val His Gly His Leu Thr Lys Arg Pro 100 105 110 115 gag gag att ggt gct ggt gac cag ggt cac atg ttt ggc tat gcc acc 501 Glu Glu Ile Gly Ala Gly Asp Gln Gly His Met Phe Gly Tyr Ala Thr                 120 125 130 gat gag acc cct gaa tta atg cct ctc agt cac gtg ctt gca act aaa 549 Asp Glu Thr Pro Glu Leu Met Pro Leu Ser His Val Leu Ala Thr Lys             135 140 145 ctt ggt gcc cgc ctt aca gaa gtt cgc aag aat ggc acc tgc cgc tgg 597 Leu Gly Ala Arg Leu Thr Glu Val Arg Lys Asn Gly Thr Cys Arg Trp         150 155 160 ttg aag cct gat ggc aaa act caa gtt act gtt gag tac tgc aat gac 645 Leu Lys Pro Asp Gly Lys Thr Gln Val Thr Val Glu Tyr Cys Asn Asp     165 170 175 aat ggt gcc atg att cca att agg gtc cac act gtt ctc atc tcc act 693 Asn Gly Ala Met Ile Pro Ile Arg Val His Thr Val Leu Ile Ser Thr 180 185 190 195 caa cac gat gag act gtt aca aat gat gag att gcc cgc gac ctt aag 741 Gln His Asp Glu Thr Val Thr Asn Asp Glu Ile Ala Arg Asp Leu Lys                 200 205 210 gag cat gct atc aag cca gtc atc cca gag aag tac ctt gac gag aag 789 Glu His Ala Ile Lys Pro Val Ile Pro Glu Lys Tyr Leu Asp Glu Lys             215 220 225 aca atc ttc cac ctt aac cca tct ggc cga ttt gtt att ggt gga cct 837 Thr Ile Phe His Leu Asn Pro Ser Gly Arg Phe Val Ile Gly Gly Pro         230 235 240 cat ggt gat gct ggt ctc act ggt cgt aaa atc atc att gac act tat 885 His Gly Asp Ala Gly Leu Thr Gly Arg Lys Ile Ile Ile Asp Thr Tyr     245 250 255 ggt ggt tgg ggt gcc cat ggt ggt ggt gca ttc tct ggc aag gac cca 933 Gly Gly Trp Gly Ala His Gly Gly Gly Ala Phe Ser Gly Lys Asp Pro 260 265 270 275 acc aag gtt gac agg agt ggt gca tac att gta agg cag gct gca aag 981 Thr Lys Val Asp Arg Ser Gly Ala Tyr Ile Val Arg Gln Ala Ala Lys                 280 285 290 agt att gta gct agt gga ctc gct cgc aga tgc atc gtg cag gtt tct 1029 Ser Ile Val Ala Ser Gly Leu Ala Arg Arg Cys Ile Val Gln Val Ser             295 300 305 tat gcc atc ggt gtg cct gag cca ttg tct gta ttc gtt gac acc tat 1077 Tyr Ala Ile Gly Val Pro Glu Pro Leu Ser Val Phe Val Asp Thr Tyr         310 315 320 ggc act gga aag atc ccc gac agg gaa att ttg aag atc gtt aag gag 1125 Gly Thr Gly Lys Ile Pro Asp Arg Glu Ile Leu Lys Ile Val Lys Glu     325 330 335 aac ttc gac ttc aga cct gga atg atg tcc att aac ttg gat ttg aag 1173 Asn Phe Asp Phe Arg Pro Gly Met Met Ser Ile Asn Leu Asp Leu Lys 340 345 350 355 agg ggt ggc aat ggg aga ttc ttg aaa act gct gcc tat ggt cat ttt 1221 Arg Gly Gly Asn Gly Arg Phe Leu Lys Thr Ala Ala Tyr Gly His Phe                 360 365 370 gga cgt gac gac gct gat ttc aca tgg gaa gtt gtc aag ccc ctc aag 1269 Gly Arg Asp Asp Ala Asp Phe Thr Trp Glu Val Val Lys Pro Leu Lys             375 380 385 tgg gaa aac ccc caa gac taa taagtgtctg aaagtgcttg cctatgtttt 1320 Trp Glu Asn Pro Gln Asp         390 ttttctcttt gttgtttgct tgtggcttta gaatcccctg tgtttgcttg tctatgtatt 1380 ttctcttttg accctttttt tgctattgtc ctgtttccat tgtgttggaa cttggatatc 1440 ttaggccttg gaatattaag gaaaaaaaac tattattata tacataaaaa ttagtgcatt 1500 tgtggaaaaa aaaaaaaaaa aaa 1523 <210> 2 <211> 393 <212> PRT <213> Solanum brevidens <400> 2 Met Glu Thr Phe Leu Phe Thr Ser Glu Ser Val Asn Glu Gly His Pro   1 5 10 15 Asp Lys Leu Cys Asp Gln Ile Ser Asp Ala Val Leu Asp Ala Cys Leu              20 25 30 Glu Gln Asp Pro Glu Ser Lys Val Ala Cys Glu Thr Cys Thr Lys Thr          35 40 45 Asn Leu Val Met Val Phe Gly Glu Ile Thr Thr Lys Ala Ile Val Asp      50 55 60 Tyr Glu Lys Ile Val Arg Asp Thr Cys Arg Asn Ile Gly Phe Val Ser  65 70 75 80 Asp Asp Val Gly Leu Asp Ala Asp Asn Cys Lys Val Leu Val Tyr Ile                  85 90 95 Glu Gln Gln Ser Pro Asp Ile Ala Gln Gly Val His Gly His Leu Thr             100 105 110 Lys Arg Pro Glu Glu Ile Gly Ala Gly Asp Gln Gly His Met Phe Gly         115 120 125 Tyr Ala Thr Asp Glu Thr Pro Glu Leu Met Pro Leu Ser His Val Leu     130 135 140 Ala Thr Lys Leu Gly Ala Arg Leu Thr Glu Val Arg Lys Asn Gly Thr 145 150 155 160 Cys Arg Trp Leu Lys Pro Asp Gly Lys Thr Gln Val Thr Val Glu Tyr                 165 170 175 Cys Asn Asp Asn Gly Ala Met Ile Pro Ile Arg Val His Thr Val Leu             180 185 190 Ile Ser Thr Gln His Asp Glu Thr Val Thr Asn Asp Glu Ile Ala Arg         195 200 205 Asp Leu Lys Glu His Ala Ile Lys Pro Val Ile Pro Glu Lys Tyr Leu     210 215 220 Asp Glu Lys Thr Ile Phe His Leu Asn Pro Ser Gly Arg Phe Val Ile 225 230 235 240 Gly Gly Pro His Gly Asp Ala Gly Leu Thr Gly Arg Lys Ile Ile Ile                 245 250 255 Asp Thr Tyr Gly Gly Trp Gly Ala His Gly Gly Gly Ala Phe Ser Gly             260 265 270 Lys Asp Pro Thr Lys Val Asp Arg Ser Gly Ala Tyr Ile Val Arg Gln         275 280 285 Ala Ala Lys Ser Ile Val Ala Ser Gly Leu Ala Arg Arg Cys Ile Val     290 295 300 Gln Val Ser Tyr Ala Ile Gly Val Pro Glu Pro Leu Ser Val Phe Val 305 310 315 320 Asp Thr Tyr Gly Thr Gly Lys Ile Pro Asp Arg Glu Ile Leu Lys Ile                 325 330 335 Val Lys Glu Asn Phe Asp Phe Arg Pro Gly Met Met Ser Ile Asn Leu             340 345 350 Asp Leu Lys Arg Gly Gly Asn Gly Arg Phe Leu Lys Thr Ala Ala Tyr         355 360 365 Gly His Phe Gly Arg Asp Asp Ala Asp Phe Thr Trp Glu Val Val Lys     370 375 380 Pro Leu Lys Trp Glu Asn Pro Gln Asp 385 390  

Claims (7)

서열목록 서열번호 1에 기재된 야생 감자 근연종 솔라늄 브레비덴스(Solanum brevidense) 유래의 에스-아데노실메티오닌 생합성효소의 코딩 유전자(SAM-s)를 E coli DH5a에 발현시켜 상기 유전자의 발현여부를 확인하고, 식물체 형질전환용 운반체 pBI121에서 MCS부위의 리포터 유전자 GUS(β-glucronidase) 부위를 제거하여 SbSAM-s 유전자를 라이게이션시켜 제작한 식물체 형질전환용 운반체 pBISAM-1을 구축한 다음, 이를 아그로박테리움 생육배지(YEB)에서 아그로박테리움에 형질전환시킨 후 형질전환된 콜로니를 선발하여 M5 배지에서 감자 자심품종에 형질전환시킨 다음, MS배지에서 조직배양하여 무성번식시킴을 특징으로 하는 에스-아데노실메티오닌 함량이 증진된 형질전환 감자의 제조방법.S-adenosylmethionine biosynthesis coding gene (SAM-s) derived from the wild potato Rhododendron solanum brevidense described in SEQ ID NO: 1 was expressed in E coli DH5a to express the expression of the gene. After confirmation, the plant transformation carrier pBI121 removed the reporter gene GUS (β-glucronidase) region of the MCS region to construct a plant transformation carrier pBISAM-1 prepared by ligating the SbSAM-s gene, and then agrolog. After transforming to Agrobacterium in Bacterium growth medium (YEB), transformed colonies were selected, transformed to potato seed varieties in M5 medium, and then cultured in MS medium to grow asexually. A method for producing a transgenic potato having an increased adenosylmethionine content. 삭제delete 제1항의 방법에 따라 제조된 에스-아데노실메티오닌 함량이 증대된 것이 특징인 형질전환 감자 자심품종의 씨감자.Seed potato of the transgenic potato seed varieties characterized in that the content of S- adenosylmethionine produced according to the method of claim 1 is increased. 삭제delete 삭제delete 삭제delete 삭제delete
KR1020070065218A 2007-06-29 2007-06-29 Transgenic esculent plants producing high amount of S-adenosylmethionine and use thereof, and a method for controlling physiological cycle of plant by changing amount of S-adenosylmethionine KR101108990B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070065218A KR101108990B1 (en) 2007-06-29 2007-06-29 Transgenic esculent plants producing high amount of S-adenosylmethionine and use thereof, and a method for controlling physiological cycle of plant by changing amount of S-adenosylmethionine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070065218A KR101108990B1 (en) 2007-06-29 2007-06-29 Transgenic esculent plants producing high amount of S-adenosylmethionine and use thereof, and a method for controlling physiological cycle of plant by changing amount of S-adenosylmethionine

Publications (2)

Publication Number Publication Date
KR20090001096A KR20090001096A (en) 2009-01-08
KR101108990B1 true KR101108990B1 (en) 2012-01-31

Family

ID=40484205

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070065218A KR101108990B1 (en) 2007-06-29 2007-06-29 Transgenic esculent plants producing high amount of S-adenosylmethionine and use thereof, and a method for controlling physiological cycle of plant by changing amount of S-adenosylmethionine

Country Status (1)

Country Link
KR (1) KR101108990B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101230850B1 (en) 2011-05-17 2013-02-07 주식회사다스 Seat rail locking device of vehicle

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Genes and Development, Vol.18:1577-1591(2004.)
NCBI GenBank AY635050(2004.06.23)
Plant Physiology, Vol.108:841-842(1995.)
The Plant Cell, Vol.6:1401-1414(1994.)

Also Published As

Publication number Publication date
KR20090001096A (en) 2009-01-08

Similar Documents

Publication Publication Date Title
Furukawa et al. Two OsGASR genes, rice GAST homologue genes that are abundant in proliferating tissues, show different expression patterns in developing panicles
US5750862A (en) Control of plant cell proliferation and growth
KR20120007038A (en) Plant snf1-related protein kinase gene
US20120102593A1 (en) Use of a Histone Deacetylase Gene OsHDT1 in Enhancing Rice Heterosis
KR20010073218A (en) Apomixis conferred by expression of SERK interacting proteins
US20150218581A1 (en) Use of OXHS4 Gene in Controlling Rice Drought Resistance
HU221515B (en) Transgenic plants with improved biomass production
Auger et al. Brassica orthologs from BANYULS belong to a small multigene family, which is involved in procyanidin accumulation in the seed
KR101108990B1 (en) Transgenic esculent plants producing high amount of S-adenosylmethionine and use thereof, and a method for controlling physiological cycle of plant by changing amount of S-adenosylmethionine
CN116732047A (en) Application of gene OsMADS5in regulation and control of plant root elongation
CN112430604B (en) Gene engineering application of gene OsPIN10b
CN109956996B (en) Millet yield-related protein SiAMP1, and coding gene and application thereof
KR101174410B1 (en) High α-tocopherol transgenic soybean and the method for preparing thereof
JP4189636B2 (en) Plants with increased amino acid content, plants with increased nitrogen content, plants with deregulated growth under nitrogen limitation, and methods for producing them
KR102127184B1 (en) Use of AK102606 gene from Oryza sativa as regulator of antioxidant activity, environmental stresses and crop yield
KR102265780B1 (en) EFG1 gene for regulating flowering date of plantbody and uses thereof
CN109971765B (en) Corn gene ZmNAC77 for regulating and controlling contents of fatty acids and starch in arabidopsis thaliana and application thereof
CN101831429B (en) Promoter and expression mode identification of rice endosperm specific expression gene
CN100445382C (en) Transcription factor gene OsHOX4 for controlling synthesis of rice gibberellin and use thereof
US9796981B2 (en) Methods for transforming tarwi and for producing molecular farming products in transgenic tarwi seed
CN114214341B (en) Application of tomato SlSERAT1, 1 gene or fragment thereof in plant development process
Champenoy et al. Activity of the yeast mevalonate kinase promoter in transgenic tobacco
KR101791584B1 (en) Transgenic plants with enhanced yield-related traits and producing method thereof
Kershanskaya et al. Improving crops genome through genetic engineering of the key metabolic pathways
CN116751790A (en) Gene for controlling elongation and tillering of rice root system and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150120

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160105

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170117

Year of fee payment: 16