KR101104694B1 - Air receiver and working fluid circulation system for solar thermal power tower - Google Patents

Air receiver and working fluid circulation system for solar thermal power tower Download PDF

Info

Publication number
KR101104694B1
KR101104694B1 KR1020090099783A KR20090099783A KR101104694B1 KR 101104694 B1 KR101104694 B1 KR 101104694B1 KR 1020090099783 A KR1020090099783 A KR 1020090099783A KR 20090099783 A KR20090099783 A KR 20090099783A KR 101104694 B1 KR101104694 B1 KR 101104694B1
Authority
KR
South Korea
Prior art keywords
working fluid
absorber
tower
steam generator
heat
Prior art date
Application number
KR1020090099783A
Other languages
Korean (ko)
Other versions
KR20110042912A (en
Inventor
강용혁
이상남
김종규
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to KR1020090099783A priority Critical patent/KR101104694B1/en
Publication of KR20110042912A publication Critical patent/KR20110042912A/en
Application granted granted Critical
Publication of KR101104694B1 publication Critical patent/KR101104694B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/30Solar heat collectors using working fluids with means for exchanging heat between two or more working fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S2020/10Solar modules layout; Modular arrangements
    • F24S2020/18Solar modules layout; Modular arrangements having a particular shape, e.g. prismatic, pyramidal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S2080/09Arrangements for reinforcement of solar collector elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

본 발명은 작동유체인 공기가 흡수기와 증기발생기 또는 축열조 사이를 순환할 수 있도록 구성하여 작동유체가 대기로 배출되지 않고 재순환되는 상태에서 재 가열될 수 있게 함으로써 열효율을 높인 타워형 공기식 태양열발전시스템의 작동유체 순환 구조에 관한 것이다. The present invention is configured to circulate between the absorber and the steam generator or the heat storage tank, the working fluid is to operate the tower-type pneumatic solar power system to increase the thermal efficiency by allowing the working fluid to be reheated in the recycled state without being discharged to the atmosphere It relates to a fluid circulation structure.

이러한 본 발명의 타워형 태양발전시스템의 작동유체 공급 구조는 햇빛을 반사하는 반사판과, 반사판에 의해 반사/집광된 태양열을 이용하여 작동유체를 가열하는 흡수기와, 흡수기에 의해 가열된 작동유체의 열로 증기를 발생시키는 증기발생기를 포함하여 구성되는 타워형 태양발전시스템의 작동유체 공급구조에 있어서, 상기 흡수기로부터 작동유체가 출입하는 유입, 유출구를 상기 증기발생기의 유입, 유출구에 연결하여 흡수기를 통과하는 작동유체가 외부로 배출되지 않고 증기발생기와 흡수기 사이에서 순환되게 구성됨을 특징으로 한다.The working fluid supply structure of the tower-type solar power generation system of the present invention includes a reflector reflecting sunlight, an absorber for heating the working fluid using solar heat reflected / condensed by the reflector, and steam by the heat of the working fluid heated by the absorber. In the working fluid supply structure of the tower-type solar power system comprising a steam generator for generating a, the working fluid passing through the absorber by connecting the inlet, the outlet of the working fluid from the absorber to the inlet, the outlet of the steam generator, the outlet Is circulated between the steam generator and the absorber without being discharged to the outside.

태양열발전, 흡수기, 세라믹, 재순환, 열교환기, 타워 Solar power, absorber, ceramic, recirculation, heat exchanger, tower

Description

타워형 태양발전시스템의 작동유체 순환 구조{Air receiver and working fluid circulation system for solar thermal power tower}Air receiver and working fluid circulation system for solar thermal power tower

본 발명은 타워형 태양열발전시스템의 작동유체 공급 구조에 관한 것으로써, 상세하게는 작동유체가 흡수기와 증기발생기 또는 축열조 사이를 순환할 수 있도록 구성하여 작동유체가 외기로 배출되지 않고 재가열 될 수 있게 함으로써 열효율을 높인 타워형 태양발전시스템의 작동유체 순환 구조에 관한 것이다. The present invention relates to a working fluid supply structure of a tower solar power system, and in particular, the working fluid can be circulated between an absorber and a steam generator or a heat storage tank so that the working fluid can be reheated without being discharged to the outside air. The present invention relates to a working fluid circulation structure of a tower type solar power system with improved thermal efficiency.

화석연료의 고갈에 따라 자연력을 이용한 동력 발생 장치들이 많이 개발되고 있으며, 이러한 동력 발생 수단의 하나로 태양열을 이용한 것이 있다. Due to the depletion of fossil fuels, many power generators using natural forces are being developed, and one of the means for generating power is solar heat.

태양열을 이용한 동력 발생 장치 중에는 태양열 발전 시스템이 있으며, 이러한 태양열발전시스템 중에는 타워형(tower) 태양열발전시스템이 있다. Among solar power generators, there is a solar power generation system, and among these solar power generation systems, there is a tower solar power generation system.

타워형 태양열발전시스템은 태양을 추적, 반사, 집광하여 한곳에 모으는 역할을 하는 여러 대의 반사판(Heliostat)과, 집광된 태양열의 에너지를 흡수하여 열전달 매체에 전달하는 흡수기(Receiver)와, 흡수기에서 가열된 작동유체의 열로 증기를 발생시키는 증기발생기와, 증기발생기에서 발생된 증기를 이용하여 전기를 발생시키는 증기터빈을 포함하여 구성된다. The tower solar power system has several Heliostats that track, reflect, and collect the sun, and collect them in one place. It includes a steam generator for generating steam by the heat of the fluid, and a steam turbine for generating electricity by using the steam generated in the steam generator.

이렇게 구성된 타워형 태양열발전시스템은 반사판에 의해 집광된 열로 흡수 기를 통과하는 작동유체를 가열하고, 흡수기에서 약 1000도 까지 높아진 작동유체가 증기발생기로 보내져 포화 또는 과열증기를 발생하고, 이때 발생한 증기는 증기터빈으로 보내져 전력을 발생하게 된다. The tower solar power system thus constructed heats the working fluid passing through the absorber with the heat collected by the reflector, and the working fluid, which is raised up to about 1000 degrees from the absorber, is sent to the steam generator to generate saturated or superheated steam. It is sent to the turbine to generate power.

이러한 발전시스템에서 증기발생기에서 사용되어진 공기는 팬을 통해 다시 흡수기로 공급되는 과정이 진행되며, 에너지원인 태양의 복사에너지의 감소 등의 현상이 발생할 경우를 대비하여 축열조에 열에너지를 저장하여 사용할 수 있다. 즉, 타워형 태양열발전은 반사판, 타워, 흡수기, 축열조(Storage), 터빈(Turbine), 발전기(Generator), 복수기(Condenser), 탈기기(Deaerator) 등으로 이루어져 있다. In this power generation system, the air used in the steam generator is supplied to the absorber through the fan again, and heat energy can be stored and used in the heat storage tank in case of a phenomenon such as a decrease in the radiant energy of the sun as an energy source. . That is, the tower solar power generation is composed of a reflector, a tower, an absorber, a storage tank, a turbine, a generator, a condenser, a deaerator, and the like.

이렇게 구성된 타워형 공기식 흡수기는 도 1에 도시한 바와 같이 다수의 유로가 형성된 흡수모듈(110)을 다수 설치하여 구성되고, 내부 흡입 팬에 의해 외부의 공기가 유입되며, 이때 흡수기 모듈(110)은 반사판에 의해 반사된 태양광이 집광되어 온도가 매우 높은 상태이며, 유입된 외부 공기가 고온의 흡수기 모듈(110)의 유로를 통과하며 온도가 높아지게 된다. The tower-type pneumatic absorber configured as described above is configured by installing a plurality of absorption modules 110 having a plurality of flow paths as shown in FIG. 1, and the outside air is introduced by the internal suction fan. The sunlight reflected by the reflector is focused and the temperature is very high, and the introduced external air passes through the flow path of the high temperature absorber module 110 and the temperature is increased.

즉, 타워형 태양열발전시스템을 구성하는 흡수기(100)는 공기를 작동유체로 사용하고 있고, 이 공기는 도 2에 도시한 바와 같이, 외부로부터 흡입하여 흡수기(100)를 통과하여 가열된 상태에서 증기발생기(300)나 축열조(500)에 열을 전달한 후 외부로 배출되거나 일부 다시 흡수기로 유입되도록 구성되어 있으며, 이와 같은 종래의 흡수기의 경우 상온의 외부공기를 이용하게 됨으로서 흡수기 출구에서 일정온도(1000℃) 이상을 올리는 데 어려움이 있었다. That is, the absorber 100 constituting the tower solar power system uses air as a working fluid, and the air is sucked from the outside and passed through the absorber 100 to be heated as shown in FIG. 2. It is configured to transfer heat to the generator 300 or the heat storage tank 500 to be discharged to the outside or introduced to the absorber again, and in the case of such a conventional absorber by using external air at room temperature, a predetermined temperature (1000) at the outlet of the absorber It was difficult to raise above.

특히, 동절기의 경우 영하의 저온 공기를 흡입하여 흡수모듈(100)을 통과시 켜 가열하게 되고, 이렇게 저온의 공기를 흡수하여 가열할 경우 열효율이 낮아지는 문제가 있었다. In particular, in the case of winter, the low-temperature air is sucked in and passed through the absorption module 100 to be heated, and thus the heat efficiency is lowered when the low-temperature air is absorbed and heated.

본 발명은 상기한 바와 같은 종래 기술의 문제점을 해결하기 위해 개발된 것으로써, 흡수기 모듈을 통과하며 가열된 공기를 외부로 배출시키지 않고, 흡수기 모듈로 다시 공급하여 태양열에 의해 가열될 수 있게 함으로써 열효율을 높인 타워형 태양발전시스템의 작동유체 순환 구조를 제공함을 목적으로 한다. The present invention has been developed to solve the problems of the prior art as described above, the heat efficiency by passing through the absorber module and the heated air to be supplied back to the absorber module without being discharged to the outside to be heated by solar heat The purpose of the present invention is to provide a working fluid circulation structure of a tower type solar power generation system.

즉, 작동유체가 외부로 배출되지 않고 흡수기와 증기발생기 또는 축열조 사이를 순환하여 완전히 냉각되지 않은 고온의 작동유체가 다시 흡수기에 의해 가열될 수 있게 함으로써 열효율을 높인 타워형 태양열발전시스템의 작동유체 공급 구조를 제공하는 것을 목적으로 한다. That is, the working fluid supply structure of the tower-type solar power generation system with high thermal efficiency by circulating between the absorber and the steam generator or the heat storage tank without allowing the working fluid to be discharged to the outside, thereby allowing the high-temperature working fluid, which is not completely cooled, to be heated by the absorber again. The purpose is to provide.

이러한 본 발명의 타워형 태양열발전시스템의 작동유체 순환 구조는 햇빛을 반사하는 반사판과, 반사판에 의해 반사된 태양열을 이용하여 작동유체를 가열하는 흡수기와, 흡수기에 의해 가열된 작동유체의 열로 증기를 발생시키는 증기발생기를 포함하여 구성되는 타워형 태양열발전시스템의 작동유체 공급구조에 있어서, 상기 흡수기로부터 작동유체가 출입하는 유입, 유출구를 상기 증기발생기의 유입, 유출구에 연결하여 흡수기를 통과하는 작동유체가 외부로 배출되지 않고 증기발생기와 흡수기 사이에서 순환되게 구성됨을 특징으로 한다.The working fluid circulation structure of the tower solar thermal power generation system of the present invention generates a vapor by the heat of the working fluid heated by the absorber and the absorber for heating the working fluid using the reflector reflecting sunlight, the solar heat reflected by the reflector. In the working fluid supply structure of the tower-type solar thermal power generation system comprising a steam generator to make, the working fluid passing through the absorber is connected to the inlet, the outlet of the working fluid from the absorber to the inlet, the outlet of the steam generator through the absorber It is characterized in that it is configured to circulate between the steam generator and the absorber without being discharged to.

본 발명은 작동유체가 외부로 배출되지 않고 순환할 수 있게 함으로써 증기발생기에 열을 전달한 후에도 열이 남아있는 작동유체를 다시 가열할 수 있게 함으로써 열효율을 높일 수 있는 효과가 있다. The present invention has the effect of increasing the thermal efficiency by allowing the working fluid to be circulated without being discharged to the outside to heat the working fluid remaining heat even after transferring heat to the steam generator.

즉, 잔류 열을 갖는 작동유체가 다시 흡수기로 공급되어 흡수기의 태양열에 의해 가열되게 함으로써 보다 고온으로 가열된 작동유체를 증기발생기에 공급할 수 있어 발전효율을 높일 수 있는 효과가 있다. That is, the working fluid having residual heat is supplied to the absorber again and heated by solar heat of the absorber, so that the working fluid heated to a higher temperature can be supplied to the steam generator, thereby increasing power generation efficiency.

이하, 본 발명에 따른 타워형 태양발전시스템의 작동유체 공급 구조를 첨부된 도면을 참조하여 상세하게 설명한다. Hereinafter, a working fluid supply structure of a tower solar power system according to the present invention will be described in detail with reference to the accompanying drawings.

도 3은 본 발명에 따른 타워형 태양열발전시스템의 작동유체 순환 구조를 도시한 구성도이고, 도 4는 본 발명에 따른 타워형 태양발전시스템을 구성하는 흡수기의 일예를 도시한 분해사시도이고, 도 5는 도 4에 도시한 흡수기의 단면도이고, 도 도 6은 본 발명에 따른 흡수기의 다른 일예를 도시한 분해사시도이다. 3 is a configuration diagram showing a working fluid circulation structure of the tower solar power system according to the present invention, Figure 4 is an exploded perspective view showing an example of the absorber constituting the tower solar power system according to the present invention, Figure 5 4 is a cross-sectional view of the absorber shown in FIG. 4, and FIG. 6 is an exploded perspective view showing another example of the absorber according to the present invention.

도시한 바와 같이 본 발명의 타워형 태양열발전시스템의 작동유체 공급 구조는 햇빛을 반사하는 반사판(200)과, 반사반에 의해 반사된 태양열을 이용하여 작동유체를 가열하는 흡수기(100)와, 흡수기에 의해 가열된 작동유체의 열로 증기를 발생시키는 증기발생기(300)를 포함하여 구성되는 타워형 태양열발전시스템의 작동유체 공급구조에 있어서, 상기 흡수기(100)로부터 작동유체가 출입하는 유입, 유출구를 상기 증기발생기의 유입, 유출구에 연결하여 흡수기를 통과하는 작동유체가 외 부로 배출되지 않고 증기발생기와 흡수기 사이에서 순환되게 구성됨을 특징으로 한다. As shown, the working fluid supply structure of the tower solar power generation system of the present invention includes a reflector 200 reflecting sunlight, an absorber 100 for heating the working fluid using solar heat reflected by the reflector, and an absorber. In the working fluid supply structure of the tower-type solar power system comprising a steam generator 300 for generating steam by the heat of the working fluid heated by the, the inlet, outlet through which the working fluid enters and exits from the absorber 100 It is characterized in that the working fluid passing through the absorber by connecting to the inlet and outlet of the generator is circulated between the steam generator and the absorber without being discharged to the outside.

이와 같이 구성된 본 발명의 타워형 태양열발전시스템의 작동유체 순환 구조는 상기한 바와 같이 작동유체가 외부로 배출되지 않고 흡수기(100)와 증기발생기(300) 사이에서 순환하므로 냉각되었을 때에도 일정한 온도를 유지하고 있으며, 이에 따라 흡수기(100)에서 흡수된 열에 의해 가열되는 시간이 단축될 수 있는 것이다. The working fluid circulation structure of the tower solar power generation system of the present invention configured as described above maintains a constant temperature even when cooled because the working fluid is circulated between the absorber 100 and the steam generator 300 without being discharged to the outside as described above. As a result, the heating time by the heat absorbed by the absorber 100 may be shortened.

즉, 종래의 경우에는 작동유체로 사용되는 공기가 외부에서 유입되어 흡수기(100)를 통과하면서 가열되고, 이렇게 기열된 공기가 증기발생기(300)에 열을 전달한 후 외부로 배출되거나 일부 다시 흡수기로 유입되도록 구성되어 있어, 다시 외부 공기를 흡입하고 이를 흡수기에서 가열하여 증기발생기에 공급하는 과정을 반복하므로 외기의 온도가 낮은 경우에는 찬공기가 유입되어 흡수기(100)에서 태양열을 이용하여 가열한다 하더라도 일정 온도 이상 가열되지 않는 문제가 있으나, 본 발명은 증기발생기(300)를 통과한 공기가 외부로 배출되지 않고 다시 흡수기(100)로 공급되고 이렇게 공급되는 공기는 증기발생기(300)에 열을 전달한 후에도 일정온도 이상을 유지하고 있으므로 흡수기(100)에서 열을 흡수하면 보다 높은 온도로 가열될 수 있는 것이다. That is, in the conventional case, the air used as the working fluid flows in from the outside to pass through the absorber 100 and is heated, and the air thus air is discharged to the outside after being transferred to the steam generator 300 or partly back to the absorber. It is configured to be introduced, so that the outside air is sucked again and heated in the absorber and supplied to the steam generator, so if the outside air temperature is low, cold air is introduced and the absorber 100 is heated using solar heat. There is a problem that the heating is not above a predetermined temperature, the present invention is the air passed through the steam generator 300 is not discharged to the outside is supplied back to the absorber 100 and the air thus supplied transfers heat to the steam generator 300 Since a certain temperature is maintained even after the absorption of heat in the absorber 100 can be heated to a higher temperature.

이렇게 작동유체가 흡수기(100)와 증기발생기(300)사이 또는 측열조(500)를 순환할 수 있게 하기 위한 흡수기(100)의 일예는 도 4내지 도 6에 도시한 바와 같이 구성될 수 있다. An example of the absorber 100 for allowing the working fluid to circulate between the absorber 100 and the steam generator 300 or the heat sink 500 may be configured as shown in FIGS. 4 to 6.

즉, 상기 흡수기(100)는 판체 형상으로 일면에 작동유체가 흐르는 다수의 유로홈(11)이 형성된 본체(1)와 ; 상기 본체(1)의 유로홈(11)이 형성된 면에 착탈 가능하게 설치되어 유로홈의 개방된 부분을 막아 유로가 형성되게 하며, 유로의 단부와 대향되는 부분에 유, 출입구가 형성된 덮개(2)를 포함하여 구성된다. That is, the absorber 100 includes a main body 1 having a plurality of flow path grooves 11 in which a working fluid flows on one surface in a plate shape; A cover detachably installed on a surface on which the flow path groove 11 of the main body 1 is formed to block an open portion of the flow path groove so that a flow path is formed, and a cover having an oil and an entrance on the part facing the end of the flow path (2). It is configured to include).

즉, 상기 흡수기(100)는 이를 구성하는 덮개(2)에 형성된 유입구(21) 및 유출구(22)를 상기 증기발생기(300)의 유출구 및 유입구(미도시)에 연결하여 작동유체가 외부로 배출되지 않고 순환할 수 있게 구성되는 것이다. That is, the absorber 100 connects the inlet 21 and the outlet 22 formed in the cover 2 constituting the same to the outlet and the inlet (not shown) of the steam generator 300 to discharge the working fluid to the outside. It is configured to be able to circulate without being.

상기 흡수기(100)는 열전달 성능이 우수한 세라믹(ceramics)으로 구성되어있고, 다수를 서로 연결하여 집열면적을 넓힐 수 있어 태양열발전 용량에 따른 흡수기 크기 조절이 용이함으로 활용성이 높다.The absorber 100 is made of ceramics (ceramics) with excellent heat transfer performance, and can be connected to each other to increase the collection area, thereby making it easy to adjust the size of the absorber according to the solar power generation capacity.

상기 흡수기(100)를 구성하는 본체(1)에 형성된 유로홈(11)은 상기한 바와 같이 유로벽(12)에 의해 서로 분리되어 다수가 평행하게 형성되어 있으며, 유로홈의 폭은 그 내부를 통과하는 작동유체의 종류에 따라 달라질 수 있다. The flow path grooves 11 formed in the main body 1 constituting the absorber 100 are separated from each other by the flow path wall 12 as described above, and a plurality of flow path grooves are formed in parallel. It may vary depending on the type of working fluid passing through.

이렇게 구성된 흡수기(100)에서 본체(1)의 표면이 태양열을 흡수하는 집열판의 역할을 하며, 이렇게 집열된 열은 유로벽(12)을 통해 유로홈(11)에 전달되어 유로를 따라 이동하는 작동유체와 열교환을 이루게 된다. In the absorber 100 configured as described above, the surface of the main body 1 serves as a heat collecting plate for absorbing solar heat, and the collected heat is transferred to the flow path groove 11 through the flow path wall 12 to move along the flow path. Heat exchange with the fluid.

흡수기는 세라믹 중 주로 탄화규소(SiC)로 제작하는데 이는 탄화규소의 높은 용융점과 열전도도가 1000도 이상의 작동온도와 국부적인 열집중 환경에서 원활히 사용될 수 있는 장점이 있다. The absorber is mainly made of silicon carbide (SiC) among the ceramics, which has the advantage that the high melting point and thermal conductivity of silicon carbide can be used smoothly in an operating temperature of more than 1000 degrees and in a local heat intensive environment.

상기와 같이 구성된 흡수기는 상기한 바와 같이 유로홈(11)이 형성된 본 체(1)에 덮개(2)를 설치하여 유로홈(11)의 개방된 부분이 덮개(2)에 의해 막히므로 유로가 형성되고, 이렇게 형성된 유로는 도 4에 도시한 바와 같이 유입구로부터 유출구 사이에 구불구불한 형태로 유로를 형성하거나, 도 6에 도시한 바와 같이 중앙의 유입구로부터 바깥쪽으로 나선형으로 형성되는 유로를 구성할 수 있으며, 가능한 유로의 길이를 길게 형성하여 통과하는 작동유체가 많은 열을 흡수 할 수 있게 하였다. As described above, the absorber is provided with the cover 2 in the main body 1 in which the flow path grooves 11 are formed as described above, so that the open portion of the flow path grooves 11 is blocked by the cover 2, so that the flow path is closed. The flow path thus formed may form a flow path in a serpentine form between the inlet and the outlet as shown in FIG. 4, or may form a flow path spirally formed outward from the center inlet as shown in FIG. 6. The length of the flow path can be made as long as possible, so that the working fluid passing through can absorb a lot of heat.

이렇게 유로의 길이가 길어지게 함으로써, 흡수기가 태양열에 의해 노출되었을 때 많은 면적에서 작동유체가 열교환을 이룰 수 있게 되는 것이다. This lengthening of the flow path allows the working fluid to exchange heat in large areas when the absorber is exposed to solar heat.

도 1은 종래의 타워형 태양열발전시스템을 구성하는 흡수기의 일예를 도시한 단면도이고, 1 is a cross-sectional view showing an example of an absorber constituting a conventional tower solar power system,

도 2는 종래의 타워형 태양열발전시스템의 작동유체 공급 구조를 도시한 구성도이고, 2 is a configuration diagram showing a working fluid supply structure of a conventional tower solar power system,

도 3은 본 발명에 따른 타워형 태양열발전시스템의 작동유체 공급 구조를 도시한 구성도이고, 3 is a block diagram showing a working fluid supply structure of the tower solar power system according to the present invention,

도 4는 본 발명에 따른 타워형 태양열발전시스템을 구성하는 흡수기의 일예를 도시한 분해사시도이고, Figure 4 is an exploded perspective view showing an example of the absorber constituting the tower solar power system according to the present invention,

도 5는 도 4에 도시한 흡수기의 단면도이고, 5 is a cross-sectional view of the absorber shown in FIG.

도 도 6은 본 발명에 따른 흡수기의 다른 일예를 도시한 분해사시도이다. 6 is an exploded perspective view showing another example of the absorber according to the present invention.

<도면의 주요 부분에 대한 부호 설명>Description of the Related Art [0002]

1 : 본체 11 : 유로홈 12 : 유로벽DESCRIPTION OF SYMBOLS 1 Main body 11 Euro groove 12 Euro wall

2 : 덮개2: cover

21 : 유입구 22 : 유출구  21: inlet 22: outlet

Claims (3)

햇빛을 반사하는 반사판(200)과, 반사반에 의해 반사된 태양열을 이용하여 작동유체를 가열하는 흡수기(100)와, 흡수기에 의해 가열된 작동유체의 열로 증기를 발생시키는 증기발생기(300)를 포함하여 구성되는 타워형 태양열발전시스템의 작동유체 순환 구조에 있어서, Reflector 200 for reflecting sunlight, absorber 100 for heating the working fluid using the solar heat reflected by the reflector, and the steam generator 300 for generating steam by the heat of the working fluid heated by the absorber In the working fluid circulation structure of the tower-type solar thermal power system comprising a, 상기 흡수기(100)로부터 작동유체가 출입하는 유입, 유출구를 상기 증기발생기의 유입, 유출구에 연결하여 흡수기를 통과하는 작동유체가 외부로 배출되지 않고 증기발생기와 흡수기 사이에서 순환되게 구성되되,The working fluid passing through the absorber is connected to the inlet and outlet of the steam generator through the inlet and outlet of the working fluid from the absorber 100, and is configured to circulate between the steam generator and the absorber without being discharged to the outside. 상기 흡수기는, The absorber, 판체 형상으로 일면에 작동유체가 흐르는 다수의 유로홈(11)이 형성된 본체(1)와; 상기 본체(1)의 유로홈(11)이 형성된 면에 착탈 가능하게 설치되어 유로홈의 개방된 부분을 막아 유로가 형성되게 하며, 유로의 단부와 대향되는 부분에 유, 출입구가 형성된 덮개(2);를 포함하여 구성됨을 특징으로 하는 타워형 태양발전시스템의 작동유체 순환 구조. A main body 1 having a plurality of flow path grooves 11 having a working fluid flowing on one surface thereof in a plate shape; A cover detachably installed on a surface on which the flow path groove 11 of the main body 1 is formed to block an open portion of the flow path groove so that a flow path is formed, and a cover having an oil and an entrance on the part facing the end of the flow path (2). The working fluid circulation structure of the tower-type solar power system, characterized in that it comprises a. 삭제delete 제 1 항에 있어서, The method of claim 1, 상기 흡수기는 세라믹(ceramics)으로 구성됨을 특징으로 하는 타워형 태양발전시스템의 작동유체 순환 구조.The absorber is a working fluid circulation structure of the tower solar system, characterized in that consisting of ceramic (ceramics).
KR1020090099783A 2009-10-20 2009-10-20 Air receiver and working fluid circulation system for solar thermal power tower KR101104694B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090099783A KR101104694B1 (en) 2009-10-20 2009-10-20 Air receiver and working fluid circulation system for solar thermal power tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090099783A KR101104694B1 (en) 2009-10-20 2009-10-20 Air receiver and working fluid circulation system for solar thermal power tower

Publications (2)

Publication Number Publication Date
KR20110042912A KR20110042912A (en) 2011-04-27
KR101104694B1 true KR101104694B1 (en) 2012-01-17

Family

ID=44048263

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090099783A KR101104694B1 (en) 2009-10-20 2009-10-20 Air receiver and working fluid circulation system for solar thermal power tower

Country Status (1)

Country Link
KR (1) KR101104694B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101429233B1 (en) * 2013-04-15 2014-08-12 한국과학기술원 Tower type solar thermal power plant system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002031035A (en) * 2000-07-13 2002-01-31 Yozo Oko Solar power generator
KR100451922B1 (en) 2002-06-14 2004-10-20 주식회사 천일건축엔지니어링 종합건축사사무소 Grinder for concret
KR100569242B1 (en) 2004-04-02 2006-04-13 신건서 Grinder having a Dust Collecting Structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002031035A (en) * 2000-07-13 2002-01-31 Yozo Oko Solar power generator
KR100451922B1 (en) 2002-06-14 2004-10-20 주식회사 천일건축엔지니어링 종합건축사사무소 Grinder for concret
KR100569242B1 (en) 2004-04-02 2006-04-13 신건서 Grinder having a Dust Collecting Structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101429233B1 (en) * 2013-04-15 2014-08-12 한국과학기술원 Tower type solar thermal power plant system

Also Published As

Publication number Publication date
KR20110042912A (en) 2011-04-27

Similar Documents

Publication Publication Date Title
US20120240577A1 (en) Thermal generation systems
CN101873093B (en) Solar energy comprehensive utilizing system for integrating optothermal mixed power generation and heat utilization
KR101172578B1 (en) Solar collector type of condensing solar light
CN101893327B (en) Solar-powered water heating and heat-electricity converting device
CN103607166B (en) A kind of concentrating photovoltaic photo-thermal compound electricity generation system
CN104420906B (en) Steam turbine installation
US10267296B2 (en) Combined solar thermal power generation system
CN101968042B (en) Multistage full-effect solar heat power generation method
WO2012022273A1 (en) Solar power ammonia thermoelectric conversion system
CN105822513A (en) Solar stepped heat collection and stepped power generation system and power generation method thereof
CN207554279U (en) A kind of tower solar-thermal generating system
Jha et al. Energy and exergy analysis of photovoltaic thermal air collector under climatic condition of north eastern India
CN209116569U (en) A kind of disc type solar energy photo-thermal energy gradient utilization system
CN106014889A (en) Tower type solar photo-thermal and photovoltaic combined power generating system
KR101104694B1 (en) Air receiver and working fluid circulation system for solar thermal power tower
JP6138495B2 (en) Power generation system
CN103362577B (en) Powering system combining photovoltaic photo-thermal heat collector and fuel gas-steam combined circulation unit
KR101019352B1 (en) Condensing Type Solar Heat And Ray Cogeneration System
CN201705598U (en) Solar water heating thermoelectricity conversion device
CN109099605A (en) A kind of disc type solar energy photo-thermal energy gradient utilization system
KR101221422B1 (en) Power generation system using solar energy
Sharma et al. Evacuated tube solar collector’s importance and innovations in wide range applications
KR101429233B1 (en) Tower type solar thermal power plant system
CN103161701A (en) Solar energy heat energy multilevel power generation system
CN106288435A (en) A kind of solar energy thermal-power-generating unit

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150102

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160104

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170102

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20171228

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20181211

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20191210

Year of fee payment: 9