KR101095464B1 - Manufacturing method of solar cell using nitrogen-doped titan oxide - Google Patents

Manufacturing method of solar cell using nitrogen-doped titan oxide Download PDF

Info

Publication number
KR101095464B1
KR101095464B1 KR1020100035410A KR20100035410A KR101095464B1 KR 101095464 B1 KR101095464 B1 KR 101095464B1 KR 1020100035410 A KR1020100035410 A KR 1020100035410A KR 20100035410 A KR20100035410 A KR 20100035410A KR 101095464 B1 KR101095464 B1 KR 101095464B1
Authority
KR
South Korea
Prior art keywords
titanium dioxide
solar cell
nitrogen
electrospinning
manufacturing
Prior art date
Application number
KR1020100035410A
Other languages
Korean (ko)
Other versions
KR20110115852A (en
Inventor
김성진
Original Assignee
주식회사 상보
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 상보 filed Critical 주식회사 상보
Priority to KR1020100035410A priority Critical patent/KR101095464B1/en
Publication of KR20110115852A publication Critical patent/KR20110115852A/en
Application granted granted Critical
Publication of KR101095464B1 publication Critical patent/KR101095464B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

본 발명은 질소가 도핑된 이산화티탄을 이용한 태양전지의 제조방법에 관한 것으로, 이산화티탄 및 구아니딘염 수용액을 혼합하는 혼합단계, 전술한 혼합단계를 거쳐 제조된 혼합물에 초음파를 조사하는 초음파조사단계, 전술한 초음파조사단계를 거친 혼합물을 교반하고 건조하는 교반건조단계, 전술한 교반건조단계를 거쳐 제조된 페이스트를 기판에 전기방사하는 전기방사단계 및 전술한 전기방사단계를 거쳐 페이스트가 도포된 기판을 가열하는 하소단계를 포함하여 이루어진다.The present invention relates to a method for manufacturing a solar cell using nitrogen-doped titanium dioxide, a mixing step of mixing titanium dioxide and an aqueous solution of guanidine salt, an ultrasonic irradiation step of irradiating ultrasonic waves to the mixture prepared through the above mixing step, After the stirring and drying the mixture passed through the above-mentioned ultrasonic irradiation step, the electrospinning step of electrospinning the paste prepared through the above-described stirring drying step and the above-described electrospinning step to the substrate coated paste It comprises a calcination step of heating.

Description

질소가 도핑된 이산화티탄을 이용한 태양전지의 제조방법 {MANUFACTURING METHOD OF SOLAR CELL USING NITROGEN-DOPED TITAN OXIDE}Manufacturing method of solar cell using nitrogen doped titanium dioxide {MANUFACTURING METHOD OF SOLAR CELL USING NITROGEN-DOPED TITAN OXIDE}

본 발명은 질소가 도핑된 이산화티탄을 이용한 태양전지의 제조방법에 관한 것으로, 더욱 상세하게는, 혼합단계, 초음파조사단계, 교반건조단계, 전기방사단계 및 하소단계를 포함하여 이루어진다.
The present invention relates to a method for producing a solar cell using nitrogen-doped titanium dioxide, and more particularly, comprising a mixing step, ultrasonic irradiation step, stirring drying step, electrospinning step and calcination step.

본 발명은 질소가 도핑된 이산화티탄을 이용한 태양전지의 제조방법에 관한 것으로, 더욱 상세하게는, 혼합단계, 초음파조사단계, 교반건조단계, 전기방사단계 및 하소단계를 포함하여 이루어진다.The present invention relates to a method for producing a solar cell using nitrogen-doped titanium dioxide, and more particularly, comprising a mixing step, ultrasonic irradiation step, stirring drying step, electrospinning step and calcination step.

최근까지 알려진 종래의 염료감응형 태양전지의 대표적인 예로는 1991년 스위스의 그라첼(Gratzel) 등에 의하여 발표된 태양전지가 있다.A representative example of a conventional dye-sensitized solar cell known until recently is a solar cell published by Gratzel et al. In Switzerland in 1991.

그라첼 등에 의한 광 전기화학적 태양전지는 가시광선을 흡수하여 전자-홀 쌍(electron-hole pair)을 생성할 수 있는 감광성 염료분자와, 생성된 전자를 전달하는 나노입자 이산화티탄으로 이루어지는 산화물 반도체 전극을 이용한 광전기화학적 태양전지로서, 기존의 실리콘 태양전지에 비하여 제조 단가가 저렴하다는 이점이 있으나, 에너지 변환 효율(energy conversion efficiency)이 낮아 높은 에너지 변환 효율을 요하는 태양전지에는 적용하기 어려운 문제점이 있었다.The photoelectrochemical solar cell by Gratzel et al. Is an oxide semiconductor electrode composed of a photosensitive dye molecule capable of absorbing visible light to produce an electron-hole pair, and nanoparticle titanium dioxide for transferring the generated electrons. As a photoelectrochemical solar cell using a solar cell, the manufacturing cost is lower than that of a conventional silicon solar cell, but it is difficult to be applied to a solar cell requiring high energy conversion efficiency due to low energy conversion efficiency. .

에너지 변환 효율은 태양전지의 전류, 전압 및 충전 계수(fill factor)의 곱에 의하여 결정되기 때문에 에너지 변환 효율을 증대시키기 위해서는 전류, 전압 및 충진 계수 값을 향상시켜야 한다. 이중 전압을 상승시킬 수 있는 방법으로는, 표면상태(surface state)를 개질하여 재결합(recombination)을 극소화시켜 나노 입자 산화물의 전자밀도를 높이는 방법, 나노 입자 산화물의 전도띠(conduction band) 에너지를 표준수소 전극 전위에 대하여 음의 값으로 증가시키는 방법, 산화-환원 전해질의 산화-환원 전위를 표준수소전극 전위에 대하여 양의 값으로 증가시키는 방법 등이 있다.Since the energy conversion efficiency is determined by the product of the solar cell's current, voltage, and fill factor, the current, voltage, and charge factor values must be improved to increase the energy conversion efficiency. In order to increase the double voltage, the surface state is modified to minimize recombination to increase the electron density of the nanoparticle oxide, and the conduction band energy of the nanoparticle oxide is standard. There is a method of increasing a negative value with respect to the hydrogen electrode potential, a method of increasing the oxidation-reduction potential of the redox electrolyte with a positive value with respect to the standard hydrogen electrode potential.

즉 나노 입자 산화물의 전자구조 및 표면 특성 또는 전해질의 조성 등이 전압에 영향을 미친다.
In other words, the electronic structure and surface properties of the nanoparticle oxide or the composition of the electrolyte affects the voltage.

본 발명의 목적은 질소가 도핑된 이산화티탄을 사용하여 태양전지의 에너지 변환 효율에 영향을 미치는 단락전류, 개방전압 및 충전계수가 향상된 태양전지의 제조방법을 제공하는 것이다.
It is an object of the present invention to provide a method of manufacturing a solar cell having an improved short circuit current, an open circuit voltage, and a charging coefficient that affect the energy conversion efficiency of a solar cell using nitrogen-doped titanium dioxide.

본 발명의 목적은 이산화티탄 및 구아니딘염 수용액을 혼합하는 혼합단계, 상기 혼합단계를 거쳐 제조된 혼합물에 초음파를 조사하는 초음파조사단계, 상기 초음파조사단계를 거친 혼합물을 교반하고 건조하는 교반건조단계, 상기 교반건조단계를 거쳐 제조된 페이스트를 기판에 전기방사하는 전기방사단계 및 상기 전기방사단계를 거쳐 페이스트가 도포된 기판을 가열하는 하소단계를 포함하여 이루어지는 것을 특징으로 하는 질소가 도핑된 이산화티탄을 이용한 태양전지의 제조방법을 제공함에 의해 달성된다.An object of the present invention is a mixing step of mixing titanium dioxide and aqueous solution of guanidine salt, ultrasonic irradiation step of irradiating ultrasonic wave to the mixture prepared through the mixing step, stirring drying step of stirring and drying the mixture through the ultrasonic irradiation step, Nitrogen-doped titanium dioxide comprising an electrospinning step of electrospinning the paste prepared through the stirring and drying step to the substrate and a calcination step of heating the paste-coated substrate through the electrospinning step It is achieved by providing a method of manufacturing a used solar cell.

본 발명의 바람직한 특징에 따르면, 상기 혼합단계는 이산화티탄 50 내지 95 중량부 및 구아니딘염 수용액 5 내지 50 중량부를 혼합하여 이루어지는 것으로 한다.According to a preferred feature of the invention, the mixing step is to be made by mixing 50 to 95 parts by weight of titanium dioxide and 5 to 50 parts by weight of an aqueous guanidine salt solution.

본 발명의 더 바람직한 특징에 따르면, 상기 초음파조사단계는 1 내지 10분 동안 이루어지는 것으로 한다.According to a more preferred feature of the invention, the ultrasonic irradiation step is to be made for 1 to 10 minutes.

본 발명의 더욱 바람직한 특징에 따르면, 상기 교반건조단계는 교반바를 이용하여 30분 동안 교반하면서, 50 내지 60℃의 온도로 건조하여 이루어지는 것으로 한다.According to a more preferred feature of the invention, the stirring drying step is to be made by drying at a temperature of 50 to 60 ℃ while stirring for 30 minutes using a stirring bar.

본 발명의 더욱 더 바람직한 특징에 따르면, 상기 전기방사단계 15 내지 20 나노미터의 직경을 갖는 이산화티탄이 함유된 페이스트를 20 kV의 전기장 하에서 기판에 전기방사하여 이루어지는 것으로 한다.According to an even more preferred feature of the present invention, the electrospinning step is made by electrospinning a paste containing titanium dioxide having a diameter of 15 to 20 nanometers to the substrate under an electric field of 20 kV.

본 발명의 더욱 더 바람직한 특징에 따르면, 상기 하소단계는 페이스트가 도포된 기판을 질소가스로 충전된 하소로에서 400 내지 600℃의 온도로 가열하여 이루어지는 것으로 한다.
According to a further preferred feature of the invention, the calcination step is to be made by heating the paste-coated substrate to a temperature of 400 to 600 ℃ in a calcination furnace filled with nitrogen gas.

본 발명에 따른 질소가 도핑된 이산화티탄을 이용한 태양전지의 제조방법은 질소가 도핑된 이산화티탄을 사용하여 단락전류, 개방전압 및 충전계수가 향상되어 에너지 변환 효율이 우수한 태양전지를 제공하는 탁월한 효과를 나타낸다.
The method for manufacturing a solar cell using nitrogen-doped titanium dioxide according to the present invention has an excellent effect of providing a solar cell with excellent energy conversion efficiency by using a nitrogen-doped titanium dioxide to improve short circuit current, open voltage and charge coefficient. Indicates.

도 1은 본 발명에 따른 질소가 도핑된 이산화티탄을 이용한 태양전지의 제조방법을 나타낸 순서도이다.
도 2는 실시예 1 내지 3 및 비교예 1을 통해 제조된 태양전지의 파장에 따른 반사율을 나타낸 표이다.
도 3은 실시예 4 내지 6 및 비교예 1을 통해 제조된 태양전지의 파장에 따른 반사율을 나타낸 표이다.
1 is a flowchart illustrating a method of manufacturing a solar cell using nitrogen dioxide-doped titanium dioxide according to the present invention.
Figure 2 is a table showing the reflectance according to the wavelength of the solar cells manufactured through Examples 1 to 3 and Comparative Example 1.
Figure 3 is a table showing the reflectance according to the wavelength of the solar cell manufactured through Examples 4 to 6 and Comparative Example 1.

이하에는, 본 발명의 바람직한 실시예와 각 성분의 물성을 상세하게 설명하되, 이는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 발명을 용이하게 실시할 수 있을 정도로 상세하게 설명하기 위한 것이지, 이로 인해 본 발명의 기술적인 사상 및 범주가 한정되는 것을 의미하지는 않는다.In the following, preferred embodiments of the present invention and the physical properties of each component will be described in detail, which is intended to explain in detail enough to be able to easily carry out the invention by one of ordinary skill in the art, This does not mean that the technical spirit and scope of the present invention is limited.

본 발명에 따른 질소가 도핑된 이산화티탄을 이용한 태양전지의 제조방법은 이산화티탄 및 구아니딘염 수용액을 혼합하는 혼합단계(S101), 전술한 혼합단계(S101)를 거쳐 제조된 혼합물에 초음파를 조사하는 초음파조사단계(S103), 전술한 초음파조사단계(S103)를 거친 혼합물을 교반하고 건조하는 교반건조단계(S105), 전술한 교반건조단계(S105)를 거쳐 제조된 페이스트를 기판에 전기방사하는 전기방사단계(S107) 및 전술한 전기방사단계(S107)를 거쳐 페이스트가 도포된 기판을 가열하는 하소단계(S109)를 포함하여 이루어진다.
Method for manufacturing a solar cell using a nitrogen-doped titanium dioxide according to the present invention is to irradiate the ultrasonic wave to the mixture prepared through the mixing step (S101), the above-mentioned mixing step (S101) to mix the titanium dioxide and guanidine salt aqueous solution Electric irradiation of the paste prepared through the ultrasonic irradiation step (S103), the stirring drying step (S105) for stirring and drying the mixture passed through the ultrasonic irradiation step (S103) and the aforementioned stirring drying step (S105) to the substrate It comprises a calcination step (S109) for heating the substrate to which the paste is applied through the spinning step (S107) and the above-described electrospinning step (S107).

전술한 혼합단계(S101)는 이산화티탄과 구아니딘(Guanidine)염 수용액을 혼합하는 단계로, 이산화티탄 50 내지 95 중량부 및 구아니딘염 수용액 5 내지 50 중량부를 혼합하여 이루어지는데, 전술한 이산화티탄은 예추석(아나타제, Anatase)에서 추출한 것이 사용된다.The above mixing step (S101) is a step of mixing titanium dioxide and an aqueous solution of guanidine (Guanidine) salt, which is made by mixing 50 to 95 parts by weight of titanium dioxide and 5 to 50 parts by weight of an aqueous solution of guanidine salts. Extracted from Chuseok (Anatase) is used.

또한, 전술한 구아니딘염 수용액은 구아니딘 염산염 또는 구이나딘 탄산염을 물에 용해한 것으로, 구아니딘염의 농도가 0.5 내지 2 몰인 것이 바람직하다.
In addition, the guanidine salt aqueous solution mentioned above dissolves guanidine hydrochloride or guinadine carbonate in water, and the concentration of guanidine salt is preferably 0.5 to 2 mol.

전술한 초음파조사단계(S103)는 전술한 혼합단계(S101)를 거쳐 제조된 혼합물에 초음파를 조사하는 단계로, 20KHz를 초과하는 주파수를 갖는 초음파를 전술한 혼합물에 1 내지 10분 동안 조사하는데, 이러한 초음파의 조사를 통해 전술한 이산화티탄이 구아니딘 수용액에 고르게 분산되게 된다.The above-described ultrasonic irradiation step (S103) is a step of irradiating ultrasonic waves to the mixture prepared through the mixing step (S101) described above, irradiating the ultrasonic mixture having a frequency exceeding 20KHz to the mixture for 1 to 10 minutes, Through such ultrasonic irradiation, the above-described titanium dioxide is evenly dispersed in the guanidine aqueous solution.

전술한 초음파의 조사는 최대 10분이 바람직하며, 10분을 초과하게 되면 분산효과가 향상되지 않는다.
The above-mentioned irradiation of the ultrasonic wave is preferably 10 minutes at maximum, and when it exceeds 10 minutes, the dispersion effect is not improved.

전술한 교반건조단계(S105)는 전술한 초음파조사단계(S103)를 거친 혼합물을 교반하고 건조하는 단계로, 전술한 혼합물을 교반바(Stir-Bar)를 이용하여 30분 동안 교반하면서, 50 내지 60℃의 온도로 가열하여 건조하는데, 전술한 교반건조단계(S105)를 통해 이산화티탄은 구아니딘 수용액에 고르게 분산되며, 혼합물의 수분이 증발하여 페이스트 형태의 혼합물이 제조된다.The above-described stirring drying step (S105) is a step of stirring and drying the mixture passed through the ultrasonic irradiation step (S103) described above, while stirring the above mixture for 30 minutes using a stir bar, 50 to 50 Drying by heating to a temperature of 60 ℃, through the stirring drying step (S105) described above, the titanium dioxide is evenly dispersed in an aqueous solution of guanidine, the moisture of the mixture is evaporated to prepare a mixture in the form of a paste.

전술한 교반건조단계(S105)를 거쳐 제조된 페이스트는 직경이 15 내지 20 나노미터인 이산화티탄을 함유하게 된다.
The paste prepared through the above-described stirring drying step (S105) will contain titanium dioxide having a diameter of 15 to 20 nanometers.

전술한 전기방사단계(S107)는 전술한 교반건조단계(S105)를 거쳐 제조된 페이스트를 기판에 전기방사하는 단계로, 15 내지 20 나노미터의 직경을 갖는 이산화티탄이 함유된 페이스트를 20 kV의 전기장 하에서 유리 또는 금속 재료로 이루어진 기판에 전기방사하여 이루어지는데, 이러한 전기방사를 통해 기판에 10 나노미터 내지 20 마이크로미터의 두께로 도포되는 페이스트에 함유되어 있는 이산화티탄의 표면에는 다수의 기공이 형성된다.The electrospinning step (S107) is a step of electrospinning the paste prepared through the stirring and drying step (S105) described above to a substrate, 20 kV of a paste containing titanium dioxide having a diameter of 15 to 20 nanometers Electrospinning is performed on a substrate made of glass or metal material under an electric field, and through the electrospinning, a number of pores are formed on the surface of the titanium dioxide contained in the paste applied to the substrate in a thickness of 10 nanometers to 20 micrometers. do.

전술한 다수의 기공이 형성된 이산화티탄은 전술한 기공에 질소가 도핑될 수 있으며, 넓은 비표면적을 갖기 때문에 염료감응형 태양전지의 재료로 적합하다.
Titanium dioxide having a plurality of pores described above may be doped with nitrogen in the pores described above, and is suitable as a material of a dye-sensitized solar cell because it has a large specific surface area.

전술한 하소단계(S109)는 전술한 전기방사단계(S107)를 거쳐 페이스트가 도포된 기판을 가열하는 단계로, 페이스트가 도포된 기판을 질소가스로 충전된 하소로에서 400 내지 600℃의 온도로 가열하여 이루어진다.The above-described calcination step (S109) is a step of heating the substrate to which the paste is applied through the above-described electrospinning step (S107), the substrate to which the paste is applied is heated at a temperature of 400 to 600 ° C. in a calcination furnace filled with nitrogen gas. By heating.

전술한 하소단계(S109)를 통해 기판에 도포된 페이스트에 함유되어 있는 기체성분의 불순물은 제거되고, 이산화티탄 표면에 형성된 기공의 크기는 더욱 확대되며, 하소로를 질소가스로 충전하면 산화반응이 차단되어 이산화티탄 표면에 질소 도핑 효과가 증대된다.
Impurities of the gaseous components contained in the paste applied to the substrate through the above-described calcination step (S109) are removed, the size of the pores formed on the surface of the titanium dioxide is further enlarged, the oxidation reaction is carried out by filling the calcination furnace with nitrogen gas Blocked to increase the nitrogen doping effect on the titanium dioxide surface.

이하에서는, 본 발명에 따른 질소가 도핑된 이산화티탄을 이용한 태양전지의 제조방법을 실시예를 들어 설명한다.
Hereinafter, a method of manufacturing a solar cell using nitrogen-doped titanium dioxide according to the present invention will be described with reference to Examples.

<실시예 1>&Lt; Example 1 >

이산화티탄 75 중량부 및 2 몰의 농도를 갖는 구아니딘 염산염 수용액 25 중량부를 혼합하여 혼합물을 제조하고, 혼합물에 초음파를 10분 동안 조사하고, 교반바를 이용하여 30분 동안 혼합물을 교반하면서, 55℃의 온도로 혼합물을 건조하여 페이스트를 제조하고, 20 kV의 전기장을 갖는 전기방사 장치로 페이스트를 전기방사하여 유리기판에 50nm의 두께로 도포하고, 페이스트가 도포된 유리기판을 질소가스로 충전된 하소로에서 500℃의 온도로 가열하여 질소가 도핑된 이산화티탄을 이용한 태양전지를 제조하였다.
A mixture was prepared by mixing 75 parts by weight of titanium dioxide and 25 parts by weight of an aqueous solution of guanidine hydrochloride having a concentration of 2 mol, and irradiating the mixture with ultrasonic waves for 10 minutes and stirring the mixture for 30 minutes using a stirring bar. The paste was prepared by drying the mixture at a temperature, electrospinning the paste with an electrospinning apparatus having an electric field of 20 kV and applying a thickness of 50 nm to the glass substrate. A solar cell using titanium dioxide doped with nitrogen was prepared by heating to a temperature of 500 ℃.

<실시예 2><Example 2>

실시예 1과 동일하게 진행하도, 1 몰의 농도를 갖는 구아니딘 염산염 수용액을 사용하여 질소가 도핑된 이산화티탄을 이용한 태양전지를 제조하였다.
Proceed in the same manner as in Example 1, using a guanidine hydrochloride aqueous solution having a concentration of 1 mol to prepare a solar cell using titanium dioxide doped with nitrogen.

<실시예 3><Example 3>

실시예 1과 동일하게 진행하되 0.5 몰의 농도를 갖는 구아니딘 염산염 수용액을 사용하여 질소가 도핑된 이산화티탄을 이용한 태양전지를 제조하였다.
Proceed in the same manner as in Example 1, using a guanidine hydrochloride aqueous solution having a concentration of 0.5 mol to prepare a solar cell using titanium dioxide doped with nitrogen.

<실시예 4><Example 4>

실시예 1과 동일하게 진행하되 2 몰의 농도를 갖는 구아니딘 탄산염 수용액을 사용하여 질소가 도핑된 이산화티탄을 이용한 태양전지를 제조하였다.
Proceed in the same manner as in Example 1, using a guanidine carbonate aqueous solution having a concentration of 2 mol to prepare a solar cell using a titanium dioxide doped with nitrogen.

<실시예 5>Example 5

실시예 1과 동일하게 진행하되 1 몰의 농도를 갖는 구아니딘 탄산염 수용액을 사용하여 질소가 도핑된 이산화티탄을 이용한 태양전지를 제조하였다.
Proceed in the same manner as in Example 1, using a guanidine carbonate aqueous solution having a concentration of 1 mol to prepare a solar cell using titanium dioxide doped with nitrogen.

<실시예 6><Example 6>

실시에 1과 동일하게 진행하되 0.5 몰의 농도를 갖는 구아니딘 탄산염 수용액을 사용하여 질소가 도핑된 이산화티탄을 이용한 태양전지를 제조하였다.
Proceed in the same manner as in Example 1, using a guanidine carbonate aqueous solution having a concentration of 0.5 mol to prepare a solar cell using a titanium dioxide doped with nitrogen.

<비교예 1>Comparative Example 1

실시예 1과 동일하게 진행하되, 구아니딘염을 혼합하지 않고 이산화티탄만을 사용하여 이산화티탄을 이용한 태양전지를 제조하였다.
Proceed in the same manner as in Example 1, using only titanium dioxide without mixing the guanidine salt to prepare a solar cell using titanium dioxide.

실시예 1을 통해 제조된 질소가 도핑된 이산화티탄을 이용한 태양전지와 비교예 1을 통해 제조된 이산화티탄을 이용한 태양전지의 단략전류(Jsc, short-circuit current), 개방전압(Voc, open-circuit voltage), 충전계수(FF, Fill Factor) 및 에너지 변환 효율을 측정하여 아래 표 1에 나타내었다.
Short-circuit current (Jsc) and open voltage (Voc, open-) of a solar cell using titanium dioxide doped with titanium dioxide prepared in Example 1 and a solar cell using titanium dioxide prepared in Comparative Example 1 Circuit voltage), fill factor (FF) and energy conversion efficiency were measured and shown in Table 1 below.

<표 1>TABLE 1

Figure 112010024453070-pat00001
Figure 112010024453070-pat00001

위에 표 1에 나타낸 것처럼 본 발명에 의해 제조된 질소가 도핑된 이산화티탄을 이용한 태양전지는 질소가 도핑되지 않은 이산화티탄을 이용하여 제조된 태양전지에 비해 우수한 에너지 전환 효율을 나타내는 것을 알 수 있다.
As shown in Table 1 above, it can be seen that the solar cell using the nitrogen-doped titanium dioxide produced by the present invention exhibits superior energy conversion efficiency compared to the solar cell manufactured using the nitrogen-doped titanium dioxide.

실시예 1 내지 3 및 비교예 1을 통해 제조된 태양전지의 파장에 따른 반사율을 도 1에 나타내었다.Reflectances according to wavelengths of the solar cells manufactured through Examples 1 to 3 and Comparative Example 1 are shown in FIG. 1.

또한, 실시예 4 내지 6 및 비교예 1을 통해 제조된 태양전지의 파장에 따른 반사율을 도 2에 나타내었다.In addition, the reflectance according to the wavelength of the solar cell manufactured through Examples 4 to 6 and Comparative Example 1 is shown in FIG.

도 1 및 도 2에 나타낸 것처럼 구아니딘염을 혼합하여 제조된 태양전지는 파장에 따른 반사율이 낮기 때문에 에너지 전환 효율이 우수한 것을 알 수 있다.
As shown in FIG. 1 and FIG. 2, the solar cell manufactured by mixing the guanidine salt has a low reflectance according to the wavelength, and thus, the energy conversion efficiency is excellent.

S101 ; 혼합단계
S103 ; 초음파조사단계
S105 ; 교반건조단계
S107 ; 전기방사단계
S109 ; 하소단계
S101; Mixing stage
S103; Ultrasound irradiation stage
S105; Stir-drying step
S107; Electrospinning step
S109; Calcination Step

Claims (6)

이산화티탄 및 구아니딘염 수용액을 혼합하는 혼합단계;
상기 혼합단계를 거쳐 제조된 혼합물에 초음파를 조사하는 초음파조사단계;
상기 초음파조사단계를 거친 혼합물을 교반하고 건조하는 교반건조단계;
상기 교반건조단계를 거쳐 제조된 페이스트를 기판에 전기방사하는 전기방사단계; 및
상기 전기방사단계를 거쳐 페이스트가 도포된 기판을 가열하는 하소단계;를 포함하여 이루어지는 것을 특징으로 하는 질소가 도핑된 이산화티탄을 이용한 태양전지의 제조방법.
Mixing the titanium dioxide and guanidine salt aqueous solution;
An ultrasonic irradiation step of irradiating ultrasonic waves to the mixture prepared through the mixing step;
A stirring drying step of stirring and drying the mixture passed through the ultrasonic irradiation step;
An electrospinning step of electrospinning the paste prepared through the stirring and drying step onto a substrate; And
And a calcination step of heating the substrate to which the paste is applied through the electrospinning step. A method of manufacturing a solar cell using nitrogen-doped titanium dioxide, comprising: a calcination step.
청구항 1에 있어서,
상기 혼합단계는 이산화티탄 50 내지 95 중량부 및 구아니딘염 수용액 5 내지 50 중량부를 혼합하여 이루어지는 것을 특징으로 하는 질소가 도핑된 이산화티탄을 이용한 태양전지의 제조방법.
The method according to claim 1,
The mixing step is a method for manufacturing a solar cell using nitrogen-doped titanium dioxide, characterized in that the mixture is made by mixing 50 to 95 parts by weight of titanium dioxide and 5 to 50 parts by weight of an aqueous solution of guanidine salt.
청구항 1에 있어서,
상기 초음파조사단계는 1 내지 10분 동안 이루어지는 것을 특징으로 하는 질소가 도핑된 이산화티탄을 이용한 태양전지의 제조방법.
The method according to claim 1,
The ultrasonic irradiation step is a method of manufacturing a solar cell using nitrogen doped titanium dioxide, characterized in that made for 1 to 10 minutes.
청구항 1에 있어서,
상기 교반건조단계는 교반바를 이용하여 30분 동안 교반하면서, 50 내지 60℃의 온도로 건조하여 이루어지는 것을 특징으로 하는 질소가 도핑된 이산화티탄을 이용한 태양전지의 제조방법.
The method according to claim 1,
The stirring drying step is a method of manufacturing a solar cell using nitrogen-doped titanium dioxide, characterized in that the drying is carried out at a temperature of 50 to 60 ℃ while stirring for 30 minutes using a stirring bar.
청구항 1에 있어서,
상기 전기방사단계는 15 내지 20 나노미터의 직경을 갖는 이산화티탄이 함유된 페이스트를 20 kV의 전기장 하에서 기판에 전기방사하여 이루어지는 것을 특징으로 하는 질소가 도핑된 이산화티탄을 이용한 태양전지의 제조방법.
The method according to claim 1,
The electrospinning step is a method of manufacturing a solar cell using a nitrogen-doped titanium dioxide, characterized in that by electrospinning a paste containing titanium dioxide having a diameter of 15 to 20 nanometers to the substrate under an electric field of 20 kV.
청구항 1에 있어서,
상기 하소단계는 페이스트가 코팅된 기판을 질소가스로 충전된 하소로에서 400 내지 600℃의 온도로 가열하여 이루어지는 것을 특징으로 하는 질소가 도핑된 이산화티탄을 이용한 태양전지의 제조방법.
The method according to claim 1,
The calcination step is a method of manufacturing a solar cell using nitrogen-doped titanium dioxide, characterized in that the paste-coated substrate is heated to a temperature of 400 to 600 ℃ in a calcination furnace filled with nitrogen gas.
KR1020100035410A 2010-04-16 2010-04-16 Manufacturing method of solar cell using nitrogen-doped titan oxide KR101095464B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100035410A KR101095464B1 (en) 2010-04-16 2010-04-16 Manufacturing method of solar cell using nitrogen-doped titan oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100035410A KR101095464B1 (en) 2010-04-16 2010-04-16 Manufacturing method of solar cell using nitrogen-doped titan oxide

Publications (2)

Publication Number Publication Date
KR20110115852A KR20110115852A (en) 2011-10-24
KR101095464B1 true KR101095464B1 (en) 2011-12-16

Family

ID=45030387

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100035410A KR101095464B1 (en) 2010-04-16 2010-04-16 Manufacturing method of solar cell using nitrogen-doped titan oxide

Country Status (1)

Country Link
KR (1) KR101095464B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014137187A1 (en) * 2013-03-07 2014-09-12 금오공과대학교 산학협력단 Dye-sensitized solar cell and production method therefor
WO2014175549A1 (en) * 2013-04-25 2014-10-30 계명대학교 산학협력단 Photo-electrode using nitrogen-doped titanium dioxide having modified surface and method for manufacturing dye-sensitized solar cell using same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100543218B1 (en) 2003-10-31 2006-01-20 한국과학기술연구원 Dye-sensitized solar cell based on electrospun titanium dioxide fibers and its fabrication methods

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100543218B1 (en) 2003-10-31 2006-01-20 한국과학기술연구원 Dye-sensitized solar cell based on electrospun titanium dioxide fibers and its fabrication methods

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
논문1:대한환경공학회

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014137187A1 (en) * 2013-03-07 2014-09-12 금오공과대학교 산학협력단 Dye-sensitized solar cell and production method therefor
WO2014175549A1 (en) * 2013-04-25 2014-10-30 계명대학교 산학협력단 Photo-electrode using nitrogen-doped titanium dioxide having modified surface and method for manufacturing dye-sensitized solar cell using same

Also Published As

Publication number Publication date
KR20110115852A (en) 2011-10-24

Similar Documents

Publication Publication Date Title
Salam et al. Graphene quantum dots decorated electrospun TiO2 nanofibers as an effective photoanode for dye sensitized solar cells
Kakiuchi et al. Enhanced photoelectrochemical performance of ZnO electrodes sensitized with N-719
Pawar et al. Quantum dot sensitized solar cell based on TiO2/CdS/CdSe/ZnS heterostructure
Li et al. TiO2 films with rich bulk oxygen vacancies prepared by electrospinning for dye-sensitized solar cells
Wang et al. Fiber-shaped all-solid state dye sensitized solar cell with remarkably enhanced performance via substrate surface engineering and TiO2 film modification
Xu et al. Keplerate-type polyoxometalate/semiconductor composite electrodes with light-enhanced conductivity towards highly efficient photoelectronic devices
Im et al. Cocktail effect of Fe2O3 and TiO2 semiconductors for a high performance dye-sensitized solar cell
Park et al. Enhancement of dye-sensitized solar cells using Zr/N-doped TiO 2 composites as photoelectrodes
Akilavasan et al. Hydrothermally synthesized titania nanotubes as a promising electron transport medium in dye sensitized solar cells exhibiting a record efficiency of 7.6% for 1-D based devices
Xiang et al. Improved performance of quasi-solid-state dye-sensitized solar cells based on iodine-doped TiO2 spheres photoanodes
Mahmoud et al. Enhanced photovoltaic performance of dye-sanitized solar cell with tin doped titanium dioxide as photoanode materials.
Mistry et al. Harnessing the N-dopant ratio in carbon quantum dots for enhancing the power conversion efficiency of solar cells
Wu et al. Anatase TiO 2 nanocrystals enclosed by well-defined crystal facets and their application in dye-sensitized solar cell
Hu et al. Enhanced performance of hole-conductor-free perovskite solar cells by utilization of core/shell-structured β-NaYF4: Yb3+, Er3+@ SiO2 nanoparticles in ambient air
Kim et al. Phosphor positioning for effective wavelength conversion in dye-sensitized solar cells
Ahmad et al. Effect of nanodiamonds on the optoelectronic properties of TiO 2 photoanode in dye-sensitized solar cell
Liu et al. The photovoltaic performance of CdS/CdSe quantum dots co-sensitized solar cells based on zinc titanium mixed metal oxides
Yao et al. Improving the photovoltaic performance of dye sensitized solar cells based on a hierarchical structure with up/down converters
Zhou et al. High-efficiency ZnO/NiO composite photoanodes with Zn (Ac) 2 ethanol solution-processed for dye-sensitized solar cells
JP2007179766A (en) Dye-sensitized solar cell
Senthil et al. Closely packed dense network rutile nanorods with gadolinium for efficient dye sensitized solar cells
KR101095464B1 (en) Manufacturing method of solar cell using nitrogen-doped titan oxide
Wang et al. Highly uniform hierarchical Zn 2 SnO 4 microspheres for the construction of high performance dye-sensitized solar cells
Deng et al. Low-temperature and surfactant-free synthesis of mesoporous TiO2 sub-micron spheres for efficient dye-sensitized solar cells
Morassaei et al. A potential photovoltaic material for dye sensitized solar cells based BaCe2 (MoO4) 4 doped Er3+/Yb3+ nanostructures

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141208

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20151210

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20161212

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20171211

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20181210

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20191210

Year of fee payment: 9