KR101081454B1 - Methods for fabricating metal-oxide nanowire FET device - Google Patents

Methods for fabricating metal-oxide nanowire FET device Download PDF

Info

Publication number
KR101081454B1
KR101081454B1 KR1020090117356A KR20090117356A KR101081454B1 KR 101081454 B1 KR101081454 B1 KR 101081454B1 KR 1020090117356 A KR1020090117356 A KR 1020090117356A KR 20090117356 A KR20090117356 A KR 20090117356A KR 101081454 B1 KR101081454 B1 KR 101081454B1
Authority
KR
South Korea
Prior art keywords
nanowire
oxide
metal oxide
fet sensor
manufacturing
Prior art date
Application number
KR1020090117356A
Other languages
Korean (ko)
Other versions
KR20110060691A (en
Inventor
김강필
장대익
류홍근
임상규
Original Assignee
재단법인대구경북과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인대구경북과학기술원 filed Critical 재단법인대구경북과학기술원
Priority to KR1020090117356A priority Critical patent/KR101081454B1/en
Publication of KR20110060691A publication Critical patent/KR20110060691A/en
Application granted granted Critical
Publication of KR101081454B1 publication Critical patent/KR101081454B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Thin Film Transistor (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

본 발명은 금속산화물 FET 센서의 제조방법에 관한 것으로, 구체적으로 산화규소(SiO2)층을 가지는 기판에 금속산화물 나노선을 형성시키고 나노선 양쪽 끝부분에 소스 및 드레인 전극을 형성시킨 후, 기판 위에 산화규소와 유전율이 유사한 유기물을 코팅하고 플라즈마 애싱(plasma ashing) 처리함으로써, 금속산화물 나노선과 산화규소층 사이의 나노선의 아래쪽 절반 부분만 유기물 게이트로 코팅되고 나노선의 위쪽 절반부분은 센싱부분으로 남게 되는 구조를 갖는 금속산화물 나노선 FET 센서를 제조하는 방법에 관한 것이다.The present invention relates to a method for manufacturing a metal oxide FET sensor, and specifically, metal oxide nanowires are formed on a substrate having a silicon oxide (SiO 2 ) layer, and source and drain electrodes are formed at both ends of the nanowires, and then the substrate By coating an organic material with a similar dielectric constant to silicon oxide and plasma ashing, only the bottom half of the nanowire between the metal oxide nanowire and the silicon oxide layer is coated with the organic gate, and the upper half of the nanowire remains the sensing portion. It relates to a method of manufacturing a metal oxide nanowire FET sensor having a structure.

본 발명의 방법에 따라 제조된 금속산화물 나노선 FET 센서는, 금속산화물 나노선과 게이트 산화물 사이에 나노선의 아래쪽 절반 부분만 추가적인 유기물 게이트로 코팅되어 있고 나노선의 위쪽 절반 부분은 센싱 부분으로 남게 되는 구조를 갖는다. 따라서 본 발명의 금속산화물 나노선 FET 센서는 백게이트 산화물과 금속산화물 나노선 사이의 접촉 향상에 따른 전기적 특성 및 FET 특성이 향상되어 센서 감지도 및 성능을 향상시킬 수 있다.The metal oxide nanowire FET sensor manufactured according to the method of the present invention has a structure in which only the lower half of the nanowire is coated with an additional organic gate between the metal oxide nanowire and the gate oxide, and the upper half of the nanowire remains a sensing portion. Have Therefore, the metal oxide nanowire FET sensor of the present invention can improve the electrical characteristics and the FET characteristics according to the improved contact between the backgate oxide and the metal oxide nanowires, thereby improving sensor sensitivity and performance.

금속산화물, 나노선, 게이트 산화물, 플라즈마 애싱, FET 센서  Metal Oxide, Nanowire, Gate Oxide, Plasma Ashing, FET Sensor

Description

금속산화물 나노선 FET 센서 제조방법 {Methods for fabricating metal-oxide nanowire FET device}Method for Fabricating Metal Oxide Nanowire FET Sensors {Methods for fabricating metal-oxide nanowire FET device}

본 발명은 금속산화물 FET 센서의 제조방법에 관한 것으로, 구체적으로 산화규소(SiO2)층을 가지는 기판에 금속산화물 나노선을 형성시키고 나노선 양쪽 끝부분에 소스 및 드레인 전극을 형성시킨 후, 기판 위에 유기물을 코팅하고 플라즈마 애싱(plasma ashing) 처리함으로써, 금속산화물 나노선과 산화규소층 사이의 나노선의 아래쪽 절반 부분만 유기물 게이트로 코팅되고 나노선의 위쪽 절반부분은 센싱부분으로 남게 되는 구조를 갖는 금속산화물 나노선 FET 센서를 제조하는 방법에 관한 것이다.The present invention relates to a method for manufacturing a metal oxide FET sensor, and specifically, metal oxide nanowires are formed on a substrate having a silicon oxide (SiO 2 ) layer, and source and drain electrodes are formed at both ends of the nanowires, and then the substrate By coating the organic material thereon and plasma ashing, the metal oxide has a structure in which only the lower half of the nanowire between the metal oxide nanowire and the silicon oxide layer is coated with the organic gate and the upper half of the nanowire remains as the sensing portion. A method for manufacturing a nanowire FET sensor.

금속산화물 반도체인 산화아연(ZnO), 산화주석(SnO2), 산화텅스텐(WO3), 산화티타늄(TiO2) 등은 외부의 특수한 또는 유해한 가스 성분인 H2, CO, O2, NOx, CO2, CH4, NH3, 알코올, 습도 등과 접촉하게 되면 산화물 표면에서 일어나는 기체 흡착 및 산화/환원 반응에 의해 전기 비저항이 변화하게 된다.Metal oxide semiconductors such as zinc oxide (ZnO), tin oxide (SnO 2 ), tungsten oxide (WO 3 ), titanium oxide (TiO 2 ), etc. are external special or harmful gas components such as H 2 , CO, O 2 , NOx, In contact with CO 2 , CH 4 , NH 3 , alcohol, humidity, etc., the electrical resistivity changes due to gas adsorption and oxidation / reduction reactions occurring on the oxide surface.

금속산화물 반도체를 이용한 가스센서의 특성과 관련하여서는 가스 확산도(gas diffusion)와 가스-표면 반응(gassurface reaction)이 그 특성에 많은 영향을 주게 된다. 따라서 표면 활성도(enhanced surface activity)와 부피 대 표면적비(surface to volume ratio)를 증대시키려는 노력이 진행이 되고 있다.Regarding the characteristics of the gas sensor using the metal oxide semiconductor, gas diffusion and gas surface reaction have a great influence on the characteristics. Therefore, efforts are being made to increase enhanced surface activity and surface to volume ratio.

그러나 이러한 싱글 나노선을 이용한 FET 센서의 경우 아주 높은 감도(sensitivity)를 얻을 수 있지만, 나노선의 형상 특성상 백게이트 산화물(back gate oxide)과의 접촉 면적이 아주 작음에 따라 게이트 접촉 저항의 불안정성으로 인한 노이즈 발생 때문에 재현성이 높은 디바이스의 제작이 어려운 단점이 있다.However, the FET sensor using this single nanowire can achieve very high sensitivity, but due to the shape of the nanowire, the contact area with the back gate oxide is very small, resulting in instability of the gate contact resistance. Due to noise generation, it is difficult to manufacture a device with high reproducibility.

이에, 본 발명자들은 상기 종래기술들의 문제점들을 극복하기 위하여 예의 연구노력한 결과, 나노선과 게이트 산화물 사이에 유기물을 코팅하고 플라즈마 애싱을 처리하여 나노선의 아래쪽 절반 부분에만 유기물 코팅이 남게 함으로써, 나노선과 게시트 산화물의 접촉을 좋게 하고 FET 센서의 감지도를 향상시킬 수 있음을 확인하고, 본 발명을 완성하게 되었다.Accordingly, the present inventors have diligently researched to overcome the problems of the prior art, and as a result of coating the organic material between the nanowire and the gate oxide and subjecting the plasma ashing to the organic material coating on only the lower half of the nanowire, the nanowire and the post The present invention was completed by confirming that the contact of oxides and the sensitivity of the FET sensor can be improved.

따라서, 본 발명의 주된 목적은 금속산화물 FET 센서에 있어서, 금속산화물 나노선과 게이트 산화물 사이에 나노선의 아래쪽 절반 부분만 추가적인 유기물 게이트로 코팅되어 있고 나노선의 위쪽 절반 부분은 센싱 부분으로 남게 되는 구조를 갖는 금속산화물 FET 센서의 제조방법을 제공하는 데 있다.Therefore, the main object of the present invention is a metal oxide FET sensor, wherein only the bottom half of the nanowire is coated with an additional organic gate between the metal oxide nanowire and the gate oxide, and the upper half of the nanowire remains as a sensing part. The present invention provides a method for manufacturing a metal oxide FET sensor.

본 발명의 한 양태에 따르면, 본 발명은 a) 반도체 기판위에 산화규소(SiO2)층을 형성하는 단계; b) 상기 산화규소층 상에 금속산화물 나노선을 형성하는 단계; c) 상기 나노선 양쪽 끝부분에 소스 및 드레인 전극을 형성시키는 단계; d) 상기 전극이 형성된 기판 위에 산화규소와 유전율이 유사한 유기물을 코팅하는 단계; 및 e) 상기 유기물이 코팅된 기판을 플라즈마 애싱(plasma ashing) 처리하여, 금속산화물 나노선과 산화규소층 사이의 나노선의 아래쪽 절반 부분만 유기물 게이트로 코팅되고 나노선의 위쪽 절반부분은 센싱부분으로 남게 되는 구조를 갖는 금속산화물 나노선 FET 센서를 제조하는 단계를 포함하는 금속산화물 나노선 FET 센서 제조방법을 제공한다.According to one aspect of the invention, the present invention comprises the steps of: a) forming a silicon oxide (SiO 2 ) layer on a semiconductor substrate; b) forming a metal oxide nanowire on the silicon oxide layer; c) forming source and drain electrodes at both ends of the nanowires; d) coating an organic material having a dielectric constant similar to that of silicon oxide on the substrate on which the electrode is formed; And e) plasma ashing the substrate coated with the organic material, so that only the lower half of the nanowire between the metal oxide nanowire and the silicon oxide layer is coated with the organic gate and the upper half of the nanowire remains as a sensing part. It provides a metal oxide nanowire FET sensor manufacturing method comprising the step of manufacturing a metal oxide nanowire FET sensor having a structure.

본 발명에서, 상기 용어 “FET”은 전계효과트랜지스터(Field effect transistor)를 가리키는 것으로서, FET는 일반적인 접합트랜지스터와 외관은 거의 유사하지만 내부구조와 동작원리는 전혀 다른 것이다. 일반적으로 FET는 각종 고급 전자기계와 측정 장비, 자동제어회로 등에 이용되고 있다. 이러한 FET는 N채널 접합 FET의 드레인과 소스에 드레인이 +가 되는 방향으로 전압을 공급하면 (드레인 전압이라고 함) N형 반도체 내에 산재하여 있는 과잉전자가 소스전극에서 드레인전극 측으로 이동하여 드레인 전류 ID가 흐른다. 이 때 게이트와 소스 간에 역방향 전압을 공급하면(이것을 게이트전압이라고 함) 게이트의 -전압에 의해 N채널 내에 전자가 반발당하여 공핍층이 생긴다. 이 때 생긴 공핍층은 전자가 없는 부분(절연영역)이므로 전자가 이동할 수 있는 통로가 좁아져서 드레인전류 ID는 감소한다. 여기에서 만약 역방향 전압을 더욱 증가시킨다면 통로는 더욱 좁아져서 ID는 더욱 감소하게 된다. 또한 FET은 접합 FET(J-FET)와 MOS FET의 두 종류가 있으며 이것들은 각각 전류의 통로가 P형 반도체로 된 P채널 형과 전류의 통로가 N형 반도체로 된 N채널 형이 있다. P채널 형은 정공이 전류를 운반하는 것으로 PNP형 TR과 비슷하고 N채널 형은 전자가 전류를 운반하는 것으로 NPN형의 TR과 비슷하다.In the present invention, the term “FET” refers to a field effect transistor, and the FET is almost similar in appearance to a general junction transistor, but has a completely different internal structure and operation principle. In general, FETs are used in various advanced electromechanical and measurement equipment, automatic control circuits. When the FET supplies a voltage to the drain and the source of the N-channel junction FET in the direction where the drain becomes positive (called a drain voltage), excess electrons scattered in the N-type semiconductor move from the source electrode to the drain electrode side, and the drain current ID Flows. At this time, if the reverse voltage is supplied between the gate and the source (this is called the gate voltage), electrons are repulsed in the N channel by the negative voltage of the gate to form a depletion layer. Since the depletion layer formed at this time is a region where no electrons are present (isolated region), the path through which electrons can move is narrowed, and the drain current ID is reduced. Here, if the reverse voltage is further increased, the passage becomes narrower and the ID is further reduced. In addition, there are two types of FETs, a junction FET (J-FET) and a MOS FET, each of which has a P-channel type in which a current path is a P-type semiconductor and an N-channel type in which a current path is an N-type semiconductor. The P-channel type is similar to the PNP type TR in which holes carry current, and the N-channel type is similar to the TR of NPN type in which electrons carry current.

본 발명의 방법에서, 상기 a)단계의 반도체 기판은 적용하고자 하는 응용에 따라, 기판 자체가 적절한 탄력성(flexibility)을 갖는 기판을 사용할 수 있으며, 예컨대 실리콘, 폴리머(polymer) 등을 적용할 수 있으며, 바람직하게는 실리콘 기판을 사용할 수 있다.In the method of the present invention, the semiconductor substrate of step a) may use a substrate having a suitable flexibility of the substrate itself, for example, silicon, polymer, etc. may be applied according to the application to be applied. Preferably, a silicon substrate can be used.

본 발명의 방법에서, 상기 b)단계의 금속산화물 나노선은 ZnO(zinc oxide), In2O3(indium oxide), SnO2(tin oxide), ITO(indium tin oxide), IZO(indium zinc oxide), IGZO(indium gallium zinc oxide), MgO(magnesium oxide), 및 Al2O3(aluminum oxide)으로 구성된 군에서 선택된 하나 이상 금속산화물을 사용할 수 있다.In the method of the present invention, the metal oxide nanowire of step b) is ZnO (zinc oxide), In 2 O 3 (indium oxide), SnO 2 (tin oxide), ITO (indium tin oxide), IZO (indium zinc oxide) ), One or more metal oxides selected from the group consisting of indium gallium zinc oxide (IGZO), magnesium oxide (MgO), and aluminum oxide (Al 2 O 3 ).

본 발명의 방법에서, 상기 c)단계의 소스(source) 및 드레인(drain) 전극은 포토리소그래피(photo lithography) 또는 전자빔(E-beam) 리소그래피를 이용하여 형성되는 것을 특징으로 한다.In the method of the present invention, the source and drain electrodes of step c) are formed using photolithography or E-beam lithography.

본 발명의 방법에서, 상기 d)단계에서 기판에 형성된 SiO2와 유전율이 유사한 유기물로서, PMMA(polymethyl methacrylate), 폴리스티렌(polystyrene), 폴리아크릴산(polyacrylic acid), Poly-(1-butene), 및 PVP(Polyvinylpyrrolidone)로 구성된 군에서 선택된 유기물을 사용할 수 있다. 상기 “SiO2와 유전율이 유사한 유기물”은 전기장하에서 재료가 전하를 축전할 수 있는 능력을 의미하는 유전율이 1 Mhz에서 2.6인 SiO2와 유사한 범위, 예컨대 1 내지 4 범위, 바람직하게는 2 내지 3 범위의 유기물을 포함한다. 이러한 유기물은 백게이트 산화물과 유사한 유전율을 가지므로 금속산화물 나노선과 백게이트 산화물 사이의 전기적 특성을 향상시키는 역할을 하게 된다.In the method of the present invention, as an organic material having a dielectric constant similar to that of SiO 2 formed on the substrate in step d), polymethyl methacrylate (PMMA), polystyrene, polyacrylic acid, poly- (1-butene), and Organic materials selected from the group consisting of PVP (Polyvinylpyrrolidone) can be used. The term “organic material having a similar dielectric constant as SiO 2 ” is in a range similar to that of SiO 2 having a dielectric constant of 2.6 at 1 Mhz, which represents the ability of a material to accumulate charge under an electric field, for example, in a range of 1 to 4, preferably 2 to 3 Includes organics in the range. Since the organic material has a dielectric constant similar to that of the back gate oxide, the organic material serves to improve electrical characteristics between the metal oxide nanowire and the back gate oxide.

또한 이러한 유기물은 회전하는 원판위에 액체 방울을 떨어뜨려 넓게 펴는 방식인 스핀코팅법, 또는 드랍핑(Dropping)법, 스크린코팅법, 프린팅법, 잉크젯(Ink-jet)법 등 다양한 방법을 이용하여 코팅한 후 건조하여 FET 센서의 제조에 사용할 수 있다.In addition, the organic material is coated using various methods such as spin coating, dropping, screen coating, printing, ink-jet, or the like, which are widely spread by dropping liquid droplets on a rotating disk. It can then be dried and used in the manufacture of FET sensors.

본 발명의 방법에서, 상기 e)단계의 플라즈마 애싱(plasma ashing)은 O2, N2, N2O, He, Ar 가스 또는 이들의 혼합가스를 이용하여 처리할 수 있으나, 바람직하게는 O2 플라즈마(O2 plasma)를 이용하여 처리할 수 있다. 상기 플라즈마 애싱 처리는 당업계에 알려진 일반적인 플라즈마 애싱 장치를 이용하여, 유기물이 코팅된 FET 센서에서 금속산화물 나노선이 노출된 면에 대하여 수직 방향으로 플라즈마 가스를 처리하여 금속산화물 나노선의 상반부를 둘러싸는 유기물은 제거되고 플라즈마 애싱의 반대방향인 금속산화물 나노선의 하반부에는 유기물이 남아 있을 수 있도록 수행하게 되며 (도 2 참조), 이 때 플라즈마 애싱 처리의 조건은 1초 내지 10분간 RF power 1W 내지 500W로 수행하는 것이 바람직하다.In the method of the present invention, the plasma ashing of the step e) may be treated using O 2 , N 2 , N 2 O, He, Ar gas or a mixture thereof, but preferably O 2 It can be treated using a plasma (O 2 plasma). The plasma ashing treatment is performed using a general plasma ashing apparatus known in the art to surround the upper half of the metal oxide nanowires by treating the plasma gas in a direction perpendicular to the surface where the metal oxide nanowires are exposed in the organic-coated FET sensor. The organic material is removed and the organic material is left in the lower half of the metal oxide nanowire in the opposite direction of the plasma ashing (see FIG. 2). At this time, the conditions of the plasma ashing process are 1 to 500 W for 1 second to 10 minutes. It is preferable to carry out.

본 발명에서, 금속산화물 나노선 FET 센서는 게이트 전압에 따라 감지 특성이 변화하는데, 기존 금속산화물 나노선 FET 센서의 경우, 감지 나노선과 산화물 게이트 사이에 나노선의 표면 거칠기에 따른 산화물 게이트와의 접촉이 좋지 않아 접촉저항 증가에 따른 센서의 FET 특성이 떨어지는 단점이 있었다. 따라서, 이런 문제점을 개선하고자, 본 발명의 실시예에서는 금속산화물 나노선과 SiO2 산화물 게이트 사이에 SiO2와 유전율이 비슷한 PMMA(polymethyl methacrylate) 유기물을 나노선의 아래쪽 반만 코팅되게 하여 산화물 게이트와 금속산화물 나노선 사이의 접촉향상에 따른 전기적 특성 및 FET 특성을 향상시키는 방법을 제공한다. 이런 나노선 FET 센서의 전기적 특성 및 FET 특성의 향상은 센서의 감지도를 향상시켜 성능을 향상시킬 수 있다.In the present invention, the sensing characteristics of the metal oxide nanowire FET sensor change depending on the gate voltage. In the case of the conventional metal oxide nanowire FET sensor, the contact between the oxide gate according to the surface roughness of the nanowire between the sensing nanowire and the oxide gate is reduced. There was a disadvantage in that the FET characteristics of the sensor were deteriorated due to an increase in contact resistance. Therefore, to solve this problem, in the embodiment of the present invention, the PMMA (polymethyl methacrylate) organic material having a dielectric constant similar to that of SiO 2 is coated between the metal oxide nanowire and the SiO 2 oxide gate so that only the bottom half of the nanowire is coated. It provides a method for improving the electrical characteristics and FET characteristics according to the improved contact between the lines. Improvements in electrical and FET characteristics of these nanowire FET sensors can improve sensor sensitivity and improve performance.

이러한 본 발명의 금속산화물 나노선 FET 센서의 제고공정은 도 3에서 공정 흐름도로서 살펴볼 수 있다.The manufacturing process of the metal oxide nanowire FET sensor of the present invention can be seen as a process flow diagram in FIG.

이하, 본 발명의 제조방법을 도면을 참조하여 설명하면 다음과 같다.Hereinafter, the manufacturing method of the present invention will be described with reference to the drawings.

도 1에서 보여지는 바와 같이, SiO2(100 nm)층을 가지는 Si 기판에 나노선을 분산시킨 후, 포토리소그래피 또는 E-beam 리소그래피를 통해 나노선의 양쪽 끝부분에 소스와 드레인 전극을 형성하며, 이 때 SiO2 층이 백게이트 산화물(back gate oxide)로 작동하는 일반적인 나노선 FET 센서를 제작한다.As shown in FIG. 1, after dispersing the nanowires on a Si substrate having a SiO 2 (100 nm) layer, source and drain electrodes are formed at both ends of the nanowires by photolithography or E-beam lithography. At this time, a conventional nanowire FET sensor is fabricated in which the SiO 2 layer acts as a back gate oxide.

그런 다음, 도 2에서 보여지는 것처럼, PMMA(polymethyl methacrylate) 유기물을 스핀코팅법으로 코팅하고 핫플레이트(hot plate)에서 건조시킨 후 O2 가스로 애싱(ashing) 처리를 하면 금속산화물 나노선의 형상 특성상 나노선의 아래쪽 부분은 나노선에 의해 O2 플라즈마가 가려져 PMMA가 나노선의 아래쪽 부분만 남게 된다. 따라서, 최종적으로 도 2의 (2)에 보이는 것과 같이 나노선과 게이트 산화물 사이에 나노선의 아래쪽 절반 부분만 추가적인 유기물 게이트로 코팅되어 있고 나노선의 위쪽 절반부분은 센싱 부분으로 남게 되는 구조를 갖게 된다.Then, as shown in FIG. 2, when the PMMA (polymethyl methacrylate) organic material is coated by spin coating, dried on a hot plate, and ashed with O 2 gas, The lower part of the nanowire is covered by the O 2 plasma by the nanowire, leaving the PMMA with only the lower part of the nanowire. Accordingly, as shown in FIG. 2 (2), only the bottom half of the nanowire is coated with an additional organic gate between the nanowire and the gate oxide, and the top half of the nanowire remains as a sensing part.

이상 설명한 바와 같이, 기존 금속산화물 나노선 FET 센서의 경우, 감지 나노선과 산화물 게이트 사이에 나노선의 표면 거칠기에 따른 산화물 게이트와의 접촉이 좋지 않아 접촉저항 증가에 따른 센서의 전기적 특성 및 FET 특성이 떨어지는 단점이 있는데, 본 발명에서 제시한 방법은 금속산화물 나노선과 게이트 산화물 사이에 나노선의 아래쪽 절반부분만 추가적인 유기물 게이트로 코팅되어 있고 나노선의 위쪽 절반부분은 센싱 부분으로 남게 되어 백게이트 산화물과 금속산화물 나노선사이의 접촉 향상에 따른 전기적 특성 및 FET 특성이 향상되어 센서 감지도 및 성능을 향상시킬 수 있다.As described above, in the case of the conventional metal oxide nanowire FET sensor, the contact between the sensing nanowire and the oxide gate with the oxide gate due to the surface roughness of the nanowire is poor, resulting in inferior electrical and FET characteristics of the sensor due to an increase in contact resistance. The method proposed in the present invention has only the bottom half of the nanowires coated with an additional organic gate between the metal oxide nanowires and the gate oxide, and the top half of the nanowires remains as a sensing part, so that the backgate oxide and the metal oxide nano The improved electrical and FET characteristics of the contact with Zeni may improve sensor sensitivity and performance.

도 1은 종래 금속산화물 나노선 FET 센서의 일반적인 구조이다.1 is a general structure of a conventional metal oxide nanowire FET sensor.

도 2는 본 발명에 따른 금속산화물 나노선 FET 센서에 추가적인 PMMA 유기물 게이트를 도입하는 공정의 개략도이다.2 is a schematic diagram of a process for introducing an additional PMMA organic gate in a metal oxide nanowire FET sensor according to the present invention.

도 3은 본 발명에 따른 금속산화물 나노선 FET 센서의 제조방법을 설명하는 공정 흐름도이다.3 is a process flowchart illustrating a method of manufacturing a metal oxide nanowire FET sensor according to the present invention.

Claims (7)

금속산화물 나노선 FET 센서 제조방법으로서,As a method of manufacturing a metal oxide nanowire FET sensor, a) 반도체 기판위에 산화규소(SiO2)층을 형성하는 단계;a) forming a silicon oxide (SiO 2 ) layer on the semiconductor substrate; b) 상기 산화규소층 상에 금속산화물 나노선을 형성하는 단계;b) forming a metal oxide nanowire on the silicon oxide layer; c) 상기 나노선 양쪽 끝부분에 소스 및 드레인 전극을 형성시키는 단계;c) forming source and drain electrodes at both ends of the nanowires; d) 상기 전극이 형성된 기판 위에 산화규소와 유전율이 유사한 유기물을 코팅하는 단계; 및d) coating an organic material having a dielectric constant similar to that of silicon oxide on the substrate on which the electrode is formed; And e) 상기 유기물이 코팅된 기판을 플라즈마 애싱(plasma ashing) 처리하여, 금속산화물 나노선과 산화규소층 사이의 나노선의 아래쪽 절반 부분만 유기물 게이트로 코팅되고 나노선의 위쪽 절반부분은 센싱부분으로 남게 되는 구조를 갖는 금속산화물 나노선 FET 센서를 제조하는 단계;e) Plasma ashing the substrate coated with the organic material so that only the lower half of the nanowire between the metal oxide nanowire and the silicon oxide layer is coated with the organic gate and the upper half of the nanowire remains as the sensing part. Manufacturing a metal oxide nanowire FET sensor having a thickness; 를 포함하는 금속산화물 나노선 FET 센서 제조방법.Metal oxide nanowires FET sensor manufacturing method comprising a. 제 1항에 있어서, 상기 a)단계의 반도체 기판은 실리콘인 것을 특징으로 하는 금속산화물 나노선 FET 센서 제조방법.2. The method of claim 1, wherein the semiconductor substrate of step a) is silicon. 제 1항에 있어서, 상기 b)단계의 금속산화물 나노선은 ZnO(zinc oxide), In2O3(indium oxide), SnO2(tin oxide), ITO(indium tin oxide), IZO(indium zinc oxide), IGZO(indium gallium zinc oxide), MgO(magnesium oxide), 및 Al2O3(aluminum oxide)으로 구성된 군에서 선택된 하나 이상 금속산화물인 것을 특징으로 하는 금속산화물 나노선 FET 센서 제조방법.According to claim 1, wherein the metal oxide nanowire of step b) is ZnO (zinc oxide), In 2 O 3 (indium oxide), SnO 2 (tin oxide), ITO (indium tin oxide), IZO (indium zinc oxide) ), IGZO (indium gallium zinc oxide), MgO (magnesium oxide), and Al 2 O 3 (aluminum oxide) at least one metal oxide selected from the group consisting of metal oxide nanowire FET sensor manufacturing method. 제 1항에 있어서, 상기 c)단계의 소스(source) 및 드레인(drain) 전극은 포토리소그래피 또는 E-빔 리소그래피를 이용하여 형성되는 것을 특징으로 하는 금속산화물 나노선 FET 센서 제조방법.The method of claim 1, wherein the source and drain electrodes of step c) are formed using photolithography or E-beam lithography. 제 1항에 있어서, 상기 d)단계의 산화규소와 유전율이 유사한 유기물은 PMMA(polymethyl methacrylate), 폴리스티렌(polystyrene), 폴리아크릴산(polyacrylic acid), Poly-(1-butene), 및 PVP(Polyvinylpyrrolidone)로 구성된 군에서 선택된 것을 특징으로 하는 금속산화물 나노선 FET 센서 제조방법.The organic material having a dielectric constant similar to that of silicon oxide of step d) is polymethyl methacrylate (PMMA), polystyrene, polyacrylic acid, poly- (1-butene), and polyvinylpyrrolidone (PVP). Metal oxide nanowire FET sensor manufacturing method characterized in that selected from the group consisting of. 제 1항에 있어서, 상기 d)단계의 유기물은 스핀코팅법을 이용하여 코팅한 후 건조하는 것을 특징으로 하는 금속산화물 나노선 FET 센서 제조방법.The method of claim 1, wherein the organic material of step d) is coated and dried by spin coating. 제 1항에 있어서, 상기 e)단계의 플라즈마 애싱(plasma ashing)은 O2, N2, N2O, He, 및 Ar 가스로 구성된 군에서 선택된 하나 이상의 가스를 이용하는 것을 특징으로 하는 금속산화물 나노선 FET 센서 제조방법.The metal oxide of claim 1, wherein the plasma ashing of step e) uses one or more gases selected from the group consisting of O 2 , N 2 , N 2 O, He, and Ar gases. Method for manufacturing route FET sensor.
KR1020090117356A 2009-11-30 2009-11-30 Methods for fabricating metal-oxide nanowire FET device KR101081454B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090117356A KR101081454B1 (en) 2009-11-30 2009-11-30 Methods for fabricating metal-oxide nanowire FET device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090117356A KR101081454B1 (en) 2009-11-30 2009-11-30 Methods for fabricating metal-oxide nanowire FET device

Publications (2)

Publication Number Publication Date
KR20110060691A KR20110060691A (en) 2011-06-08
KR101081454B1 true KR101081454B1 (en) 2011-11-09

Family

ID=44395414

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090117356A KR101081454B1 (en) 2009-11-30 2009-11-30 Methods for fabricating metal-oxide nanowire FET device

Country Status (1)

Country Link
KR (1) KR101081454B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101332776B1 (en) * 2012-04-24 2013-11-25 건국대학교 산학협력단 Method for forming conductive layer electrically connecting substrate and structure disposed on the substrate, and layered structure comprising conductive layer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113651611A (en) * 2021-07-13 2021-11-16 广东迈能欣科技有限公司 Ceramic gas sensor porous structure sensitive slurry and preparation method of ceramic gas sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101332776B1 (en) * 2012-04-24 2013-11-25 건국대학교 산학협력단 Method for forming conductive layer electrically connecting substrate and structure disposed on the substrate, and layered structure comprising conductive layer

Also Published As

Publication number Publication date
KR20110060691A (en) 2011-06-08

Similar Documents

Publication Publication Date Title
Kumar et al. Performance assessment of the charge-plasma-based cylindrical GAA vertical nanowire TFET with impact of interface trap charges
Smithe et al. Low variability in synthetic monolayer MoS2 devices
CN107462350B (en) Piezoelectric sensor, pressure detection device, manufacturing method and detection method
JP5029600B2 (en) Field effect transistor using carbon nanotube, method of manufacturing the same, and sensor
CN109682863B (en) TMDCs-SFOI heterojunction-based gas sensor and preparation method thereof
Sporea et al. Source-gated transistors for order-of-magnitude performance improvements in thin-film digital circuits
Doherty et al. Capping layers to improve the electrical stress stability of MoS2 transistors
Yang et al. Ambipolar thin-film transistors and an inverter based on pentacene/self-assembled monolayer modified ZnO hybrid structures for balanced hole and electron mobilities
CN105247696B (en) Manufacture the method and organic electronic device of organic electronic device
Shin et al. Effects of IGZO film thickness on H2S gas sensing performance: Response, excessive recovery, low-frequency noise, and signal-to-noise ratio
Vidor et al. Low temperature fabrication of a ZnO nanoparticle thin-film transistor suitable for flexible electronics
Wang et al. Effect of high-κ dielectric layer on 1/f noise behavior in graphene field-effect transistors
Nasr et al. Seamless Fabrication and Threshold Engineering in Monolayer MoS2 Dual‐Gated Transistors via Hydrogen Silsesquioxane
Yang et al. Flexible organic thin-film transistors based on poly (3-hexylthiophene) films for nitrogen dioxide detection
KR101081454B1 (en) Methods for fabricating metal-oxide nanowire FET device
Hong et al. Effects of surface roughness on the electrical characteristics of ZnO nanowire field effect transistors
He et al. High-performance CdSe: In nanowire field-effect transistors based on top-gate configuration with high-Κ non-oxide dielectrics
Chen et al. Low-noise Schottky junction trigate silicon nanowire field-effect transistor for charge sensing
Pregl Fabrication and characterization of a silicon nanowire based Schottky-barrier field effect transistor platform for functional electronics and biosensor applications
Tanida et al. Investigation of electron trapping behavior in n-channel organic thin-film transistors with ultrathin polymer passivation on SiO2 gate insulator
Kato et al. The characteristic improvement of Si (111) metal–oxide–semiconductor field-effect transistor by long-time hydrogen annealing
Lee et al. Ammonia Gas Sensing Properties of 6, 13-Bis (tri-Isopropylsilyethynyl) Pentacene Based Field-Effect Transistor
KR20140022520A (en) Sensors for detecting ion concentration using surface carbon nanostructures (modified carbon nanostructures) and fabricating method thereof
Cai et al. High-Performance Complementary Circuits from Two-Dimensional MoTe2
Wang et al. MoS 2 nanosensors fabricated by dielectrophoretic assembly for ultrasensitive and rapid sensing of volatile organic compounds

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141014

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20151028

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160928

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee