KR101077208B1 - Transgenic Petunia resistant to abiotic stress - Google Patents

Transgenic Petunia resistant to abiotic stress Download PDF

Info

Publication number
KR101077208B1
KR101077208B1 KR1020080049023A KR20080049023A KR101077208B1 KR 101077208 B1 KR101077208 B1 KR 101077208B1 KR 1020080049023 A KR1020080049023 A KR 1020080049023A KR 20080049023 A KR20080049023 A KR 20080049023A KR 101077208 B1 KR101077208 B1 KR 101077208B1
Authority
KR
South Korea
Prior art keywords
petunia
abiotic stress
resistant
sod
transgenic
Prior art date
Application number
KR1020080049023A
Other languages
Korean (ko)
Other versions
KR20090123108A (en
Inventor
이수영
한봉희
우종규
방창석
허건양
최영임
Original Assignee
대한민국
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국 filed Critical 대한민국
Priority to KR1020080049023A priority Critical patent/KR101077208B1/en
Publication of KR20090123108A publication Critical patent/KR20090123108A/en
Application granted granted Critical
Publication of KR101077208B1 publication Critical patent/KR101077208B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/245Escherichia (G)

Abstract

본 발명은 E. coli 유래의 SOD 유전자를 도입하여 비생물적 스트레스에 저항성을 가지는 형질전환 페튜니아(종자)에 관한 것이다.The present invention relates to a transgenic petunia (seed) resistant to abiotic stress by introducing a SOD gene derived from E. coli .

본 발명에 의하면 건조, 저온, 습도 및 중금속 또는 대기오염 등과 같은 비 생물적 스트레스에 저항성을 갖는 페튜니아(종자)를 개발할 수 있다.According to the present invention it is possible to develop petunia (seed) resistant to abiotic stresses such as drying, low temperature, humidity and heavy metals or air pollution.

Description

비생물적 스트레스 저항성 페튜니아 형질전환체{Transgenic Petunia resistant to abiotic stress}Transgenic Petunia resistant to abiotic stress

본 발명은 E. coli 유래의 SOD 유전자를 도입하여 비생물적 스트레스에 저항성을 가지는 형질전환 페튜니아(종자)에 관한 것이다.The present invention relates to a transgenic petunia (seed) resistant to abiotic stress by introducing a SOD gene derived from E. coli .

대부분의 생물은 병균, 해충, 바이러스 등의 생물학적 스트레스뿐만 아니라 지구 환경 악화에 따른 각종 환경 스트레스를 받으면 생명유지에 필요한 필수 원소인 산소가 반응성이 높아져 심각한 생리적 장애를 유발하는 수퍼옥사이드 음이온 라디칼, 과산화수소, 수산화 라디칼 등의 활성 산소종(reactive oxyzen species)으로 변한다. 따라서 이런 활성 산소를 제거하는 생체 시스템으로 슈퍼옥사이드 디스뮤타아제(superoxide dismutase; 이하, 'SOD'라 한다), 퍼옥시다아제(peroxidase; POD), 카탈라제(catalase, CAT) 등의 항산화 효소와 비타민 C, 비타민 E 등의 항산화 물질 등이 있다. Most organisms are not only biological stresses such as germs, pests, viruses, etc. but also various environmental stresses caused by the deterioration of the global environment. It turns into reactive oxyzen species such as hydroxyl radicals. Therefore, as a biological system to remove such active oxygen, antioxidant enzymes such as superoxide dismutase (hereinafter referred to as 'SOD'), peroxidase (POD), catalase (CAT), vitamin C, Antioxidants such as vitamin E.

SOD는 수퍼옥사이드 이온(O2 -)을 산소와 과산화수소로 바꿔주는 불균등화(dismutation) 반응을 촉매하는 효소이다. 산소에 노출되는 거의 모든 세포에서 이러한 SOD에 의한 항산화 방어기작은 중요하다.SOD is an enzyme that catalyzes a dismutation reaction that converts superoxide ions (O 2 ) into oxygen and hydrogen peroxide. In almost all cells exposed to oxygen, this SOD-induced antioxidant defense mechanism is important.

폐튜니아(Petunia hybrida)는 화색 관련 유전자 탐색 연구 분야에서 모델 식물체로 이용될 만큼 형질전환이 비교적 용이한 작물이다. 바이오 안정성 포탈 검색 결과에 의하면, 미국, 독일, 뉴질랜드 등에서 화색, 화형, 병 저항성 등과 같은 유전자를 도입하여 개발에 성공한 페튜니아 형질전환 식물체에 관한 보고는 있으나, 아직 형질전환체 종자가 상업화되었다는 보고는 없다. 더욱이 품종이 아닌 고정종 계통을 이용하여 페튜니아 형질전환체를 개발하였다는 연구보고는 전무하다.Lungunia ( Petunia hybrida ) is a crop that is relatively easy to transform to be used as a model plant in the field of color-related gene search and research. According to the results of the bio stability portal search, there are reports of petunia transgenic plants successfully developed by introducing genes such as color, fire, and disease resistance in the US, Germany, and New Zealand, but there are no reports of commercialization of transformant seeds. . Moreover, there are no reports of the development of petunia transformants using non-cultivar fixed-line strains.

페튜니아는 팬지와 더불어 봄부터 늦여름까지 주로 도로 및 가로변의 화단용으로 이용되어 대기오염원에 노출되어 있으며, 특히 장마기 침수 피해가 심해 습도 및 대기오염원과 같은 비 생물적 스트레스에 대한 저항성 증진이 중요하였다.In addition to pansy, petunia is mainly used for flower beds on roads and roadsides from spring to late summer and is exposed to air pollutants. In particular, it is important to increase resistance to abiotic stresses such as humidity and air pollutants due to severe flooding.

본 발명은 비생물적 스트레스 저항성을 증진시키는데 보편적으로 이용되고 있는 SOD 유전자를 국내 육성 페튜니아 고정 계통에 도입함으로써 아황산가스 등과 같은 대기오염원을 포함한 비 생물적 스트레스에 저항성을 갖는 페튜니아 식물체(종자)를 제공하고자 한다.The present invention provides petunia plants (seeds) having resistance to abiotic stresses including air pollutants such as sulfur dioxide by introducing SOD genes commonly used to enhance abiotic stress resistance in domestically grown petunia fixed strains. I would like to.

본 발명은 서열번호 1의 유전자를 안정적으로 삽입한 페튜니아의 종자 KACC 98002P 및 KACC 98003P를 제공한다.The present invention provides petunia seeds KACC 98002P and KACC 98003P stably inserting the gene of SEQ ID NO: 1.

바람직하게, 상기 페튜니아는 상기 서열번호 1의 유전자를 삽입하여 비생물적 스트레스에 저항성을 가지는 페튜니아의 종자를 제공한다.Preferably, the petunia inserts the gene of SEQ ID NO: 1 to provide a seed of petunia that is resistant to abiotic stress.

본 발명은 국내 육성 페튜니아 계통에 SOD 유전자를 도입하여 저온, 습도, 대기오염원 등 비 생물적 스트레스에 대한 저항성을 갖는 형질전환 식물체(종자)를 개발하는 기술 및 그 형질전환체(종자)로 구성된다. The present invention consists of a technology for developing transgenic plants (seeds) having resistance to abiotic stresses such as low temperature, humidity, and air pollution by introducing the SOD gene into domestically grown petunia strains and their transformants (seeds). .

발명자들은 비생물적 스트레스 저항성 식물체를 개발하는데 범용적으로 이용되고 있는 SOD 유전자를 아그로박테리움 공동배양법에 의해 원예연구소에서 육성된 페튜니아 2 계통(A2-19 및 A2-36)에 도입하여 비 생물적 스트레스에 저항성을 갖는 새로운 페튜니아 품종을 개발하였다.The inventors have introduced the SOD gene, which is widely used to develop abiotic stress-resistant plants, into the petunia 2 strains (A2-19 and A2-36) grown in the horticultural laboratory by the Agrobacterium coculture method. New petunia varieties have been developed that are resistant to stress.

본 발명에 의하면 건조, 저온, 습도 및 중금속 또는 대기오염 등과 같은 비 생물적 스트레스에 저항성을 갖는 페튜니아를 개발할 수 있다.According to the present invention, petunias having resistance to abiotic stresses such as drying, low temperature, humidity and heavy metals or air pollution can be developed.

이하 본 발명은 하기의 실시예를 통하여 상세히 설명하지만 본 발명의 권리범위가 이들 실시예에 의해서만 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to the following examples, but the scope of the present invention is not limited only by these examples.

[실시예 1] SOD 유전자를 페튜니아에 도입하는 방법Example 1 A method of introducing the SOD gene into petunia

비생물적 스트레스 저항성 페튜니아를 개발하고자 원예연구서에서 육성한 A2-19 및 A2-36 계통을 이용하였고, 유전자는 대장균(E. coli.)으로부터 분리한 Mn-SOD 유전자를 분양받아 사용하였다. To develop abiotic stress-resistant petunias, the A2-19 and A2-36 strains grown in horticultural studies were used, and the Mn-SOD gene isolated from E. coli was used.

즉, 대장균 유래 SOD 유전자를 pBI121 벡터에 도입시킨 후(도 1 참조), 이 벡터를 아그로박테리움 투메파시엔스(Agrobacterium tumefaciens)에 형질전환하였다. 형질전환된 아그로박테리움(Agrobacterium)을 A2-19 및 A2-36 계통의 기내 배양 중인 신초의 잎 절편체와 공동배양하였다(leaf disc 방법 이용). 상기 형질전환된 페튜니아에 도입된 SOD 유전자를 반 데르 미어(van der Meer) 방법을 이용하여 확인하였다.That is, E. coli-derived SOD gene was introduced into the pBI121 vector (see FIG. 1), and the vector was then transferred to Agrobacterium tumefaciens ( Agrobacterium). tumefaciens ). Transformed Agrobacterium was co-cultured with leaf sections of shoots in the incubation of A2-19 and A2-36 strains (using the leaf disc method). The SOD gene introduced into the transformed petunia was confirmed using the van der Meer method.

본 실시예에 의한 페튜니아는 비생물적 스트레스에 대해 저항성을 가지므로, 고온 다습한 비닐하우스 등과 같은 높은 비생물적 스트레스 조건에서도 재배될 수 있다.Petunia according to the present embodiment is resistant to abiotic stress, it can be grown even under high abiotic stress conditions such as high temperature and humid vinyl house.

[실시예 2] 형질전환 제3세대 식물체를 이용한 비생물적 스트레스 저항성 검정 방법Example 2 Abiotic Stress Resistance Assay Using Transgenic Third Generation Plants

원예연구소에서 육성된 페튜니아 2 계통(A2-19 및 A2-36) 유래 E. coli 유래 SOD유전자(도 1)가 도입된 형질전환 제3세대 6 계통을 파종 15일 후 펄라이트(삼손, 규격1호)와 바이오상토 1호(흥농)와 부산물 퇴비(바이오 콩)가 10:5:4로 조제된 상토 400g을 채운 15cm 화분에 정식하였다. 정식 15일 후 T3식물체에 비생물적 스트레스 유발원으로 알려진 메틸 바이올로진(methyl viologen) 0, 100, 200, 400μM을 계통당 12개체씩 엽면살포(15mL/개체) 1주일 후 형질전환체(비형질전환체 포함)의 저항성을 4사람이 육안으로 관찰하였다. A2-36-1-1-2-5 및 A2-36-2-1-1-35 두 계통이 비형질전환체에 비하여 비생물적 스트레스에 저항성이 있음을 확인하였다(표 1, 도 2). Perlite (Samson, Standard No. 1) 15 days after seeding of the 3rd generation 6 strains transformed with E. coli- derived SOD genes derived from E. coli (FIG. ) And Biotope No. 1 (heung-nong) and by-product compost (bio soybean) were prepared in a 15cm pot filled with 400g of topsoil prepared at 10: 5: 4. After 15 days, 1 week of foliar spray (15 mL / object) of methyl viologen (methyl viologen) 0, 100, 200, 400 μM, known as abiotic stress source, was transformed into T3 plants. The resistance of the non-transformer) was visually observed by 4 people. Two strains A2-36-1-1-2-5 and A2-36-2-1-1-35 were found to be resistant to abiotic stress compared to non-transformants (Table 1, FIG. 2). .

[표 1] 메틸 바이올로진 처리 1주일 후 SOD형질전환 제3 세대 식물체 생육 피해정도(%)[Table 1] SOD transgenic third generation plant growth damage after 1 week of methyl biolozin treatment (%)

Figure 112008037656661-pat00001
Figure 112008037656661-pat00001

[실시예 3] 비 생물적 스트레스 저항성 SOD 형질전환체 단백질 발현 분석 Example 3 Abiotic Stress Resistant SOD Transformant Protein Expression Analysis

비 생물적 스트레스가 가해졌을 때 도입 유전자의 단백질이 발현되는 것을 확인하기 위하여 메틸 바이올로진(methyl viologen) 처리 2일과 5일째에 식물체(4개체/처리)로부터 신초 잎 1-2개를 채취하였다. 생육피해 관찰 결과 메틸 바이올로진(methyl viologen) 400μM 처리에서 비 생물적 스트레스 저항성을 보였던 A2-36-1-1-2-5 및 A2-36-2-1-1-35 2 계통으로부터 단백질을 추출하였다. 트리스-이디티에이 버퍼(Tris-EDTA buffer)에 용출시킨 전체 단백질(total protein)을 브레드포드 에세이(Bradford assay)법으로 정량한 후 20㎍을 웨스턴(Western) 분석용 시료로 사용하였다. 1차 항원 항체반응은 에이티젠(주)에 의뢰하여 제작한 SOD 항체(도 3a 참조)를 사용하였으며, 그 희석농도는 1:500으로 하였다. 2차 항원 항체 반응은 케이피시(사)(KPL(사))에서 구입한 알칼리 포스파타아제가 붙어있는 염소 토끼 항 체(alkaline phosphatase-labelled goat rabbit antibody)를 사용하였으며, 그 희석농도는 1:1500으로 하였다. 1, 2차 항원항체 반응 후 기질(NBT/BCIP)을 반응시킨 결과 비생물적 스트레스에 저항성을 보인 형질전환체로부터 도입 유전자 단백질 발현 부근에서 SOD 유전자 단백질의 발현을 확인하였다(도 3b). 1-2 shoots of shoots were taken from plants (4 individuals / treated) on days 2 and 5 of methyl viologen treatment to confirm the expression of the protein of the transgene when abiotic stress was applied. . Growth damage was observed in the A2-36-1-1-2-5 and A2-36-2-1-1-35 2 lines, which showed abiotic stress resistance in 400 μM treatment of methyl viologen. Extracted. Total protein eluted in Tris-EDTA buffer was quantified by the Bradford assay, and 20 µg was used as a sample for Western analysis. The primary antigen antibody reaction was a SOD antibody (see Fig. 3a) prepared by Etigen Co., Ltd., the dilution concentration was 1: 500. The secondary antigen antibody reaction was performed using alkaline phosphatase-labelled goat rabbit antibody with alkaline phosphatase purchased from KPL (KPL). It was 1500. As a result of reacting the substrate (NBT / BCIP) after the first and second antigen antibody reactions, the expression of the SOD gene protein was confirmed in the vicinity of the transgene expression of the transformant, which was resistant to abiotic stress (FIG. 3B).

[실시예 4] 비 생물적 스트레스 저항성 페튜니아 형질전환 세대진전 Example 4 Abiotic Stress Resistant Petunia Transgenic Generation

항생제 선발 배지에서 재분화된 식물체 중 PCR, 써던(Southern) 및 RT-PCR 분석에 의해 목적유전자의 도입 및 발현이 확인(도 4a)된 식물체(T0;형질전환세대)를 선발하였으며, 자식(selfing)에 의해 세대를 진전하였다(도 4b). A2-19 및 A2-36 형질전환세대(T0) 식물체는 유전자가 1 카피(copy) 도입되었음을 확인할 수 있었다. PCR 및 RT-PCR 분석에 의해 목적유전자의 도입 및 발현을 확인한 후 자식에 의해 세대 진전하였으며, 형질전환 제1세대(T0) 6 계통으로부터 형질전환 제3세대(T3)까지 전개하여 종자를 획득하였다(표 2). Among the plants re-differentiated in antibiotic selection medium, plants (T 0 ; transgenic generations) whose introduction and expression of the target genes were confirmed by PCR, Southern and RT-PCR analysis (Fig. 4a) were selected and the children (selfing) were selected. ) Advances generation (Fig. 4b). A2-19 and A2-36 transgenic generation (T 0 ) plants were able to confirm that one copy of the gene was introduced. After confirming the introduction and expression of the gene of interest by PCR and RT-PCR analysis, the generation progressed by the offspring, and the seeds were developed from the first generation of the transgenic (T 0 ) 6 strain to the third generation of the transgenic (T 3 ). Obtained (Table 2).

[표 2] 비생물적 스트레스에 저항성을 갖는 SOD 형질전환 A2-36 계통 유래 형질전환 세대별 종자 획득[Table 2] Acquisition of seed by transgenic generation derived from SOD transgenic A2-36 strain resistant to abiotic stress

구분division 종자립 수Seed independence 제1 세대First generation 836836 제2 세대Second generation 300300 제3 세대Third generation 1,5001,500 제4 세대Fourth generation 300300

앞에서 언급한 것처럼 세대진전에 의한 도입 유전자의 유전 분석 결과, 비 생물적 스트레스에 저항성을 탁월하게 보인 A2-36-2-1-1-35 계통의 경우 도입유전자가 분리되지 않음을 확인할 수 있었다(표 3). 또한 형질전환 제2세대(T2) 식물체의 표현형적 특성을 조사한 결과 A2-19 유래 형질전환체는 비형질전환체와 차이가 거의 없었으나, A2-36 유래 형질전환 계통 중 A2-36-1-1-2-5 경우 비형질전환체에 비해 화색에 있어서 같은 적색 계열이었으나 약간 차이를 보였다. 그러나 비 생물적 스트레스 저항성을 탁월하게 보인 A2-36-2-1-1-35계통은 대조구와 외관상 형태적 특성 차이가 없었다. 비생물적 스트레스 저항성을 보인 A2-36-2-1-1-35 및 A2-36-1-1-2-5 두 계통의 T3식물체 중 비생물적 스트레스 유발원(methyl viologen 400μM) 처리에서 저항성을 보인 식물체를 선발 후 자식(selfing)을 통해 형질전환 제4세대(T4)를 획득하였다. 상기 A2-36-2-1-1-35 및 A2-36-1-1-2-5 두 계통의 형질전환 제4세대의 종자를 2008년 5월 13일에 농촌진흥청 내의 농업미생물자원센터(KACC)에 종자기탁신청을 하여 2008년 5월 20일에 종자수탁번호를 받았다(KACC 98002P, KACC98003P).As mentioned above, genetic analysis of transgenes by generational progression revealed that the transgene was not isolated in the A2-36-2-1-1-35 strain, which showed excellent resistance to abiotic stress. Table 3). In addition, as a result of examining the phenotypic characteristics of the second generation (T 2 ) plants transformed, A2-19-derived transformants showed little difference from non-transformants, but A2-36-1 among A2-36-derived transformants In the case of -1-2-5, the red color was slightly different in color compared with the non-transformant. However, the A2-36-2-1-1-35 strain showed excellent abiotic stress resistance, and did not differ in appearance and morphological characteristics. Treatment of abiotic stressors (methyl viologen 400 μM) in T 3 plants of two lines A2-36-2-1-1-35 and A2-36-1-1-2-5 showed abiotic stress resistance Resistant plants were selected and their fourth generation (T 4 ) was obtained through selfing. Seeds of the fourth generation of transformed strains of the two lines A2-36-2-1-1-35 and A2-36-1-1-2-5 were distributed on May 13, 2008 by KACC) received a seed deposit and received a seed access number on May 20, 2008 (KACC 98002P, KACC98003P).

[표 3] SOD 형질전환 제2 세대 도입 유전자 유전 분석Table 3 Genetic analysis of SOD transgenic second generation

Figure 112008037656661-pat00002
Figure 112008037656661-pat00002

도 1은 SOD 유전자가 삽입되어 있는 pBI121 벡터의 개열지도이다.1 is a cleavage map of the pBI121 vector into which the SOD gene is inserted.

도 2는 메틸 바이올로진 처리 5일째의 SOD 유전자가 도입된 페튜니아 형질전환체의 생육상태를 나타낸 사진이다.Figure 2 is a photograph showing the growth state of the petunia transformants into which the SOD gene was introduced on the fifth day of methyl biolozin treatment.

도 3a는 SOD 유전자 항혈청 역가 검정(ELISA test)(좌) 및 항체(rabbit polyclonal antibody) 제작 후 웨스턴 블랏(western blot)을 한 결과를 나타낸 것이다.Figure 3a shows the results of Western blot after the SOD gene antiserum titer assay (ELISA test) (left) and the production of antibodies (rabbit polyclonal antibody).

도 3b는 메틸 바이올로진 400μM 처리 2일 째 SOD 형질전환체로부터 도입 유전자 단백질이 발현한 것을 보여주는 전기영동사진이다.Figure 3b is an electrophoresis picture showing the expression of the transgene protein from the SOD transformant on day 2 treatment of methyl biolosin 400μM.

도 4a는 SOD 형질전환세대(T0) 목표 유전자 도입 및 발현 분석한 것으로, 좌는 서던 블랏(southern blot) 분석 결과를, 우는 RT-PCR 분석 결과를 나타낸다.Figure 4a is a SOD transgenic generation (T0) target gene introduction and expression analysis, the left shows the Southern blot analysis results, the crying RT-PCR analysis results.

도 4b는 SOD 형질전환체를 자식(selfing)에 의해 세대진전한 결과이다(수분 45일 후 채종).Figure 4b is the result of the generation of the SOD transformants by the self (selfing) (harvesting after a few minutes 45 days).

<110> Korea <120> Transgenic Petunia resistant to abiotic stress <160> 1 <170> KopatentIn 1.71 <210> 1 <211> 1053 <212> DNA <213> E. coli <400> 1 tcgggcattt tcctgcaaaa ccataccctt acgaaaagta cggcattgat aatcattttc 60 aatatcattt aattaactat aatgaaccaa ctgcttacgc ggcattaaca atcggccgcc 120 cgacaatact ggagatgaat atgagctata ccctgccatc cctgccgtat gcttacgatg 180 ccctggaacc gcacttcgat aagcagacca tggaaatcca ccacaccaaa caccatcaga 240 cctacgtaaa caacgccaac gcggcgctgg aaagcctgcc agaatttgcc aacctgccgg 300 ttgaagagct gattaccaaa ctggaccagc tgccagcaga caagaaaacc gtactgcgca 360 acaacgctgg cggtcacgct aaccacagcc tgttctggaa aggtctgaaa aaaggcacca 420 ccctgcaggg tgacctgaaa gcggctatcg aacgtgactt cggctccgtt gataacttca 480 aagcagaatt tgaaaaagcg gcagcttccc gctttggttc cggctgggca tggctggtgc 540 tgaaaggcga taaactggcg gtggtttcta ctgctaacca ggattctccg ctgatgggtg 600 aagctatttc tggcgcttcc ggcttcccga ttatgggcct ggatgtgtgg gaacatgctt 660 actacctgaa attccagaac cgccgtccgg actacattaa agagttctgg aacgtggtga 720 actgggacga agcagcggca cgttttgcgg cgaaaaaata atcatttgcc gcctgctgca 780 atgaggcgta taggccgcat atcagcttaa aaaatgaacc atcgccaacg gcggtggttt 840 ttttgtgatc aatttcaaaa taaaaacaat gatccgaata aaaataaaac agcgtttcaa 900 ttgatgtggt tttgacactt ttatgattaa atgaatgtct atcttcgttt ccatcaacac 960 tgatgctcca ttgaggaatt acgcatcagc ccttaaaaat atgccgacag gtgatggaaa 1020 tgcagataaa acgctcgatt gagaaaatcc cgg 1053 <110> Korea <120> Transgenic Petunia resistant to abiotic stress <160> 1 <170> KopatentIn 1.71 <210> 1 <211> 1053 <212> DNA <213> E. coli <400> 1 tcgggcattt tcctgcaaaa ccataccctt acgaaaagta cggcattgat aatcattttc 60 aatatcattt aattaactat aatgaaccaa ctgcttacgc ggcattaaca atcggccgcc 120 cgacaatact ggagatgaat atgagctata ccctgccatc cctgccgtat gcttacgatg 180 ccctggaacc gcacttcgat aagcagacca tggaaatcca ccacaccaaa caccatcaga 240 cctacgtaaa caacgccaac gcggcgctgg aaagcctgcc agaatttgcc aacctgccgg 300 ttgaagagct gattaccaaa ctggaccagc tgccagcaga caagaaaacc gtactgcgca 360 acaacgctgg cggtcacgct aaccacagcc tgttctggaa aggtctgaaa aaaggcacca 420 ccctgcaggg tgacctgaaa gcggctatcg aacgtgactt cggctccgtt gataacttca 480 aagcagaatt tgaaaaagcg gcagcttccc gctttggttc cggctgggca tggctggtgc 540 tgaaaggcga taaactggcg gtggtttcta ctgctaacca ggattctccg ctgatgggtg 600 aagctatttc tggcgcttcc ggcttcccga ttatgggcct ggatgtgtgg gaacatgctt 660 actacctgaa attccagaac cgccgtccgg actacattaa agagttctgg aacgtggtga 720 actgggacga agcagcggca cgttttgcgg cgaaaaaata atcatttgcc gcctgctgca 780 atgaggcgta taggccgcat atcagcttaa aaaatgaacc atcgccaacg gcggtggttt 840 ttttgtgatc aatttcaaaa taaaaacaat gatccgaata aaaataaaac agcgtttcaa 900 ttgatgtggt tttgacactt ttatgattaa atgaatgtct atcttcgttt ccatcaacac 960 tgatgctcca ttgaggaatt acgcatcagc ccttaaaaat atgccgacag gtgatggaaa 1020 tgcagataaa acgctcgatt gagaaaatcc cgg 1053  

Claims (3)

서열번호 1의 유전자를 안정적으로 삽입한 고정계통 페튜니아 형질전환체의 종자 KACC 98002P.Seed KACC 98002P of a fixed-line petunia transformant stably inserted with the gene of SEQ ID NO: 1. 서열번호 1의 유전자를 안정적으로 삽입한 고정계통 페튜니아 형질전환체의 종자 KACC 98003P.Seed of a fixed-line petunia transformant stably inserted with the gene of SEQ ID NO: 1 KACC 98003P. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2, 상기 페튜니아 형질전환체는 상기 서열번호 1의 유전자를 삽입하여 비생물적 스트레스에 저항성을 가지는 것을 특징으로 하는 고정계통 페튜니아 형질전환체의 종자.The petunia transformant is a seed of a fixed system petunia transformant, characterized in that the insertion of the gene of SEQ ID NO: 1 having resistance to abiotic stress.
KR1020080049023A 2008-05-27 2008-05-27 Transgenic Petunia resistant to abiotic stress KR101077208B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080049023A KR101077208B1 (en) 2008-05-27 2008-05-27 Transgenic Petunia resistant to abiotic stress

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080049023A KR101077208B1 (en) 2008-05-27 2008-05-27 Transgenic Petunia resistant to abiotic stress

Publications (2)

Publication Number Publication Date
KR20090123108A KR20090123108A (en) 2009-12-02
KR101077208B1 true KR101077208B1 (en) 2011-10-31

Family

ID=41685395

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080049023A KR101077208B1 (en) 2008-05-27 2008-05-27 Transgenic Petunia resistant to abiotic stress

Country Status (1)

Country Link
KR (1) KR101077208B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040016029A1 (en) 1998-11-05 2004-01-22 Zhong-Min Wei Hypersensitive response elicitor-induced stress resistance
KR100827348B1 (en) 2006-11-24 2008-05-06 재단법인서울대학교산학협력재단 1A red pepper gene CaABS1 confers abiotic stress-tolerance to plants

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040016029A1 (en) 1998-11-05 2004-01-22 Zhong-Min Wei Hypersensitive response elicitor-induced stress resistance
KR100827348B1 (en) 2006-11-24 2008-05-06 재단법인서울대학교산학협력재단 1A red pepper gene CaABS1 confers abiotic stress-tolerance to plants

Also Published As

Publication number Publication date
KR20090123108A (en) 2009-12-02

Similar Documents

Publication Publication Date Title
Larsen et al. ALS3 encodes a phloem‐localized ABC transporter‐like protein that is required for aluminum tolerance in Arabidopsis
Pracharoenwattana et al. Arabidopsis has a cytosolic fumarase required for the massive allocation of photosynthate into fumaric acid and for rapid plant growth on high nitrogen
Konishi et al. Three polarly localized ammonium transporter 1 members are cooperatively responsible for ammonium uptake in rice under low ammonium condition
CN106414746A (en) Constructs for expressing transgenes using regulatory elements from brachypodium ubiquitin genes
Feria et al. Phosphoenolpyruvate carboxylase (PEPC) and PEPC-kinase (PEPC-k) isoenzymes in Arabidopsis thaliana: role in control and abiotic stress conditions
Tao et al. Promotion of shoot development and tuberisation in potato by expression of a chimaeric cytokinin synthesis gene at normal and elevated CO2 levels
Mejía et al. Expression of designed antimicrobial peptides in Theobroma cacao L. trees reduces leaf necrosis caused by Phytophthora spp.
Hu et al. AKR2A participates in the regulation of cotton fibre development by modulating biosynthesis of very‐long‐chain fatty acids
CN106232818A (en) Improvement plant
Wang et al. GIGANTEA orthologs, E2 members, redundantly determine photoperiodic flowering and yield in soybean
Li et al. Shoot-to-root translocated GmNN1/FT2a triggers nodulation and regulates soybean nitrogen nutrition
CN105838726B (en) A kind of Salt Tolerance Gene in Alfalfa gene M sCDPK and its coding albumen and application
Kost et al. Transcriptional differentiation of UV‐B protectant genes in maize landraces spanning an elevational gradient in Chiapas, Mexico
Chang et al. PDV2 has a dosage effect on chloroplast division in Arabidopsis
Bhunia et al. A native promoter–gene fusion created by CRISPR/Cas9‐mediated genomic deletion offers a transgene‐free method to drive oil accumulation in leaves
KR101077208B1 (en) Transgenic Petunia resistant to abiotic stress
CN114107373B (en) Method for preparing arabidopsis autophagy gene mutant and application thereof
Yu et al. ZmAPRG, an uncharacterized gene, enhances acid phosphatase activity and Pi concentration in maize leaf during phosphate starvation
Karki et al. A role for neutral variation in the evolution of C4 photosynthesis
Gal et al. Plasma membrane aquaporins regulate root hydraulic conductivity in the model plant Setaria viridis
Panchal et al. A citrate efflux transporter important for manganese distribution and phosphorus uptake in rice
Tarasenko et al. Characterization of Arabidopsis mutant with inactivated gene coding for Fe-S subunit of mitochondrial respiratory chain complex I
Krueger et al. Studying the function of the phosphorylated pathway of serine biosynthesis in Arabidopsis thaliana
CN102453084B (en) Soybean photoreceptor GmPLP1 and coding gene and application thereof
CN105732784B (en) The application of arabidopsis seedling stage lethal gene SL1

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant