KR101034820B1 - Oscillating water column in wave generation system for the minimum inflow loss type - Google Patents

Oscillating water column in wave generation system for the minimum inflow loss type Download PDF

Info

Publication number
KR101034820B1
KR101034820B1 KR1020090074328A KR20090074328A KR101034820B1 KR 101034820 B1 KR101034820 B1 KR 101034820B1 KR 1020090074328 A KR1020090074328 A KR 1020090074328A KR 20090074328 A KR20090074328 A KR 20090074328A KR 101034820 B1 KR101034820 B1 KR 101034820B1
Authority
KR
South Korea
Prior art keywords
vibration
inlet
power generation
wave power
fallopian tube
Prior art date
Application number
KR1020090074328A
Other languages
Korean (ko)
Other versions
KR20110016700A (en
Inventor
오진석
Original Assignee
한국해양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국해양대학교 산학협력단 filed Critical 한국해양대학교 산학협력단
Priority to KR1020090074328A priority Critical patent/KR101034820B1/en
Publication of KR20110016700A publication Critical patent/KR20110016700A/en
Application granted granted Critical
Publication of KR101034820B1 publication Critical patent/KR101034820B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/141Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy with a static energy collector
    • F03B13/142Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy with a static energy collector which creates an oscillating water column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/22Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the flow of water resulting from wave movements to drive a motor or turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/02Other machines or engines using hydrostatic thrust
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

본 발명은 해양의 부유형 구조물에 설치되는 파력발전용 진동 수주에 관한 것으로, 부유형 해양구조물 내부에 설치되며, 기둥 형상으로 형성되어 상측에는 터빈 및 발전기가 형성되고, 하측에는 침추가 형성되어, 하단의 유입구로부터 유입된 해수의 유출입에 따라 발전을 일으키는 파력발전용 진동 수주에 있어서, 상기 침추 하측에 수주 유입구로부터 하측으로 갈수록 지름이 증가하는 나팔관부가 형성된 것을 특징으로 하는 유입손실을 줄이기 위한 파력발전용 진동 수주를 기술적 요지로 한다. 이에 의해 국내외 진동 수주의 형태가 모두 직선형으로 형성되어 있지만 진동 수주 유입구에 나팔관부를 형성하여, 유입손실을 낮추어 손실계수를 줄여 파력발전 시스템의 효율을 증대시키는 이점이 있다.The present invention relates to vibration orders for wave power generation is installed in the floating structure of the ocean, is installed inside the floating marine structure, is formed in a column shape, the turbine and the generator is formed on the upper side, the needle is formed on the lower side, In the vibration order for wave generation generating power according to the inflow and outflow of seawater introduced from the inlet of the lower, wave power generation for reducing the inlet loss, characterized in that the fallopian tube portion is formed to increase in diameter from the inlet to the lower side in the lower side of the invasion The order of the vibration of the dragon is considered the technical gist. As a result, both domestic and foreign vibration orders are formed in a straight line, there is an advantage in that a fallopian tube is formed at the vibration inlet, thereby reducing the loss factor and increasing the efficiency of the wave power generation system.

부유형 해양구조물 파력발전 진동수주 브이 효율 나팔관 유입손실 Floating Offshore Structure Wave Power Generation Frequency V V Efficiency Fallopian Pipe Inlet Loss

Description

유입손실을 줄이기 위한 파력발전용 진동 수주{Oscillating water column in wave generation system for the minimum inflow loss type}Oscillating water column in wave generation system for the minimum inflow loss type}

본 발명은 해양의 부유형 구조물에 설치되는 파력발전용 진동 수주에 관한 것으로, 진동 수주 하측의 형태를 변경하여 유입손실을 낮추어 손실계수를 줄여 파력발전 시스템의 효율을 증대시킬 수 있는 유입손실을 줄이기 위한 파력발전용 진동 수주에 관한 것이다.The present invention relates to vibration orders for wave power generation installed in the floating structure of the ocean, by reducing the inflow loss by changing the shape of the lower side of the vibration orders to reduce the loss coefficient to reduce the inflow loss that can increase the efficiency of the wave power generation system It relates to vibration orders for wave power generation.

일반적으로 해양에 설치되는 부유형 해양구조물(브이 등)은 해양에서 각종 정보를 수집하거나 부표로 사용되는 것으로 육상 또는 해상의 기지로 이러한 정보를 송신하여 위치를 인식하거나 여러가지 연구를 돕는 실험장비로 사용되고 있다.In general, floating marine structures (V, etc.) installed in the ocean are used to collect various information from the ocean or use them as buoys, and they are used as experimental equipment to recognize the location or to assist in various studies by sending such information to land or sea bases. have.

이러한 부유형 해양구조물은 기본적으로 발전을 위한 전력이 필요하게 된다. 종래에는 태양의 광량에 따라 발전하는 태양광 발전만을 이용하여 왔기 때문에 계절 및 날씨의 변화에 의해 심하게 변동하는 광량에 따라 전력생산량의 편차가 커 전력시스템의 안정성이 떨어지고 흐린 날씨가 지속될 경우, 등명기가 점등하지 못하거나 배터리의 수명에도 악영향을 미쳐 제 기능을 수행하지 못할 뿐만 아니라 유지 보수 비용이 증가하는 단점이 있었다.These floating offshore structures basically require power for power generation. Conventionally, since only the solar power generation that is generated according to the amount of solar light is used, the variation of power production is large according to the quantity of light that is severely changed by the change of season and weather, so that the stability of the power system is low and the cloudy weather persists. It could not turn on or adversely affect the life of the battery, which would not only function properly but also increase the maintenance cost.

근래에는 이러한 태양광 발전 대신에 브이 내부에 진동 수주(Oscillating water column) 형태의 파력 발전 장치를 내장하고 있는 진동 수주 파력 발전 설비에 대한 연구가 활발하다.In recent years, studies on vibration-based wave power generation facilities that incorporate wave power generation devices in the form of oscillating water columns instead of photovoltaic power generation have been actively conducted.

이러한 진동 수주 파력 발전 설비는 부유형 구조물인 브이 내부에 설치되는 것으로, 도 1에 도시된 것과 같이, 브이(10) 내부에 물기둥 형태의 진동 수주(20)가 있고, 브이(10)가 움직임에 따라 밑의 관을 통하여 수주로 물의 유입 및 유출이 반복적으로 이루어지게 된다. 그리고 수주 하부에는 물의 유입 및 유출을 위해 통로가 형성되며, 하단에는 침추(23)가 형성되어 있다. 상기 진동 수주(20)의 높이가 변화하면 수주 상부에 있는 공기가 압축과 팽창을 반복하게 되고, 이러한 수주 내 공기의 변화에 의해 수주 상부에 형성된 터빈(21)이 회전하게 되고, 터빈에 연결된 발전기(22)에 의해 전력이 생산되게 된다.The vibration receiving wave power generation equipment is installed in the V, which is a floating structure, as shown in FIG. 1, there is a vibration column 20 having a water column shape in the V 10, and the V 10 is in motion. Accordingly, the inflow and outflow of water to the water column through the bottom pipe is made repeatedly. And the lower part of the column is formed with a passage for the inflow and outflow of water, the lower end is formed with a pendulum (23). When the height of the oscillation column 20 changes, the air in the upper column repeats compression and expansion, and the turbine 21 formed on the upper column rotates due to the change of air in the column, and the generator connected to the turbine. Electric power is produced by (22).

이러한 파력발전에서 가장 중요한 것은 수주 내의 유체가 자유롭게 이동할 수 있어야 하며 수주 입구 측에서의 유입 손실을 최소화해야 물이 쉽게 수주 내로 들어오거나 나갈 수 있게 되는 것이다.The most important thing in this wave power generation is that the fluid in the water column should be able to move freely and the inflow loss at the water inlet side should be minimized so that water can easily enter or exit the water column.

따라서, 수주 유입구의 형상에 따라 유입되는 유체의 손실에 차이가 발생하게 되며, 종래의 이러한 수주의 형상은 모두 직선형으로 형성되어 유입손실이 약 0.5정도의 유입손실 계수를 가지고 있어, 발전효율이 그다지 높지 않은 단점이 있다.Therefore, there is a difference in the loss of the incoming fluid according to the shape of the order inlet, the conventional shape of the order of the order is all formed in a straight line, the inlet loss has an inlet loss factor of about 0.5, the generation efficiency is not very good The disadvantage is not high.

본 발명은 상기 문제점을 해결하기 위한 것으로, 진동 수주 하측의 형태를 변경하여 유입손실을 낮추어 손실계수를 줄여 파력발전 시스템의 효율을 증대시킬 수 있는 유입손실을 줄이기 위한 파력발전용 진동 수주의 제공을 그 목적으로 한다.The present invention is to solve the above problems, by changing the shape of the lower side of the vibration order to reduce the inflow loss to reduce the loss coefficient to provide the vibration order for vibration generation for reducing the inflow loss that can increase the efficiency of the wave power generation system For that purpose.

상기 목적을 달성하기 위해 본 발명은, 부유형 해양구조물 내부에 설치되며, 기둥 형상으로 형성되어 상측에는 터빈 및 발전기가 형성되고, 하측에는 침추가 형성되어, 하단의 유입구로부터 유입된 해수의 유출입에 따라 발전을 일으키는 파력발전용 진동 수주에 있어서, 상기 침추 하측에 수주 유입구로부터 하측으로 갈수록 지름이 증가하는 나팔관부가 형성된 것을 특징으로 하는 유입손실을 줄이기 위한 파력발전용 진동 수주를 기술적 요지로 한다.In order to achieve the above object, the present invention is installed inside the floating marine structure, is formed in a column shape, the turbine and the generator is formed on the upper side, the needle is formed on the lower side, to the inflow and outflow of seawater introduced from the inlet of the lower In the vibration order for power generation causing power generation, the vibration order for wave power generation for reducing the inflow loss, characterized in that the fallopian tube portion is increased in the lower side from the order inlet to the lower side of the pendulum to the technical gist.

여기에서, 상기 나팔관부는, sl/d=0.75 및 sh/d=0.5이며, 여기에서 d는 상기 수주 유입구의 지름, sl은 나팔관부의 높이, sh는 수주 유입구에서부터 나팔관부의 가로 길이를 가지도록 설계하는 것이 바람직하다.Here, the fallopian tubes are sl / d = 0.75 and sh / d = 0.5, where d is the diameter of the water inlet, sl is the height of the fallopian tubes, and sh is the width of the fallopian tubes at the water inlets. It is preferable.

상기 구성에 의해 본 발명은, 국내외 진동 수주의 형태가 모두 직선형으로 형성되어 있지만 진동 수주 유입구에 나팔관부를 형성하여, 유입손실을 낮추어 손실계수를 줄여 파력발전 시스템의 효율을 증대시키는 효과가 있다.According to the above configuration, the present invention has a form of both domestic and overseas vibration orders in a straight line, but the fallopian tube portion is formed at the vibration inlet, thereby reducing the inflow loss and reducing the loss coefficient, thereby increasing the efficiency of the wave power generation system.

본 발명은 브이 등 부유형 해양시설물 구조를 변경하여 에너지 발생장치를 진동수주형으로 설계하여 파력 발전 시스템의 효율을 최대로 향상시키기 위한 구조에 관한 것으로, 브이와 같은 부유형 해양구조물의 유체가 유입되는 곳의 형상을 기존의 형상과 다르게 하여 유입손실을 최소화할 수 있는 구조로 개선하여 설계 및 제작하여 유입유체를 최대로 많게 하는 것이다.The present invention relates to a structure for maximizing the efficiency of the wave power generation system by changing the structure of the floating marine facilities, such as V, by designing the energy generating device into a vibration water-retaining type. The shape of the place is different from the existing one to improve the structure to minimize the inflow loss, designed and manufactured to maximize the inflow fluid.

일반적으로 브이에 설치되는 파력발전 시스템은 유체가 밑통을 통하여 중앙의 수주로 들어오고 수주 내의 유체의 움직임에 따라 상부의 공기가 압축과 팽창을 하게 되고, 이러한 진동 수주 내 공기의 변화를 이용하여 수주 상부에 설치된 터빈을 회전시켜 발전하는 시스템이다.In general, the wave power generation system installed in the V causes the fluid to enter the central water column through the bottom tube, and the upper air is compressed and expanded as the fluid moves in the water column. It is a system that generates electricity by rotating a turbine installed in the upper part.

이하에서는 첨부된 도면을 참조하여 본 발명에 대해 보다 상세히 설명하고자 한다. 도 2는 본 발명에 따른 유입손실을 줄이기 위한 파력발전용 진동 수주의 주요부에 대한 모식도이고, 도 3은 본 발명에 따른 유입손실을 줄이기 위한 파력발전용 진동 수주의 주요부에 대한 사시도이다.Hereinafter, with reference to the accompanying drawings will be described in more detail with respect to the present invention. Figure 2 is a schematic diagram of the main portion of the vibration order for reducing wave induction according to the present invention, Figure 3 is a perspective view of the main portion of the vibration order for reducing wave intake in accordance with the present invention.

도시된 바와 같이, 파력 발전용 진동 수주(20)는 기둥 형상으로 형성되어 상측에는 터빈(21) 및 발전기(22)가 형성되고, 하측에는 침추(23)가 형성되어 하단의 유입구(24)로부터 유체의 유출입이 이루어지는 것으로, 앞선 설명한 바와 같이, 진동 수주 유입구(24)의 형상에 따라 유입되는 손실에 차이가 발생하게 되며, 이 유입손실에 따라 파력발전 시스템의 효율이 결정되게 된다.As shown, the vibration order 20 for the wave power generation is formed in a columnar shape, the turbine 21 and the generator 22 is formed on the upper side, the inferior bore 23 is formed at the lower side from the inlet 24 As the fluid flows in and out, as described above, a difference occurs in the inflow loss depending on the shape of the oscillating water inlet 24, and the efficiency of the wave power generation system is determined according to the inflow loss.

이를 위해 상기 침추(23) 하측에 수주 유입구(24)로부터 하측으로 갈수록 지 름이 점점 증가하는 나팔관형상으로 형성된 나팔관부(30)가 형성되도록 한다. 상기 나팔관부(30)는 진동 수주(20) 내로 유체가 보다 자유롭게 이동할 수 있도록 하고, 수주 유입구(24) 측에서의 유입손실을 최소화하여 유체가 쉽게 진동 수주(20) 내로 들어오거나 나갈 수 있도록 한 것이다.To this end, the fallopian tube part 30 formed in the fallopian tube shape, the diameter of which gradually increases from the water inlet 24 to the lower side, is formed on the lower side of the pendulum 23. The fallopian tube part 30 allows the fluid to move more freely into the oscillation column 20 and minimizes the loss of inflow on the order inlet 24 so that the fluid can easily enter or exit the oscillation column 20.

상기 나팔관부(30)는 상기 수주 유입구(24)를 넓히는 역할을 하게 되어 유체의 유입손실을 줄일 수 있도록 한 것으로, 유입손실을 최소화하기 위해서 상기 나팔관부(30)의 형태 및 크기에 대한 더욱 정밀한 설계가 필요하다.The fallopian tube part 30 serves to widen the water inlet 24 so as to reduce the inflow loss of the fluid, and more precisely the shape and size of the fallopian tube part 30 to minimize the inflow loss. Design is necessary.

즉, 상기 나팔관부(30)의 지름이 커지는 비율이 너무 크거나 작다던가, 지름의 최대 확장된 크기가 너무 크던가 작으면 유입손실이 오히려 증가할 수 있으므로, 본 발명의 실시예로 상기 나팔관부(30)는 수주 유입구(24)의 지름에 대해 sl/d=0.75 및 sh/d=0.5의 값을 가지도록 설계하는 것이 바람직하다. 여기에서 d는 상기 수주 유입구(24)의 지름, sl은 나팔관부(30)의 높이, sh는 수주 유입구(24)에서부터 나팔관부(30)의 가로 길이를 나타낸 것으로, 상기 수주 유입구(24)에서 sh 값만큼 지름이 증가하는 나팔관부(30)가 형성되는 것이 바람직하며, 그리고, 나팔관부(30)의 지름의 증가는 sl만큼 이루어지는 것이 바람직하다.That is, if the ratio of the diameter of the fallopian tube part 30 is too large or too small, or if the maximum expanded size of the diameter is too large or small, the inflow loss may increase, so that the fallopian tube part ( 30 is preferably designed to have values of sl / d = 0.75 and sh / d = 0.5 with respect to the diameter of the water inlet 24. Where d is the diameter of the water inlet 24, sl is the height of the fallopian tube part 30, sh is the horizontal length of the fallopian tube part 30 from the water inlet 24, the water inlet 24 It is preferable that the fallopian tube part 30 whose diameter increases by sh value is formed, and the increase of the diameter of the fallopian tube part 30 is preferably made by sl.

이와 같이, 수주 유입구(24)의 형상을 변경하여 지름이 하측으로 갈수록 증가하도록 나팔관부(30)를 형성하여 유입손실을 측정해 본 바, 유입손실 계수가 약 0.01~0.05 범위로 종래의 유입손실에 비해 10배 이상 낮추는 것을 확인 할 수 있었다. 이에 의해 파력발전 시스템의 효율을 증대시킬 수 있게 되는 것이다.In this way, by changing the shape of the order inlet 24 to form the fallopian tube part 30 so that the diameter increases toward the lower side to measure the inflow loss, the inflow loss coefficient is in the range of about 0.01 ~ 0.05 to the conventional inflow loss Compared to 10 times lower than it could be confirmed. As a result, the efficiency of the wave power generation system can be increased.

도 1 - 종래의 진동 수주 파력 발전 설비를 나타낸 모식도.1-A schematic diagram showing a conventional vibration receiving wave power generation equipment.

도 2 - 본 발명에 따른 유입손실을 줄이기 위한 파력발전용 진동 수주의 주요부에 대한 모식도.Figure 2-Schematic diagram of the main part of the vibration order for wave generation for reducing the inflow loss according to the present invention.

도 3 - 본 발명에 따른 유입손실을 줄이기 위한 파력발전용 진동 수주의 주요부에 대한 사시도.Figure 3-perspective view of the main portion of the vibration order for wave generation for reducing the inflow loss according to the present invention.

<도면에 사용된 주요 부호에 대한 설명><Description of Major Symbols Used in Drawings>

10 : 브이 20 : 진동 수주10: V 20: vibration order

21 : 터빈 22 : 발전기21: turbine 22: generator

23 : 침추 24 : 유입구23: invasion 24: inlet

30 : 나팔관부30: fallopian tube

Claims (2)

부유형 해양구조물 내부에 설치되며, 기둥 형상으로 형성되어 상측에는 터빈(21) 및 발전기(22)가 형성되고, 하측에는 침추(23)가 형성되어, 하단의 수주 유입구(24)로부터 유입된 해수의 유출입에 따라 발전을 일으키는 파력발전용 진동 수주(20)에 있어서,It is installed inside the floating offshore structure, and is formed in a columnar shape, the turbine 21 and the generator 22 is formed on the upper side, and the infiltration 23 is formed on the lower side, the seawater introduced from the water inlet 24 of the lower end In the vibration order 20 for wave power generation that generates power due to the inflow and outflow of 상기 침추(23) 하측에 수주 유입구(24)로부터 하측으로 갈수록 지름이 증가하는 나팔관부(30)가 형성된 것을 특징으로 하는 유입손실을 줄이기 위한 파력발전용 진동 수주.Vibration contract for wave power generation for reducing the inflow loss, characterized in that the fallopian tube portion 30 is formed in the lower side of the pendulum 23, the diameter increases toward the lower side from the order inlet 24. 제 1항에 있어서, 상기 나팔관부(30)는,According to claim 1, The fallopian tube part 30, sl/d=0.75 및 sh/d=0.5이며, 여기에서 d는 상기 수주 유입구(24)의 지름, sl은 나팔관부(30)의 높이, sh는 수주 유입구(24)에서부터 나팔관부(30)의 가로 길이인 것을 특징으로 하는 유입손실을 줄이기 위한 파력발전용 진동 수주.sl / d = 0.75 and sh / d = 0.5, where d is the diameter of the water column inlet 24, sl is the height of the fallopian tube section 30, sh is the height of the fallopian tube section 30 from the water column inlet 24. Vibration order for wave generation to reduce the inflow loss, characterized in that the horizontal length.
KR1020090074328A 2009-08-12 2009-08-12 Oscillating water column in wave generation system for the minimum inflow loss type KR101034820B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090074328A KR101034820B1 (en) 2009-08-12 2009-08-12 Oscillating water column in wave generation system for the minimum inflow loss type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090074328A KR101034820B1 (en) 2009-08-12 2009-08-12 Oscillating water column in wave generation system for the minimum inflow loss type

Publications (2)

Publication Number Publication Date
KR20110016700A KR20110016700A (en) 2011-02-18
KR101034820B1 true KR101034820B1 (en) 2011-05-16

Family

ID=43774997

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090074328A KR101034820B1 (en) 2009-08-12 2009-08-12 Oscillating water column in wave generation system for the minimum inflow loss type

Country Status (1)

Country Link
KR (1) KR101034820B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104405561A (en) * 2014-09-30 2015-03-11 安科智慧城市技术(中国)有限公司 Wave power generating device
KR101872707B1 (en) * 2016-02-02 2018-06-29 한국해양대학교 산학협력단 Electrical anti-fouling system for marine facility
CN108843483B (en) * 2018-06-05 2020-04-07 中国科学院广州能源研究所 High-efficiency conical tube wave power generation device
CN110594076A (en) * 2019-09-20 2019-12-20 天津大学 Embedded type vibration reduction power generation system and vibration reduction power generation method based on floating platform

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030083253A (en) * 2002-04-19 2003-10-30 전상형 Generation device of electricity by using the wave

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030083253A (en) * 2002-04-19 2003-10-30 전상형 Generation device of electricity by using the wave

Also Published As

Publication number Publication date
KR20110016700A (en) 2011-02-18

Similar Documents

Publication Publication Date Title
DK3256716T3 (en) HYDROPNEUMATIC ENERGY STORAGE SYSTEM
AU2009287351B2 (en) Improvements in ocean wave energy extraction
US8446031B2 (en) Apparatus for converting energy from wave or current flow using pipes acting as venturi pumps
US20120248776A1 (en) Wave energy extraction system using an oscillating water column attached to the columns of an offshore platform
JP2016533455A (en) Coastal conservation and wave energy power generation system
US20100171313A1 (en) Under the bottom ocean wave energy converter
US20090072539A1 (en) Device, system, and method for harnessing fluid energy
KR101034820B1 (en) Oscillating water column in wave generation system for the minimum inflow loss type
US8405240B2 (en) Augmented velocity hydro-electric turbine generator
US10767619B2 (en) Integrated system for optimal extraction of head-driven tidal energy with minimal or no adverse environmental effects
US20140319840A1 (en) Hydroelectric system
EP2848802B1 (en) System for obtaining electrical energy from a wave motion
WO2007125538A1 (en) A device for converting wave and/or tidal energy into electrical energy
Suryaningsih Study on wave energy into electricity in the South Coast of Yogyakarta, Indonesia
Sundar et al. Conceptual design of OWC wave energy converters combined with breakwater structures
GB2459441A (en) Oscillating-water-column wave-energy device having a helical column
CN210769129U (en) Oscillating water column type wave energy conversion device with built-in point absorption device
Gaden et al. Increasing power density of kinetic turbines for cost-effective distributed power generation
TWI575152B (en) Power generating system using current around structure
NWAOKOCHA et al. Ocean wave energy–An option for Nigerian power situation
RU77362U1 (en) WAVE POWER PLANT
Subekti et al. The effect of pump diameter and penstock pipe on the electric power of a hybrid generator
WO2020008236A1 (en) Submersible current power plant
CN105240202A (en) Novel wave power generation equipment
AU2015200695A1 (en) Windpower actuated by tidal motion

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141107

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150303

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160505

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170502

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180105

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190403

Year of fee payment: 9