KR101034222B1 - Magnetic fluid composite using non aqueous high molecular wetting dispersant as surfactant and manufacturing peocess of that - Google Patents

Magnetic fluid composite using non aqueous high molecular wetting dispersant as surfactant and manufacturing peocess of that Download PDF

Info

Publication number
KR101034222B1
KR101034222B1 KR1020100116938A KR20100116938A KR101034222B1 KR 101034222 B1 KR101034222 B1 KR 101034222B1 KR 1020100116938 A KR1020100116938 A KR 1020100116938A KR 20100116938 A KR20100116938 A KR 20100116938A KR 101034222 B1 KR101034222 B1 KR 101034222B1
Authority
KR
South Korea
Prior art keywords
surfactant
magnetite
magnetic fluid
magnetic
aqueous polymer
Prior art date
Application number
KR1020100116938A
Other languages
Korean (ko)
Inventor
이홍기
백대성
Original Assignee
알엠에스테크놀러지(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 알엠에스테크놀러지(주) filed Critical 알엠에스테크놀러지(주)
Priority to KR1020100116938A priority Critical patent/KR101034222B1/en
Application granted granted Critical
Publication of KR101034222B1 publication Critical patent/KR101034222B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D37/00Clutches in which the drive is transmitted through a medium consisting of small particles, e.g. centrifugally speed-responsive
    • F16D37/008Clutches in which the drive is transmitted through a medium consisting of small particles, e.g. centrifugally speed-responsive the particles being carried by a fluid, to vary viscosity when subjected to electric change, i.e. electro-rheological or smart fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D37/00Clutches in which the drive is transmitted through a medium consisting of small particles, e.g. centrifugally speed-responsive
    • F16D37/02Clutches in which the drive is transmitted through a medium consisting of small particles, e.g. centrifugally speed-responsive the particles being magnetisable
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/44Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids
    • H01F1/447Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids characterised by magnetoviscosity, e.g. magnetorheological, magnetothixotropic, magnetodilatant liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D37/00Clutches in which the drive is transmitted through a medium consisting of small particles, e.g. centrifugally speed-responsive
    • F16D2037/005Clutches in which the drive is transmitted through a medium consisting of small particles, e.g. centrifugally speed-responsive characterised by a single substantially radial gap in which the fluid or medium consisting of small particles is arranged

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Lubricants (AREA)

Abstract

PURPOSE: A magnetic fluid composite using a non aqueous high molecular wetting dispersant as a surfactant and manufacturing method thereof are provided to absorb a non aqueous high molecular wetting dispersant in a chemically synthesized magnetite nano particle by a surfactant. CONSTITUTION: A magnetic fluid composite is a magnetite nano particle. A surfactant is a non aqueous high molecular wetting dispersant. The surfactant is absorbed on the surface of the magnetite nano particle. Base oil is synthesized oil. The base oil distributes magnetic particles wherein the magnetic particles are formed by absorbing the surfactant on the surface of the magnetite nano particle.

Description

계면활성제로 비수계고분자습윤분산제를 사용한 자성유체 조성물 및 그 제조방법{Magnetic Fluid Composite Using Non Aqueous High molecular wetting Dispersant as Surfactant and Manufacturing Peocess of That}Magnetic Fluid Composite Using Non Aqueous High molecular wetting Dispersant as Surfactant and Manufacturing Peocess of That}

본 발명은 마그네타이트 나노입자의 표면에 계면활성제로 비수계고분자습윤분산제를 흡착시켜, 분산안정성과 고온겔화특성 그리고 휘산특성을 현저히 개선한 고기능성 자성유체에 관한 것이다. The present invention relates to a high-functional magnetic fluid which adsorbs a non-aqueous polymer wetting and dispersing agent as a surfactant on the surface of magnetite nanoparticles, thereby remarkably improving dispersion stability, high temperature gelation and volatilization characteristics.

자성유체는 입자크기가 5nm∼20nm 범위에 있는 자성입자의 콜로이드 분산액 (이를 "현탁액"이라고도 함.)이다. 이와 같은 자성유체는 유동성과 자화성이 결합된 특수한 성질을 갖는 유체로서, 1960년대 중반에 미항공우주국(NASA)의 파펠이 천연의 마그네타이크 광석을 25일간 볼밀(Ball Mill)로 분쇄한 후 마그네타이트 미립자의 표면을 계면활성제로 피복시키고, 이를 등유에 분산시켜 최초로 제조하였다. 이와 같이 제조된 자성유체는 로켓연료를 자성유체화 하여 무중력 상태에서도 연료공급이 가능하게 하였다.Magnetic fluid is a colloidal dispersion of magnetic particles (also called "suspension") in the particle size range of 5 nm to 20 nm. This magnetic fluid is a fluid with special properties that combine fluidity and magnetism.In the mid-1960s, NASA's Papel crushed natural magnetite ore with a ball mill for 25 days, followed by magnetite. The surface of the microparticles was first coated with a surfactant and dispersed in kerosene. The magnetic fluid manufactured as described above was able to supply fuel even in the absence of gravity by magnetizing rocket fuel.

자성유체는 보통의 원심력이나 자장이 가해지더라도 액상과 고상의 분리가 잘 일어나지 않고, 겉보기로는 액체 자체가 강한 자성을 갖는 것처럼 거동하는 성질을 가진다. 자성유체는 이러한 독특한 특성으로 인하여 비중차 선별, 자기실(Magnetic Seal), 스피커용 쿨링재, 자기 기록재, 폐유처리 등 다양한 분야에 사용된다.Magnetic fluid does not easily separate liquid and solid phases even under normal centrifugal force or magnetic field, and apparently behaves as if the liquid itself has strong magnetic properties. Magnetic fluids are used in various fields such as specific gravity screening, magnetic seal, speaker cooling material, magnetic recording material, and waste oil treatment due to these unique characteristics.

일반적으로 자성유체는 브라운운동을 할 수 있도록 수십 nm의 콜로이드 입자크기를 가지는데, 마그네타이트(Fe3O4), 코발트, 니켈 등의 강자성 금속의 산화물 분말에 올레산(Oleic Acid)이나 리놀렌산 등의 저분자유기산 계면활성제를 흡착 피복시킨 후 이를 등유와 같은 유동성 액체에 균일하고 안정된 상태로 분산시켜 제조한다.In general, magnetic fluids have a colloidal particle size of several tens of nm to enable Brownian motion, and low-molecular weights such as oleic acid and linolenic acid are used in oxide powders of ferromagnetic metals such as magnetite (Fe 3 O 4 ), cobalt, and nickel. It is prepared by adsorption coating of an organic acid surfactant and then dispersing it in a uniform and stable state in a fluid liquid such as kerosene.

자성유체의 제조방법으로는 마그네타이트를 올레산을 포함한 유기산에 투입하여 장기간 분쇄하는 분쇄법, 습식 마그네타이트에 올레산을 흡착시키고 수세 탈수한 후 분산 처리하는 응집법, 그리고 2가 철(Fe++)과 3가 철(Fe+++)의 공존액에 알칼리와 올레산을 투입한 상태에서 가열하여 등유 중에 분산시키는 해교법 등이 있다.Magnetic fluids are prepared by grinding magnetite into organic acids including oleic acid for a long period of time, pulverizing by adsorbing oleic acid on wet magnetite, washing with dehydration, and then dispersing it with divalent iron (Fe ++ ) and trivalent. There is a peptizing method of dispersing it in kerosene by heating in the state in which alkali and oleic acid are added to the co-solution of iron (Fe +++ ).

초기의 자성유체는 분산매로 석유와 같은 무극성 용매가 한정적으로 사용되었다. 그러나 점차 자성유체에 내열성, 내마모성, 적절한 점성 등의 다양한 물성이 요구됨에 따라 극성 분산매에 자성분말을 분산시키는 기술이 개발되었다. 일반적으로 합성유와 같이 분산이 용이하지 않은 경우에는 자성분말에 올레산과 같은 계면활성제를 1차로 흡착시킨 후 다시 2차 분산제를 흡착시키는 방법으로 분산을 유도해야 하는데, 이와 같이 분산제를 이중으로 사용하지 않으면 분산도가 나빠서 자성유체로서의 기능을 충분히 가질 수 없는 문제점이 있다.Early magnetic fluids were limited to nonpolar solvents such as petroleum as dispersion medium. However, as the magnetic fluid required various physical properties such as heat resistance, abrasion resistance, and proper viscosity, a technique for dispersing magnetic powder in a polar dispersion medium was developed. In general, if the dispersion is not easy, such as synthetic oil, it is necessary to first induce the dispersion by adsorbing a surfactant such as oleic acid to the magnetic powder first and then adsorbing the secondary dispersant. There is a problem in that the dispersion degree is bad and cannot sufficiently have a function as a magnetic fluid.

지금까지 자성유체와 관련하여 분산제, 분산방법, 자성분말의 나노 합성법 등에 대해서는 많은 연구개발이 이루어졌으나, 자성분말을 원하는 조건의 분산매에 안정적으로 분산시키는 연구는 아직 미흡한 실정이다.Until now, many researches and developments have been made on dispersing agents, dispersing methods, and nano-synthesis of magnetic powders in relation to magnetic fluids. However, studies to stably disperse magnetic powders in a dispersion medium under desired conditions have been insufficient.

현재까지 자성유체에 사용되는 1차 분산제로는 카르복실 단량체인 저분자유기산을 사용하는 것이 통념으로 되어 있었다. 그러나 이들 카르복실 단량체인 저분자유기산을 1차 분산제로 사용할 경우, 사용할 수 있는 베이스오일(Base Oil)이 한정되는 문제점이 있다. Until now, it has been common practice to use low molecular weight organic acids, which are carboxyl monomers, as primary dispersants used in magnetic fluids. However, when the low molecular weight organic acids, which are these carboxyl monomers, are used as the primary dispersant, there is a problem in that base oils that can be used are limited.

특히 분산매인 베이스오일로 내열성, 내마모성, 적절한 점성 등 요구되는 특성을 가진 합성오일를 사용할 경우 자성 입자의 직접 분산에 어려움이 있어 별도의 제2 분산제를 사용해야하나, 분산매에 따라 복잡한 공정이 요구되고, 고가의 분산제를 사용하여야 하는 등의 문제점이 있다. 그리고 이렇게 특별한 방법을 사용하더라도 여전히 사용할 수 있는 분산매는 제한적이다.
In particular, when using a synthetic oil having the required properties such as heat resistance, abrasion resistance, and suitable viscosity as a dispersion medium, it is difficult to directly disperse the magnetic particles, so a separate second dispersant should be used. There is a problem such as using a dispersant. And even with this particular method, the dispersion medium that can still be used is limited.

상기와 같이 종래의 자성유체는 강자성 나노 입자인 마그네타이트에 흡착시키는 분산제로 카르복실 단량체인 저분자유기산 계면활성제를 사용하는바, 별도의 제2 분산제를 사용해야 하고, 분산매에 따라 복잡한 공정이 요구되고, 고가의 분산제를 사용하여야 하고, 그럼에도 불구하고 사용할 수 있는 베이스오일(Base Oil)이 제한적인 등의 많은 문제점이 있다.As described above, the conventional magnetic fluid uses a low molecular weight organic acid surfactant, which is a carboxyl monomer, as a dispersant adsorbing to magnetite, which is ferromagnetic nanoparticles, and requires a separate second dispersant, and requires a complicated process according to the dispersion medium, and requires expensive Dispersant should be used, nevertheless there are many problems such as limited base oil (base oil) can be used.

따라서 별도의 제2 분산제를 사용하지 않고도 직접 강자성 나노입자를 다양한 특성을 가진 고분자 용매인 합성 오일에 안정적으로 분산시켜, 내열성, 내마모성, 적절한 점성 등의 특성을 가진 자성유체를 제조할 수 있는 방법이 모색되어야 한다.Therefore, a method of stably dispersing ferromagnetic nanoparticles directly in a synthetic oil, which is a polymer solvent having various properties, without using a second dispersant, and thus, a method of preparing a magnetic fluid having characteristics such as heat resistance, abrasion resistance, and proper viscosity is provided. It must be sought.

본 발명은 상기와 같은 기술적 과제를 해결한 것으로서, 화학적으로 합성한 마그네타이트 나노입자에 계면활성제로 비수계고분자습윤분산제를 흡착시켜, 제2 분산매 없이 고기능성 합성오일인 베이스오일에 분산시켜 자성유체를 제조하는 방법을 취하였다.The present invention has solved the above technical problem, by adsorbing a non-aqueous polymer-wetting dispersant as a surfactant to the chemically synthesized magnetite nanoparticles, and dispersed in a base oil, a high functional synthetic oil without a second dispersion medium, a magnetic fluid The method of preparation was taken.

상기와 같이 계면활성제로 비수계고분자습윤분산제를 사용한 본 발명의 자성유체는 저분자유기산 계면활성제를 사용하는 경우와는 달리 마그네타이트 입자가 분산되기 어려운 고기능성 합성오일에 용이하게 분산되어, 종래의 자성유체 비해 고온 겔화특성 및 유체의 휘산특성을 현저하게 개선할 수 있다.As described above, the magnetic fluid of the present invention using a non-aqueous high molecular weight wetting and dispersing agent as a surfactant is easily dispersed in a highly functional synthetic oil in which magnetite particles are difficult to disperse, unlike a case of using a low molecular weight organic acid surfactant. Compared with the high temperature gelation characteristics and the volatilization characteristics of the fluid can be significantly improved.

그리고 본 발명의 경우, 자성유체의 베이스오일로 고기능성 합성오일을 사용할 경우, 사용되는 합성오일의 물성을 그대로 보유한 고기능성 자성유체를 제조할 수 있다.
In the case of the present invention, when a high functional synthetic oil is used as the base oil of the magnetic fluid, a high functional magnetic fluid having the physical properties of the synthetic oil used as it is can be prepared.

본 발명의 자성유체는 다음의 공정을 순차적으로 거쳐 제조된다.The magnetic fluid of the present invention is produced through the following process sequentially.

(1) 2가 철과 3가 철을 암모니아수 중에서 반응시켜 자성입자인 마그네타이트 나노입자를 제조하는, 마그네타이트 제조공정(1) A magnetite production process for producing magnetite nanoparticles as magnetic particles by reacting divalent iron and trivalent iron in ammonia water.

(2) 상기 마그네타이트 제조공정에서 제조한 마그네타이트 나노입자의 표면에 비수계고분자습윤분산제 계면활성제를 흡착시켜, 친수성인 마그네타이트의 표면을 소수성으로 개질하는, 계면활성제 흡착공정(2) A surfactant adsorption step of adsorbing a non-aqueous polymer wet-wetting dispersant surfactant on the surface of the magnetite nanoparticles prepared in the magnetite manufacturing step to hydrophobically modify the surface of the hydrophilic magnetite.

(3) 상기 계면활성제 흡착공정에서 개질된 자성입자를 베이스오일인 합성오일에 분산시키는, 자성입자 분산공정
(3) dispersing the magnetic particles modified in the surfactant adsorption step into a synthetic oil which is a base oil;

상기 마그네타이트 제조공정은 자성입자인 마그네타이트 나노입자를 제조하는 공정인데, 본 발명의 자성유체에 사용되는 자성입자인 마그네타이트(Fe3O4)는 2가 철과 3가 철을 암모니아수 중에서 반응시켜 생성한다. 마그네타이트가 생성되는 알짜 반응식은 다음과 같다.The magnetite manufacturing process is a process for producing the magnetite nanoparticles of magnetic particles, the magnetic particles used in the magnetic fluid of the present invention (Fe 3 O 4 ) is produced by reacting divalent iron and trivalent iron in ammonia water. . The net reaction where magnetite is produced is:

Fe2 + + 2Fe3 + + 8NH4OH → Fe3O4 + 8NH4 + + 4H2OFe 2 + + 2Fe 3 + + 8 NH 4 OH → Fe 3 O 4 + 8 NH 4 + + 4 H 2 O

상기와 같은 화학반응으로 입자 크기 5 내지 20 nm의 강자성 나노입자인 마그네타이트 분말이 생성된다. 이와 같은 화학반응으로 마그네타이트를 제조하면, 아래 전자현미경(TEM) 사진에 나타난 바와 같이 균일한 입자 크기를 가지는 분말상태의 강자성 마그네타이트 나노입자가 생성된다.The above chemical reaction produces a magnetite powder which is a ferromagnetic nanoparticle having a particle size of 5 to 20 nm. When the magnetite is prepared by such a chemical reaction, ferromagnetic magnetite nanoparticles in a powder form having a uniform particle size are generated as shown in the electron microscope (TEM) photograph below.

Figure 112010076507910-pat00001
Figure 112010076507910-pat00001

<사진> 마그네타이트 분말 전자현미경 사진Magnetite Powder Electron Microscope

2가 철과 3가 철은 FeCl2 FeCl3 등과 같은 2가 철과 3가 철 화합물을 사용하고, 이들을 이온교환수에 용해시킨 후 암모니아수를 일시에 투입하는 공침합성방법으로 마그네타이트 나노입자를 생성할 수 있다. 사용되는 암모니아수는 PH 9 이상이 되는 것이 좋고, 단시간에 합성이 일어날 수 있도록 충분한 속도로 교반하는 것이 좋다.
Divalent iron and trivalent iron are FeCl 2 FeCl 3 Magnetite nanoparticles can be produced by a co-infiltration method in which divalent iron and trivalent iron compounds such as and the like are dissolved in ion-exchanged water and then ammonia water is added at a time. The ammonia water to be used should be at least pH 9 and stirred at a sufficient speed so that synthesis can occur in a short time.

상기 화학반응이 일어난 마그네타이트 현탁액은 마그네타이트 나노입자가 충분히 침전될 수 있도록 자석 위에 장시간 동안 올려둔 후 상등액을 제거하고, 상등액이 제거된 마그네타이트 침전물은 이온교환수로 2 내지 3회 수세하여, 합성 잔류물인 염을 충분히 제거한다.The magnetite suspension in which the chemical reaction has occurred is placed on a magnet for a long time so that the magnetite nanoparticles can be sufficiently precipitated, the supernatant is removed, and the magnetite precipitate from which the supernatant is removed is washed two to three times with ion-exchanged water, which is a synthetic residue. Remove the salt sufficiently.

상기와 같은 방법 이외에도 마그네타이트 나노입자 분말을 제조하는 방법이 다수 알려져 있는데, 본 발명의 자성유체는 모든 방법으로 제조한 입자크기 수십 나노미터의 마그네타이트 나노입자 분말을 사용할 수 있다.In addition to the above method, a number of known methods for producing the magnetite nanoparticle powder are known, and the magnetic fluid of the present invention may use the magnetite nanoparticle powder having a particle size of several tens of nanometers prepared by all methods.

상기 계면활성제 흡착공정은 마그네타이트 제조공정에서 제조된 마그네타이트 나노입자의 표면에 비수계고분자습윤분산제 계면활성제를 흡착시켜, 친수성인 마그네타이트의 표면을 소수성으로 개질하는 공정이다.The surfactant adsorption step is a step of adsorbing a non-aqueous polymer wetting and dispersing agent surfactant on the surface of the magnetite nanoparticles prepared in the magnetite production process to modify the surface of the hydrophilic magnetite hydrophobicly.

마그네타이트 나노입자의 표면에 흡착시키는 비수계고분자습윤분산제로는 비교적 분자량이 큰 고분자 음이온성 화합물, 고분자 양이온성 화합물, 전기적 중성 화합물인 지방족 카르본산 및 그 염류, 고급 알콜, 황산에스테르류, 알킬슬폰산 염류, 알킬인산 에스테르류, 폴리에스테르 에스테르카르본산염, 고분자 폴리에스테르 카르본산의 폴리아민염, 폴리카르복실산아민염, 지방족 아민염류, 제4급 암모늄염, 긴 사슬 구조의 폴리아미노아마이드 및 그 인산염, 긴 사슬 구조의 폴리아미노아마이드와 고분자 폴리에스테르산의 중성염 등이 있다.Non-aqueous polymer wetting and dispersing agents adsorbed on the surface of magnetite nanoparticles include macromolecular anionic compounds, macromolecular cationic compounds, aliphatic carboxylic acids and salts thereof, higher neutral alcohols, sulfate esters, and alkylsulfonic acids. Salts, alkylphosphate esters, polyester ester carbonates, polyamine salts of polymeric polyester carboxylic acids, polycarboxylic acid amine salts, aliphatic amine salts, quaternary ammonium salts, polyaminoamides of long chain structure and phosphates thereof, Long-chain polyaminoamides and neutral salts of polymeric polyester acids.

본 발명에서는 비수계고분자습윤분산제로 음이온계 분산제인 폴리카르복실산아민염(상품명 산노프코 NOPCOPLUS DS-106으로 시판되고 있다.)을 사용하였다.In the present invention, a polycarboxylic acid amine salt (commercially available under the trade name Sanofco NOPCOPLUS DS-106) was used as the non-aqueous polymer wet dispersion agent.

마그네타이트 나노입자는 입자의 크기가 아주 작기 때문에 입자의 표면적이 크고, 따라서 입자 표면의 자유에너지가 크기 때문에 입자가 아주 불안정하여 입자들끼리 재응집이 일어나기 쉽다. 본 발명에서는 이와 같은 재응집을 방지하기 위하여 계면활성제로 비수계고분자습윤분산제를 사용하여 입자 표면을 개질시켰다. 이와 같이 마그네타이트 나노입자의 표면 개질로 자성입자의 분산효과가 높아지고, 분산 효과가 오래 유지되어 안정적이다.Since the magnetite nanoparticles have a very small particle size, the surface area of the particles is large, and thus the free energy of the particle surface is large, so that the particles are very unstable and the particles easily reaggregate. In the present invention, in order to prevent such reagglomeration, the surface of the particles was modified by using a non-aqueous polymer wet dispersion agent as a surfactant. As such, the surface modification of the magnetite nanoparticles increases the dispersion effect of the magnetic particles, and the dispersion effect is maintained for a long time and stable.

계면활성제로 비수계고분자습윤분산제를 사용할 경우, 분산제의 분자량이 커서, 흡착 후 분산매인 합성오일과의 결착력이 뛰어나 분산 안정성이나 열안정성 특성이 우수하기는 하다. 그러나 비수계고분자습윤분산제를 강자성 나노입자인 마그네타이트 표면에 흡착시키는 공정은 분산제의 분자량이 크기 때문에 분자의 확산 속도가 늦고, 분산제의 친수성 말단 작용기인 카르복실기(-COOH) 부분이 마그네타이트 표면과 접촉할 접촉 확률이 낮기 때문에 충분한 흡착을 위하여 지속적인 에너지가 장시간 공급되어야 하며, 또한 반응 용매의 적절한 선택이 중요하다.In the case of using a non-aqueous polymer wet-wetting dispersant as a surfactant, the molecular weight of the dispersant is large, and it is excellent in the binding strength with the synthetic oil which is a dispersion medium after adsorption, and thus has excellent dispersion stability and thermal stability characteristics. However, the process of adsorbing the non-aqueous polymer wetting and dispersing agent on the magnetite surface of the ferromagnetic nanoparticle has a high molecular weight of the dispersing agent, so that the diffusion rate of the molecules is slow and the carboxyl group (-COOH), the hydrophilic terminal functional group of the dispersing agent, is in contact with the magnetite surface. Since the probability is low, continuous energy must be supplied for a long time for sufficient adsorption, and proper selection of the reaction solvent is also important.

상기와 같은 문제점은 볼밀(Ball Mill)을 사용한 흡착공정으로 해결되는데, 이 흡착공정은 볼밀의 내부에 흡착용매로 노르말헥산(N-Hexane) 또는 노르말헥산과 메틸에틸케톤(MEK) 또는 메틸이소부틸케톤(MIBK)의 혼합 용매를 비수계고분자습윤분산제와 함께 투입하여 장시간 동안 볼밀을 가동하여 흡착하는 방법으로 하는 것이 좋다.The above problem is solved by an adsorption process using a ball mill. This adsorption process is normal hexane (N-Hexane) or normal hexane and methyl ethyl ketone (MEK) or methyl isobutyl as an adsorption solvent in the ball mill. A mixed solvent of ketone (MIBK) is added together with the non-aqueous polymer wetting dispersant to operate the ball mill for a long time to adsorb.

상기와 같이 볼밀을 이용하여 비수계고분자습윤분산제를 마그네타이트 나노입자의 표면에 흡착시키고 난 후, 자성입자를 다시 수세하고 건조기에서 건조하여, 비수계고분자습윤분산제 계면활성제가 흡착된 마그네타이트 분말을 제조한다. 이와 같이 비수계고분자습윤분산제 계면활성제가 흡착된 강자성 나노입자인 마그네타이트는 합성오일에 용이하게 분산된다.
After adsorbing the non-aqueous polymer wet-dispersant to the surface of the magnetite nanoparticles using a ball mill as described above, the magnetic particles are washed again with water and dried in a dryer to prepare a magnetite powder adsorbed with the non-aqueous polymer-wetting dispersant surfactant. . In this way, the magnetite, which is a ferromagnetic nanoparticle to which the non-aqueous polymer wet dispersion agent surfactant is adsorbed, is easily dispersed in synthetic oil.

상기 자성입자 분산공정은 상기 계면활성제 흡착공정에서 개질된 자성입자를 베이스오일인 합성오일에 분산시켜 자성유체를 완성하는 공정이다.The magnetic particle dispersion process is a process of dispersing the magnetic particles modified in the surfactant adsorption process in a synthetic oil that is a base oil to complete the magnetic fluid.

구체적인 분산 방법은 계면활성제가 흡착된 자성입자 분말을 충분한 양의 노르말헥산에 재분산시킨 후, 이를 합성오일과 혼합하여 가열하면서 노르말헥산을 증발시켜 제거하는 직접분산방법을 적용한다. 이와 같은 직접분산방법으로 자성유체를 제조하면, 베이스오일의 선택에 따라 고온특성 및 분산특성 그리고 휘산특성이 이 우수한 자성유체를 제조할 수 있다.The specific dispersion method is a direct dispersion method in which a magnetic particle powder having a surfactant adsorbed is redispersed in a sufficient amount of normal hexane, and then mixed with a synthetic oil and heated to evaporate and remove normal hexane. When the magnetic fluid is manufactured by such a direct dispersion method, the magnetic fluid having excellent high temperature characteristics, dispersion characteristics, and volatilization characteristics can be prepared according to the selection of the base oil.

본 발명의 효과를 확인하기 위하여, 다음과 같이 2종의 본 발명의 실시예인 자성유체와 2종의 종래의 자성유체를 제조하여 비교시험을 하였다.
In order to confirm the effects of the present invention, two kinds of magnetic fluids and two kinds of conventional magnetic fluids were prepared and compared by the following examples.

실시예 1Example 1

강자성 나노입자인 마그네타이트 생성과정에서 2가 철은 FeCl2로, 3가 철은 FeCl3를 사용하되, FeCl2 127g, FeCl3 324g을 이온교환수 720㎖에 용해시킨 후 암모니아수 280㎖를 일시에 투입하는 공침합성방법으로 강자성 마그네타이트 나노입자를 생성하였다. In the process of producing magnetite, ferromagnetic nanoparticles, divalent iron is used as FeCl 2 , and trivalent iron is used as FeCl 3 , but FeCl 2 127 g, FeCl 3 Ferromagnetic magnetite nanoparticles were produced by the co-precipitation method in which 324 g was dissolved in 720 ml of ion-exchanged water and 280 ml of ammonia was added at once.

상기 화학반응이 일어난 마그네타이트 현탁액은 마그네타이트 나노입자가 충분히 침전될 수 있도록 자석 위에 장시간 동안 올려둔 후 상등액을 제거하고, 상등액이 제거된 마그네타이트 침전물은 이온교환수로 2 내지 3회 수세하여, 합성 잔류물인 염을 제거하였다.The magnetite suspension in which the chemical reaction has occurred is placed on a magnet for a long time so that the magnetite nanoparticles can be sufficiently precipitated, the supernatant is removed, and the magnetite precipitate from which the supernatant is removed is washed two to three times with ion-exchanged water, which is a synthetic residue. The salt was removed.

수세가 끝난 마그네타이트 나노입자는 볼(Ball)이 부피비로 40~60 % 들어 있는 내부체적 1ℓ의 볼밀에 투입하고, 미리 준비한 노르말헥산(N-Hexane) 95와 메틸에틸케톤(MEK) 5의 중량비로 혼합된 흡착용매를 볼밀 내부 체적의 80%가 될 때까지 가하였다. 그리고 볼밀에 비수계고분자습윤분산제인 산노프코 NOPCOPLUS DS-106의 폴리카르복실산아민염 음이온계 분산제를 23g을 가하였다.The washed magnetite nanoparticles were put in a ball mill with a volume of 1 L containing 40 to 60% of ball by volume, and prepared by weight ratio of N-Hexane 95 and methyl ethyl ketone 5 prepared in advance. The mixed adsorption solvent was added until it reached 80% of the ball mill internal volume. Then, 23 g of a polycarboxylic acid amine salt anionic dispersant of Sanofco NOPCOPLUS DS-106, which is a non-aqueous high molecular weight wet dispersion, was added to the ball mill.

상기와 같은 재료들이 투입된 볼밀을 500 내지 600 rpm 으로 48시간 동안 회전시키면서 흡착 공정을 진행하였다. 이와 같은 흡착 공정이 종료된 마그네타이트 나노입자는 다시 수세하고 건조기에서 건조하여, 비수계고분자습윤분산제 계면활성제가 흡착된 마그네타이트 분말을 얻었다.The adsorption process was performed while rotating the ball mill into which the above materials were injected at 500 to 600 rpm for 48 hours. The magnetite nanoparticles in which such an adsorption step was completed were washed with water again and dried in a dryer to obtain a magnetite powder in which a non-aqueous polymer wet-wetting dispersant surfactant was adsorbed.

상기와 같이 계면활성제로 비수계고분자습윤분산제가 흡착된 마그네타이트 분말 80g을 충분한 량의 노르말헥산에 재분산 시킨 후, 2ℓ용량의 비이커에 고온특성이 좋은 합성오일로 한국하우톤사 Anderol 4220 합성오일(1) 510g을 가하여, 120℃로 가열하면서 노르말헥산을 증발시켜 제거하는 방법으로 직접분산을 행하여 고온 특성 및 분산 특성이 우수한 자성유체를 제조하였다. 이와 같이 제조된 자성유체는 포화자화도가 100G(가우스), 점도 800cP(센티 포아즈)의 물성을 가진다.
As described above, 80 g of the magnetite powder adsorbed with the non-aqueous polymer wet-dispersant as a surfactant is redispersed in a sufficient amount of normal hexane, and a synthetic oil having good high temperature characteristics in a 2 L beaker is synthesized with Anderol 4220 synthetic oil (1). ), 510 g was added, and direct dispersion was carried out by evaporating and removing normal hexane while heating to 120 ° C. to prepare a magnetic fluid having excellent high temperature and dispersion characteristics. The magnetic fluid prepared as described above has a saturation magnetization of 100 G (Gauss) and a viscosity of 800 cP (Cent Poise).

실시예 2Example 2

실시예 2는 합성오일로 한국하우톤 Anderol 4320 합성오일(2)를 사용한 것을 제외하고는 실시예 1과 동일하다. 이와 같이 제조된 자성유체는 포화자화도가 100G, 점도 1000cP±10%의 물성을 가진다.
Example 2 is the same as that of Example 1 except that the Korean Hawthorn Anderol 4320 synthetic oil (2) was used as the synthetic oil. The magnetic fluid prepared as described above has a saturation magnetization of 100 G and a viscosity of 1000 cP ± 10%.

비교예 1Comparative Example 1

비교예 1에서는 상기 실시예 1과 같이 제조된 마그네타이트를 드라이오븐(Dry Oven)에서 저온으로 24시간 이상 건조시킨 후, 2ℓ 비이커에서 건조된 마그네타이트 80g과 통상의 자성유체에 계면활성제로 사용되는 올레인산 0.8g, 노르말헥산 800㎖을 투입하여 100℃로 4시간 이상 교반하면서 가열하여, 올레인산이 마그네타이트 표면에 흡착된 자성입자를 제조하였다.In Comparative Example 1, the magnetite prepared as in Example 1 was dried at a low temperature in a dry oven for at least 24 hours, and then 80 g of the magnetite dried in a 2 l beaker and 0.8 g of oleic acid used as a surfactant in a conventional magnetic fluid. g and 800 ml of normal hexane were added thereto, followed by heating with stirring at 100 ° C. for at least 4 hours to prepare magnetic particles in which oleic acid was adsorbed on the magnetite surface.

상기와 같이 올레인산이 흡착된 자성입자를 고온특성이 좋은 한국하우톤 Anderol 4320 합성오일(2) 510g이 담긴 2ℓ 비이커에 투입하고 120℃로 가열하면서 노르말헥산을 증발시켜 제거하는 방법으로 직접분산을 행하여 자성유체를 제조하였다. 이와 같이 제조된 자성유체는 포화자화도가 100G, 점도 1000cP±10%의 특성을 가진다.
As described above, the magnetic particles adsorbed with oleic acid were added to a 2 L beaker containing 510 g of Korea Hawthorne Anderol 4320 synthetic oil (2) having good high temperature characteristics, and then directly dispersed by heating by heating to 120 ° C. to remove normal hexane. Magnetic fluid was prepared. The magnetic fluid prepared as described above has a saturation magnetization of 100 G and a viscosity of 1000 cP ± 10%.

비교예 2Comparative Example 2

비교예 2에서는 상기 실시예 1과 같이 제조된 마그네타이트를 드라이오븐에서 저온으로 24시간 이상 건조시킨후, 2ℓ 비이커에서 건조된 마그네타이트 80g과 올레인산 0.8g, 노르말헥산 800㎖을 투입히여 100℃로 4시간 이상 교반하면서 가열하여, 올레인산이 마그네타이트 표면에 흡착된 자성입자를 제조하였다.In Comparative Example 2, the magnetite prepared as in Example 1 was dried at a low temperature in a dry oven for at least 24 hours, and 80 g of magnetite dried in a 2 l beaker, 0.8 g of oleic acid, and 800 ml of normal hexane were added thereto for 4 hours at 100 ° C. The mixture was heated while stirring to prepare magnetic particles in which oleic acid was adsorbed on the magnetite surface.

상기와 같이 올레인산이 흡착된 자성입자를 일반 광유계 오일 극동유화 KD P320 510g이 준비된 2ℓ 비이커에 투입하여 120℃로 가열하면서 노르말헨산을 증발시켜 제거하는 방법으로 직접분산을 행하여 자성유체를 제조하였다. 이와 같이 제조된 자성유체는 포화자화도가 100G, 점도 1000cP±10%의 특성을 가진다.Magnetic particles were prepared by directly dispersing oleic acid-adsorbed magnetic particles into a 2 L beaker prepared with 510 g of general mineral oil-based oil KD P320, prepared by heating and heating at 120 ° C., to evaporate and remove normal normal acid. The magnetic fluid prepared as described above has a saturation magnetization of 100 G and a viscosity of 1000 cP ± 10%.

상기 실시예 2과 비교예 1, 2에 사용된 오일은 모두 동점도가 40℃에서 320cSt이다.
The oils used in Example 2 and Comparative Examples 1 and 2 are all 320 kSt kinematic viscosity at 40 ℃.

상기와 같이 제조된 본 발명의 자성유체 실시예 2종과 종래의 방법으로 제조된 자성유체 2종에 대하여 고온특성인 170℃ 72시간 감량특성과 겔화특성 그리고 원심분리시험를 통하여 분산안정성 특성을 비교하였다. 고온시험은 드라이오븐을 이용하였으며, 원심분리 시험은 원심분리기를 3000rpm으로 30분간 회전시켜 시료의 점도와 포화자화도를 확인하는 방법으로 실시하였다. The dispersion stability characteristics of the two magnetic fluid examples of the present invention prepared as described above and two magnetic fluids prepared by the conventional method were measured at 170 ° C. for 72 hours, a gelling property, and a centrifugal test. . The high temperature test was performed using a dry oven, and the centrifugation test was performed by rotating the centrifuge at 3000 rpm for 30 minutes to check the viscosity and saturation magnetization of the sample.

원심분리시험에서는 시험 후 자성유체의 상층액과 하층액의 점도를 비교하는 방식으로 행하였는데, 시료가 투입된 시료관을 장착하고 원심분리기를 회전시키면, 분산안정성이 낮을 경우 무거운 자성입자가 시료관의 하부에 집중되어 상층액은 점도와 포화자화도가 낮아지고, 하층액은 점도와 포화자화도가 높아진다. 그리고 분산안정성이 높을 경우 자성입자가 원심분리시험 후에도 시료관 전체에 고르게 분산되어 상층액과 하층액의 점도와 포화자화도 차이가 크게 나지 않는다.In the centrifugation test, after the test, the viscosity of the supernatant and the lower layer of the magnetic fluid was compared. When the sample tube into which the sample was added and the centrifuge were rotated, the heavy magnetic particles were separated from the sample tube when the dispersion stability was low. Concentrated at the bottom, the supernatant has a lower viscosity and saturation magnetization, and the lower layer has a higher viscosity and saturation magnetization. In addition, if the dispersion stability is high, the magnetic particles are uniformly dispersed throughout the sample tube even after the centrifugal separation test, so that the viscosity and saturation magnetization of the supernatant and the lower layer do not differ significantly.

즉 원심분리 시험 후 상층액과 하층액의 점도와 포화자화도의 차이가 작을 수록 분산특성이 좋은 것으로 판단할 수 있다. 시험결과는 다음 표와 같다.
That is, the smaller the difference between the viscosity and the saturation magnetization of the supernatant and the lower layer after the centrifugation test, the better the dispersion characteristics. The test results are shown in the following table.

자성유체에 대한 비교실험 결과    Comparative Experiment Results for Magnetic Fluids 자성유체Magnetic fluid 실시예Example 1 One 실시예Example 2 2 비교예Comparative example 1 One 비교예Comparative example 2 2 계면활성제Surfactants 비수계고분자 습윤분산제 Non-Aqueous Polymer Wetting Dispersant 비수계고분자
습윤 분산제
Non-aqueous polymer
Wet Dispersant
올레인산Oleic acid 올레인산Oleic acid
베이스오일Base oil 합성오일(1)Synthetic Oil (1) 합성오일(2)Synthetic Oil (2) 합성오일(2)Synthetic Oil (2) 광유계 오일Mineral oil 포화자화도 [G]Saturation Magnetization [G] 102 102 9898 9797 9999 27℃점도 [cP]27 ° C viscosity [cP] 798798 995995 992992 10021002 170℃겔화시험170 ℃ gelation test 96시간 이상More than 96 hours 96시간 이상More than 96 hours 36시간 36 hours 48시간48 hours 170℃72시간 감량[%]170 ℃ 72 hours weight loss [%] 3.83.8 4.24.2 13.513.5 15.215.2 원심분리시험
점도[cP]
Centrifuge Test
Viscosity [cP]
시험전Before the test 798798 995995 992992 10021002
상층액(A)Supernatant (A) 795795 995995 906906 994994 하층액(B)Lower layer liquid (B) 798798 995995 10211021 10051005 차이(B-A)Difference (B-A) 33 00 115115 1111 원심분리시험
포화자화도[G]
Centrifuge Test
Saturation Magnetization [G]
시험전Before the test 102102 9898 9797 9999
상층액(A)Supernatant (A) 102102 9898 8484 9696 하층dor(B)Lower dor (B) 102102 9898 109109 102102 차이(B-A)Difference (B-A) 00 00 2525 66

상기 비교 시험결과 표에서, 비교예 1과 2를 보면, 종래의 저분자유기산 계면활성제를 흡착시킨 자성유체는 베이스오일로 광유계 오일을 사용하는 경우에는 자성입자인 마그네타이트 나노입자의 분산이 비교적 잘 일어나 원심분리 시험 후 상층액과 하층액의 점도와 포화자화도의 차이가 크지 않지만, 베이스오일로 합성오일을 사용했을 때는 자성입자의 분산이 불충분하여 원심분리 시험 후 상층액과 하층액의 점도와 포화자화도의 차이가 크게 남을 알 수 있다.In the comparative test results table, Comparative Examples 1 and 2 show that the magnetic fluid adsorbed with the conventional low molecular weight organic acid surfactant is relatively well dispersed in the magnetite nanoparticles as magnetic particles when the mineral oil is used as the base oil. The difference between the viscosity and saturation magnetization of the supernatant and the lower layer after the centrifugation test is not large.However, when the synthetic oil is used as the base oil, the dispersion of the magnetic particles is insufficient. It can be seen that the difference in the degree of magnetization remains large.

반면 실시예 1과 2를 보면, 비수계고분자습윤분산제 계면활성제를 흡착시킨 자성유체는 베이스오일로 다양한 합성오일을 사용하더라도 자성입자인 마그네타이트 나노입자의 분산이 비교적 잘 일어나 원심분리 시험 후 상층액과 하층액의 점도와 포화자화도의 차이가 크지 않음을 알 수 있다.On the other hand, in Examples 1 and 2, the magnetic fluid adsorbed the non-aqueous polymer wetting and dispersing surfactant is relatively good in the dispersion of magnetite nanoparticles, which are magnetic particles, even though various synthetic oils are used as base oils. It can be seen that the difference between the viscosity of the lower layer liquid and the degree of saturation magnetization is not large.

그리고 본 발명의 비수계고분자습윤분산제 계면활성제를 흡착시킨 자성유체는 저분자유기산 계면활성제를 흡착시킨 통상의 자성유체에 비하여 고온특성이 현저하게 개선되어, 통상의 자성유체에 비하여 170℃에서 겔화 시간이 2배 이상인 96시간 이상으로 나타나고, 170℃에서 72시간 동안 휘산에 의한 감량은 5% 미만로 아주 낮음을 알 수 있다.In addition, the magnetic fluid adsorbed with the non-aqueous high molecular weight wetting and dispersing surfactant of the present invention is significantly improved in high temperature characteristics as compared with the conventional magnetic fluid adsorbing the low molecular weight organic acid surfactant, and the gelation time at 170 ° C. is higher than that of the conventional magnetic fluid. It appears that more than 96 times, more than twice, and the loss by volatilization for 72 hours at 170 ℃ is very low, less than 5%.

본 발명의 자성유체는 자성유체의 일반적인 특성은 물론, 고온 겔화 특성이 우수하고 고온에서 휘발성 감량도 적을 뿐만 아니라 충분한 분산 안정성을 확보하고 있으므로, 통상의 자성유체 이용분야뿐만 아니라 고온 특성을 요구하는 스피커 보이스코일용 자성유체, 저 휘발 특성을 요구하는 진공 실링용 자성유체, 먼지(Dust) 실링용 자성유체, 그리고 각종 전장품의 진동감쇠 특성과 방열 특성을 요구하는 부품에 적용될 수 있다.The magnetic fluid of the present invention not only has the general characteristics of the magnetic fluid, but also has excellent high temperature gelling properties, low volatility at high temperatures, and secures sufficient dispersion stability. Magnetic fluids for voice coils, magnetic fluids for vacuum sealing requiring low volatilization characteristics, magnetic fluids for dust sealing, and parts requiring vibration damping and heat dissipation characteristics of various electrical appliances.

Claims (6)

마그네타이트 나노입자;
상기 마그네타이트 나노입자의 표면에 흡착되는 것으로서, 비수계고분자습윤분산제인 계면활성제;
그리고, 상기 비수계고분자습윤분산제인 계면활성제가 마그네타이트 나노입자 표면에 흡착되어 형성되는 자성입자를 분산시키는 합성오일인 베이스오일;
로 구성되는, 자성유체 조성물.
Magnetite nanoparticles;
Surfactant that is adsorbed on the surface of the magnetite nanoparticles, a non-aqueous polymer wetting and dispersing agent;
And, the base oil which is a synthetic oil to disperse the magnetic particles formed by the surface active agent is adsorbed on the surface of the magnetite nanoparticles of the surfactant non-aqueous polymer wet dispersion;
Magnetic fluid composition, consisting of.
제1항의 자성유체 조성물을 제조하는 방법에 있어서,
(1) 자성입자인 마그네타이트 나노입자를 제조하는, 마그네타이트 제조공정;
(2) 상기 마그네타이트 제조공정에서 제조한 마그네타이트 나노입자의 표면에 비수계고분자습윤분산제 계면활성제를 흡착시켜, 친수성인 마그네타이트의 표면을 소수성으로 개질하는, 계면활성제 흡착공정; 그리고
(3) 상기 계면활성제 흡착공정에서 개질된 자성입자를 베이스오일인 합성오일에 분산시키는, 자성입자 분산공정;
을 순차적으로 수행하여 자성유체 조성물을 제조하는, 자성유체 조성물 제조방법.
In the method of manufacturing the magnetic fluid composition of claim 1,
(1) a magnetite production process for producing magnetite nanoparticles as magnetic particles;
(2) a surfactant adsorption step of adsorbing a non-aqueous polymer wetting and dispersing surfactant on the surface of the magnetite nanoparticles prepared in the magnetite manufacturing step to hydrophobically modify the surface of the hydrophilic magnetite; And
(3) dispersing the magnetic particles modified in the surfactant adsorption step in a synthetic oil which is a base oil;
To perform a magnetic fluid composition by performing sequentially, a magnetic fluid composition manufacturing method.
제2항에 있어서,
상기 마그네타이트 제조공정에 사용되는 마그네타이트 나노입자는, 2가 철과 3가 철을 암모니아수 중에서 반응시켜 제조하는 것을 특징으로 하는, 자성유체 조성물 제조방법.
The method of claim 2,
The magnetite nanoparticles used in the magnetite production process are produced by reacting divalent iron and trivalent iron in ammonia water.
제2항에 있어서,
상기 계면활성제 흡착공정에 사용되는 비수계고분자습윤분산제 계면활성제는, 고분자 음이온성 화합물, 고분자 양이온성 화합물, 전기적 중성 화합물인 지방족 카르본산 및 그 염류, 고급 알콜, 황산에스테르류, 알킬슬폰산 염류, 알킬인산 에스테르류, 폴리에스테르 에스테르카르본산염, 고분자 폴리에스테르 카르본산의 폴리아민염, 폴리카르복실산아민염, 지방족 아민염류, 제4급 암모늄염, 사슬 구조의 폴리아미노아마이드 및 그 인산염, 사슬 구조의 폴리아미노아마이드, 그리고 고분자 폴리에스테르산의 중성염 중의 어느 하나 또는 2 이상을 혼합한 것을 특징으로 하는, 자성유체 조성물 제조방법.
The method of claim 2,
The non-aqueous polymer wet-wetting dispersant surfactant used in the surfactant adsorption process is a polymer anionic compound, a polymer cationic compound, an aliphatic carboxylic acid and salts thereof, a higher alcohol, a sulfate ester, an alkylsulfonic acid salt, Alkyl phosphoric acid esters, polyester ester carboxylic acid salts, polyamine salts of polymer polyester carboxylic acid, polycarboxylic acid amine salts, aliphatic amine salts, quaternary ammonium salts, polyaminoamides and phosphates thereof in chain structure, of chain structure A method for producing a magnetic fluid composition, characterized in that any one or two or more of polyaminoamide and a neutral salt of polymeric polyester acid are mixed.
제2항에 있어서,
상기 계면활성제 흡착공정은, 볼밀의 내부에 자성입자인 마그네타이트 나노입자, 흡착물질인 비수계고분자습윤분산제, 그리고 노르말헥산을 함유한 흡착용매를 함께 투입하고, 볼밀을 가동하여 비수계고분자습윤분산제를 마그네타이트 나노입자의 표면에 흡착시키고, 표면에 비수계고분자습윤분산제가 흡착된 자성입자를 수세하고, 그리고 수세한 자성입자를 건조기에서 건조하는 공정으로 이루어지는 것을 특징으로 하는, 자성유체 조성물 제조방법.
The method of claim 2,
In the surfactant adsorption process, magnetite nanoparticles, which are magnetic particles, non-aqueous polymer wetting dispersion agent, and normal hexane-containing adsorption solvent are added together inside the ball mill, and the ball mill is operated to provide a non-aqueous polymer wetting dispersion agent. A method of producing a magnetic fluid composition, comprising adsorbing magnetic particles onto a surface of magnetite nanoparticles, washing the magnetic particles adsorbed on the surface with a non-aqueous polymer wetting and dispersing agent, and drying the washed magnetic particles in a dryer.
제5항에 있어서, 흡착용매는 노르말헥산, 노르말헥산과 메틸에틸케톤의 혼합용매, 그리고 노르말헥산과 메틸이소부틸케톤의 혼합용매 중의 어느 하나인 것을 특장으로 하는, 자성유체 조성물 제조방법.The method for producing a magnetic fluid composition according to claim 5, wherein the adsorption solvent is any one of a normal solvent, a mixed solvent of normal hexane and methyl ethyl ketone, and a mixed solvent of normal hexane and methyl isobutyl ketone.
KR1020100116938A 2010-11-23 2010-11-23 Magnetic fluid composite using non aqueous high molecular wetting dispersant as surfactant and manufacturing peocess of that KR101034222B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100116938A KR101034222B1 (en) 2010-11-23 2010-11-23 Magnetic fluid composite using non aqueous high molecular wetting dispersant as surfactant and manufacturing peocess of that

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100116938A KR101034222B1 (en) 2010-11-23 2010-11-23 Magnetic fluid composite using non aqueous high molecular wetting dispersant as surfactant and manufacturing peocess of that

Publications (1)

Publication Number Publication Date
KR101034222B1 true KR101034222B1 (en) 2011-05-12

Family

ID=44365933

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100116938A KR101034222B1 (en) 2010-11-23 2010-11-23 Magnetic fluid composite using non aqueous high molecular wetting dispersant as surfactant and manufacturing peocess of that

Country Status (1)

Country Link
KR (1) KR101034222B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06256788A (en) * 1993-03-05 1994-09-13 Nok Corp Magnetic fluid
KR100203025B1 (en) 1996-06-08 1999-06-15 문창호 Preparing method of magnetic fluid
JPH11214211A (en) 1998-01-23 1999-08-06 Nok Corp Magnetic fluid
KR20070093224A (en) * 2006-03-13 2007-09-18 인터테크 주식회사 A method of making ferro fluid highly dispersed in mineral oil of low volatility

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06256788A (en) * 1993-03-05 1994-09-13 Nok Corp Magnetic fluid
KR100203025B1 (en) 1996-06-08 1999-06-15 문창호 Preparing method of magnetic fluid
JPH11214211A (en) 1998-01-23 1999-08-06 Nok Corp Magnetic fluid
KR20070093224A (en) * 2006-03-13 2007-09-18 인터테크 주식회사 A method of making ferro fluid highly dispersed in mineral oil of low volatility

Similar Documents

Publication Publication Date Title
He et al. Morphology‐and phase‐controlled iron oxide nanoparticles stabilized with maleic anhydride grafted polypropylene
Joseph et al. Ferrofluids: synthetic strategies, stabilization, physicochemical features, characterization, and applications
Wilson et al. Synthesis and magnetic properties of polymer nanocomposites with embedded iron nanoparticles
US8557329B2 (en) Method for silica encapsulation of magnetic particles
Bateer et al. Synthesis, size and magnetic properties of controllable MnFe 2 O 4 nanoparticles with versatile surface functionalities
Lü et al. Facile preparation of graphene–Fe 3 O 4 nanocomposites for extraction of dye from aqueous solution
JP6851393B2 (en) Resin composition, method for producing a resin composition, resin composition molded product, and method for producing a resin composition molded product.
Zou et al. Shape‐Memory Polyurethane Nanocomposites with Single Layer or Bilayer Oleic Acid‐Coated Fe3O4 Nanoparticles
Ali et al. Monodispers and multifunctional magnetic composite core shell microspheres for demulsification applications
Shukla et al. Surfactant effects on the shapes of cobalt nanoparticles
Huang et al. Study on the properties and stability of ionic liquid-based ferrofluids
CN113385143B (en) Magnetic nano carbon dot/ferroferric oxide composite material and preparation method and application thereof
Gharibshahi et al. Experimental investigation of nanofluid injection assisted microwave radiation for enhanced heavy oil recovery in a micromodel system
Bateer et al. Preparation and magnetic performance of the magnetic fluid stabilized by bi-surfactant
Dallas et al. Self-suspended permanent magnetic FePt ferrofluids
Kim et al. Viscosity of magnetorheological fluids using iron–silicon nanoparticles
Islam et al. Silica encapsulation of sonochemically synthesized iron oxide nanoparticles
Bateer et al. Facile synthesis of stable magnetic fluid using size-controlled Fe3O4 nanoparticles
KR101034222B1 (en) Magnetic fluid composite using non aqueous high molecular wetting dispersant as surfactant and manufacturing peocess of that
JPH0413842B2 (en)
JPH0642414B2 (en) Conductive magnetic fluid composition and method for producing the same
Dong et al. Synthesis of reduced graphene oxide/cobalt ferrite composite particles and their magnetorheological characteristics
Ganachari et al. The investigation of mixed ferrofluids containing iron oxide nanoparticles and microspheres
WO2017065600A1 (en) Stable iron oxide magnetic nanoparticle (nanomag) slurry and a method of producing the same
KR100764856B1 (en) A Method of Making Ferro Fluid Highly Dispersed in Mineral Oil of Low Volatility

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140430

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150428

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160420

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170428

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180502

Year of fee payment: 8