KR101032890B1 - Manufacturing Method of Buffer-layer for CIS-based Thin film Solar Cell - Google Patents

Manufacturing Method of Buffer-layer for CIS-based Thin film Solar Cell Download PDF

Info

Publication number
KR101032890B1
KR101032890B1 KR1020090008933A KR20090008933A KR101032890B1 KR 101032890 B1 KR101032890 B1 KR 101032890B1 KR 1020090008933 A KR1020090008933 A KR 1020090008933A KR 20090008933 A KR20090008933 A KR 20090008933A KR 101032890 B1 KR101032890 B1 KR 101032890B1
Authority
KR
South Korea
Prior art keywords
thin film
buffer layer
aqueous solution
substrate
thickness
Prior art date
Application number
KR1020090008933A
Other languages
Korean (ko)
Other versions
KR20100089603A (en
Inventor
윤재호
안세진
윤경훈
이정철
조준식
신기식
송진수
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to KR1020090008933A priority Critical patent/KR101032890B1/en
Publication of KR20100089603A publication Critical patent/KR20100089603A/en
Application granted granted Critical
Publication of KR101032890B1 publication Critical patent/KR101032890B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

본 발명은 CIS계 박막 태양전지용 버퍼층 제조방법에 관한 것으로, 더 상세하게는 태양전지의 CIS계 화합물 박막 제조에서의 버퍼층인 CdS 및 Cd-free 버퍼를 용액성장법에 의해 제조하되 버퍼층의 두께를 측정하기 위한 수단으로 진동자를 사용해 진동수를 감지하거나, 레이져의 광투과 정도를 감지하여 박막의 두께를 모니터링해 버퍼층이 일정한 두께로 형성되도록 하는 CIS계 박막 태양전지용 버퍼층 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a buffer layer for a CIS-based thin film solar cell, and more particularly, to prepare a CdS and Cd-free buffer, which is a buffer layer in manufacturing a CIS-based compound thin film of a solar cell, by measuring the growth of a buffer layer. The present invention relates to a method of manufacturing a buffer layer for a CIS-based thin film solar cell, which detects a frequency using a vibrator or monitors the thickness of a thin film by detecting a light transmission degree of a laser so that the buffer layer is formed to have a constant thickness.

상기 CIS계 박막 태양전지용 버퍼층 제조방법은, 박막조성원소가 함유된 수용액이 저장되고 상기 수용액을 가열하는 가열수단과 수용액을 교반시키는 교반수단을 구비한 수조에 기판을 담그는 과정과, 상기 기판의 표면에서 박막을 성장시켜 버퍼층을 형성하는 과정을 포함하는 용액성장법(CBD)을 이용한 CIS계 박막 태양전지용 버퍼층 제조방법에 있어서, 상기 버퍼층형성과정에는 박막의 두께를 측정하는 과정이 포함된다.The method for manufacturing a buffer layer for a CIS-based thin film solar cell includes a process of dipping a substrate in a water tank including a heating means for storing an aqueous solution containing a thin film composition element and heating means for heating the aqueous solution and a stirring means for stirring the aqueous solution, and a surface of the substrate. In the method of manufacturing a buffer layer for a CIS-based thin film solar cell using a solution growth method (CBD), which includes forming a buffer layer by growing a thin film, the buffer layer forming process includes measuring a thickness of the thin film.

또한, 상기 박막의 두께를 측정하는 과정은, 기판을 수용액에 담글 때 진동자를 함께 담그는 단계와; 상기 수용액에 담긴 진동자가 박막성장에 따라 감소되는 진동수를 측정하는 단계와; 상기 측정한 측정데이터와 표준데이터를 비교하여 박막의 두께를 추산하는 단계와; 상기 측정데이터와 표준데이터에서의 선택된 값이 일치할 때 기판을 수조에서 꺼내는 기판회수단계;를 포함하여 이루어진다.In addition, the process of measuring the thickness of the thin film, the step of immersing the vibrator together when immersing the substrate in an aqueous solution; Measuring a frequency in which the vibrator contained in the aqueous solution decreases as the thin film grows; Estimating the thickness of the thin film by comparing the measured data with standard data; And a substrate recovery step of removing the substrate from the water tank when the selected value in the measurement data and the standard data match.

태양전지, 기판, 박막, 버퍼층, 두께측정, 진동자 Solar cell, substrate, thin film, buffer layer, thickness measurement, vibrator

Description

CIS계 박막 태양전지용 버퍼층 제조방법{Manufacturing Method of Buffer-layer for CIS-based Thin film Solar Cell}Manufacturing Method of Buffer-layer for CIS-based Thin film Solar Cell}

본 발명은 CIS계 박막 태양전지용 버퍼층 제조방법에 관한 것으로, 더 상세하게는 태양전지의 CIS계 화합물 박막 제조에서의 버퍼층인 CdS 및 Cd-free 버퍼를 용액성장법에 의해 제조하되 버퍼층의 두께를 측정하기 위한 수단으로 진동자를 사용해 진동수를 감지하거나, 레이져의 광투과 정도를 감지하여 박막의 두께를 모니터링해 버퍼층이 일정한 두께로 형성되도록 하는 CIS계 박막 태양전지용 버퍼층 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a buffer layer for a CIS-based thin film solar cell, and more particularly, to prepare a CdS and Cd-free buffer, which is a buffer layer in manufacturing a CIS-based compound thin film of a solar cell, by measuring the growth of a buffer layer. The present invention relates to a method of manufacturing a buffer layer for a CIS-based thin film solar cell, which detects a frequency using a vibrator or monitors the thickness of a thin film by detecting a light transmission degree of a laser so that the buffer layer is formed to have a constant thickness.

오늘날 국제적인 환경 문제와 에너지 문제를 해결하기 위하여 세계의 각 국에서는 대체 에너지에 대한 연구 및 개발이 활발하게 진행되고 있는 실정이다. 이러한 대체에너지 중에는 무한한 에너지원인 태양에너지를 이용하는 방안이 각광받고 있다. 상기 태양에너지를 활용하는 방법으로는 태양전지(solar cell)와 같은 반도체 소자를 이용하여 태양광을 수광하고 이를 전기 에너지로 변환하는 것이 대표적이다.Today, in order to solve international environmental and energy problems, researches and developments on alternative energy are being actively conducted in each country of the world. Among these alternative energy, the way to use solar energy, which is an infinite energy source, has been in the spotlight. As a method of utilizing the solar energy, it is typical to receive sunlight and convert it into electrical energy using a semiconductor device such as a solar cell.

최근에는, CuInSe2(이하, "CIS"라고 함) 또는 CuIn1-xGaxSe2(이하, "CIGS"라고 함)인 삼원계 박막은 화합물 반도체를 주로 태양전지에 활용하고 있다. 이들 CIS계 박막 태양전지는 기존의 실리콘을 사용하는 태양전지와는 달리 10 마이크론 이하의 두께로 제작 가능하고 장시간 사용시 안정적인 특성을 가지고 있다. 또한 실험적으로 최고 변환 효율이 19.8%로 다른 태양전지에 비해 월등히 뛰어나 실리콘을 대체할 수 있는 저가 고효율의 태양전지를 제공할 수 있다.Recently, ternary thin films of CuInSe2 (hereinafter referred to as "CIS") or CuIn1-xGaxSe2 (hereinafter referred to as "CIGS") mainly utilize compound semiconductors for solar cells. Unlike conventional solar cells using silicon, these CIS-based thin-film solar cells can be manufactured to a thickness of less than 10 microns and have stable characteristics when used for a long time. Experimentally, the highest conversion efficiency is 19.8%, which is superior to other solar cells, and can provide a low-cost, high-efficiency solar cell that can replace silicon.

상기 CIS계 박막 태양전지를 구성하는 버퍼층은 주로 태양전지의 창문층 용도로 사용되는 CdS박막으로 형성한다. 이러한 CdS박막의 제조방법으로는 진공증착, 스퍼터링, 화학기상성장법(chemical vapor deposition), 스크린 프린팅(screen printing), 전착법(electrochemical deposition 또는 electroplating), 용액성장(chemical bath deposition; CBD) 법 등이 있다.The buffer layer constituting the CIS-based thin film solar cell is mainly formed of a CdS thin film used for the window layer of the solar cell. Such CdS thin film manufacturing methods include vacuum deposition, sputtering, chemical vapor deposition, screen printing, electrochemical deposition or electroplating, and chemical bath deposition (CBD). There is this.

이중에서 용액성장법은 공정이 간단해서 대면적의 박막을 빠르고 값싸게 제 조할 수 있는 방법으로 주목을 받고 있으며, 박막의 화학적 양론비(stoichiometry)가 Cd:S=1:1로서 정확하고 막질이 치밀하며 균질성 등이 우수하여 고효율 태양전지를 개발하는데 사용되고 있다.Among them, the solution growth method is attracting attention as a method for producing a large-area thin film quickly and inexpensively due to the simple process, and the stoichiometry of the thin film is Cd: S = 1: 1, so that the film quality is accurate. It is used to develop high efficiency solar cells because of its compactness and excellent homogeneity.

그러나, 상기 용액성장법은 반응물질의 수용액이 담긴 반응조 내에서 반응이 이루어지기 때문에 매질에 의해 박막 두께의 실측이 어렵다. 따라서, 반응용액의 pH, 반응온도, 반응농도, 반응시간 등의 반응조건을 제어하여 박막의 두께를 조절하고 있다.However, the solution growth method is difficult to measure the thickness of the thin film by the medium because the reaction is carried out in the reaction vessel containing the aqueous solution of the reactant. Therefore, the thickness of the thin film is controlled by controlling reaction conditions such as pH, reaction temperature, reaction concentration, reaction time, and the like of the reaction solution.

하지만 상기 방법도 양산공정에 적용할 때에는 다수의 조건 중 어느 한 조건의 미세한 변화에 따라 박막의 물리적 성질은 물론 박막 두께가 다르게 형성될 수 있으므로, 제조된 제품 품질의 균일성이 떨어질 수 있다. 물론 샘플링에 의해 두께 검사에 의해 제품의 불량률을 낮추고 있으나, 검사를 위한 시간과 비용이 소요되는 단점이 있다.However, when the method is also applied to the mass production process, the thickness of the thin film as well as the physical properties of the thin film may be formed differently according to any one of a plurality of conditions, the uniformity of the manufactured product quality may be inferior. Of course, the defect rate of the product is lowered by the thickness inspection by sampling, but there is a disadvantage in that it takes time and cost for the inspection.

따라서, 별도의 샘플링 검사없이 용액성장법에 의해 버퍼층을 형성하는 과정에서 박막의 두께를 측정할 수 있도록 하여 재현성이 좋으면서도 빠르고 쉽게 우수한 특성의 박막을 양산할 수 있는 방법에 대한 연구가 필요하다.Therefore, there is a need for a method for mass production of a thin film having excellent reproducibility and quick and easy characteristics by allowing the thickness of the thin film to be measured in the process of forming a buffer layer by a solution growth method without a separate sampling test.

상기 과제를 해소하기 위한 본 발명의 CIS계 박막 태양전지용 버퍼층 제조방법은,CIS-based thin film solar cell buffer layer manufacturing method of the present invention for solving the above problems,

박막조성원소가 함유된 수용액이 저장되고 상기 수용액을 가열하는 가열수단과 수용액을 교반시키는 교반수단을 구비한 수조에 기판을 담그는 과정과, 상기 기판의 표면에서 박막을 성장시켜 버퍼층을 형성하는 버퍼층형성과정을 포함하는 용액성장법(CBD)을 이용한 CIS계 박막 태양전지용 버퍼층 제조방법에 있어서, 상기 버퍼층형성과정에는 박막 두께를 측정하는 과정이 포함된다.Immersing the substrate in a water tank including an aqueous solution containing a thin film composition element and a heating means for heating the aqueous solution and a stirring means for stirring the aqueous solution, and forming a buffer layer by growing a thin film on the surface of the substrate. In the method of manufacturing a buffer layer for a CIS-based thin film solar cell using a solution growth method (CBD) comprising a process, the buffer layer forming process includes a process of measuring a thin film thickness.

상기 박막 두께를 측정하는 과정은, 기판을 수용액에 담글 때 진동자를 함께 담그는 진동자담금단계와; 상기 진동자담금단계에서 담긴 진동자가 박막성장에 따라 진동자표면이 단단해지면서 감소되는 진동수를 측정하는 진동수측정단계와; 상기 진동수측정단계에서 측정된 측정데이터와 표준데이터를 비교하여 박막의 두께를 추산하는 박막두께 추산단계와; 상기 측정데이터와 표준데이터에서의 선택된 값이 일치할 때 기판을 수조에서 꺼내는 기판회수단계;를 포함하여 이루어진다.The process of measuring the thickness of the thin film includes: an oscillator immersion step of dipping the vibrator together when the substrate is immersed in an aqueous solution; A frequency measuring step of measuring a frequency of the vibrator contained in the vibrating magnetizer step to decrease as the vibrator surface becomes harder as the thin film grows; A thin film thickness estimating step of estimating the thickness of the thin film by comparing the measured data measured in the frequency measuring step with standard data; And a substrate recovery step of removing the substrate from the water tank when the selected value in the measurement data and the standard data match.

또한 다른 방법의 상기 박막두께를 측정하는 과정은, 기판이 담긴 수조의 수용액 광투과도를 측정하는 단계와; 상기 수용액에 담긴 기판의 박막성장시 수용액에서 발생된 생성입자로 인해 수용액의 광투과도가 감소되고, 수용액의 광투과도를 측정한 측정데이터와 표준데이터를 비교하여 박막 두께를 추산하는 박막두께 추산단계와; 상기 측정데이터와 표준데이터에서의 선택된 값이 일치할 때 수용액에 담긴 기판을 수조에서 꺼내는 기판회수단계;를 포함하여 이루어진다.In addition, the process of measuring the thickness of the thin film of another method, the step of measuring the light transmittance of the aqueous solution of the bath containing the substrate; The light transmittance of the aqueous solution is reduced due to the generated particles generated in the aqueous solution during the growth of the thin film of the substrate in the aqueous solution, and the thin film thickness estimating step of estimating the thickness of the thin film by comparing the measured data and the standard data measured the optical transmittance of the aqueous solution; ; And a substrate recovery step of removing the substrate contained in the aqueous solution when the selected value in the measurement data and the standard data match.

이상에서 상세히 기술한 바와 같이 본 발명의 CIS계 박막 태양전지용 버퍼층 제조방법은,As described in detail above, the CIS-based thin film solar cell buffer layer manufacturing method of the present invention,

태양전지의 CIS계 화합물 박막 제조에서의 버퍼층인 CdS 및 Cd-free 버퍼를 용액성장법에 의해 제조하되 버퍼층의 두께를 측정하기 위한 수단으로 진동자를 사용해 진동수를 감지하거나, 레이져의 광투과 정도를 감지하여 박막의 두께를 모니터링 해 버퍼층을 일정한 두께로 형성할 수 있는 방법의 제공이 가능하다.CdS and Cd-free buffers, which are buffer layers in the production of CIS-based compound thin films of solar cells, are prepared by the solution growth method, but the frequency is measured using a vibrator as a means for measuring the thickness of the buffer layer or the degree of light transmission of the laser. By monitoring the thickness of the thin film it is possible to provide a method for forming a buffer layer to a constant thickness.

이하, 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 설명하면 다음과 같다.Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

본 발명에 따른 CIS계 박막 태양전지용 버퍼층 제조방법은 도 1을 참조한 바와같이 용액성장법(chemical bath deposition; CBD)에 의해 박막조성원소가 함유된 수용액이 저장되고 상기 수용액을 가열하는 가열수단과 수용액을 교반시키는 교반수단을 구비한 수조에 기판을 담그는 과정(P1)과; 상기 기판의 표면에서 박막을 성장시켜 버퍼층을 형성하는 과정(P2)을 포함하는 이루어진다. In the CIS-based thin film solar cell buffer layer manufacturing method according to the present invention, as shown in FIG. 1, an aqueous solution containing a thin film composition element is stored by a chemical bath deposition (CBD), and heating means and an aqueous solution for heating the aqueous solution. Dipping the substrate in a water tank having stirring means for stirring the water (P1); And growing a thin film on the surface of the substrate to form a buffer layer (P2).

상기 가열수단은 히터를 사용하여 수조의 저면 또는 측면을 가열하도록 하고, 온도센서를 구비해 수조내에 저장되는 수용액을 설정온도로 유지되도록 한다. 또한 교반기는 저장된 수용액을 교반시켜 수용액에 함유되어 있는 박막조성원소와 기판의 접촉량을 증대시켜 신속한 박막성장이 이루어지도록 한다. The heating means uses a heater to heat the bottom or side of the tank, and equipped with a temperature sensor to maintain the aqueous solution stored in the tank at the set temperature. In addition, the stirrer agitates the stored aqueous solution to increase the amount of contact between the thin film composition element contained in the aqueous solution and the substrate to achieve rapid thin film growth.

이러한 제조방법 중 버퍼층을 형성하는 과정(P2)에서는 박막의 두께를 측정하는 과정(P3)이 포함되어 이루어진다.In the process of forming the buffer layer (P2) of the manufacturing method includes a step (P3) of measuring the thickness of the thin film.

도 2를 참조한 바와같이 상기 박막의 두께를 측정하는 과정(P3)은, 기판을 수용액에 담글 때 진동자를 함께 담그는 단계(S1)가 선행되어 진다. 상기 진동자는 다양한 종류를 사용할 수 있으며, 대표적으로 QCM(Quartz Crystal Microbalance)을 사용하는 것이다. 상기 QCM은 미세한 압력의 변화와 같이 외적인 변화를 검출해낼 수 있다. 이와같이 진동자를 기판과 함께 수용액에 담그는 것은 박막의 성장이 기판은 물론 진동자의 표면에도 성장되도록 한 것이다. As shown in FIG. 2, the step P3 of measuring the thickness of the thin film is preceded by a step S1 of dipping the vibrator together when the substrate is immersed in an aqueous solution. The vibrator may use a variety of types, typically using QCM (Quartz Crystal Microbalance). The QCM can detect external changes such as small changes in pressure. Dipping the vibrator together with the substrate in an aqueous solution is such that the growth of the thin film is grown on the surface of the vibrator as well as the substrate.

다음으로 수용액에 담긴 진동자는 박막성장에 따른 진동수를 측정하는 단계(S2)가 수행된다. 상기 진동수측정단계에서는 시간이 지날수록 진동자 외벽에 박막이 성장하는데 성장하는 박막의 두께에 따라 박막의 단단함이 달라짐으로 진동수가 점차적으로 감소하게 되며, 상기 단계에서는 진동수가 감수되는 정도의 데이터를 검출하기 위해 주기적으로 측정하는 단계이다.Next, the vibrator contained in the aqueous solution is measured (S2) to measure the frequency according to the growth of the thin film. In the frequency measurement step, the thin film grows on the outer wall of the vibrator as time passes, and as the rigidity of the thin film varies according to the thickness of the growing thin film, the frequency gradually decreases. For periodic measurement.

상기 진동자의 진동수를 측정한 데이터는 제어장치(메인컴퓨터)로 전송되고, 전송된 측정데이터는 표준데이터와 대비하여 박막의 두께를 추산하는 단계(S3)가 수행된다. 상기 단계에서의 표준데이터는 수용액의 농도와 온도 교반속도를 동일하게 한 후 측정된 진동수와 이때의 박막두께를 데어터화한 것이다. 따라서, 수조의 환경을 동일하게 한 경우에는 진동수를 지속적으로 측정함으로써 기판의 박막성장 정도를 실시간을 체크할 수 있으며, 오차범위를 최소화하면서 원하는 두께의 박막을 형성할 수 있다.Data measuring the frequency of the vibrator is transmitted to the control device (main computer), and the transmitted measurement data is performed to estimate the thickness of the thin film in comparison with the standard data (S3). The standard data in this step is to equalize the concentration of the aqueous solution and the temperature agitation speed, and to filter the measured frequency and the thickness of the thin film at this time. Therefore, when the environment of the water tank is the same, by measuring the frequency continuously, it is possible to check the thin film growth degree of the substrate in real time, and to form a thin film having a desired thickness while minimizing the error range.

또한, 상기 단계에서 검출한 측정데이터는 표준데이터에서 선택된 값과 일치할 때 수용액에 담긴 기판을 수조에서 꺼내는 기판회수단계(S4)가 이루어진다. 상기 단계에서는 원하는 박막두께를 미리 설정하면 표준데이터에 의해 상기 두께에 맞는 진동수를 알 수 있으며, 상기 선정된 진동수와 측정데이터인 진동자의 진동수가 일치할 경우 설정한 박막두께가 형성된 것이므로 수조에서 박막이 형성된 기판을 꺼내는 것이다. In addition, when the measurement data detected in the step is matched with the value selected from the standard data is made of a substrate recovery step (S4) to take out the substrate in the aqueous solution from the bath. In this step, if the desired thickness of the thin film is set in advance, the frequency corresponding to the thickness can be known by the standard data, and when the selected frequency coincides with the frequency of the vibrator which is the measurement data, the thin film thickness is formed. The formed substrate is taken out.

따라서, 상기 방법에 의해 원하는 두께의 버퍼층이 형성된 기판을 제조할 수 있다.Therefore, the substrate in which the buffer layer of desired thickness is formed by the said method can be manufactured.

상술된 진동자를 이용하는 방법 이외에 광투과도를 이용하여 두께를 측정할 수 있다.In addition to the method using the vibrator described above, the thickness can be measured using light transmittance.

도 3을 참조한 바와같이 상기 박막의 두께를 광투과도로 측정하는 과정은 기판이 담긴 수조 수용액의 광투과도를 측정하는 단계(S5)가 선행되어 이루어진다. 상기 광투과도를 측정은 레이져를 이용하며, 상기 레이져를 조사하여 수용액의 투과도를 측정하는 것이다. As shown in FIG. 3, the process of measuring the thickness of the thin film by light transmittance is performed by measuring the light transmittance of the aqueous solution containing the substrate (S5). The light transmittance is measured using a laser, and the laser beam is irradiated to measure the transmittance of the aqueous solution.

다음으로 상기 측정된 데이터를 이용하여 표준데이터와 비교하여 박막의 두께를 추산하는 단계(S6)가 이루어진다. 상기 단계는 기판에 박막이 성장함과 동시에 수용액의 반응물질도 반응이 이루어져 생성입자가 발생됨으로 수용액의 광투과도가 감소된다. 또한, 상기 단계에서의 표준데이터는 수용액의 농도와 온도 교반속도를 동일하게 한 후 광투과도를 측정하고 이때의 박막두께를 데이터화 한 것이다. 따라서, 수조의 환경을 동일하게 한 경우에는 광투과도를 지속적으로 측정함으로써 기판의 박막성장 정도를 실시간으로 체크할 수 있다.Next, a step (S6) of estimating the thickness of the thin film is made by comparing the standard data using the measured data. In this step, as the thin film grows on the substrate, the reactants of the aqueous solution are also reacted to generate particles, thereby reducing the light transmittance of the aqueous solution. In addition, the standard data in the step is to equalize the concentration of the aqueous solution and the temperature agitation rate, and then measure the light transmittance and data of the thin film thickness at this time. Therefore, when the environment of the tank is the same, the degree of thin film growth of the substrate can be checked in real time by continuously measuring the light transmittance.

또한, 상기 단계에서 검출한 측정데이터는 표준데이터에서 선택된 값과 일치할 때 기판을 수조에서 꺼내는 기판회수단계(S7)가 이루어진다. 상기 단계에서는 원하는 박막두께를 미리 설정하면 표준데이터에 의해 상기 두께에 맞는 광투과도를 알 수 있으며, 상기 선정된 광투과도와 측정데이터인 광투과도가 일치할 경우 설정한 박막두께가 형성된 것이므로 수조에서 박막이 형성된 기판을 꺼내어 원하는 두께로 박막이 형성된 버퍼층을 형성할 수 있다.In addition, a substrate recovery step S7 is performed in which the substrate is taken out of the water tank when the measurement data detected in the above step matches the value selected from the standard data. In this step, if the desired thin film thickness is set in advance, the light transmittance corresponding to the thickness can be known by the standard data, and when the selected light transmittance coincides with the measured light transmittance, the set thin film thickness is formed. The formed substrate may be taken out to form a buffer layer in which a thin film is formed to a desired thickness.

한편, 상기 서술한 예는, 본 발명을 설명하고자하는 예일 뿐이다. 따라서 본 발명이 속하는 기술분야의 통상적인 전문가가 본 상세한 설명을 참조하여 부분변경 사용한 것도 본 발명의 범위에 속하는 것은 당연한 것이다.In addition, the above-mentioned example is only an example to demonstrate this invention. Therefore, it is obvious that the ordinary skilled in the art to which the present invention pertains uses the partial change with reference to the detailed description.

도 1은 본 발명에 따른 용액성장법에 의한 버퍼층의 제조방법을 도시한 흐름도.1 is a flow chart illustrating a method of manufacturing a buffer layer by the solution growth method according to the present invention.

도 2는 본 발명의 실시예에 따른 진동자를 이용한 두께측정과정을 도시한 흐름도.2 is a flowchart illustrating a thickness measurement process using an oscillator according to an embodiment of the present invention.

도 3은 본 발명의 다른 실시예에 따른 광투과도를 이용한 두께측정과정을 도시한 흐름도.3 is a flowchart illustrating a thickness measurement process using a light transmittance according to another embodiment of the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

P1 : 기판담금과정P1: Substrate Immersion Process

P2 : 버퍼층형성과정P2: Buffer Layer Formation Process

P3 : 두께측정과정P3: Thickness Measurement Process

S1 : 진동자 담금단계 S2 : 진동수 측정단계S1: immersion stage of the vibrator S2: frequency measurement stage

S3,S6 : 박막두께 추산단계 S4,S7 : 기판회수단계S3, S6: thin film thickness estimation step S4, S7: substrate recovery step

S5 : 광투과도 측정단계 S5: light transmittance measurement step

Claims (3)

박막조성원소가 함유된 수용액이 저장되고 상기 수용액을 가열하는 가열수단과 수용액을 교반시키는 교반수단을 구비한 수조에 기판을 담그는 과정(P1)과, 상기 기판의 표면에서 박막을 성장시켜 버퍼층을 형성하는 버퍼층형성과정(P2)을 포함하는 용액성장법(CBD)을 이용한 CIS계 박막 태양전지용 버퍼층 제조방법에 있어서,Dipping the substrate in a water tank including an aqueous solution containing a thin film composition element and heating means for heating the aqueous solution and a stirring means for stirring the aqueous solution (P1), and growing a thin film on the surface of the substrate to form a buffer layer In the CIS-based thin film solar cell buffer layer manufacturing method using a solution growth method (CBD) comprising a buffer layer forming process (P2), 상기 버퍼층형성과정(P2)에는, In the buffer layer forming process (P2), 기판을 수용액에 담글 때 진동자를 함께 담그는 진동자담금단계(S1)와; 상기 진동자담금단계에서 담긴 진동자가 박막성장에 따라 진동자표면이 단단해지면서 감소되는 진동수를 측정하는 진동수측정단계(S2)와; 상기 진동수측정단계에서 측정된 측정데이터와 표준데이터를 비교하여 박막의 두께를 추산하는 박막두께 추산단계(S3)와; 상기 측정데이터와 표준데이터에서의 선택된 값이 일치할 때 기판을 수조에서 꺼내는 기판회수단계(S4);를 포함하는 박막 두께를 측정하는 과정(P3)가 포함되어 이루어지는 것을 특징으로 하는 CIS계 박막 태양전지용 버퍼층 제조방법.A vibrating immersion step of dipping the vibrator together when the substrate is immersed in an aqueous solution; A frequency measuring step (S2) of measuring the frequency of the vibrator contained in the vibrating magnetizer step to decrease as the vibrator surface becomes harder as the thin film grows; A thin film thickness estimating step (S3) for estimating the thickness of the thin film by comparing the measured data measured in the frequency measuring step with standard data; CIS-based thin film solar system comprising the step (P3) of measuring the film thickness comprising a; substrate recovery step (S4) for removing the substrate from the water tank when the selected value in the measurement data and the standard data match Battery buffer layer manufacturing method. 삭제delete 박막조성원소가 함유된 수용액이 저장되고 상기 수용액을 가열하는 가열수단과 수용액을 교반시키는 교반수단을 구비한 수조에 기판을 담그는 과정(P1)과, 상기 기판의 표면에서 박막을 성장시켜 버퍼층을 형성하는 버퍼층형성과정(P2)을 포함하는 용액성장법(CBD)을 이용한 CIS계 박막 태양전지용 버퍼층 제조방법에 있어서,Dipping the substrate in a water tank including an aqueous solution containing a thin film composition element and heating means for heating the aqueous solution and a stirring means for stirring the aqueous solution (P1), and growing a thin film on the surface of the substrate to form a buffer layer In the CIS-based thin film solar cell buffer layer manufacturing method using a solution growth method (CBD) comprising a buffer layer forming process (P2), 상기 버퍼층형성과정(P2)에는, In the buffer layer forming process (P2), 기판이 담긴 수조의 수용액 광투과도를 측정하는 단계(S5)와; 상기 수용액에 담긴 기판의 박막성장시 수용액에서 발생된 생성입자로 인해 수용액의 광투과도가 감소되고, 수용액의 광투과도를 측정한 측정데이터와 표준데이터를 비교하여 박막 두께를 추산하는 박막두께 추산단계(S6)와; 상기 측정데이터와 표준데이터에서의 선택된 값이 일치할 때 담긴 기판을 수조에서 꺼내는 기판회수단계(S7);를 포함하는 박막 두께를 측정하는 과정(P3)가 포함되어 이루어지는 것을 특징으로 하는 CIS계 박막 태양전지용 버퍼층 제조방법.Measuring a light transmittance of an aqueous solution of the bath containing the substrate (S5); The light transmittance of the aqueous solution is reduced due to the generated particles generated in the aqueous solution during the growth of the thin film of the substrate contained in the aqueous solution, and the thin film thickness estimating step of estimating the thickness of the thin film by comparing the measured data and the standard data measured the optical transmittance of the aqueous solution ( S6); CIS-based thin film comprising the step (P3) of measuring the thickness of the thin film comprising a; substrate recovery step (S7) for removing the substrate contained in the water tank when the selected value in the measurement data and the standard data match Method for manufacturing a buffer layer for a solar cell.
KR1020090008933A 2009-02-04 2009-02-04 Manufacturing Method of Buffer-layer for CIS-based Thin film Solar Cell KR101032890B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090008933A KR101032890B1 (en) 2009-02-04 2009-02-04 Manufacturing Method of Buffer-layer for CIS-based Thin film Solar Cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090008933A KR101032890B1 (en) 2009-02-04 2009-02-04 Manufacturing Method of Buffer-layer for CIS-based Thin film Solar Cell

Publications (2)

Publication Number Publication Date
KR20100089603A KR20100089603A (en) 2010-08-12
KR101032890B1 true KR101032890B1 (en) 2011-05-06

Family

ID=42755468

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090008933A KR101032890B1 (en) 2009-02-04 2009-02-04 Manufacturing Method of Buffer-layer for CIS-based Thin film Solar Cell

Country Status (1)

Country Link
KR (1) KR101032890B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101342960B1 (en) * 2012-06-19 2013-12-18 주식회사 디엠에스 Chemical bath deposition apparatus and solar cell manufactured by the same
KR20190103637A (en) 2018-02-28 2019-09-05 한국에너지기술연구원 Forming method for thin film using cbd, forming apparatus for thin film and manufacturing method for cigs solar cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004100250A1 (en) 2003-05-08 2004-11-18 Solibro Ab A thin-film solar cell
KR20060036190A (en) * 2004-10-25 2006-04-28 한국에너지기술연구원 Fabrication of inx(ooh,s)y buffer layer by chemical bath deposition for cu(in,ga)se2 or cu(in,ga)(s,se)2 thin film solar cells and solar cells manufactured by thereof
JP2006332440A (en) 2005-05-27 2006-12-07 Showa Shell Sekiyu Kk Method and apparatus for continuously film-forming high-resistant buffer layer/window layer (transparent conductive film) of cis-based thin film solar cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004100250A1 (en) 2003-05-08 2004-11-18 Solibro Ab A thin-film solar cell
KR20060036190A (en) * 2004-10-25 2006-04-28 한국에너지기술연구원 Fabrication of inx(ooh,s)y buffer layer by chemical bath deposition for cu(in,ga)se2 or cu(in,ga)(s,se)2 thin film solar cells and solar cells manufactured by thereof
JP2006332440A (en) 2005-05-27 2006-12-07 Showa Shell Sekiyu Kk Method and apparatus for continuously film-forming high-resistant buffer layer/window layer (transparent conductive film) of cis-based thin film solar cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101342960B1 (en) * 2012-06-19 2013-12-18 주식회사 디엠에스 Chemical bath deposition apparatus and solar cell manufactured by the same
KR20190103637A (en) 2018-02-28 2019-09-05 한국에너지기술연구원 Forming method for thin film using cbd, forming apparatus for thin film and manufacturing method for cigs solar cell
KR102069845B1 (en) * 2018-02-28 2020-02-11 한국에너지기술연구원 Forming method for thin film using cbd, forming apparatus for thin film and manufacturing method for cigs solar cell

Also Published As

Publication number Publication date
KR20100089603A (en) 2010-08-12

Similar Documents

Publication Publication Date Title
Yu et al. A strategy to stabilize kesterite CZTS for high-performance solar cells
Mäntymäki et al. Atomic layer deposition of LiF thin films from Lithd, Mg (thd) 2, and TiF4 precursors
Aryal et al. Parameterized complex dielectric functions of CuIn1− xGaxSe2: applications in optical characterization of compositional non‐uniformities and depth profiles in materials and solar cells
KR101032890B1 (en) Manufacturing Method of Buffer-layer for CIS-based Thin film Solar Cell
Schossig et al. Dielectric and pyroelectric properties of ultrathin, monocrystalline lithium tantalate
Chauhan et al. Preparation of CdTe thin film by electrodeposition in butyl methyl imidazolium bath at 80 C
CN100346457C (en) Production and producer for cadmium sulfide
Selivanov et al. Counterdiffusion-in-gel growth of high optical and crystal quality MAPbX 3 (MA= CH 3 NH 3+, X= I−, Br−) lead-halide perovskite single crystals
CN110057334A (en) The test method of monocrystalline silicon piece cutting damage thickness degree is obtained based on lasting weighing
Abdulrahman et al. A high responsivity, fast response time of ZnO nanorods UV photodetector with annealing time process
JP5399174B2 (en) Multi-source vapor deposition thin film composition control method and manufacturing apparatus
CN102299211A (en) Two-step method for manufacturing cadmium sulphide film
JP2011151261A (en) Method of manufacturing buffer layer, and photoelectric conversion device
Kessler et al. Rapid Cu (In, Ga) Se/sub 2/growth using" end point detection"
CN103906857A (en) Chemical bath deposition apparatus, method of forming buffer layer and method of manufacturing photoelectric conversion device
JP6026356B2 (en) Deposition equipment
KR102069845B1 (en) Forming method for thin film using cbd, forming apparatus for thin film and manufacturing method for cigs solar cell
Fernandes et al. Electrodeposition of PbS multilayers on Ag (111) by ECALE
Elsayed et al. Nanocrystalline zinc oxide thin films prepared by electrochemical technique for advanced applications
Kotok et al. Investigation of the properties of Ni (OH) 2 electrochrome films obtained in the presence of different types of polyvinyl alcohol
CN102108494B (en) Deposition method for microcrystalline silicon thin films and device for monitoring plasma assisted deposition
García-Valenzuela et al. Detailed analysis of five aspects addressed to minimize costs and waste in the chemical bath deposition of CdS films using the CdB–AC 6 H 5 O 7–AOH–(NH 2) 2 CS system
Ordaz-Flores et al. Annealing effects on the mass diffusion of the CdS/ITO interface deposited by chemical bath deposition
Chakraborty et al. Nonenzymetic glucose sensing using carbon functionalized carbon doped ZnO nanorod arrays
JP2011165900A (en) Method of manufacturing photoelectric conversion element

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140416

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150424

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160414

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170308

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee