KR101027140B1 - Method for purifying contaminated soil/groundwater using nano-scale zero-valent iron and direct injection-permeable reactive barrier - Google Patents

Method for purifying contaminated soil/groundwater using nano-scale zero-valent iron and direct injection-permeable reactive barrier Download PDF

Info

Publication number
KR101027140B1
KR101027140B1 KR1020090103592A KR20090103592A KR101027140B1 KR 101027140 B1 KR101027140 B1 KR 101027140B1 KR 1020090103592 A KR1020090103592 A KR 1020090103592A KR 20090103592 A KR20090103592 A KR 20090103592A KR 101027140 B1 KR101027140 B1 KR 101027140B1
Authority
KR
South Korea
Prior art keywords
nzvi
contaminated
area
injection
soil
Prior art date
Application number
KR1020090103592A
Other languages
Korean (ko)
Inventor
이진욱
조성국
장윤석
김재환
조성희
Original Assignee
효림산업주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 효림산업주식회사 filed Critical 효림산업주식회사
Priority to KR1020090103592A priority Critical patent/KR101027140B1/en
Application granted granted Critical
Publication of KR101027140B1 publication Critical patent/KR101027140B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/08Reclamation of contaminated soil chemically
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • C02F1/705Reduction by metals

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Soil Sciences (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE: A method for purifying contaminated area containing contaminated soil or underground water is provided to reduce cost required for installation using a direct injection-permeable reactive barrier based technique. CONSTITUTION: A method for purifying contaminated area using nZVI and a direct injection-permeable reactive barrier based technique. A contaminated area containing contaminated soil and underground water is classified into highly contaminated area and lowly contaminated area. An injection wall, a monitoring well, and a multi-monitoring well are installed at the contaminated areas. The nZVI is injected through the injection well. The effective radius and purifying efficiency and harmness of the contaminated areas are monitored using the monitoring well and the multi-monitoring well.

Description

nZVI 및 DI-PRB을 이용한 오염 토양/지하수 정화공법 {Method for Purifying Contaminated Soil/Groundwater Using Nano-scale Zero-Valent Iron and Direct Injection-Permeable Reactive Barrier}Method for Purifying Contaminated Soil / Groundwater Using Nano-scale Zero-Valent Iron and Direct Injection-Permeable Reactive Barrier}

본 발명은 nZVI 및 직접주입공법(Direct Injection-Permeable Reactive Barrier, DI-PRB)을 이용한 오염 토양 또는 지하수를 포함하는 오염지역 정화공법에 관한 것으로, 보다 상세하게는, 오염 토양 또는 지하수를 포함하는 오염지역을 오염물질의 농도에 따라 고농도 지역(Hot Source) 및 저농도 지역(Plume)으로 구분한 뒤, 상기 구분된 오염지역의 특성에 따라 nZVI 주입조건을 모델링하여 nZVI를 직접 주입하는 것을 특징으로 하는, nZVI 및 직접주입공법(Direct Injection-Permeable Reactive Barrier, DI-PRB)을 이용한 오염 토양 또는 지하수를 포함하는 오염지역 정화공법에 관한 것이다.The present invention relates to a contaminated area purifying method including contaminated soil or groundwater using nZVI and Direct Injection-Permeable Reactive Barrier (DI-PRB), and more particularly, to contaminated soil or groundwater. After dividing the area into high concentration (Hot Source) and low concentration (Plume) according to the concentration of the pollutant, characterized in that by injecting nZVI directly by modeling the nZVI injection conditions according to the characteristics of the separated pollution area, It relates to a contaminated area purification method including contaminated soil or groundwater using nZVI and Direct Injection-Permeable Reactive Barrier (DI-PRB).

환경 분야에서 철의 활용은 크게 다음과 같은 경우로 나눌 수 있다. 지난 20년간 수처리 분야에 응용되어 온 철의 활용 방법으로서 2가 혹은 0가 철과 과산화 수소의 반응으로 발생하는 수산화라디칼을 이용한 Fenton and Fenton-like oxidation가 있다. 또한, ZVI연구가 활발해지면서 최근 상업화까지 이루어지고 있는, 철의 산화/환원 반응을 이용한 중금속 고정화와 탈염화반응이다.The use of iron in the environmental field can be divided into the following cases. As a method of utilizing iron, which has been applied to the water treatment field for the past 20 years, there are Fenton and Fenton-like oxidation using radical hydroxide generated by the reaction of divalent or zero-valent iron with hydrogen peroxide. In addition, the ZVI research is being actively commercialized, the heavy metal immobilization and desalination reaction using the oxidation / reduction reaction of iron, which has recently been commercialized.

전이금속으로 환원력만 있다면 다양한 물질들이 산화/환원반응에 의해 오염물질 처리에 사용될 수 있다. 특히, 영가 금속 철 (Fe0, Zero Valent Iron, ZVI)이 가장 널리 사용되고 있다. 반응성을 갖는 환원금속에는 Ca(-2.87), Mg(-2.70) 등 여러 가지가 있으며, 환원력 또한 철보다 크지만, 금속 철은 우선 반응성이 비교적 높고 쉽게 구할 수 있으며 원하는 크기의 입자를 제조할 수 있다. 또한, 저렴하며, metal scrap 등과 같은 재활용물질을 이용할 수도 있기 때문에 매우 경제적이다. 비록 철이 중금속에 포함되지만 독성이 매우 낮아 소량의 철이 지하수에 함유되어 있어도 인간이나 생태계에는 큰 악영향을 미치지 않는다. Various materials can be used to treat pollutants by oxidation / reduction reactions as long as they have reducing power as transition metals. In particular, zero-valent metal iron (Fe 0 , Zero Valent Iron, ZVI) is the most widely used. Reactive metals include Ca (-2.87), Mg (-2.70), etc., and the reducing power is also higher than iron, but metal iron is relatively high in reactivity and readily available and can produce particles of desired size. have. In addition, it is inexpensive and very economical because it is possible to use recycled materials such as metal scrap. Although iron is included in heavy metals, its toxicity is so low that even a small amount of iron in groundwater does not have a significant adverse effect on humans or ecosystems.

이러한 전이금속을 이용한 탈염화 환원반응이 일어나기 위해서는 전자 전달이 필요하며, 철과 오염물질의 접촉 방법에 따라 세가지 모델이 제시되고 있다. (Scherer et al. 1999). 첫 번째 모델은 철 표면의 산화에 의해 Cathode와 anode domain이 발생하며, cathode에 오염물질이 직접 오염물질이 접촉하는 모델로, 이 경우 철 표면의 reactive site가 지극히 작아 철 표면에서 일어나는 모든 반응을 설명할 수 없다. 그리하여 제시된 두 번째 모델은 철 표면에 생성된 산화막(Oxide film)이 반도체(semi-conductor)역할을 하여 산화막 두께에 의해 감소된 환원전위를 통해 유기물의 환원반응이 이루어진다는 모델이다. 이 경우 첫번째 직접 접촉 모델을 보완할 수는 있지만, 여전히 표면반응만을 설명 할 수 있다. 세번째의 경우 철 표면의 산화막에 존재하는 Fe-H, Fe-OH bond들의 coordination에 의해 반응이 진행될 수 있음을 보여주는 Model이며 이 경우 환원전위는 제일 낮다.In order to cause the dechlorination reduction reaction using the transition metal, electron transfer is required, and three models have been proposed according to the contact method of iron and contaminants. (Scherer et al . 1999). In the first model, cathode and anode domains are generated by oxidation of iron surface, and contaminants are directly contacted with cathode. Can not. Thus, the second model presented is a model in which the oxide film formed on the iron surface acts as a semi-conductor, and the reduction reaction of organic matter is carried out through the reduction potential reduced by the oxide film thickness. In this case, we can supplement the first direct contact model, but still only account for the surface response. In the third case, the model shows that the reaction can proceed by coordination of Fe-H and Fe-OH bonds in the oxide film on the iron surface. In this case, the reduction potential is the lowest.

영가철은 그 종류에 따라 -0.3~0.7 V 의 환원전위를 가지고 있음이 보고 되고 있고, 철의 환원전위 보다 낮은 전위를 갖는 환원 반응은 이론적으로 처리가 가능하다. 이러한 영가철을 이용하여 오염물질을 제거하는 연구가 계속되고 있으며, 철에 의한 탈염화 반응에 의해 처리 가능한 염화유기오염물질은 halogenated ethylenes (TCE, PCE), Halogenated Alkanes(TCM, DCM 등), Halogenated aromatics (염화페놀, PCBs, 염화다이옥신, PBDEs)등으로 처리속도에 차이는 있지만 대부분 탈염화 반응이 가능하다. Nitrate, Nitrite, Nitro-aromatics와 같은 질소화합물의 경우 매우 빠른 반응속도로 질소 가스로 환원되어 수처리에 응용 가능하다. 또한 산화/환원에 의한 흡착반응에 의해 Cr, As, Pb, Zn, Ni 등의 중금속 및 우라늄 등의 방사성 물질까지 처리할 수 있음이 보고되고 있다. It is reported that zero iron has a reduction potential of -0.3 to 0.7 V depending on the type thereof, and a reduction reaction having a lower potential than that of iron can be theoretically treated. Research on the removal of contaminants by using such ferric iron is ongoing. Chlorinated organic pollutants that can be treated by desalination reaction with iron are halogenated ethylenes (TCE, PCE), halogenated alkanes (TCM, DCM, etc.) and halogenated compounds. Aromatics (phenol chlorides, PCBs, dioxins, PBDEs), etc., vary in processing speed, but most of them can be desalted. Nitrogen compounds such as nitrate, nitrite, and nitro-aromatics are reduced to nitrogen gas at very fast reaction rates and can be applied to water treatment. In addition, it has been reported that heavy metals such as Cr, As, Pb, Zn, and Ni and radioactive materials such as uranium can be treated by adsorption reaction by oxidation / reduction.

정화처리 기술로서 비원위치 정화기술과 원위치 정화기술이 대표적이다. Non-in-situ purification technology and in-situ purification technology are representative examples of the purification process.

비원위치 정화기술은 오염토양을 굴착하여 이동시켜 처리하는 기술로서 처리 공정의 관리 및 효율 평가가 용이하나, 굴착과 이동에 많은 비용이 소요되며 굴착과정에서 지반환경 교란을 야기 시켜 오염의 확산을 유발할 가능성이 있다. 이에 비해 원위치 기술은 오염토양을 현장에서 직접 처리하는 기술로서 주변 환경으로 오염물질이 노출될 가능성이 적고 비용 또한 비원위치 기술에 비해 저렴한 편이다. 그러나 현장 토양의 불 균질성에 의해 정화 효율이 제한될 수 있으므로 면밀한 부 지 평가와 모니터링 기술이 필요하다.Non-in situ purification technology is a technology that excavates and moves contaminated soils, which makes it easy to manage and evaluate the treatment process, but it requires a lot of costs for excavation and movement, and causes disturbance of ground environment in the excavation process. There is a possibility. In-situ technology, on the other hand, is a technology that directly handles contaminated soils on site, and it is less likely to expose pollutants to the surrounding environment and is less expensive than non-in situ technologies. However, in situ soil inhomogeneities can limit purification efficiency, requiring careful site assessment and monitoring techniques.

이들 기술은 오염원의 제거방법에 따라 생물학적, 물리화학적, 열 적 기술로 분류할 수 있다. 열적 처리기술은 토양을 고온에 노출시켜 직접 연소에 의한 열처리(소각)와 간접 연소에 의한 열처리(열분해)를 통해 토양 중에 함유되어있는 유해물질을 분해하는 기술이다. 그러나, 높은 정화효율을 가지며 적용 범위가 넓은 장점이 있으나, 에너지 처리비용이 높고, 중금속의 경우에는 일정 온도에서 처리되지 않으며 고온에서 유리화되는 단점이 있다. These techniques can be classified into biological, physicochemical, and thermal techniques, depending on how the source is removed. Thermal treatment technology is a technology that decomposes harmful substances contained in soil through heat treatment (incineration) by direct combustion and heat treatment (pyrolysis) by indirect combustion by exposing soil to high temperature. However, it has the advantage of having a high purification efficiency and a wide range of applications, high energy processing costs, heavy metals are not treated at a certain temperature and has the disadvantage of vitrification at high temperatures.

물리화학적 처리기술로는 물, 산 및 유기 용매, 계면활성제 등 추출용매나 증기를 이용하여 추출하거나 전기적 방법에 의해 오염원을 토양과 지하수에서 다른 매체로 이동시키는 방법, 화학적 산화/환원법에 의해 분해시키는 방법, 흡착/침전 등을 통해 별도로 분리·농축시키는 방법이 있다. 고형화 및 안정화 기술은 오염물질이 이동하지 못하도록 물리적으로 가두거나 첨가제와 오염물질의 화학반응에 의해 이동성을 감소시키는 방법으로서 대상 중금속과 고화제/안정화제의 물리화학적인 특성이 고려되어야 한다. Physical and chemical treatment techniques include extraction using solvents such as water, acids, organic solvents, and surfactants or steam, or by transferring the pollutants from soil and groundwater to other media by electrical methods, or by chemical oxidation / reduction methods. There is a method of separating and concentration separately through the method, adsorption / precipitation. Solidification and stabilization techniques should consider the physical and chemical properties of the heavy metals and the hardeners / stabilizers as a way of physically confining the contaminants or reducing their mobility by chemical reactions between additives and contaminants.

생물학적 처리기술은 토양 미생물 활성화 또는 적정화시키거나 특별히 개발된 미생물을 첨가하고 생존 조건을 최적화시켜 유기화합물의 생분해를 촉진시키는 방법으로서 다른 기술에 비해 친환경 적이며 경제적인 방법이다. 최근 들어 각각의 오염물을 분해할 수 있는 미생물 균주의 발견과 분해기작의 규명이 이루어지면서 발전속도가 빨라지고 있다. 그러나 복원 기간이 길고, 고농도의 독성 오염물에서는 효율이 제한되며 환경 조건의 변화에 민감한 단점이 있다. Biological treatment technology is a method that promotes biodegradation of organic compounds by activating or optimizing soil microorganisms or by adding specially developed microorganisms and optimizing survival conditions, which is more environmentally friendly and economical than other technologies. In recent years, the development of microbial strains capable of decomposing each contaminant and the identification of its degradation mechanism have been made, and the speed of development is increasing. However, the restoration period is long, the efficiency is limited in the high concentration of toxic contaminants and there is a disadvantage that is sensitive to changes in environmental conditions.

대체로 오염물질의 농도가 높고 오염지역 규모가 작을 경우에는 열적 처리, 오염물질의 농도가 낮고 오염지역 규모가 클 경우는 생물학적 처리가 유리한 것으로 평가되며, 물리화학적 처리는 다양하게 적용되고 있다.In general, when the concentration of pollutants is high and the size of the polluted area is small, thermal treatment is used, and when the concentration of the pollutant is low and the size of the polluted area is large, biological treatment is considered to be advantageous.

이러한 기술 중에서 최근에 이용되고 있는 기술로 반응성 물질의 산화/환원력을 용하여 현장에 적용하기 위한 공법으로는 투수성 반응벽체(Permeable Reactive Barriers: PRBs)를 이용하였으며(도 1), 일반적인 시공순서는 파일천공, 케이싱 설치, 반응물질 부설, 케이싱 인발의 과정으로 진행되며, 지질조건에 따라 케이싱의 설치과정 및 설치깊이의 조정이 가능하다. 주요 처리 대상은 지하수를 대상으로 하고 있다. PRB는 토양 내에 지하수의 흐름에 수직인 방향으로 토양과 투수성이 비슷한 반응성이 있는 물질(reactive medium)을 설치하여 오염물질을 함유한 지하수가 반응성이 있는 물질을 통과하는 동안 오염물질이 반응하여 처리되는 공법으로, 이 기술은, 에너지의 투입이 불필요하며 공정이 단순하다는 측면에서 지하수와 토양의 현장처리(in situ treatment)를 가능하게 한다. 최근 10년 사이 이 기술이 미국, 한국, 스웨덴 등에서 지하수 및 토양오염 처리에 활용되어 왔다.Among these techniques, recently used permeable reactive barriers (PRBs) were used as methods for applying them to the site using oxidation / reduction of reactive materials (FIG. 1). It proceeds through drilling, casing installation, reaction material laying, casing drawing, and it is possible to adjust the casing installation depth and installation depth according to geological conditions. The main treatment targets groundwater. PRB installs a reactive medium that is similar in permeability to the soil in a direction perpendicular to the flow of groundwater in the soil, so that the pollutant reacts while the groundwater containing the pollutant passes through the reactive material. This technique allows for in situ treatment of groundwater and soil in the sense that energy input is unnecessary and the process is simple. In recent decades, the technology has been used to treat groundwater and soil pollution in the United States, Korea and Sweden.

하지만 기존의 공법은 반응물질을 지하에 주입하기 위하여 굴착공사 (Excavation)가 필요하여 시공비가 크고, 반응물질의 반응성이 감소할 경우 재 시공이 필요하다, 또한 지하수 흐름을 반응 벽채로 유도하기 위하여 충분한 투수성을 확보하기 위해 추가 매질이 필요하며, 오염물질이 벽체 내에 침전될 경우에는 투수성이 저하되어, 오염물질의 확산이 될 우려가 있다. 그리고 광범위한 지역에서는 차단벽을 설치하여 오염된 지하수가 다른 방향으로 흘러가는 것을 막아야 하며, 이 를 위해 차단벽을 설치는 바로 시공비용의 증가를 가져오게 되는 단점이 있다. 그래서 반응벽체 기술은 좁은 지역이나, 매립지 및 광산배수와 같이 기존에 차단벽이 있는 지역에 대해 한정적으로 적용되고 있는 문제점이 있다. However, the existing method requires excavation to inject the reactant into the basement, so the construction cost is high, and if the reactant decreases, the reconstruction is necessary. Also, it is sufficient to induce the groundwater flow to the reaction wall. In order to secure permeability, an additional medium is required, and when the contaminants are precipitated in the wall, the permeability is lowered and there is a concern that the contaminants may be diffused. And in a wide area, it is necessary to install barriers to prevent the contaminated groundwater from flowing in the other direction. For this purpose, the installation of barriers directly increases the construction cost. Therefore, there is a problem that the reaction wall technology is applied to a limited area, such as a narrow area or a landfill and mine drainage in the existing.

이에 본 발명자들은 상기 종래기술의 문제점을 해결하고자 예의 노력한 결과, 오염지역에 well을 설치한 후 천연물질인 폴리페놀로 코팅되어 있는 나노영가철(Polyphenol-coated Nano Zero Valent Iron, P-nZVI)을 상기 well을 통하여 직접 주입함으로써, 굴착공정 없이 간단한 방법으로 오염지역을 정화할 수 있고, 상기 P-nZVI의 사용으로 인하여 정화효율을 향상시킬 수 있다는 것을 확인하고 본 발명을 완성하게 되었다.Accordingly, the present inventors have made efforts to solve the problems of the prior art, and after installing the wells in the contaminated area, the nanophenols (Polyphenol-coated Nano Zero Valent Iron, P-nZVI) coated with natural polyphenols are used. By directly injecting through the well, it was confirmed that the contaminated area can be purified by a simple method without an excavation process, and the purification efficiency can be improved due to the use of P-nZVI.

본 발명의 목적은 nZVI 및 직접주입공법(Direct Injection-Permeable Reactive Barrier, DI-PRB)을 이용한 오염 토양 및 지하수 정화공법을 제공하는데 있다.An object of the present invention is to provide a contaminated soil and ground water purification method using nZVI and Direct Injection-Permeable Reactive Barrier (DI-PRB).

상기 목적을 달성하기 위하여, (a) 오염 토양 또는 지하수를 포함하는 오염지역을 고농도 오염지역(Hot Source) 및 저농도 오염지역(Plume)으로 구분하는 단계; (b) 상기 고농도 오염지역 또는 저농도 오염지역에 주입정(Injection Well, IW), 관측정(Monitoring Well, MW) 및 멀티-관측정(Multi Monitoring Well, M-MW)을 설치하는 단계; (c) 상기 IW를 통하여 nZVI를 주입하는 단계; 및 (d) 상기 MW 및 M-MW을 이용하여 상기 고농도 오염지역 또는 저농도 오염지역의 영향반경, 정화효율 및 위해성을 모니터링(monitoring)하는 단계를 포함하는, nZVI의 직접주입(Direct Injection-Permeable Reactive Barrier, DI-PRB)을 이용한 오염 토양 및 지하수 정화공법을 제공한다.In order to achieve the above object, (a) dividing the contaminated area including the contaminated soil or groundwater into a high concentration pollution (Hot Source) and a low concentration pollution (Plume); (b) installing an injection well (IW), a monitoring well (MW) and a multi-monitoring well (M-MW) in the high concentration or low concentration contamination area; (c) injecting nZVI through the IW; And (d) monitoring the radius of influence, purification efficiency, and risk of the high concentration or low concentration contamination area using the MW and M-MW, Direct Injection-Permeable Reactive. Barrier, DI-PRB) provides contaminated soil and groundwater purification.

본 발명에 따르면, 오염지역 정화시 굴착을 하지 않고 직접주입공법을 이용함으로써 시공비를 절감할 수 있고, In-situ 처리가 불가능했던 오염지역을 처리할 수 있으며, 나노영가철의 사용으로 인하여 오염물질 정화에 있어서 높은 효율을 기대할 수 있다. According to the present invention, it is possible to reduce the construction cost by using the direct injection method without digging when cleaning the contaminated area, to treat the contaminated area where in-situ treatment was not possible, and contaminants due to the use of nano-iron. High efficiency can be expected in the purification.

본 발명은 일 관점에서, (a) 오염 토양 또는 지하수를 포함하는 오염지역을 고농도 오염지역(Hot Source) 및 저농도 오염지역(Plume)으로 구분하는 단계; (b) 상기 고농도 오염지역 또는 저농도 오염지역에 주입정(Injection Well, IW), 관측정(Monitoring Well, MW) 및 멀티-관측정(Multi Monitoring Well, M-MW)을 설치하는 단계; (c) 상기 IW를 통하여 nZVI를 주입하는 단계; 및 (d) 상기 MW 및 M-MW을 이용하여 상기 고농도 오염지역 또는 저농도 오염지역의 영향반경, 정화효율 및 위해성을 모니터링(monitoring)하는 단계를 포함하는, nZVI의 직접주입(Direct Injection-Permeable Reactive Barrier, DI-PRB)을 이용한 오염 토양 및 지하수 정화공법에 관한 것이다 (도 2).In accordance with one aspect of the present invention, there is provided a method comprising: (a) dividing a contaminated area including contaminated soil or groundwater into a high concentration contaminated area (Hot Source) and a low concentration contaminated area (Plume); (b) installing an injection well (IW), a monitoring well (MW) and a multi-monitoring well (M-MW) in the high concentration or low concentration contamination area; (c) injecting nZVI through the IW; And (d) monitoring the radius of influence, purification efficiency, and risk of the high concentration or low concentration contamination area using the MW and M-MW, Direct Injection-Permeable Reactive. Barrier, DI-PRB) relates to a contaminated soil and groundwater purification method (Fig. 2).

본 발명은 오염지역에 정화제를 주입하여 정화처리를 하되, 정화제로서 nZVI를 이용하여 WELL 기반으로 직접 주입하는 것을 특징으로 한다.The present invention is purified by injecting a purifying agent in the contaminated area, characterized in that the injection directly to the WELL base using nZVI as a purifying agent.

본원에서 사용된 용어 "직접주입공법(DI-PRB(Direct Injection-Permeable Reactive Barrier, DI-PRB)"은 정화제인 nZVI를 토양 또는 지하수와 같은 오염지역에 직접주입하여, 주입된 nZVI가 PRB와 같은 형태를 형성하도록 하는 공법을 의미한다. 즉, 일반적인 PRB를 오염지역에 굴착을 통해 설치하는 공법과는 구별되는 개념의 공법이다.As used herein, the term "Direct Injection-Permeable Reactive Barrier (DI-PRB)" directly injects a purifying agent, nZVI, into a contaminated area, such as soil or groundwater, so that the injected nZVI is the same as the PRB. It means a method to form a form, that is, a concept that is distinct from the method of installing a general PRB through excavation in a contaminated area.

본원에서 사용된 용어 "영향반경"은 nZVI가 이동하여 오염지역을 정화시킬 수 있는 구역을 의미한다.As used herein, the term "effect radius" refers to the area where nZVI can migrate to purify the contaminated area.

본원에서 사용된 용어 "리바운드(rebound)"는 본 발명의 정화공법에 의해 제거된 오염물질들의 재발생 현상을 지칭한다.The term "rebound" as used herein refers to the reoccurrence of contaminants removed by the purification process of the present invention.

본원에서 사용된 용어 "nZVI"는 일반적으로 사용되는 나노영가철을 의미한다.As used herein, the term “nZVI” refers to nanoferrous iron commonly used.

본원에서 사용된 용어 "P-nZVI"는 폴리페놀(Polyphenol)로 코팅된 나노영가철을 의미하는 것이다.As used herein, the term "P-nZVI" refers to nano-ferrous iron coated with Polyphenol.

본원에서 사용된 용어 "Fe 함유 용액"이란, Fe가 이온화 되어 함유되어 있는 용액을 의미한다. 예를 들어, Fe가 Fe3+의 상태로 함유되어 있는 FeCl3·6H2O 수용액일 수 있다.As used herein, the term "Fe-containing solution" means a solution in which Fe is ionized and contained. For example, Fe may be FeCl 3 · 6H 2 O aqueous solution containing Fe 3+ in the state.

본원에서 사용된 용어 "Polyphenol-Fe 용액"이란, 상기 Fe 함유 용액과 Polyphenol이 혼합되어 있는 상태의 용액을 의미한다.As used herein, the term "polyphenol-Fe solution" refers to a solution in which the Fe-containing solution and Polyphenol are mixed.

본 발명에 있어서, nZVI는 Fe0를 함유하고 Polyphenol로 코팅되어 있는 P-nZVI인 것을 특징으로 할 수 있다. 상기 P-nZVI에서 상기 Fe0의 함량은 42~50중량%이고, 상기 코팅된 Polyphenol의 두께는 3~5nm이며, 상기 P-nZVI의 입자크기는 40~80nm일 수 있다. 상기 P-nZVI는 중금속, 질산염(NO3-), 황산염(SO4-), 유기할로겐오염물질, DNAPL(Dense Non-Aqeous Phase Liquid) 및 이들의 혼합물로 구성된 군 에서 선택되는 물질을 포함하는 오염물질 정화용으로 사용될 수 있으며, 중금속 제거력은 Cr6+을 기준으로 0.1~0.2g Cr6+/g Fe0이다.In the present invention, nZVI may be characterized as P-nZVI containing Fe 0 and coated with Polyphenol. The content of Fe 0 in the P-nZVI is 42 to 50% by weight, the thickness of the coated polyphenol is 3 to 5nm, the particle size of the P-nZVI may be 40 ~ 80nm. The P-nZVI is contaminated including a material selected from the group consisting of heavy metals, nitrates (NO 3- ), sulfates (SO 4- ), organic halogen contaminants, DNA Non-Aqeous Phase Liquid (DNAPL) and mixtures thereof It is used for purification of materials, and heavy metals jegeoryeok is 0.1 ~ 0.2g Cr 6+ / g Fe 0 on the basis of Cr 6+.

본 발명에 따른 정화공법에 있어서, 우선, 오염 토양 또는 지하수를 포함하는 오염지역에 대한 현장조사를 실시한 후, 고농도 오염지역과 저농도 오염지역으로 분류한다.In the purification method according to the present invention, first, after conducting a site survey for a contaminated area including contaminated soil or groundwater, it is classified into a high concentration contaminated area and a low concentration contaminated area.

현장조사에 있어, 기초분석 항목으로는 토양구조(Soil matric), 토양공극(Porosity), 투수계수(Hydraulic conductivity), 지하수 흐름방향 및 유속(Groundwater gradient & velocity), 지하수위(Depth to water table), 지하수 특성분석[pH, 이온강도(ionic strength), DO(Dissolved oxygen) 및 산화환원전위(Oxidation-Redcution Potential, ORP), 질산염(nitrate)], 아질산염(nitrite)과 황산염(sulfate)을 포함하는 이온성 물질 및 천연유기물질(Natural Organic matter)이 있다.In the field survey, basic analysis items include soil matric, soil porosity, permeability, groundwater gradient and velocity, and depth to water table. , Groundwater characterization [pH, ionic strength, DO (Dissolved oxygen) and Oxidation-Redcution Potential (ORP), nitrate], nitrite and sulfate Ionic and natural organic matter.

본 발명에 있어서, 상기 고농도 오염지역은 TCE 농도가 0.5ppm 이상이고, 상기 저농도 오염지역은 TCE 농도가 0.5ppm 미만인 것을 특징으로 할 수 있다. 상기 고농도 오염지역은 TCE가 최초로 유출된 지역으로서 Hot source라 할 수 있고, 상기 저농도 지역은 Hot source 지역에서 지하수 흐름방향으로 후단으로 점차 확대/희석된 지역을 의미한다. In the present invention, the high concentration of the contaminated area is TCE concentration of 0.5ppm or more, the low concentration of the contaminated area may be characterized in that the TCE concentration is less than 0.5ppm. The high concentration contaminated area may be referred to as a hot source where TCE was first leaked, and the low concentration area may mean an area gradually expanded / diluted from the hot source area to the rear end in the flow direction of the groundwater.

고농도 오염지역(Hot Source) 또는 저농도 오염지역(Plume)에서 오염원의 위치, 형태 및 분포를 파악하여 정화공법의 조건을 모델링(modeling)한 후, 모델링한 결과를 이용하여 IW 및 MW를 포함하는 well을 설치하고, 상기 IW을 통하여 nZVI를 주입하고, 상기 MW를 이용하여 오염지역을 모니터링한다.Identify the location, form, and distribution of pollutants in high concentration or hot concentration pollutants, and then model the conditions of the purification process, and then use well modeled IW and MW. NZVI is injected through the IW, and the contaminated area is monitored using the MW.

상기 고농도 오염지역에서는 좁은 범위에서 고농도로 오염물질이 분포하고 있기 때문에 IW를 조밀하게 설치하여, 고농도의 nZVI를 주입하는 것이 바람직하다. 상기 고농도 오염지역의 상세 well 설치조건 및 nZVI 주입조건을 표 1에 나타난 바와 같다 (도 3).In the high concentration of contaminated area, since pollutants are distributed at high concentration in a narrow range, it is preferable to install IW densely and inject high concentration of nZVI. Detailed well installation conditions and nZVI injection conditions of the high concentration of the contaminated area are shown in Table 1 (FIG. 3).

고농도 오염지역의 well 설치 및 주입조건 Well installation and injection condition in high concentration contaminated area 내용Contents 조건Condition 내용Contents 조건Condition IW 설치간격IW installation interval 1~3m1-3m Multi-MWMulti-MW 미설치Not installed IW 설치깊이IW installation depth 암반까지To bedrock GW-CirculationGW-Circulation 사용use TCE 농도(mg/L)TCE concentration (mg / L) 0.5 이상0.5 or more 영향반경Radius of influence 2~3m2-3m nZVI 주입농도(g/L)nZVI injection concentration (g / L) 10~50g/L10-50g / L 처리기간Processing period 2~3개월2-3 months nZVI 추가주입nZVI additional injection Rebound 발생시 주입Injection when rebound occurs nZVI/TCE(g/g)nZVI / TCE (g / g) 200~300200-300

상기 저농도 오염지역에서는 오염물질이 넓게 확산되어 있기 때문에, 주입되는 nZVI의 우수한 이동성 및 반응성을 이용하여 영향반경을 충분히 확보할 수 있도록, IW를 넓은 범위에 걸쳐 설치하여, 저농도의 nZVI를 주입하는 것이 바람직하다. 상기 저농도 오염지역의 상세 well 설치조건 및 nZVI 주입조건은 표 2에 나타난 바와 같다 (도 4).Since contaminants are widely spread in the low concentration contaminated area, it is preferable to install IW over a wide range to inject a low concentration of nZVI so that the influence radius can be sufficiently secured by using the excellent mobility and reactivity of the injected nZVI. desirable. Detailed well installation conditions and nZVI injection conditions of the low concentration contaminated area are shown in Table 2 (FIG. 4).

저농도 오염지역의 well 설치 및 주입조건 Well installation and injection condition in low concentration contaminated area 내용Contents 조건Condition 내용Contents 조건Condition IW 설치간격IW installation interval 5~10m5 ~ 10m Multi-MWMulti-MW 미설치Not installed IW 설치깊이IW installation depth 암반까지To bedrock GW-CirculationGW-Circulation 사용use TCE 농도(mg/L)TCE concentration (mg / L) 0.5이하0.5 or less 영향반경Radius of influence 5~10m5 ~ 10m nZVI 주입농도(g/L)nZVI injection concentration (g / L) 0.1~10g/L0.1 ~ 10g / L 처리기간Processing period 2~3개월2-3 months nZVI 추가주입nZVI additional injection Rebound 발생시 주입Injection when rebound occurs nZVI/TCE(g/g)nZVI / TCE (g / g) 400~600400-600

본 발명에 있어서, 상기 정화공법의 조건은 IW와 MW의 설치간격, IW와 MW의 설치위치, nZVI의 종류, nZVI의 주입농도 및 nZVI의 주입량으로 구성된 군에서 선택되는 것을 특징으로 할 수 있다.In the present invention, the conditions of the purification method may be selected from the group consisting of the installation interval of the IW and MW, the installation position of the IW and MW, the type of nZVI, the injection concentration of nZVI and the injection amount of nZVI.

본 발명에 있어서, 상기 고농도 오염지역에서는 2~3m 간격으로 IW를 설치하고, 상기 저농도 오염지역에서는 5~10m 간격으로 IW를 설치하는 것을 특징으로 할 수 있다.In the present invention, the IW may be installed at intervals of 2 to 3 m in the high concentration pollution area, and the IW may be installed at intervals of 5 to 10 m in the low concentration pollution area.

본 발명에 있어서, 상기 MW은 오염원의 정화효율을 모니터링하기 위하여 IW의 전단 및 후단에 각각 5~10m 간격으로 설치하는 것을 특징으로 할 수 있다. 예를 들어, 오염 지하수를 포함하는 오염구역에 IW를 설치한 후, 상기 IW의 전단 및 후단에 설치하면, 지하수가 흐르면서 IW를 통하여 nZVI가 주입되기 전 후의 오염원의 이동 및 저감정도를 지속적으로 모니터링한다 (도 5).In the present invention, the MW may be installed at the front and rear ends of the IW at intervals of 5 to 10 m, respectively, in order to monitor the purification efficiency of the pollutant. For example, if IW is installed in a contaminated area containing contaminated groundwater, and installed at the front and rear ends of the IW, the groundwater flows continuously and continuously monitors the movement and reduction of pollutant sources before nZVI is injected through the IW. (FIG. 5).

본 발명에 있어서, 상기 고농도 오염지역에서 상기 nZVI의 주입량은 TCE 100중량부에 대해서 20000~30000 중량부이고, 상기 저농도 오염지역에서 상기 nZVI의 주입량은 TCE 100중량부에 대해서 40000~60000 중량부인 것을 특징으로 할 수 있다. 상기 고농도 오염지역과 저농도 오염지역에 따라 다른 TCE 함량에 따라 nZVI 주입량을 결정한 뒤, 직접 주입함으로써 정화효율을 극대화시킬 수 있다. In the present invention, the injection amount of the nZVI in the high concentration contaminated area is 20000 to 30000 parts by weight based on 100 parts by weight of TCE, the injection amount of the nZVI in the low concentration contaminated area is 40000 to 60000 parts by weight based on 100 parts by weight of TCE It can be characterized. After the nZVI injection amount is determined according to the different TCE content according to the high concentration and low concentration pollution area, the injection efficiency can be maximized by direct injection.

본 발명에 있어서, 상기 nZVI의 주입은 상기 오염 토양의 투수계수(k, x10-4cm/sec)가 500~5000이면 직접 주입하고, 상기 오염 토양의 투수계수(k, x10-4cm/sec)가 0.01~20인 토양에서는 토양 파쇄(fracturing)을 실시하여 투수성을 확보 후 nZVI를 직접 주입하며, 상기 오염 토양에서 지표면이 오염되었거나 또는 외부로 반출하여 정화처리할 경우에는 nZVI를 토양에 살포 및 교반하는 것에 의해 수행되는 것을 특징으로 할 수 있다.In the present invention, the implant is nZVI permeability of the contaminated soil (k, x10 -4 cm / sec ) is 500 to 5000 is directly injected, and the permeability of the contaminated soil (k, x10 -4 cm / sec of In soils with 0.01 ~ 20), soil fracturing is carried out to ensure permeability, and then nZVI is injected directly, and when the surface is contaminated from the contaminated soil or taken out and cleaned, the nZVI is applied to the soil. And it may be characterized by being carried out by stirring.

즉, 오염지역이 토양을 포함하는 경우, 오염 토양의 투수계수에 따라 nZVI의 주입 방법을 달리하여 주입할 수 있다.In other words, when the contaminated area includes soil, the nZVI can be injected in different ways depending on the permeability coefficient of the contaminated soil.

오염 토양의 투수계수가(k, x10-4cm/sec)가 500이상 5000미만정도로 투수성이 좋다면, nZVI를 상기 오염 토양의 직접 주입하여도 정화효율이 우수하므로, nZVI를 직접 주입한다.If the permeability of the contaminated soil (k, x10 -4 cm / sec) is good permeability of more than 500 or less than 5000, nZVI is directly injected because nZVI is excellent in purifying efficiency even when directly injecting the contaminated soil.

오염 토양의 투수계수가(k, x10-4cm/sec)가 20이상 499정도의 투수성을 가진다면, nZVI를 상기 오염 토양의 직접 주입하는 방법과, 토양을 파쇄(Fracturing) 후, nZVI를 직접 주입하는 방법을 병행한다.If the permeability coefficient (k, x10 -4 cm / sec) of contaminated soil has a permeability of 20 or more and about 499, nZVI is directly injected into the contaminated soil, nZVI is applied after fracturing the soil. Combine the method of direct injection.

오염 토양의 투수계수(k, x10-4cm/sec)가 0.01~20정도로 투수성이 좋지않다면, 토양을 파쇄(Fracturing) 후, nZVI를 직접 주입하여 정화효율을 높이는 것이 바람직하다. 여기서, 상기 Fracturing의 공기파쇄(Pneumatic Fracturing), 수압파쇄(Hydraulic Fracutring) 및 폭파파쇄(Blast Fracutring)가 있다.If the permeability coefficient (k, x10 -4 cm / sec) of the contaminated soil is not good permeability of about 0.01 to 20, it is preferable to increase the purification efficiency by injecting nZVI directly after fracturing the soil. Here, the Fracturing of the air fracture (Pneumatic Fracturing), hydraulic fracturing (Hydraulic Fracutring) and blast fracture (Blast Fracutring).

오염 토양의 지표면이 오염되었거나 또는 외부 정화처리시설을 이용하는 것과 같이 외부로 반출하여(Ex-intu) 정화처리할 경우에는 nZVI를 오염 토양에 살포한 후, 상기 오염 토양을 교반(mixing)함으로써 정화처리를 할 수 있다.If the surface of the contaminated soil is contaminated or is purged by ex-intu, such as using an external purification treatment facility, nZVI is applied to the contaminated soil and then purified by mixing the contaminated soil. You can do

오염지역에 대한 정화공법 적용 조건, well 설치 및 nZVI 주입 후에는 MW를 이용하여 상기 오염지역을 모니터링한다.After the application of purification methods to the contaminated area, well installation and nZVI injection, the contaminated area is monitored using MW.

nZVI를 주입한 후 모니터링할 항목은, DO, pH, ORP 및 오염물질의 농도이다. nZVI 주입 후 nZVI과 산소의 반응으로 인하여 DO는 감소하고, pH는 H2 생성으로 인하여 증가하며, ORP는 감소하고, 오염물질의 농도는 nZVI의 정화작용으로 인하여 감소한다. 예를 들어, 본 발명에 따른 정화공법을 지하수에 적용할 경우, DO는 지하수 DO 농도(5~6mg/L)보다 내려가고, pH 는 H2 생성으로 기존보다 1~3까지 증가하며, ORP는 기존의 약 400~500mV이나, 주입 후에는 -400~700mV 까지 감소한다. 오염물질은 수일 내로 감소하는 것을 확인 할 수 있다. 그러나, 시간이 지날수록 nZVI의 반응성은 감소하게 되어 DO, pH, ORP 및 오염물질의 농도가 변화하게 된다. 특히, 먼저 ORP값이 점차적으로 증가하게 되면, 오염물질(TCE)의 Rebound 현상이 나타나므로 나노영가철의 재주입을 검토해야 한다. 이와 같이, DO, pH, ORP 및 오염물질의 농도 뿐만 아니라, 오염물질의 이동방향 등을 지속적을 모니터링하여 추가적으로 정화공법을 적용할 지 여부를 결정할 수 있다.Items to be monitored after injecting nZVI are DO, pH, ORP and contaminant concentrations. After nZVI injection, DO decreases due to the reaction of nZVI with oxygen, pH increases due to H 2 production, ORP decreases, and contaminant concentrations decrease due to the purification of nZVI. For example, when the purification method according to the present invention is applied to groundwater, the DO is lower than the groundwater DO concentration (5 ~ 6mg / L), the pH is increased to 1 to 3 by H 2 generation, ORP is It is about 400 ~ 500mV, but after injection, it decreases to -400 ~ 700mV. Contaminants can be seen to decrease within a few days. However, over time, the reactivity of nZVI decreases, resulting in changes in DO, pH, ORP and contaminant concentrations. In particular, when the ORP value gradually increases, reinjection of contaminants (TCE) occurs, so re-injection of nano-ferrous iron should be considered. As such, the concentration of DO, pH, ORP and contaminants, as well as the direction of movement of the contaminants may be continuously monitored to determine whether to apply the purification method.

본 발명에 있어서, 상기 정화공법은 유기염소오염 물질의 탈염화 처리, 중금속의 침전처리 및 질산염과 황산염의 환원처리에 의해 오염 토양 및 지하수를 정화하는 것을 특징으로 할 수 있다.In the present invention, the purification method may be characterized by purifying contaminated soil and groundwater by dechlorination of organic chlorine pollutants, precipitation of heavy metals and reduction of nitrates and sulfates.

본 발명에 있어서, 상기 P-nZVI는 폴리페놀(polyphenol)로 코팅되어 있는 Fe0 를 함유하는 것을 특징으로 할 수 있다.In the present invention, the P-nZVI may be characterized by containing Fe 0 coated with polyphenol (polyphenol).

상기 P-nZVI는 환원제를 이용하는 합성법인 습식환원법에 의하여 나노영가철을 제조하는 과정에서 천연물질인 Polyphenol을 첨가하여 제조할 수 있다. Polyphenol(hydrolyzable tannis)은 하이드록시기를 2개 이상 가지는 천연물질로서 다가 페놀이라고도 불리우며, 본 발명에 따른 Polyphenol로 코팅된 나노영가철은 상기 Polyphenol 코팅막으로 인하여 우수한 반응안정성, 분산성 및 이동성을 나타내며, 2차 오염을 유발하지 않게 된다.The P-nZVI may be prepared by adding polyphenol, which is a natural substance, in the process of preparing nano-iron iron by a wet reduction method, which is a synthetic method using a reducing agent. Polyphenol (hydrolyzable tannis) is a natural substance having two or more hydroxyl groups, also called a polyhydric phenol, and the nano-ferrous iron coated with polyphenol according to the present invention exhibits excellent reaction stability, dispersibility, and mobility due to the polyphenol coating film. It will not cause secondary pollution.

상기 P-nZVI는 환원제를 이용하는 합성법인 습식환원법에 의하여 나노영가철을 제조하는 과정에서 천연물질인 Polyphenol을 첨가하여 제조할 수 있다. 구체적으로, (a) Fe 함유 용액에 Polyphenol을 첨가하여 Polyphenol-Fe 용액을 제조하는 단계; 및 (b) 상기 Polyphenol-Fe 용액에 환원제를 첨가하여 합성된 P-nZVI를 수득하는 단계를 포함하는 제조방법에 의해 제조할 수 있다.The P-nZVI may be prepared by adding polyphenol, which is a natural substance, in the process of preparing nano-iron iron by a wet reduction method, which is a synthetic method using a reducing agent. Specifically, (a) adding a polyphenol to the Fe-containing solution to prepare a Polyphenol-Fe solution; And (b) adding a reducing agent to the polyphenol-Fe solution to obtain a synthesized P-nZVI.

본 발명에 따르면, 정화제로서 반응성, 분산성 및 이동성을 향상된 친환경 nZVI을 well을 통하여 오염지역에 직접 주입하므로 별도의 굴착이 필요하지 않고, 산업단지, 군부대 등에서 기본적인 사업활동 및 임무수행과 병행하여 토양, 지하수 등을 포함하는 오염지역을 정화할 수 있다. 또한, 오염지역에 대한 현장조사를 실시하여 오염지역의 농도에 따라, 또한 오염 토양의 경우 토양의 투수성에 따라 nZVI의 주입 방법을 달리하여 정화효율을 향상시킬 수 있다. According to the present invention, since the nZVI is directly injected into the contaminated area through the well, which improves reactivity, dispersibility, and mobility as a purifier, no additional excavation is required, and the soil is combined with basic business activities and performances in industrial complexes and military units. To clean up contaminated areas, including groundwater and groundwater. In addition, by conducting a site survey on the contaminated area, depending on the concentration of the contaminated area, and in the case of contaminated soil, the injection efficiency of nZVI can be improved by changing the method of injecting nZVI according to the permeability of the soil.

이하 실시예를 통하여 본 발명을 보다 상세히 설명한다. 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail by way of examples. These examples are intended to illustrate the present invention in more detail, and it will be apparent to those skilled in the art that the scope of the present invention is not limited to these examples.

특히, 본 실시예에서는 토양 또는 지하수를 정화하기 위한 정화제로서 P-nZVI를 사용하였으나, nZVI라면 이에 국한되지 않는다는 것은 당업자에게 있어서 자명한 사항이다.In particular, in the present embodiment, P-nZVI was used as a purifier for purifying soil or ground water, but it is obvious to those skilled in the art that the present invention is not limited thereto.

실시예 1: P-nZVI의 제조Example 1 Preparation of P-nZVI

P-nZVI 제조에 사용되는 시약으로는, Fe 함유 용액을 제조하기 위한 FeCl3·6H2O(Aldrich Chemical, USA), Polyphenol로서 Tannic acid(Aldrich Chemical, USA) 및 환원제로서 NaBH4(Aldrich Chemical, USA)을 사용하였다. 또한, 증류수로서 2차 증류수를 사용하되 N2로 퍼징(purging)시켜 0 < DO 농도 < 0.3 mg/L인 2차 증류수를 사용하였다. 하기 1-1 및 1-2의 공정은 모두 N2로 퍼징하여 혐기성상태로 실시하였다.Reagents used to prepare P-nZVI include FeCl 3 .6H 2 O (Aldrich Chemical, USA) for preparing Fe-containing solutions, Tannic acid (Aldrich Chemical, USA) as polyphenol and NaBH 4 (Aldrich Chemical, USA). In addition, secondary distilled water was used as distilled water, but secondary distilled water having 0 <DO concentration <0.3 mg / L was purged with N 2 . The following steps 1-1 and 1-2 were all purged with N 2 and carried out in an anaerobic state.

1-1. Polyphenol-Fe 용액 제조1-1. Polyphenol-Fe Solution Preparation

FeCl3·6H2O 13.52g을 100ml의 증류수에 녹여 0.5M Fe3+ 용액을 제조하였다. 상기 0.5M Fe3+ 용액 100ml에 Tannic acid 0.46g을 첨가하여 Polyphenol-Fe 수용액을 제조하였다.13.52 g of FeCl 3 · 6H 2 O was dissolved in 100 ml of distilled water to prepare a 0.5 M Fe 3+ solution. Polyphenol-Fe aqueous solution was prepared by adding 0.46 g of tannic acid to 100 ml of the 0.5 M Fe 3+ solution.

1-2. 환원제 첨가1-2. Reducing agent added

NaBH4 0.9g을 증류수 30ml에 녹여 0.8M NaBH4 용액을 제조한 후, 1-1에서 제조된 Polyphenol-Fe 수용액 10ml에 적가하되, 0.1~0.6ml/min의 속도로 적절히 변화시키면서 적가하여, P-nZVI를 제조하였다 (반응식 (1) 참조). 0.9 g of NaBH 4 was dissolved in 30 ml of distilled water to prepare a 0.8 M NaBH 4 solution. The solution was added dropwise to 10 ml of an aqueous polyphenol-Fe solution prepared in 1-1, and added dropwise while appropriately changing at a rate of 0.1 to 0.6 ml / min. -nZVI was prepared (see Scheme (1)).

4Fe3+ + 3BH4- + 9H2O -> 4Fe0 + 3H2BO3- + 12H+ + 6H2 (1)4Fe 3+ + 3BH 4- + 9H 2 O-> 4Fe0 + 3H 2 BO 3- + 12H + + 6H 2 (1)

1-3. 초음파 건조 및 세척1-3. Ultrasonic Drying and Washing

1-2에서 제조된 P-nZVI에 초음파를 20분 동안 가하여(sonication) 건조시킨 후, N2로 purging한 증류수로 3회 세척하여, 표면에 남아있는 B(Boron)과 불순물을 제거하였다 (도 9).After ultrasonication was applied to P-nZVI prepared in 1-2 for 20 minutes to dry, and then washed three times with distilled water purged with N 2 to remove B (Boron) and impurities remaining on the surface (Fig. 9).

실시예 2: P-nZVI 입자특성 분석Example 2: P-nZVI Particle Characterization

실시예 1에서 제조된 P-nZVI의 특성을 분석하였다. The properties of P-nZVI prepared in Example 1 were analyzed.

2-1. P-nZVI 입자의 크기 및 형상2-1. Size and Shape of P-nZVI Particles

TEM(Transmission electron microscopy )(JEM-2100F, JEOL, USA)을 이용하여 상기 P-nZVI 입자의 크기 및 형상을 분석하였다.Transmission electron microscopy (TEM) (JEM-2100F, JEOL, USA) was used to analyze the size and shape of the P-nZVI particles.

그 결과, 도 10의 (a)에 나타난 바와 같이, 상기 P-nZVI 입자는 평균 직경 40~80nm의 크기를 가진다는 것을 확인하였다. As a result, as shown in Figure 10 (a), it was confirmed that the P-nZVI particles have a size of 40 ~ 80nm in average diameter.

또한, 도 10의 (b)에 나타난 바와 같이, 상기 P-nZVI 입자는 표면에 5nm 두께의 Polyphenol 막이 생성되어 코팅된 형상을 가진다는 것을 확인하였다. In addition, as shown in (b) of FIG. 10, the P-nZVI particles were confirmed to have a polyphenol film having a thickness of 5 nm formed on the surface thereof to have a coated shape.

2-2. P-nZVI 성분 분석2-2. P-nZVI Component Analysis

XRD(X-ray diffraction)(Max-2500V, RIGAKU, JP) 분석을 통하여 P-nZVI의 주된 성분이 Fe0 임을 확인하였다.X-ray diffraction (XRD) analysis (Max-2500V, RIGAKU, JP) confirmed that the major component of P-nZVI was Fe 0 .

GC-TCD(Thermal Conductivity Detector, HP-6890, USA)에 의해 정량한 H2값 을 이용하여 P-nZVI에 함유된 Fe0 함량을 정량하되, 반응식 (2)에 따라 건조된 나노영가철에 HCl(37%)를 주입한 후 발생하는 H2를 정량하여 Fe0의 함량을 정량하였다. The content of Fe 0 contained in P-nZVI was quantified using the H 2 value quantified by GC-TCD (Thermal Conductivity Detector, HP-6890, USA). The amount of Fe 0 was quantified by quantifying H 2 generated after (37%) injection.

정량 결과, P-nZVI에 함유된 Fe0 함량은 47.3%인 것을 확인하였다. 기존의 nZVI에 함유된 Fe0 함량이 51.29%(Yueqiang Liu and Gregory V. Lowry., Environ. Sci. Technol. 39:1338-1345, 2005)이므로, 상기 P-nZVI와 nZVI에 함유된 Fe0 함량은 큰 차이가 없다는 것을 알 수 있었다.As a result of quantification, it was confirmed that the Fe 0 content contained in P-nZVI was 47.3%. Since the Fe 0 content in the existing nZVI is 51.29% (Yueqiang Liu and Gregory V. Lowry., Environ. Sci. Technol. 39: 1338-1345, 2005), the Fe 0 content in the P-nZVI and nZVI Could see no big difference.

Fe0 + 2H+ -> Fe2+ + H2↑ (2)Fe 0 + 2H + -> Fe 2+ + H 2 ↑ (2)

2-3. P-nZVI 비표면적 측정2-3. P-nZVI Specific Surface Area Measurement

ASAP 2010 Analyzer BET(Micromeritics, USA)을 이용하여, P-nZVI에 대한 BET 분석을 하였다. 그 결과, 평균 비표면적 (Specific Surface Area, SSA) 값은 약 17.27m2/g 인 것을 확인하였다. 상기 P-nZVI 의 비표면적이 적게 측정된 이유는 Polyphenol과 같은 고분자 물질이 표면에 코팅되어 있는 경우에는 Nitrogen gas와 adsorbent(P-nZVI)간의 Soild-Gas attractivity가 낮아져서 비표면적 값이 적게 나왔다고 볼 수 있다. BET analysis of P-nZVI was performed using ASAP 2010 Analyzer BET (Micromeritics, USA). As a result, it was confirmed that the average specific surface area (SSA) value was about 17.27 m 2 / g. The reason why the specific surface area of P-nZVI was measured was that the surface area of Ni-P-NZVI was lowered due to lower Soil-Gas attractivity between Nitrogen gas and adsorbent (P-nZVI). have.

실시예 3: P-nZVI 및 DI-PRB를 이용한 지하수 정화공법Example 3 Groundwater Purification using P-nZVI and DI-PRB

3-1: 현장조사3-1: Field Survey

오염지역의 지하수 흐름은 오염원이 배출된 곳으로부터 산업단지지역으로 지하수가의 주흐름 방향은 북동방향으로 확인을 하였으며, 지하수 수위는 약 6.5m 로 조사되었다. 오염지역 지하수의 수소이온농도는 일반적인 지하수의 수소이온농도 범위로 나타났다. 전기전도도는 118~1,243μS/cm이며, 평균 468μS/cm로 나타났다. 용존산소량(3.3~4.8mg/L), 산화환원전위(200~210mV, 400~600mV) 및 pH(4.8~6.5)는 대체로 천부지하수 수질특성인 산화환경을 나타내고 있었다. 용존 철이온은 최대 12mg/L(평균 1.08mg/L)이고, 용존 망간이온은 최대 2.48 mg/L(평균 0.403 mg/L)로 나타났다. 오염지역의 TCE 오염도는 최초 오염이 확인된 시점에는 최대 6mg/L 이상 측정되는 지점도 있었지만, 최근에는 최대 2mg/L 정도 측정되고 되고 있다. 상기 측정된 TCE 오염도 변화로부터 오염원이 더욱 넓게 확산되어 있다는 것을 나타내고 있다. 실제 본 공법을 적용할 지점에서 TCE 농도는 이전 조사 결과 문헌에서는 0.4mg/L 였으나 실제로 분석 결과에서는 1.6mg/L 정도 측정되었다.The groundwater flow in the polluted area was confirmed from the source of the pollutant to the industrial complex area, and the main flow direction of the groundwater was in the northeast direction, and the groundwater level was about 6.5m. Hydrogen ion concentration in groundwater of contaminated area was shown to be within the range of hydrogen ion concentration in general groundwater. Electrical conductivity was 118 ~ 1,243μS / cm and averaged 468μS / cm. Dissolved oxygen levels (3.3-4.8 mg / L), redox potentials (200-210 mV, 400-600 mV) and pH (4.8-6.5) showed an oxidative environment that was characteristic of shallow groundwater. Dissolved iron ions up to 12 mg / L (average 1.08 mg / L) and dissolved manganese ions up to 2.48 mg / L (average 0.403 mg / L). TCE contamination levels in contaminated areas were measured up to 6 mg / L at the time of initial contamination, but have recently been measured at up to 2 mg / L. From the measured TCE contamination change, it shows that the pollutant is more widely spread. In practice, the TCE concentration was 0.4 mg / L in the literature, but 1.6 mg / L in the analysis results.

전체 테스트 지역은 10m * 10m * 12m로 전체 오염지역 중에서 저농도 오염지역(Plume 지역)을 대상으로 하였다. The total test area was 10m * 10m * 12m and the low concentration polluted area (Plume area) was selected.

현장조사는 다음과 같은 장비로 조사를 하였다. 지하수위(Water Level Indicator-MODEL Waterra HS-1), DO, pH, ORP는 휴대용 측정장비 Orion Star 3를 이용하여 분석하였다. 오염물질 PCE(perchloro-ethylene), TCE (trichloroethylene), DCE(1,2-dichloroetylene)분석은 GC-ECD(Agilent, USA)를 이용하여 분석하였으며, Heavy metal은 AA(atomic absorption, Varian, USA)를 이용 하여 분석을 하였다.The site survey was conducted with the following equipment. Water level indicator (MODEL Waterra HS-1), DO, pH and ORP were analyzed using Orion Star 3, a portable measuring device. Contaminants PCE (perchloro-ethylene), TCE (trichloroethylene), DCE (1,2-dichloroetylene) analysis were analyzed using GC-ECD (Agilent, USA), heavy metals AA (atomic absorption, Varian, USA) The analysis was performed using.

실험대상 오염지역의 현황Status of Contaminated Area MW-21 Well PropertyMW-21 Well Property 위치location 지하수수위(m)Groundwater level (m) pH
(mg/L)
pH
(mg / L)
EC
(mg/L)
EC
(mg / L)
DO
(mg/L)
DO
(mg / L)
ORP
(mg/L)
ORP
(mg / L)
Temp
(mg/L)
Temp
(mg / L)
PCE
(mg/L)
PCE
(mg / L)
TCE
(mg/L)
TCE
(mg / L)
DCE
(mg/L)
DCE
(mg / L)
MWMW 6.556.55 6.496.49 364.00364.00 4.834.83 210.00210.00 15.0015.00 0.00.0 0.6~1.60.6 to 1.6 0.00.0 Total WellTotal well 4.804.80 6.476.47 503.54503.54 3.033.03 202.22202.22 15.4115.41 0.00.0 01.~2.001. ~ 2.0 0.00.0

3-2: 정화공법 조건 모델링3-2: Modeling of Purification Condition

3-1에서 Plume 지역을 대상으로 한다는 결과에 따라, Plume 지역에 적용할 정화공법 조건을 모델링 하였다. 본 실시예에서 다수 개의 well을 IW1, IW2, MW21 등과 같이 숫자로 식별하였다.According to the result of targeting the Plume area in 3-1, the purification process conditions to be applied to the Plume area were modeled. In this example, a plurality of wells were identified by numbers such as IW1, IW2, MW21, and the like.

3-3: well 설치3-3: well installation

Well은 Geo-prove를 이용하여 시추를 하였으며, Well 내벽 size는 50mm 이며, 1.5m 길이의 Well을 연결하여 지하 12m까지 설치하였으며 지하수위 6.5m 이하 부터는 Well screen을 두어 nZVI를 주입 및 지하수 모니터링을 할 수 있게 하였다. Well 설치 후 Well 외벽은 투수성을 충분히 확보하기 위하여 규사를 주입하였으며, 최종 상단부는 시멘트로 Well을 고정하였다.Well was drilled using geo-prove, well wall size was 50mm, 1.5m length well was connected and installed up to 12m underground, and well screen was installed from below 6.5m below ground level for nZVI injection and groundwater monitoring. Made it possible. After the well installation, the outer wall of the well was injected with silica sand to secure the permeability sufficiently, and the final upper part was fixed with cement.

nZVI 를 주입하기 위한 IW는 2개(IW1 및 IW2)를 설치하였으며, 지하수 흐름을 기준으로 IW 앞쪽에 기존의 MW(MW12 및 MW21) 이용하여 지하수 및 오염원의 유입을 지속적으로 모니터링 하였으며, 뒷쪽에 MW를 지하수 흐름 방향으로 각각 3~6m 간격으로 5개(MW1, MW2. MW3, MW4 및 MW5)를 추가로 설치하였다.Two IWs for injecting nZVI were installed (IW1 and IW2), and the groundwater and pollutant inflows were continuously monitored using the existing MW (MW12 and MW21) in front of IW based on groundwater flow, and MW at the back. 5 (MW1, MW2, MW3, MW4 and MW5) were additionally installed at intervals of 3-6 m each in the direction of the groundwater flow.

3-4: nZVI 주입3-4: nZVI injection

nZVI를 주입하기 위하여 오염지역의 TCE 오염량을 산정하여 이에 대해 nZVI 제조하였다. 오염지역의 정화부지 내 전체 오염물질 TCE 양은 43.68g 산정되었으며, 이에 nZVI 3.37kg이 필요할 것으로 예상되었으며, 여기에 안전율 3.0배 적용하여 총 11kg의 nZVI을 제조하여 주입하였다.In order to inject nZVI, the amount of TCE contamination in the contaminated area was calculated and nZVI was prepared. The total amount of TCE in the contaminated area was estimated to be 43.68g, which required 3.37kg of nZVI, and a total of 11kg of nZVI was prepared by applying a safety factor of 3.0 times.

Fe0/Soil 비율은 0.001~0.00001로 하였으며, nZVI 농도를 0.0025kg/L로 하여 IW를 통해 오염지역으로 주입을 하였다.Fe 0 / Soil ratio was 0.001 ~ 0.00001, nZVI concentration was 0.0025kg / L was injected into the contaminated area through the IW.

상기 nZVI 11kg을 2회에 걸처 주입을 하였으며, 1차 주입에는 오염물질의 Rebound 시점을 빨리 파악하기 위하여 2.5kg을 주입하였으며, Rebound를 확인 후 2차 주입에는 총 8.5kg을 주입하였다. 11 kg of nZVI was injected twice, and 2.5 kg was injected in the first injection to quickly determine the point of rebound of the pollutant, and 8.5 kg was injected in the second injection after confirming the rebound.

오염지역 특성 및 nZVI 주입 조건Contaminated area characteristics and nZVI injection conditions Characteristic of Field Test SiteCharacteristic of Field Test Site ParameterParameter EstimatesEstimates UnitsUnits LengthLength 6.56.5 mm WidthWidth 44 mm AreaArea 2626 m2 m 2 DepthDepth 66 mm Total Vol.Total Vol. 156156 m3 m 3 PorosityPorosity 3535 %% Plume Total Pore Vol.Plume Total Pore Vol. 54.654.6 m3 m 3 Avg. Contaminant Conc.Avg. Contaminant Conc. 1One ppm(mg/L)ppm (mg / L) Mass of Contaminant in G.WMass of Contaminant in G.W 43.6843.68 gg nZVI Demand in FieldnZVI Demand in Field nZVI in SlurrynZVI in Slurry 0.00250.0025 kg/Lkg / L Soil MassSoil mass 134.862134.862 tt F0/Soil ratioF 0 / Soil ratio 0.001~0.00001
(0.000025)
0.001-0.00001
(0.000025)
nZVInZVI 3.371553.37155 kgkg Confidence FactorConfidence Factor 3.03.0 nZVI DemandnZVI Demand 10.11510.115 kgkg Injection nZVIInjection nZVI 1111 kgkg F0/TCE ratioF 0 / TCE ratio 232/252232/252

3-5: 모니터링3-5: monitoring

nZVI 주입 후 약 4개월 동안 모니터링을 하였다. Monitoring was performed for about 4 months after nZVI infusion.

그 결과, 도 6에 나타난 바와 같이, 1차 주입 후에는 약 1개월 지난 후 TCE Rebound 현상을 확인하였으며, 2차 주입 후에는 약 3개월이 지나서 점차적으로 Rebound 되는 것을 확인하였다. 초기 TCE 농도 0.6~1.6mg/L에서 nZVI 주입 후에는 약 0.01~0.03mg/L 까지 감소하여, TCE의 전체 제거율은 약 85%인 것을 확인할 수 있었다.As a result, as shown in Figure 6, after the first injection was confirmed about 1 month after the TCE rebound phenomenon, after the second injection was confirmed that gradually rebound after about 3 months. At the initial TCE concentration of 0.6-1.6mg / L, after nZVI injection, it decreased to about 0.01 ~ 0.03mg / L, and the total removal rate of TCE was about 85%.

nZVI 주입 후 pH는 점차적으로 증가를 하여 초기 pH 6.0에서 주입 후 최대 9.0까지 증가를 하였으며, DO는 초기 5.6~8.0mg/L에서 nZVI 주입 후 최대 0.5mg/L까지 감소하였다. 또한, 도 7에 나타난 바와 같이, ORP는 주입전 초기에는 400mV 였으나 nZVI 주입후 -400 ~ - 500mV 까지 감소하여 강력한 환원 분위기를 조성하였다. After nZVI injection, the pH gradually increased to an initial pH of 6.0, up to 9.0 after injection, and DO decreased from an initial 5.6 to 8.0 mg / L up to 0.5 mg / L after nZVI injection. In addition, as shown in Figure 7, ORP was 400mV at the beginning before injection, but after the nZVI injection reduced to -400 ~ -500mV to create a strong reducing atmosphere.

영향반경은 가장 멀리 위치하고 있는 MW 5에서도 pH 6.0에서 pH 7.5까지 증가하였고, DO값은 7.2mg/L에서 최대 1.0g/L까지 감소하였으며, ORP는 350mV에서 최대 약 -400mV까지 감소를 하는 것을 확인하였다. 이것을 바탕으로 영향반경이 최소 약 5m 이상이 되는 것을 확인하였으며, 또한 약 12m 떨어진 지상으로 nZVI이 유출 되는 것을 보아 최대 12m까지 영향반경을 확보할 수 있음을 알 수 있었다 (도 8). The radius of influence increased from pH 6.0 to pH 7.5 even in the farthest MW 5, DO value decreased from 7.2 mg / L up to 1.0 g / L, and ORP decreased from 350 mV up to about -400 mV. It was. Based on this, the impact radius was confirmed to be at least about 5m or more, and it was also seen that nZVI flowed out to the ground about 12m away to secure an influence radius up to 12m (Fig. 8).

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다. While the present invention has been particularly shown and described with reference to specific embodiments thereof, those skilled in the art will appreciate that such specific embodiments are merely preferred embodiments and that the scope of the present invention is not limited thereby. something to do. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

도 1은 투수성 반응벽체(Permeable Reactive Barriers: PRBs)를 오염지역에 시추한 그림이다.1 is a diagram of permeable reactive barriers (PRBs) drilled in a contaminated area.

도 2는 본 발명에 따른 정화공법의 흐름도이다.2 is a flow chart of the purification method according to the present invention.

도 3은 본 발명에 따라 구분된 고농도 오염지역을 나타낸 것이다.Figure 3 shows a high concentration of contaminated area according to the present invention.

도 3은 본 발명에 따라 구분된 저농도 오염지역을 나타낸 것이다.Figure 3 shows a low concentration of contaminated area according to the present invention.

도 5는 본 발명에 따른 정화공법 적용대상 오염지역에 WELL이 설치된 위치(a); 및 nZVI를 주입하는 모습((b) 및 (c))를 나타낸 것이다.5 is a position (W) WELL is installed in the pollution area subject to the purification method according to the present invention; And injecting nZVI ((b) and (c)).

도 6은 오염지역에 nZVI 주입 후 TCE 농도변화를 나타낸 그래프이다.6 is a graph showing the change in TCE concentration after nZVI injection into the contaminated area.

도 7은 오염지역에 nZVI 주입 후 ORP 변화를 나타낸 그래프이다.7 is a graph showing the change in ORP after nZVI injection in the contaminated area.

도 8은 nZVI 및 DI-PRB을 이용한 오염 토양 또는 지하수를 포함하는 오염지역 정화공법의 모식도이다.8 is a schematic diagram of a contaminated area purification method including contaminated soil or groundwater using nZVI and DI-PRB.

도 9는 본 발명에 따른 P-nZVI의 제조공정도이다.9 is a manufacturing process diagram of P-nZVI according to the present invention.

도 10은 본 발명에 따른 P-nZVI의 TEM 사진이다.10 is a TEM photograph of P-nZVI according to the present invention.

Claims (9)

다음의 단계를 포함하는, nZVI(Nano-Scale Zero-Valent Iron) 및 직접주입공법(Direct Injection-Permeable Reactive Barrier, DI-PRB)을 이용한 오염 토양 또는 지하수의 정화공법:Purification of contaminated soil or groundwater using Nano-Scale Zero-Valent Iron (nZVI) and Direct Injection-Permeable Reactive Barrier (DI-PRB), including the following steps: (a) 오염 토양 또는 지하수를 포함하는 오염지역을 고농도 오염지역(Hot Source) 및 저농도 오염지역(Plume)으로 구분하는 단계;(a) dividing the contaminated area including contaminated soil or groundwater into a hot source and a low concentration pollution; (b) 상기 고농도 오염지역 또는 저농도 오염지역에 주입정(Injection Well, IW), 관측정(Monitoring Well, MW) 및 멀티-관측정(Multi Monitoring Well, M-MW)을 설치하는 단계;(b) installing an injection well (IW), a monitoring well (MW) and a multi-monitoring well (M-MW) in the high concentration or low concentration contamination area; (c) 상기 IW를 통하여 nZVI를 주입하는 단계; 및 (c) injecting nZVI through the IW; And (d) 상기 MW 및 M-MW을 이용하여 상기 고농도 오염지역 또는 저농도 오염지역의 영향반경, 정화효율 및 위해성을 모니터링(monitoring)하는 단계.(d) monitoring the impact radius, purification efficiency and risk of the high concentration or low concentration contamination area using the MW and M-MW. 제1항에 있어서, nZVI(Nano-Scale Zero-Valent Iron)는 Fe0를 함유하고 Polyphenol로 코팅되어 있는 P-nZVI(Polyphenol-coated Nano Zero-Valent Iron)인 것을 특징으로 하는 공법.The method of claim 1, wherein the nano-scale zero-valent iron (nZVI) is polyphenol-coated nano zero-valent iron (P-nZVI) containing Fe 0 and coated with polyphenol. 제1항에 있어서, 상기 고농도 오염지역은 TCE(Trichloroethylene) 농도가 0.5ppm 이상이고, 상기 저농도 오염지역은 TCE(Trichloroethylene) 농도가 0.5ppm 미만인 것을 특징으로 하는 공법.The method of claim 1, wherein the high concentration contaminated area has a TCE (Trichloroethylene) concentration of 0.5 ppm or more, and the low concentration contaminated area has a TCE (Trichloroethylene) concentration of less than 0.5 ppm. 제1항에 있어서, 상기 정화공법은 IW와 MW의 설치간격, IW와 MW의 설치위치 및 nZVI의 주입농도로 구성된 군에서 선택되는 조건을 조절하는 것을 특징으로 하는 공법.The method according to claim 1, wherein the purification method adjusts conditions selected from the group consisting of IW and MW installation intervals, IW and MW installation positions, and nZVI injection concentrations. 제1항에 있어서, 상기 고농도 오염지역에서는 2~3m 간격으로 IW를 설치하고, 상기 저농도 오염지역에서는 5~10m 간격으로 IW를 설치하는 것을 특징으로 하는 공법.The method according to claim 1, wherein the IW is installed at intervals of 2 to 3 m in the high concentration polluted area, and the IW is installed at intervals of 5 to 10 m in the low concentration polluted area. 제1항에 있어서, 상기 MW은 오염원의 정화효율을 모니터링하기 위하여 IW의 전단 및 후단에 5~10m 간격으로 설치하는 것을 특징으로 하는 공법.The method according to claim 1, wherein the MW is installed at the front and rear ends of the IW at intervals of 5 to 10 m to monitor the purification efficiency of the pollutant. 제1항에 있어서, 상기 고농도 오염지역에서 상기 nZVI의 주입량은 TCE(trichloroethylene) 100중량부에 대해서 20000~30000 중량부이고, 상기 저농도 오염지역에서 상기 nZVI의 주입량은 TCE 100중량부에 대해서 40000~60000 중량부인 것을 특징으로 하는 공법.According to claim 1, wherein the injection amount of the nZVI in the high concentration of contaminated region is 20000 ~ 30000 parts by weight based on 100 parts by weight of TCE (trichloroethylene), The injection amount of the nZVI in the low concentration contaminated area is 40000 ~ 100 parts by weight It is 60000 parts by weight. 제1항에 있어서, 상기 nZVI의 주입은 The method of claim 1, wherein the injection of nZVI 상기 오염 토양의 투수계수가(k, x10-4cm/sec)가 500이상 5000미만이면 직접 주입하고, If the permeability coefficient (k, x10 -4 cm / sec) of the contaminated soil is 500 or less than 5000 directly injected, 상기 오염 토양의 투수계수가(k, x10-4cm/sec)가 20이상 499미만이면 직접 주입 및 토양 파쇄(fracturing) 후 직접 주입을 병행하여 주입하며,If the permeability coefficient of the contaminated soil (k, x10 -4 cm / sec) is 20 or more and less than 499, the direct injection and the direct injection after the soil fracturing (fracturing) is injected in parallel, 상기 오염 토양의 투수계수(k, x10-4cm/sec)가 0.01~20인 토양에서는 토양 파쇄(fracturing)을 실시하여 투수성을 확보 후 nZVI를 직접 주입하는 것을 특징으로 하는 공법.In a soil having a permeability coefficient (k, x10 -4 cm / sec) of 0.01 to 20 of the contaminated soil, the method is characterized in that the nZVI is injected directly after the soil crushing (fracturing) to secure the permeability. 제1항에 있어서, 주입된 nZVI에 의한 유기할로겐오염 물질의 탈염화 처리, 중금속의 침전처리 및 질산염과 황산염의 환원처리를 이용하여 오염 토양 및 지하수를 정화하는 것을 특징으로 하는 공법.The method according to claim 1, wherein the contaminated soil and groundwater are purified by desalination of the organic halogen contaminants with the injected nZVI, precipitation of heavy metals, and reduction of nitrates and sulfates.
KR1020090103592A 2009-10-29 2009-10-29 Method for purifying contaminated soil/groundwater using nano-scale zero-valent iron and direct injection-permeable reactive barrier KR101027140B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090103592A KR101027140B1 (en) 2009-10-29 2009-10-29 Method for purifying contaminated soil/groundwater using nano-scale zero-valent iron and direct injection-permeable reactive barrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090103592A KR101027140B1 (en) 2009-10-29 2009-10-29 Method for purifying contaminated soil/groundwater using nano-scale zero-valent iron and direct injection-permeable reactive barrier

Publications (1)

Publication Number Publication Date
KR101027140B1 true KR101027140B1 (en) 2011-04-05

Family

ID=44049648

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090103592A KR101027140B1 (en) 2009-10-29 2009-10-29 Method for purifying contaminated soil/groundwater using nano-scale zero-valent iron and direct injection-permeable reactive barrier

Country Status (1)

Country Link
KR (1) KR101027140B1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101367406B1 (en) 2013-10-17 2014-02-26 주식회사 지오그린이십일 Apparatus and method for injecting zero valent nano-iron
CN104324938A (en) * 2014-11-18 2015-02-04 青岛新天地环境保护有限责任公司 Horizontal permeable reaction layer for soil remediation and soil remediating method
EP2921457A1 (en) * 2014-03-18 2015-09-23 Sita Remediation Method for on-site decontamination of soil or groundwater contaminated with halogenated organic compounds by using cast iron, and reactive powder for carrying out said method
CN107265665A (en) * 2017-08-04 2017-10-20 南京大学 It is a kind of for infiltration type reaction wall composite of the chloride pollution amelioration containing nitro-aromatic of underground water and preparation method thereof
KR101982180B1 (en) * 2018-01-02 2019-08-28 주식회사 오이코스 Complex and advanced injection well
CN110303039A (en) * 2019-07-25 2019-10-08 北京高能时代环境技术股份有限公司 The method of Zero-valent Iron joint indigenous microorganism in-situ immobilization soil polluted by organic chloride
CN110369483A (en) * 2019-07-03 2019-10-25 湖南工业大学 A kind of method of in-situ immobilization Heavy-Metal-Contaminated Environments soil
CN110369482A (en) * 2019-07-03 2019-10-25 湖南工业大学 A kind of method of repairing environment hormone contaminated soil
CN110566197A (en) * 2019-07-26 2019-12-13 中国矿业大学 Method for measuring effective influence radius of coal seam high-pressure medium injected into drill hole
RU2709593C1 (en) * 2019-05-07 2019-12-18 Роман Николаевич Семенцов Method for purification of contaminated ground water using nanosized iron of zero valence
CN110814013A (en) * 2019-11-22 2020-02-21 浙江大学 Method for simultaneously producing and repairing organic contaminated paddy farmland soil
CN111233069A (en) * 2020-01-17 2020-06-05 郑州大学 Permeable reactive barrier active material and preparation method thereof
CN111777185A (en) * 2020-07-10 2020-10-16 北京伦至环境科技有限公司 Anti-blocking zero-valent iron permeable reaction wall
CN113042518A (en) * 2021-03-12 2021-06-29 中南大学 Method for reinforcing transmission of chemical repairing agent for heavy metal polluted site
CN117102223A (en) * 2023-08-28 2023-11-24 中南大学 Injection, monitoring and detection integrated repairing equipment and method for heavy metal pollution site

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090083803A (en) * 2008-01-30 2009-08-04 주식회사 지오웍스 A mesopore construction for the remediation of nitrate, a reactive wall manufactured therefrom and a remediation method of nitrate using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090083803A (en) * 2008-01-30 2009-08-04 주식회사 지오웍스 A mesopore construction for the remediation of nitrate, a reactive wall manufactured therefrom and a remediation method of nitrate using the same

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101367406B1 (en) 2013-10-17 2014-02-26 주식회사 지오그린이십일 Apparatus and method for injecting zero valent nano-iron
EP2921457A1 (en) * 2014-03-18 2015-09-23 Sita Remediation Method for on-site decontamination of soil or groundwater contaminated with halogenated organic compounds by using cast iron, and reactive powder for carrying out said method
FR3018707A1 (en) * 2014-03-18 2015-09-25 Sita Remediation PROCESS FOR THE IN SITU DEPOLLUTION OF SOIL OR GROUNDWATER CONTAMINATED BY HALOGENIC ORGANIC COMPOUNDS BY MEANS OF ZERO-VALENCED IRON AND REACTIVE POWDER FOR CARRYING OUT SAID METHOD
CN104324938A (en) * 2014-11-18 2015-02-04 青岛新天地环境保护有限责任公司 Horizontal permeable reaction layer for soil remediation and soil remediating method
CN107265665A (en) * 2017-08-04 2017-10-20 南京大学 It is a kind of for infiltration type reaction wall composite of the chloride pollution amelioration containing nitro-aromatic of underground water and preparation method thereof
KR101982180B1 (en) * 2018-01-02 2019-08-28 주식회사 오이코스 Complex and advanced injection well
RU2709593C1 (en) * 2019-05-07 2019-12-18 Роман Николаевич Семенцов Method for purification of contaminated ground water using nanosized iron of zero valence
CN110369483A (en) * 2019-07-03 2019-10-25 湖南工业大学 A kind of method of in-situ immobilization Heavy-Metal-Contaminated Environments soil
CN110369482A (en) * 2019-07-03 2019-10-25 湖南工业大学 A kind of method of repairing environment hormone contaminated soil
CN110303039B (en) * 2019-07-25 2021-07-23 北京高能时代环境技术股份有限公司 Method for in-situ remediation of organochlorine contaminated soil by zero-valent iron and indigenous microorganisms
CN110303039A (en) * 2019-07-25 2019-10-08 北京高能时代环境技术股份有限公司 The method of Zero-valent Iron joint indigenous microorganism in-situ immobilization soil polluted by organic chloride
CN110566197B (en) * 2019-07-26 2020-12-25 中国矿业大学 Method for measuring effective influence radius of coal seam high-pressure medium injected into drill hole
CN110566197A (en) * 2019-07-26 2019-12-13 中国矿业大学 Method for measuring effective influence radius of coal seam high-pressure medium injected into drill hole
CN110814013A (en) * 2019-11-22 2020-02-21 浙江大学 Method for simultaneously producing and repairing organic contaminated paddy farmland soil
CN111233069A (en) * 2020-01-17 2020-06-05 郑州大学 Permeable reactive barrier active material and preparation method thereof
CN111233069B (en) * 2020-01-17 2022-03-11 郑州大学 Permeable reactive barrier active material and preparation method thereof
CN111777185A (en) * 2020-07-10 2020-10-16 北京伦至环境科技有限公司 Anti-blocking zero-valent iron permeable reaction wall
CN113042518A (en) * 2021-03-12 2021-06-29 中南大学 Method for reinforcing transmission of chemical repairing agent for heavy metal polluted site
CN117102223A (en) * 2023-08-28 2023-11-24 中南大学 Injection, monitoring and detection integrated repairing equipment and method for heavy metal pollution site
CN117102223B (en) * 2023-08-28 2024-04-30 中南大学 Injection, monitoring and detection integrated repairing equipment and method for heavy metal pollution site

Similar Documents

Publication Publication Date Title
KR101027140B1 (en) Method for purifying contaminated soil/groundwater using nano-scale zero-valent iron and direct injection-permeable reactive barrier
Kocur et al. Contributions of abiotic and biotic dechlorination following carboxymethyl cellulose stabilized nanoscale zero valent iron injection
Reddy Electrokinetic remediation of soils at complex contaminated sites: Technology status, challenges, and opportunities
Thomé et al. Review of nanotechnology for soil and groundwater remediation: Brazilian perspectives
Ren et al. Enhanced electrokinetic technologies with oxidization–reduction for organically-contaminated soil remediation
Mackenzie et al. Carbo-Iron as improvement of the nanoiron technology: From laboratory design to the field test
ES2754812T5 (en) Compositions for the removal of hydrocarbons and halogenated hydrocarbons from contaminated environments
Yuan et al. The mechanisms of arsenic removal from soil by electrokinetic process coupled with iron permeable reaction barrier
Cook Assessing the use and application of zero-valent iron nanoparticle technology for remediation at contaminated sites
Wang et al. Key factors to enhance soil remediation by bioelectrochemical systems (BESs): A review
Rayaroth et al. In situ chemical oxidation of contaminated groundwater using a sulfidized nanoscale zerovalent iron–persulfate system: insights from a box-type study
CN112110571A (en) Permeable reactive barrier and repairing method
Su et al. Comparison of the colloidal stability, mobility, and performance of nanoscale zerovalent iron and sulfidated derivatives
Mdlovu et al. In-situ reductive degradation of chlorinated DNAPLs in contaminated groundwater using polyethyleneimine-modified zero-valent iron nanoparticles
Sarkar et al. Nanoparticles for soil remediation
Cao et al. Remediation of arsenic contaminated soil by coupling oxalate washing with subsequent ZVI/Air treatment
Falyouna et al. Removal of ciprofloxacin from aqueous solutions by nanoscale zerovalent iron-based materials: a mini review
Taghizadeh et al. The use of nano zero valent iron in remediation of contaminated soil and groundwater
Mdlovu et al. Decontamination of 1, 2-dichloroethane DNAPL in contaminated groundwater by polymer-modified zero-valent iron nanoparticles
Phenrat et al. Nanoscale zero-valent iron particles for water treatment: From basic principles to field-scale applications
Shariatmadari et al. Enhancement of hexavalent chromium [Cr (VI)] remediation from clayey soils by electrokinetics coupled with a nano-sized zero-valent iron barrier
Ren et al. Evaluation of self-oxidation and selectivity of iron-based reductant in anaerobic pentachlorophenol contaminated soil
Litter et al. In-situ technologies for groundwater treatment: the case of arsenic
TWI335950B (en)
Nwachukwu Prospective techniques for in-situ treatment and protection of aquifers: A sustainable hydrology review

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140318

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160325

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170210

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180126

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20200116

Year of fee payment: 10