KR101020236B1 - Preparation of iron nanofluids as fuel additive for Dust and NOx reduction - Google Patents

Preparation of iron nanofluids as fuel additive for Dust and NOx reduction Download PDF

Info

Publication number
KR101020236B1
KR101020236B1 KR1020080075267A KR20080075267A KR101020236B1 KR 101020236 B1 KR101020236 B1 KR 101020236B1 KR 1020080075267 A KR1020080075267 A KR 1020080075267A KR 20080075267 A KR20080075267 A KR 20080075267A KR 101020236 B1 KR101020236 B1 KR 101020236B1
Authority
KR
South Korea
Prior art keywords
iron
nanoparticles
fuel additive
dust
fuel
Prior art date
Application number
KR1020080075267A
Other languages
Korean (ko)
Other versions
KR20100013654A (en
Inventor
김동찬
우제경
노남선
김진훈
이영서
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to KR1020080075267A priority Critical patent/KR101020236B1/en
Publication of KR20100013654A publication Critical patent/KR20100013654A/en
Application granted granted Critical
Publication of KR101020236B1 publication Critical patent/KR101020236B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/02Use of additives to fuels or fires for particular purposes for reducing smoke development

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)

Abstract

본 발명은 산업체의 연소설비에서 중유 및 경유를 연소시킬 시 발생되는 미연탄소 및 질소산화물(NOx)를 저감하기 위한 연료첨가제 및 그 제조방법에 관한 것으로, 더욱 상세하게는 황산제1철로부터 화학적 합성법에 의해 철산화물 또는 철수산화물의 나노입자를 제조하고, 이에 계면활성제를 가해 나노입자를 친유성으로 표면개질하여 유기용매에 분산함으로써, 연료류에 미량 첨가하여 연소할 시 미연탄소 및 질소산화물을 저감시키는 것이다.The present invention relates to a fuel additive for reducing unburned carbon and nitrogen oxides (NOx) generated when burning heavy oil and light oil in an industrial combustion facility, and more particularly, to chemical synthesis from ferrous sulfate. To prepare nanoparticles of iron oxides or iron hydroxides, add surfactants to them, and surface-modify the nanoparticles to lipophilic and disperse them in organic solvents to reduce unburned carbon and nitrogen oxides when burning them in trace amounts. It is to let.

본 발명의 연료첨가제는 황산제1철로부터 화학적 합성법에 의해 철산화물 또는 철수산화물의 나노입자를 제조하고, 이에 계면활성제를 가해 상기 나노입자를 친유성으로 표면 개질한 후, 이를 유기용매에 분산한 것을 특징으로 한다.The fuel additive of the present invention prepares nanoparticles of iron oxide or iron hydroxide from ferrous sulfate by a chemical synthesis method, adds a surfactant thereto, and surface-modifies the nanoparticles to be lipophilic, and then disperses them in an organic solvent. It is characterized by.

연료첨가제, 나노입자, 나노유체, 계면활성제, 철산화물, 철수산화물 Fuel additives, nanoparticles, nanofluids, surfactants, iron oxides, iron hydroxides

Description

미연탄소 및 질소산화물 저감용 철계 나노유체 연료첨가제 및 그 제조방법{Preparation of iron nanofluids as fuel additive for Dust and NOx reduction}Preparation of iron nanofluids as fuel additive for Dust and NOx reduction

본 발명은 산업체의 연소설비에서 중유 및 경유를 연소시킬 시 발생되는 질소산화물(NOx)과 미연탄소, 더스트(Dust)를 저감하기 위한 연료첨가제 및 그 제조방법에 관한 것으로, 더욱 상세하게는 황산제1철로부터 수열합성법에 의해 철산화물 또는 철수산화물의 나노입자를 제조하고, 이에 계면활성제를 가해 나노입자를 친유성으로 표면개질하여 유기용매에 분산함으로써, 연료유에 미량 첨가하여 연소할 시 미연탄소 및 질소산화물을 저감시킬 수 있는 연료첨가제에 관한 것이다.The present invention relates to a fuel additive for reducing nitrogen oxides (NOx), unburned carbon, and dust generated when burning heavy oil and light oil in an industrial combustion facility, and more particularly, to a sulfuric acid agent. Nanoparticles of iron oxide or iron hydroxide were prepared from ferrous by hydrothermal synthesis, and surface-modified nanoparticles were lipophilic and dispersed in an organic solvent by adding a surfactant to unburned carbon and The present invention relates to a fuel additive capable of reducing nitrogen oxides.

최근에 와서 화석연료의 연소로부터 보다 큰 연료 효율과 최대 오염 억제에 대한 필요성에 대해 경각심이 늘고 있다. 연료첨가제는 오랫동안 연소 시스템에 사용하고자 하는 연료의 다양한 기능을 제공하기 위해 사용되어 왔다.In recent years there has been an increasing awareness of the need for greater fuel efficiency and maximum pollution control from the burning of fossil fuels. Fuel additives have long been used to provide the various functions of fuels intended for use in combustion systems.

그러나 연소과정에서 발생하는 더스트의 저감을 위해서는 연소효율 향상에 의한 미연탄소를 저감함으로서 가능한 반면, 질소산화물은 상기 연소효율의 향상에 따라 그 발생이 증가되는 경향이 있다. 따라서 기존의 연료첨가제는 미연탄소, 즉 더스트와 질소산화물을 동시에 저감시킬 수 없는 문제점이 있었다. However, in order to reduce dust generated in the combustion process, it is possible to reduce unburned carbon by improving combustion efficiency, whereas nitrogen oxide tends to increase as the combustion efficiency is improved. Therefore, the conventional fuel additive has a problem that can not simultaneously reduce unburned carbon, that is, dust and nitrogen oxides.

즉, 종래의 연료첨가제에서 질소산화물이 저감됨은 연료첨가제의 사용에 의한 연소용 공기의 저감, 즉 과잉공기비 저감이 가능하게 되어 과잉공기비 저감에 의한 질소산화물의 저감이 전부라 할 수 있었다.In other words, the reduction of nitrogen oxides in the conventional fuel additives is possible to reduce the combustion air by the use of the fuel additives, that is, to reduce the excess air ratio can be said to reduce all the nitrogen oxides by reducing the excess air ratio.

따라서 연료첨가제에 의한 더스트와 질소산화물의 저감효과가 동시에 실현되지 아니하여, 후처리 방식인 SCR(Selective Catalytic Reduction) 또는 SNCR(Selective Non Catalytic Reduction)의 방법을 이용하여 질소산화물을 저감시켰으며, 더스트 역시 각종의 집진기에 의한 저감방식을 사용하는 것이 일반적이었다.Therefore, the reduction effect of dust and nitrogen oxides by the fuel additive was not realized at the same time, and the nitrogen oxides were reduced by the method of post-treatment SCR (Selective Catalytic Reduction) or SNCR (Selective Non Catalytic Reduction). It was also common to use reduction methods by various dust collectors.

그러나 상기한 방법들은 연소 후 배기가서의 처리방식으로서 저감율이 높으나 시설비, 유지비 등의 비용이 크고, 시설의 설치장소가 별도로 마련되어야 하는 등의 문제점이 있었다. However, the above methods have a high reduction rate as a treatment method of the exhaust gas after combustion, but have a large cost such as facility cost, maintenance cost, and the like.

한편 종래의 철(Fe)계 연료첨가제는 Fe 미립자를 유용성으로 처리하여 등유, 유기용제에 분산하여 제조하였으나, 미립자의 크기가 마이크론 단위이므로 입자의 침전현상이 있고 노즐의 마모 현상 등의 문제점이 있었다.On the other hand, the conventional iron (Fe) -based fuel additive was prepared by dispersing the Fe fine particles in the oil solubility and dispersing it in kerosene and organic solvents, but because the size of the micron unit of particles there is a problem such as precipitation of particles and wear of the nozzle. .

그리고 Fe와 유기산의 반응에 의해 제조한 유기산의 Fe염은 유용성으로서 취급이 편리한 장점이 있으나, Fe 함유농도가 비교적 낮고 제조가격이 비싼 단점이 있었다. In addition, the Fe salt of the organic acid prepared by the reaction of Fe and the organic acid has the advantage of being easy to handle as usefulness, but has a disadvantage of relatively low Fe content and high manufacturing price.

따라서 본 발명의 목적은 상기한 종래의 연료첨가제가 갖는 제반문제점인 미연탄소의 저감, 즉 더스트의 저감과 질소산화물의 저감을 동시에 만족시킬 수 없는 점을 해소하기 위한 것으로, 황산제1철로부터 화학적 합성법에 의해 철산화물 또는 철수산화물의 나노입자를 제조하고, 이에 계면활성제를 가해 나노입자를 친유성으로 표면개질하여 유기용매에 분산함으로써, 연소효율 향상에 따른 미연탄소와 더스트의 저감은 물론 질소산화물의 저감 또한 가능하도록 하는 것이다.Accordingly, an object of the present invention is to solve the problem of reducing unburned carbon, that is, reducing dust and nitrogen oxide at the same time. The nanoparticles of iron oxide or iron hydroxide are prepared by the synthesis method, and the surface-modified nanoparticles are lipophilic and dispersed in an organic solvent by adding a surfactant, thereby reducing nitrogen oxides as well as reducing unburned carbon and dust due to improved combustion efficiency. Reduction is also possible.

본 발명의 또 다른 목적은 친유성의 계면활성제로 표면처리하여 유기용매와 혼합함으로써, 장시간 저장시에도 침전이 일어나지 않고 분산안전성이 유지되도록하는 것이다.Still another object of the present invention is to surface-treat with an lipophilic surfactant and mix with an organic solvent, so that precipitation does not occur even during long-term storage and dispersion stability is maintained.

그리고 연료첨가제 내의 Fe의 입자가 수십나노미터 이하의 초미립자로 제조됨으로써 침전이나 노즐의 마모현상이 없으며, 제조가격 또한 저렴하여 상용화가 가능하도록 하는 것이다. In addition, the Fe particles in the fuel additive are made of ultra-fine particles of several tens of nanometers or less, so that there is no precipitation or wear of the nozzle, and the manufacturing price is also low, thereby enabling commercialization.

따라서 상기한 목적을 달성하기 위한 본 발명에 따른 미연탄소 및 질소산화물 저감용 철계 나노유체 연료첨가제의 제조방법은, 황산제1철로부터 화학적 합성법에 의해 철산화물 또는 철수산화물의 나노입자를 제조하고, 이에 계면활성제를 가해 상기 나노입자를 친유성으로 표면 개질한 후, 이를 유기용매에 분산한 것을 특징으로 한다.Therefore, the method for producing an unburned carbon and nitrogen oxide reducing iron-based nanofluid fuel additive according to the present invention for producing the above object, to prepare the nanoparticles of iron oxide or iron hydroxide from ferrous sulfate by chemical synthesis method, The surface-modified the nanoparticles by adding a surfactant to the lipophilic, characterized in that it is dispersed in an organic solvent.

그리고 상기 철산화물 또는 철수산화물은 수산화제1철(Fe(OH)2), 수산화제2철(Fe(OH)3), 산화제1철(FeO), 산화제2철(Fe2O3) 또는 사산화삼철(Fe3O4)것을 특징으로 한다.The iron oxide or iron hydroxide may be ferrous hydroxide (Fe (OH) 2 ), ferric hydroxide (Fe (OH) 3 ), ferrous oxide (FeO), ferric oxide (Fe 2 O 3 ) or trioxide. It is characterized in that iron (Fe 3 O 4 ).

그리고 상기 계면활성제는 올레인산이며, 그 사용량은 철산화물 1kg 당 올레인산 1mol을 가하는 것을 특징으로 한다.And the surfactant is oleic acid, the amount of the use is characterized in that to add 1 mol of oleic acid per 1 kg of iron oxide.

그리고 상기 유기용매는 등유 또는 경유로 되는 연료유인 것을 특징으로 한다.The organic solvent is characterized in that the fuel oil is kerosene or diesel.

상기와 같은 방법을 제조된 연료첨가제는 유기용매에 친유성 계면활성제가 표면 코팅/화학흡착된 산화물 또는 철수산화물의 나노입자가 분산된 것을 특징으로 한다.The fuel additive prepared by the above method is characterized in that the nanoparticles of the oxide or iron hydroxide in which the lipophilic surfactant is surface coated / chemisorbed in an organic solvent.

본 발명에 따른 나노유체의 연료첨가제는 연소효율 향상에 따른 미연탄소의 저감은 물론 질소산화물의 저감 또한 가능하게 되고, 장시간 저장시에도 침전이 일어나지 않고 분산안전성이 유지되도록 하는 등의 유용한 효과를 제공한다.The fuel additive of the nanofluid according to the present invention enables the reduction of unburned carbon as well as the reduction of nitrogen oxides due to the improvement of combustion efficiency, and provides useful effects such that precipitation does not occur and storage stability is maintained even during long-term storage. .

그리고 연료첨가제 내의 Fe의 입자가 수십나노미터 이하의 초미립자로 제조됨으로써 침전이나 노즐의 마모현상이 없으며, 제조가격 또한 저렴하여 상용화가 가능하도록 하는 효과를 제공한다.And since the particles of Fe in the fuel additive is made of ultra fine particles of several tens of nanometers or less, there is no sedimentation or wear of the nozzle, and the manufacturing price is also low, thereby providing the effect of enabling commercialization.

그리고 연소효율이 향상됨에 따라 연료의 절감효과 또한 제공한다.And as combustion efficiency improves, it also provides fuel savings.

이하 본 발명을 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.

일반적으로 연료첨가제에 의한 질소산화물(NOx) 저감기술은 과잉공기비의 감소에 의한 NOx 저감이 주요 기능이라 할 수 있다. 그리고 연료첨가제의 미연탄소의 저감, 즉 더스트 저감은 유기성분만으로 구성된 것에 비하여 유기금속 또는 초미세 나노입자의 금속을 포함한 연료첨가제가 미연탄소 및 더스트 저감효과가 큰 것으로 분석되어, NOx, 미연탄소, 더스트 저감 기능이 있는 금속성분임과 동시에, 연소시 환경친화적이어야 하며, 제조가격이 낮아 경제성이 있어야 상용화가 이루어져야 한다.In general, NOx reduction by fuel additives is the main function of NOx reduction by reducing excess air ratio. In addition, the reduction of unburned carbon of fuel additive, that is, dust reduction, has been shown to be more effective in reducing unburned carbon and dust than fuel additives containing organometallic or ultrafine nanoparticle metals, compared to organic components alone. In addition to being a metal with a dust reduction function, it must be environmentally friendly at the time of combustion, and commercialization should be made only when the manufacturing price is low and economical.

본 발명은 상기한 조건을 만족시키기 위하여, Fe계 나노유체의 연료첨가제를 개발하여 산업체의 보일러 등의 연소설비에서 배출되는 미연탄소 및 NOx를 저감하는 것이다. Fe계를 구성하는 Fe화합물은 철수산화물과 철산화물 더욱 정확하게는, 수산화제1철(Fe(OH)2), 수산화제2철(Fe(OH)3), 산화제1철(FeO), 산화제2철(Fe2O3) 또는 사산화삼철(Fe3O4)로서 각각 초미세의 나노입자로 구성된다.In order to satisfy the above conditions, the present invention is to develop a fuel additive of Fe-based nanofluids to reduce unburned carbon and NOx emitted from combustion facilities such as industrial boilers. The Fe compounds constituting the Fe system are iron hydroxide and iron oxide more precisely, ferrous hydroxide (Fe (OH) 2 ), ferric hydroxide (Fe (OH) 3 ), ferrous oxide (FeO), oxidizing agent 2 Iron (Fe 2 O 3 ) or triiron tetraoxide (Fe 3 O 4 ), each composed of ultra-fine nanoparticles.

따라서 우선은 각각의 나노입자를 제조하여야하는 바, 그 제조방법은 황산제1철(FeSO4·7H2O)로부터 화학적 합성법에 의해 철산화물 또는 철수산화물의 나노 입자를 제조한다. 그 구체적인 방법으로는 수열합성법을 이용하는 것인 바, FeSO4·7H2O의 수용액에 알칼리 용액을 첨가하여 침전의 생성을 유도하는 것으로서, 그 구체적인 실시에 대해서는 하기 실시예1 내지 실시예3을 통해 설명하며, 그 제조방법을 실시예에 의해 제한하지는 않는다.Therefore, first, each nanoparticle should be prepared, and the method for preparing the nanoparticles of iron oxide or iron hydroxide from ferrous sulfate (FeSO 4 · 7H 2 O) by chemical synthesis. As a specific method, a hydrothermal synthesis method is used, and an alkali solution is added to an aqueous solution of FeSO 4 · 7H 2 O to induce the generation of precipitates. For the specific implementation, the following Examples 1 to 3 are used. It demonstrates and a manufacturing method is not restrict | limited by an Example.

상기와 같이 제조된 나노입자를 유기용매에 분산하여 유체화함으로써, Fe계 나노유체를 제조하는 데, 상기 철화합물, 정확하게는 철수산화물과 철산화물의 입자는 친수성으로서 오일과 혼합시 분산성이 떨어져 침전되기 쉬운 특성을 나타내므로, 입자를 친유성으로 하기 위하여 친유성 계면활성제를 사용하여 입자를 코팅/화학흡착하는 조작을 하는 것이다. 그리고 이를 유기용매, 예를 들면 경유, 등유 등에 분산시켜 나노유체를 제조하여 연료첨가제로 사용한다. The Fe-based nanofluid is manufactured by dispersing the nanoparticles prepared as described above in an organic solvent and fluidizing them. The iron compound, precisely, the iron hydroxide and the iron oxide particles are hydrophilic and have poor dispersibility when mixed with oil. In order to make the particles lipophilic, the particles are easily precipitated, so that the particles are coated / chemistry adsorbed using a lipophilic surfactant. And it is dispersed in an organic solvent, such as diesel, kerosene, etc. to prepare a nanofluid and use it as a fuel additive.

이때 상기 친유성 계면활성제로는 일반적으로 계면활성제로서 많이 사용되는 올레인산(oleic acid)를 사용할 수 있는 바, 올레인산은 Fe 입자에 대한 친유성이 좋으며 가격도 저렴하기 때문이다. 상기 올레인산은 철수산화물과 철산화물 1kg에 대하여 1mol이 첨가되는 것이 바람직한 바, 이는 철수산화물과 철산화물의 표면을 코팅/화학흡착하기 위한 최적의 상태가 되는 것이다.In this case, as the lipophilic surfactant, oleic acid, which is generally used as a surfactant, may be used, because oleic acid has good lipophilic properties to Fe particles and a low price. The oleic acid is preferably added 1 mol per 1 kg iron hydroxide and iron oxide, which is an optimal state for coating / chemisorption of the iron hydroxide and iron oxide surface.

그리고 본 발명에 따른 연료첨가제 사용에 의한 미연탄소의 저감은 연소효율향상에 기인되는 것으로, 미연탄소가 감소됨으로써 더스트(dust) 역시 감소되며, 연료절감에도 기여할 수 있게 되는 것이다. 즉, Fe계 나노촉매 연료첨가제의 미연탄소의 저감은 Fe 산화물 또는 Fe수산화물의 연소촉매 작용에 기인되며 상기 미연탄소가 감소됨으로써 더스트 역시 감소되는 것이고, NOx 저감 기능은 Fe 산화물 또는 Fe 수산화물의 환원작용에 의해 NOx가 질소와 산소로 분해되고, 또한 활성산소흡수 작용에 의해 NOx가 저감되는 것이다.In addition, the reduction of unburned carbon by the use of the fuel additive according to the present invention is due to the improvement of combustion efficiency, and the reduction of unburned carbon also reduces dust and contributes to fuel saving. That is, the reduction of unburned carbon of the Fe-based nanocatalyst fuel additive is caused by the combustion catalyst action of Fe oxide or Fe hydroxide, and the dust is also reduced by reducing the unburned carbon, and the NOx reduction function is a reduction effect of Fe oxide or Fe hydroxide. NOx is decomposed into nitrogen and oxygen, and NOx is reduced by the action of active oxygen absorption.

이하 실시예를 통해 본 발명을 더욱 상세히 설명하도록 한다.Hereinafter, the present invention will be described in more detail with reference to the following examples.

(실시예 1)(Example 1)

3ℓ의 비커에 공업용 FeSO4·7H2O 80g과 물 500g 그리고 30% H2O2 20g을 넣고 45분간 교반한다. 이때 하기 반응식1과 같은 발열반응이 일어난다. Add 80 g of industrial FeSO 4 · 7H 2 O, 500 g of water, and 20 g of 30% H 2 O 2 to a 3-liter beaker and stir for 45 minutes. At this time, an exothermic reaction occurs as in Scheme 1 below.

Figure 112008055493873-pat00001
Figure 112008055493873-pat00001

그리고 다른 비커에 물 2ℓ를 넣고 NaOH 20g을 용해하여 NaOH 용액의 pH가 약 13∼14가 되도록 한다. NaOH 용액을 준비된 Fe2(SO4)3 용액과 천천히 혼합한 다음 약 30분간 교반하면 pH10∼12가 유지된다. 이때의 반응식은 하기 반응식2와 같다.2 L of water is added to another beaker and 20 g of NaOH is dissolved to bring the pH of the NaOH solution to about 13-14. The NaOH solution is slowly mixed with the prepared Fe 2 (SO 4 ) 3 solution and stirred for about 30 minutes to maintain pH 10-12. The reaction scheme at this time is the same as the following scheme 2.

Figure 112008055493873-pat00002
Figure 112008055493873-pat00002

위 용액을 약 12시간 방치하면 적갈색의 침전이 된다. 침전물이 생기면, 비커의 상등액을 제거한 다음 상기 침전물에 물 약 2ℓ를 넣어 섞고 수시간 방치, Fe(OH)3를 침전시킨다. 이와 같은 수세조작을 수회하고 마지막 수세시에는 물을 약간 남겨 놓은 상태에서 여기에 친유성 계면활성제로서 올레인산(oleic acid) 10g을 넣고 80∼90℃를 유지하면서 1시간 교반하면 Fe(OH)3 입자에 올레인산 분자가 코팅, 화학흡착된다. Fe(OH)3 입자에 올레인산의 불규칙한 코팅 또는 과잉의 올레인산을 제거하기 위하여 수회의 수세를 행한 후 침전한 Fe(OH)3를 약 90℃에서 완전 건조한다. 그리고 이에 등유 150ml를 넣어 하이 시어 믹서(high shear mixer)로 강하게 교반한다. If the solution is left for about 12 hours, it becomes a reddish brown precipitate. When a precipitate is formed, the supernatant of the beaker is removed, and about 2 liters of water is added to the precipitate, mixed and left for several hours to precipitate Fe (OH) 3 . After several washing operations such as water, at the time of the last washing, 10 g of oleic acid as lipophilic surfactant was added thereto and stirred for 1 hour while maintaining 80 to 90 ° C for Fe (OH) 3 particles. Oleic acid molecules are coated and chemisorbed. The Fe (OH) 3 particles were washed several times in order to remove an irregular coating of oleic acid or excess oleic acid and then completely dry the precipitated Fe (OH) 3 at about 90 ° C. Then, 150 ml of kerosene is added thereto, followed by vigorous stirring with a high shear mixer.

이와 같은 조작을 통하여 제조된 Fe(OH)3 나노유체의 입자의 크기는 평균 20∼30nm이고, 나노유체 중의 Fe 농도는 7% 정도가 된다. 상기와 같이 제조된 Fe(OH)3 나노유체는 수개월이 경과해도 침전이 생기지 않고 분산안전성이 유지된다.The particle size of the Fe (OH) 3 nanofluid prepared through such an operation is 20-30 nm on average, and the Fe concentration in the nanofluid is about 7%. The Fe (OH) 3 nanofluid prepared as described above does not precipitate even after several months and dispersion stability is maintained.

(실시예 2)(Example 2)

3ℓ의 비커에 공업용 FeSO4 ·7H2O 80g을 넣고, 물 500g으로 용해한다. 그리고80 g of industrial FeSO 4 · 7H 2 O is added to a 3 L beaker and dissolved in 500 g of water. And

그리고 다른 비커에 물 2ℓ를 넣고 NaOH 20g을 용해하여 NaOH 용액의 pH가 약 13∼14가 되도록 한다. 상기 NaOH 용액을 준비된 FeSO4 ·7H2O 용액과 천천히 혼합한 다음 약 30분간 교반하면 pH10∼12가 유지된다. 이때의 반응은 하기 반응식3과 같이 일어난다.2 L of water is added to another beaker and 20 g of NaOH is dissolved to bring the pH of the NaOH solution to about 13-14. The NaOH solution is slowly mixed with the prepared FeSO 4 · 7H 2 O solution and stirred for about 30 minutes to maintain pH 10-12. The reaction at this time takes place as in the following reaction formula 3.

Figure 112008055493873-pat00003
Figure 112008055493873-pat00003

위의 용액을 약 12시간 방치하면 담록색의 Fe(OH)2 침전물이 형성된다. 상기 침점물을 2ℓ의 물로 수세한 다음 실시예 1에서와 같은 올레인산 처리조작, 수세, 건조를 행한 후 완전건조된 Fe(OH)2를 등유 200ml과 혼합하면서 high shear mixer로 강하게 교반한다. 각 조작 과정에서 Fe(OH)2의 산화가 일어나기 쉬움으로 산화가 일어나지 않도록 가능한 산소와의 접촉을 방지토록 한다. 제조된 Fe(OH)2 나노유체의 입자 크기는 20∼30nm이며, Fe의 농도는 7%가 된다. 상기와 같이 제조된 Fe(OH)2 나노유체는 수개월이 경과해도 침전이 생기지 않고 분산안전성이 유지된다.After leaving the solution for about 12 hours, a pale green Fe (OH) 2 precipitate is formed. The precipitate was washed with 2 L of water, and then treated with oleic acid, washed with water, and dried as in Example 1, followed by vigorous stirring with a high shear mixer while mixing completely dried Fe (OH) 2 with 200 ml of kerosene. The oxidation of Fe (OH) 2 is likely to occur during each operation, so that contact with oxygen is prevented to prevent oxidation from occurring. The particle size of the prepared Fe (OH) 2 nanofluid is 20 to 30nm, the concentration of Fe is 7%. The Fe (OH) 2 nanofluid prepared as described above does not precipitate even after several months and dispersion stability is maintained.

(실시예 3)(Example 3)

3ℓ 비커에 FeSO4·7 H2O 220g과 물 500g 그리고 30% H2O2 40g을 넣고 45분간 교반한다. 이때 상기 반응식1과 같은 발열반응이 일어나며 Fe2(SO4)3가 생성된다(A 용액). 다음 110g의 FeSO4·7 H2O 을 물 400g에 용해한다(B용액). 그리고 94g의 NaOH를 물 2ℓ에 용해한다(C용액). 이때 pH는13∼14가 유지된다. A용액 Fe2(SO4)3과 B 용액 FeSO4를 혼합하고 C용액인 NaOH 용액을 천천히 넣어 pH가 10∼12를 유지토록하면서 약 30분간 교반한다. 이에 따라 하기 반응식4와 같은 반응이 일어나며, 검붉은 색의 Fe3O4 침전물이 생성된다. Add 220g of FeSO 4 · 7H 2 O, 500g of water and 40g of 30% H 2 O 2 to a 3ℓ beaker and stir for 45 minutes. At this time, the exothermic reaction as in Scheme 1 occurs and Fe 2 (SO 4 ) 3 is generated (A solution). Then 110 g of FeSO 4 · 7 H 2 O are dissolved in 400 g of water (B solution). And 94 g of NaOH is dissolved in 2 L of water (C solution). At this time, the pH is maintained between 13 and 14. A solution Fe 2 (SO 4 ) 3 and B solution FeSO 4 are mixed and the NaOH solution, C solution, is slowly added and stirred for about 30 minutes while maintaining a pH of 10-12. As a result, a reaction as in Scheme 4 occurs, and a dark red Fe 3 O 4 precipitate is produced.

Figure 112008055493873-pat00004
Figure 112008055493873-pat00004

상기 Fe3O4 침전물이 생기면 상등액을 제거하고 Fe3O4 침전물을 수회 수세한다. 마지막 수세시에는 물을 약간 남겨 놓은 상태에서 여기에 올레인산 30ml을 넣고 80∼90℃를 유지하면서 교반하면 Fe3O4 입자에 올레인산(oleic acid)을 코팅, 화학흡착시킨다. 불규칙한 코팅 또는 과잉의 올레인산을 제거하기 위하여 상기 실시예 1에서와 같은 수세, 건조를 행한 후 완전건조된 Fe3O4에 등유 300ml를 넣어 high shear mixer로 강하게 교반한다. 이와 같은 조작을 통하여 제조된 Fe3O4 나노유체의 입자의 크기는 평균 20∼30nm이고, 나노유체 중의 Fe 농도는 6% 정도가 된다. 그리고 수개월이 경과해도 침전이 생기지 않고 분산안전성이 유지된다.When the Fe 3 O 4 precipitate is generated, the supernatant is removed and the Fe 3 O 4 precipitate is washed several times. At the last wash, put some 30ml of oleic acid in the state with a little water left, and keep stirring at 80 ~ 90 ℃ to coat oleic acid (oleic acid) on the Fe 3 O 4 particles. In order to remove the irregular coating or excess oleic acid, after washing and drying as in Example 1, 300 ml of kerosene was added to the completely dried Fe 3 O 4 and stirred with a high shear mixer. Fe 3 O 4 prepared through such operation The average particle size of the nanofluid is 20 to 30 nm, and the Fe concentration in the nanofluid is about 6%. And even after several months, precipitation does not occur and dispersion safety is maintained.

(실시예 4)(Example 4)

상기 실시예 1과 실시예 3에서 제조한 Fe(OH)3, Fe3O4의 나노유체를 연료첨가제로서 중유보일러에 사용시 연소배가스 중의 더스트, NOx 저감성능을 알아보기 위하여 다음과 같이 연소실험을 실시하였다. (본 발명에서의 미연탄소의 저감은 연소효율향상에 기인되는 것으로서 미연탄소의 저감은 더스트 발생의 저감을 가져온다. 따라서 미연탄소의 측정을 더스트의 측정으로 대체하였다.)When the nanofluids of Fe (OH) 3 and Fe 3 O 4 prepared in Examples 1 and 3 were used as fuel additives in heavy oil boilers, combustion experiments were carried out as follows to determine the dust and NOx reduction performance in the flue gas. Was carried out. (The reduction of unburned carbon in the present invention is due to the improvement of combustion efficiency, and the reduction of unburned carbon leads to the reduction of dust generation. Therefore, the measurement of unburned carbon is replaced by the measurement of dust.)

연소실험에 사용한 연료유는 유황분 0.3%의 중유를 사용하였고, 연소보일러는 연관식 보일러로서 용량은 증기발생 0.2T/H(중유 연소량 15ℓ/h) 이며, 버너는 유압식을 사용하였다. 그리고 연료의 연소시 더스트의 배출농도에 영향을 미치는 주요 연소조건은 연료유의 분사온도(점도), 과잉공기비, 연료유 분사형태, 부하율, 연소용 공기와 연료유의 혼합 상태인 바, 각각의 시료에 대하여 이들 인자의 운전조건을 일정하게 유지하여 실험하였다. 그리고, 더스트 농도 측정은 연소배가스의 등속흡인 방식에 의해 측정하였고, NOx는 전기화학식한 연소배기스분석기로 측정하였다.  The fuel oil used in the combustion experiment was heavy oil with 0.3% sulfur content, the combustion boiler was a boiler associated with a capacity of 0.2T / H steam generation (15l / h of heavy oil combustion), and the burner was hydraulic. In addition, the main combustion conditions affecting the emission concentration of dust during combustion of the fuel are the injection temperature (viscosity) of fuel oil, excess air ratio, fuel oil injection type, load ratio, the mixture of combustion air and fuel oil. Experiments were conducted to keep the operating conditions of these factors constant. Dust concentration was measured by the constant velocity suction method of the combustion exhaust gas, and NOx was measured by an electrochemical combustion exhaust gas analyzer.

Fe(OH)3 나노유체와 Fe3O4의 나노유체 각각의 첨가량을 Fe 농도를 기준으로 중유량의 30ppm에서 부터 2000ppm을 첨가하여 비교하여 그 결과를 하기 표1 및 표2에 나타냈다.The amounts of Fe (OH) 3 nanofluid and Fe 3 O 4 nanofluids were compared by adding 2000 ppm from 30 ppm of the heavy oil based on the Fe concentration, and the results are shown in Tables 1 and 2 below.

Figure 112008055493873-pat00005
Figure 112008055493873-pat00005

Figure 112008055493873-pat00006
Figure 112008055493873-pat00006

상기 표 1 및 표 2에서 알 수 있는 바와 같이, Fe(OH)3, Fe3O4 나노유체 연료첨가제의 더스트, NOx 저감효과는 각각 비슷한 수준으로 나타났다. 연소가스 중의 더스트 저감을 위해서는 Fe(OH)3, Fe3O4 나노유체의 첨가량이 적어도 더스트 저감율이 크게 나타났으나. NOx의 경우엔 첨가량을 많이해야 저감효과가 나타났다. As can be seen in Table 1 and Table 2, the dust and NOx reduction effect of Fe (OH) 3 , Fe 3 O 4 nanofluid fuel additive was found to be similar to each other. In order to reduce dust in the combustion gas, the amount of Fe (OH) 3 and Fe 3 O 4 nanofluids added was at least significantly reduced. In the case of NOx, the addition amount was increased to show the reduction effect.

더욱 정확하게는 Fe(OH)3의 경우 연료유(중유)에 Fe 첨가농도 30ppm 일때 더스트 저감율은 48.5%, Fe 첨가농도 100ppm 일때 더스트 저감율은 53.3%를 나타냈으며, Fe 농도 1500ppm 첨가시 약 15%의 NOx 저감율을 나타냄을 알 수 있었다.More precisely, in the case of Fe (OH) 3, the reduction rate of dust was 48.5% when the concentration of Fe was 30 ppm in fuel oil (heavy oil), and the reduction rate of dust was 53.3% when the concentration of Fe was 100 ppm. It was found that the reduction rate of NOx was shown.

따라서 본 발명의 Fe계 나노유체의 연료첨가제는 미연탄소(더스트)와 NOx 저감에 효과가 크게 나타난 것으로 분석된다. Therefore, it is analyzed that the fuel additive of the Fe-based nanofluid of the present invention has a great effect on reducing unburned carbon (dust) and NOx.

Claims (5)

황산제1철로부터 화학적 합성법에 의해 철산화물 또는 철수산화물의 나노입자를 제조하고, 이에 계면활성제를 가해 상기 나노입자를 친유성으로 표면 개질한 후, 이를 유기용매에 분산하는 연료첨가제의 제조방법에 있어서,In the manufacturing method of a fuel additive in which the nanoparticles of iron oxide or iron hydroxide are prepared from ferrous sulfate by chemical synthesis method, and the surface-modified nanoparticles are lipophilic by adding a surfactant thereto, and then dispersing them in an organic solvent. In 상기 철산화물 또는 철수산화물은 pH 10∼12의 환경에서 만들어진 수산화제1철(Fe(OH)2), 수산화제2철(Fe(OH)3), 산화제1철(FeO), 산화제2철(Fe2O3) 또는 사산화삼철(Fe3O4)이고, The iron oxide or iron hydroxide may be ferrous hydroxide (Fe (OH) 2 ), ferric hydroxide (Fe (OH) 3 ), ferrous oxide (FeO), ferric oxide ( Fe 2 O 3 ) or triiron tetraoxide (Fe 3 O 4 ), 상기 계면활성제는 올레인산이며, 그 사용량은 철산화물 1kg 당 80∼90℃의 올레인산 1mol을 가한 것이며,The surfactant is oleic acid, the amount used is 1 mol of oleic acid at 80 ~ 90 ℃ per kg of iron oxide, 상기 유기용매는 등유 및 경유 중 어느 하나의 연료유로서 하이 시어 믹서(high sheer mixer)로 교반되는 것을 특징으로 하는 미연탄소 및 질소산화물 저감용 철계 나노유체 연료첨가제의 제조방법.The organic solvent is a fuel oil of kerosene and light oil as a fuel oil, a method of manufacturing iron-based nanofluid fuel additive for reducing unburned carbon and nitrogen oxides, characterized in that it is stirred with a high sheer mixer. 삭제delete 삭제delete 삭제delete 삭제delete
KR1020080075267A 2008-07-31 2008-07-31 Preparation of iron nanofluids as fuel additive for Dust and NOx reduction KR101020236B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080075267A KR101020236B1 (en) 2008-07-31 2008-07-31 Preparation of iron nanofluids as fuel additive for Dust and NOx reduction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080075267A KR101020236B1 (en) 2008-07-31 2008-07-31 Preparation of iron nanofluids as fuel additive for Dust and NOx reduction

Publications (2)

Publication Number Publication Date
KR20100013654A KR20100013654A (en) 2010-02-10
KR101020236B1 true KR101020236B1 (en) 2011-03-07

Family

ID=42087623

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080075267A KR101020236B1 (en) 2008-07-31 2008-07-31 Preparation of iron nanofluids as fuel additive for Dust and NOx reduction

Country Status (1)

Country Link
KR (1) KR101020236B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110420638A (en) * 2019-08-22 2019-11-08 安徽工业大学 A kind of catalyst and its application method of the denitration in situ simultaneously of catalysis burning coal tar

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100262111B1 (en) 1998-04-03 2000-07-15 주환용 Additives for emulsion fuel
KR20050078141A (en) * 2004-01-30 2005-08-04 김봉식 Fuel additive
JP2008144176A (en) * 2001-12-21 2008-06-26 Rhodia Electronics & Catalysis Engine fuel additive containing organic colloidal dispersion of iron particle used for internal combustion engine, method for preparing it and engine fuel containing it used for internal combustion engine
KR20080066977A (en) * 2005-11-10 2008-07-17 더루우브리졸코오포레이션 Process for preparing dispersions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100262111B1 (en) 1998-04-03 2000-07-15 주환용 Additives for emulsion fuel
JP2008144176A (en) * 2001-12-21 2008-06-26 Rhodia Electronics & Catalysis Engine fuel additive containing organic colloidal dispersion of iron particle used for internal combustion engine, method for preparing it and engine fuel containing it used for internal combustion engine
KR20050078141A (en) * 2004-01-30 2005-08-04 김봉식 Fuel additive
KR20080066977A (en) * 2005-11-10 2008-07-17 더루우브리졸코오포레이션 Process for preparing dispersions

Also Published As

Publication number Publication date
KR20100013654A (en) 2010-02-10

Similar Documents

Publication Publication Date Title
Zhao et al. Elemental mercury removal from flue gas by CoFe2O4 catalyzed peroxymonosulfate
JP6510403B2 (en) Fuel Additives for Iron Oxide Nanoparticle Dispersions and Smoke Combustion
Kang et al. Insights into the co-doping effect of Fe3+ and Zr4+ on the anti-K performance of CeTiOx catalyst for NH3-SCR reaction
CN1317372C (en) Nanometer fuel oil addition agent
MXPA04004253A (en) Cerium oxide nanoparticles.
JP5796630B2 (en) Exhaust gas purification catalyst and method for producing the same
CN103143361B (en) Graphene-promoted hydrotalcite-based denitration catalyst and preparation method thereof
Ettefaghi et al. Bio-nano emulsion fuel based on graphene quantum dot nanoparticles for reducing energy consumption and pollutants emission
CN104525181A (en) Catalyst for catalytic combustion of soot particulates and preparation method and application of catalyst
US20110010986A1 (en) Fuel additive
CN110102318A (en) Sulphation binary metal oxide solid acid catalyst and the preparation method and application thereof
Wei et al. Recovery of spent SCR denitration catalyst: A review and recent advances
JP6906544B2 (en) Vanadium corrosion inhibitors in gas turbine applications
Shi et al. Synergistic effect of oxygen vacancies and built-in electric field in GdCrO3/BiVO4 composites for boosted photocatalytic reduction of nitrate in water
KR101020236B1 (en) Preparation of iron nanofluids as fuel additive for Dust and NOx reduction
Li et al. Preparation of CeVO4/BNNS catalyst and its application in oxidation desulfurization of diesel oil
CN108479786A (en) A kind of attapulgite load CeO2-NiTiO3Hetero-junctions SCR low-temperature denitration catalysts
Mandal et al. Reduction of emission in a diesel engine using nanofuel–ceria nanoparticle dispersed diesel
JP5870081B2 (en) Lattice engineered cerium dioxide nanoparticles containing fuel additives
CN115301253A (en) Pd/ferroferric oxide catalyst for photo-assisted production of ammonia from NO, and preparation method and application thereof
AU2020104303A4 (en) High-temperature in-situ supporting method for coal combustion
Zhao et al. A novel catalytic oxidation process for removing elemental mercury by using diperiodatoargentate (III) in the catalysis of trace ruthenium (III)
CN106807360A (en) A kind of preparation method of sulfur resistive denitrating catalyst
JPS62167391A (en) Fuel additive
CN101791570B (en) Loaded photocatalyst and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140227

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150224

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20151207

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170109

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180103

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20181226

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20200121

Year of fee payment: 10