KR101002694B1 - Paste for solar cell electrode - Google Patents

Paste for solar cell electrode Download PDF

Info

Publication number
KR101002694B1
KR101002694B1 KR1020090107637A KR20090107637A KR101002694B1 KR 101002694 B1 KR101002694 B1 KR 101002694B1 KR 1020090107637 A KR1020090107637 A KR 1020090107637A KR 20090107637 A KR20090107637 A KR 20090107637A KR 101002694 B1 KR101002694 B1 KR 101002694B1
Authority
KR
South Korea
Prior art keywords
silver
weight
delete delete
parts
solar cell
Prior art date
Application number
KR1020090107637A
Other languages
Korean (ko)
Inventor
김범석
한수광
김병찬
한덕희
Original Assignee
한수광
솔라눅스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한수광, 솔라눅스 주식회사 filed Critical 한수광
Priority to KR1020090107637A priority Critical patent/KR101002694B1/en
Application granted granted Critical
Publication of KR101002694B1 publication Critical patent/KR101002694B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photovoltaic Devices (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE: A paste for solar cell electrode is provided to lower manufacturing costs using no expensive additives and to secure a contact area with silicon due to smooth permeation to cracks of an etched anti-reflective layer. CONSTITUTION: A method for forming a paste for solar cell electrode including an anti-reflective layer comprises the steps of preparing Sn-Ag alloy powder; mixing glass frit with the Sn-Ag alloy powder; mixing a resin composition with the mixture; adding a rosin acid and rosin acid silver to the mixture; adding a silver fine powder to the mixture; adding a viscosity modifier and stirring the mixture to prepare a paste for solar cell electrode; forming a film by applying the paste on the side with an anti-reflective layer(130); and plasticizing a film.

Description

태양전지 전극용 페이스트{Paste for solar cell electrode}Paste for solar cell electrode

본 발명은 태양전지에 관한 것으로, 보다 상세하게는 태양전지 전극의 제조에 이용되는 페이스트 조성물, 태양전지 전극의 형성방법, 및 태양전지에 관한 것이다. The present invention relates to a solar cell, and more particularly, to a paste composition, a method of forming a solar cell electrode, and a solar cell used in the production of a solar cell electrode.

최근 무공해, 설비의 간편성, 내구성 향상 등 여러 가지 이유로 인하여 태양전지의 보급이 급속도로 확산되고 있으며, 이에 따라 태양전지의 효율을 높일 수 있으며, 양산성이 우수한 태양전지의 제조방법들이 다양하게 연구되고 있다.Recently, the spread of solar cells is rapidly spreading due to various reasons such as pollution-free, convenience of equipment, and durability improvement. Accordingly, solar cell efficiency can be improved, and various methods of manufacturing solar cells with excellent mass production are being studied. have.

종래 실리콘 태양전지의 전극 형성은 도전성 금속 분말, 유리 프릿 및 유기 비히클을 포함하는 페이스트를 실리콘 기재 위에 인쇄하고, 건조 및 소성하여 전극을 형성하였다.The electrode formation of the conventional silicon solar cell was formed by printing a paste containing a conductive metal powder, a glass frit, and an organic vehicle on a silicon substrate, and drying and baking to form an electrode.

이 때 전극의 건조과정은 페이스트의 용매를 제거하는 과정이며, 소성과정은 유기물 성분을 연소시키고 동시에 유리 프릿 성분이 펀치쓰루(punch through) 현상에 의해 반사방지층(ARC; Anti Reflection Coating)을 에칭하고 전도성 금속분말이 에칭된 틈을 통해 침투되어 실리콘 웨이퍼의 음극층으로 접촉할 수 있게 한다.At this time, the drying process of the electrode is a process of removing the solvent of the paste, and the firing process burns the organic component and at the same time, the glass frit component etches the anti reflection coating (ARC) by punch-through phenomenon. The conductive metal powder penetrates through the etched gaps and makes contact with the cathode layer of the silicon wafer.

그러나, 반사방지층(ARC)의 에칭된 틈을 통해 은 입자가 침투하여 실리콘에 접촉하는 소성과정에서, 높은 소성온도 (850 ~ 950℃)에 의해 융점이 낮은 은 분말이 침 투하는 도중 입자간 용융 융착에 의해 거대입자를 형성함으로써, 에칭된 틈을 막고 추가적인 침투를 어렵게 하여 전도성 소재와 실리콘 n층과의 접촉면적을 감소시킴으로써, 저항접촉(onmic contact)성이 좋지 않아 직렬저항(Rs)을 높여 효율을 떨어뜨리게 되는 문제점이 있었다. However, during the firing process in which silver particles penetrate through the etched gap of the anti-reflection layer (ARC) and contact with silicon, melting between particles during the infiltration of silver powder having low melting point due to high firing temperature (850 to 950 ° C.) By forming macroparticles by fusion, the etched gaps are prevented and further penetration is difficult, thereby reducing the contact area between the conductive material and the silicon n layer, thereby increasing the series resistance (Rs) due to poor on-resistance. There was a problem that the efficiency is reduced.

이에 한국공개공보 제2007-0066938호에는 은분말, 유리프릿, 수지결합제, 및 소결억제제를 포함하는 태양 전지 전극용 도전성 페이스트를 개시하여, 소결억제제로서 전술한 문제점을 해결하고자 하고 있다. 그러나, 전술한 문헌의 소결억제제는 고가의 희귀물질로서 원가가 상승하는 문제점이 있다.Accordingly, Korean Laid-Open Patent Publication No. 2007-0066938 discloses a conductive paste for a solar cell electrode including silver powder, glass frit, a resin binder, and a sinter inhibitor, to solve the above-mentioned problems as a sinter inhibitor. However, the sintering inhibitor of the above-mentioned document has a problem that the cost increases as a rare rare material.

또한, 소성과정에서 순수 은 분말을 사용함으로써 은 분말이 전극으로부터 실리콘 n층으로 이온 마이그레이션되어 제조된 태양전지가 시간이 지남에 따라 효율이 일정비율로 감소하게 된다. 즉, 전극의 은 이온이 실리콘 n층 내부로 확산 침투되어 음극층을 파괴하고 음극과 양극의 전위차를 감소시켜 전지 전체의 효율을 떨어뜨려 모듈의 출력을 저하시키는 현상이 발생한다. In addition, by using pure silver powder in the firing process, the efficiency of the solar cell produced by ion migration of silver powder from the electrode to the silicon n layer is reduced with a certain ratio over time. That is, silver ions of the electrode diffuse into and penetrate into the n-layer of silicon, destroying the negative electrode layer, reducing the potential difference between the negative electrode and the positive electrode, thereby reducing the efficiency of the entire battery, thereby reducing the output of the module.

본 발명은 전술한 문제점을 해결하기 위한 것으로, 별도의 소결억제제를 사용하지 않고, 출력감소를 낮출 수 있는 태양전지용 전극 페이스트를 제공하는 것을 목적으로 한다. The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide an electrode paste for a solar cell, which can reduce output reduction without using a separate sintering inhibitor.

본 발명의 일측면에 따른 태양전지 전극용 페이스트는 금속(은을 제외한다)과 은의 합금분말, 유리 프릿, 및 수지 조성물을 포함한다. The paste for solar cell electrodes according to one aspect of the present invention includes an alloy powder of metal (except silver) and silver, a glass frit, and a resin composition.

이 때, 상기 금속은 니켈, 주석, 코발트, 팔라듐, 알루미늄, 구리, 아연, 인듐, 및 티타늄으로 구성되는 군에서 선택되는 하나 또는 둘 이상의 합금으로 이루어진다. 이 때, 상기 금속과 은의 합금분말에서 금속은 합금분말 전체 중량의 0.1 내지 20중량%인 것이 바람직하다. In this case, the metal is made of one or two or more alloys selected from the group consisting of nickel, tin, cobalt, palladium, aluminum, copper, zinc, indium, and titanium. In this case, the metal in the alloy powder of the metal and silver is preferably 0.1 to 20% by weight of the total weight of the alloy powder.

또한, 상기 금속과 은의 합금분말의 입도가 0.5 내지 3 μm인 것이 바람직하다. In addition, the particle size of the alloy powder of the metal and silver is preferably 0.5 to 3 μm.

또한, 입도가 0.1 ~ 0.5μm인 미세 은 분말을 더 포함하는 것이 바람직하다. Moreover, it is preferable to further contain the fine silver powder whose particle size is 0.1-0.5 micrometer.

또한, 유기산(유기산염을 포함한다)를 더 포함할 수 있다. In addition, the organic acid may further include an organic acid salt.

이 때, 상기 수지조성물은 금속과 은의 합금분말 100중량부에 대해서 10 내지 20 중량부로 포함되는 것이 바람직하다. At this time, the resin composition is preferably contained in 10 to 20 parts by weight based on 100 parts by weight of the alloy powder of metal and silver.

또한, 상기 수지조성물은 수지중합체와 용매의 혼합물일 수 있다. In addition, the resin composition may be a mixture of a resin polymer and a solvent.

이 때, 상기 수지중합체는 에틸셀룰로오스, 에틸셀룰로오스, 목재 로진(rosin), 및 알콜의 폴리메타크릴레이트로 구성되는 군에서 선택되는 수지의 중합체로 이루어지는 것이 바람직하다. At this time, the resin polymer is preferably made of a polymer of a resin selected from the group consisting of ethyl cellulose, ethyl cellulose, wood rosin, and polymethacrylate of alcohol.

또한, 상기 용매는 부틸카비톨아세테이트, 부틸카비톨, 프필렌글리콜모노 메틸에테르, 디프로필렌글리콜모노메틸에테르, 프로필렌글리콜모노메틸에테르프로피오네이트, 에틸에테르프로피오네이트, 터핀올, 프로필렌글리콜모노메틸에테르아세테이트, 디메틸아미노 포름알데히드, 메틸에틸케톤, 감마 부티로락톤, 에틸락테이트, 및 그 혼합물로 구성되는 군에서 선택되는 적어도 하나이상의 용매로 이루어질 수 있다. In addition, the solvent is butyl carbitol acetate, butyl carbitol, propylene glycol mono methyl ether, dipropylene glycol monomethyl ether, propylene glycol monomethyl ether propionate, ethyl ether propionate, terpinol, propylene glycol monomethyl It may consist of at least one solvent selected from the group consisting of ether acetate, dimethylamino formaldehyde, methyl ethyl ketone, gamma butyrolactone, ethyl lactate, and mixtures thereof.

본 발명의 또 다른 측면에 따른 태양전지 전긍용 페이스트의 제조방법은According to another aspect of the present invention, a method of manufacturing a solar cell paste for

금속과 은을 각각 포함한 화합물을 혼합하여 용액에 분산시켜 액적으로 분무한 후 열분해하여 제조된 금속과 은의 합금분말, 유리프릿, 및 수지조성물을 제공하고 이를 혼합하는 혼합단계를 포함한다. And a compound step of mixing and dispersing a compound including metal and silver, respectively, and dispersing the solution in a solution, spraying the droplets, and then thermally decomposing the alloy powder, glass frit, and resin composition of the metal and silver.

이 때, 상기 혼합단계 후 혼합물을 교반하는 교반단계;를 더 포함하는 것이 바람직하다. At this time, the stirring step of stirring the mixture after the mixing step; preferably further comprises.

또한, 상기 교반단계 전에 첨가제를 더 포함시키는 첨가제 혼합단계를 더 포함하는 것이 바람직하다. In addition, it is preferable to further include an additive mixing step further comprising an additive before the stirring step.

본 발명에 또 다른 면에 따른 태양전지 전극 형성방법은, Solar cell electrode forming method according to another aspect of the present invention,

금속(은을 제외한다)과 은의 합금분말, 유리 프릿, 및 수지 조성물을 포함하는 페이스트를 상기 반사방지층이 있는 면에 도포하여 도막을 형성하는 단계; 및 Applying a paste comprising an alloy powder of metal (except silver) and silver, a glass frit, and a resin composition to a surface having the antireflection layer to form a coating film; And

상기 도막을 소성하는 단계를 포함한다. Firing the coating film.

본 발명의 또 다른 측면은 전술한 태양전지 전극용 페이스트를 사용한 태양전지이다. Another aspect of the invention is a solar cell using the above-mentioned paste for solar cell electrodes.

본 발명에 다른 태양전지용 전극 페이스트는 고가의 첨가제를 별도로 사용하지 않아 제조원가를 낮출 수 있으며, 순수 은분말 대신에 합금된 은분말을 사용함으로써 은의 고유 융점을 높여 주어 고온에서 미세 분말 형상을 유지하므로 에칭된 반사방지층의 틈으로 침투가 원활히 이루어져 실리콘과의 접촉면적을 확보할 수 있다. The electrode paste for solar cells according to the present invention can reduce the manufacturing cost by not using an expensive additive separately, and by using alloyed silver powder instead of pure silver powder to increase the intrinsic melting point of silver to maintain fine powder shape at high temperature. The penetration of the anti-reflection layer is smooth, so that the contact area with the silicon can be secured.

또한, 합금된 은분말은 은의 산화와 이온화를 억제하는 전자 보상기능을 하는 희생 양극과 같은 역할을 수행함으로써 은 이온의 발생을 억제하여 이온 마이그레이션으로 인한 셀의 효율감소와 출력저하를 억제할 수 있다. In addition, the alloyed silver powder plays a role as a sacrificial anode that serves as an electron compensation function that suppresses the oxidation and ionization of silver, thereby suppressing the generation of silver ions, thereby suppressing the decrease in cell efficiency and output reduction due to ion migration. .

본 발명에 따른 태양전지 전극 형성용 페이스트는 금속-은(Ag)합금 분말, 유리 프릿(glass frit), 및 수지 조성물을 포함한다. The paste for forming a solar cell electrode according to the present invention includes a metal-silver (Ag) alloy powder, a glass frit, and a resin composition.

금속-은 합금분말은 은과 금속이 합금된 분말로서, 종래 은분말 제조시에 금속이 합금되어 진다. 이 때, 사용되는 금속은 은과 합금이 가능한 금속이면 어느 금속이든지 제한되지 않으나, 니켈, 주석, 코발트, 팔라듐, 알루미늄, 구리, 아연, 인듐, 및 티타늄등이 바람직하게 사용될 수 있으며, 금속의 함량은 합금분말 전체 중량의 0.1 ~ 20중량%가 바람직하다. 금속의 함량이 0.1중량% 미만인 경우에는 용융 은의 거대입자가 생성되는 문제점이 있고, 20중량% 를 초과하는 경우에는 은 전극 저항값이 높아지는 문제점이 있기 때문이다.The metal-silver alloy powder is a powder in which silver and a metal are alloyed, and the metal is alloyed at the time of preparing the silver powder. In this case, the metal to be used is not limited to any metal as long as it is a metal capable of alloying with silver, but nickel, tin, cobalt, palladium, aluminum, copper, zinc, indium, titanium, and the like may be preferably used. 0.1-20 weight% of the total weight of silver alloy powder is preferable. This is because when the content of the metal is less than 0.1% by weight, there is a problem in that large particles of molten silver are produced, and when the content of the metal exceeds 20% by weight, the silver electrode resistance is high.

또한, 금속-은(Ag) 합금분말은 평균입도가 0.5 내지 3 ㎛인 구형인 것이 바람직하다. 3 ㎛ 초과인 경우 미세패턴 형성에 어려움이 있고, 0.5 미만인 경우 용융점이 낮아 소성온도 상승시 낮은 온도에서 미리 녹아 큰 덩어리화 되어 에칭된 반사방지층 틈을 막아 적정크기의 은 입자가 틈 사이로 침투해 들어가는 것을 막게 되므로 제대로 반도체(n+층)에 접촉하지 못하게 되므로 직렬저항값이 높아지는 문제점이 있기 때문이다. Further, the metal-silver (Ag) alloy powder is preferably spherical with an average particle size of 0.5 to 3 mu m. If it is more than 3 ㎛, it is difficult to form a fine pattern, and if it is less than 0.5, the melting point is low, and when the firing temperature rises, the silver particles of appropriate size penetrate into the gap by blocking the cracks of the anti-reflective layer that are largely lumped and etched. This prevents the semiconductor chip from properly contacting the semiconductor (n + layer), thereby increasing the series resistance value.

따라서 금속-은 합금 분말은 합금 금속의 표면 산화로 은의 고유 융점을 높여줌으로써 고온에서 분말 형상을 유지하므로 에칭된 반사방지층(ARC)의 틈으로의 침투를 원활히 하여 실리콘과의 접촉면적을 넓혀 접촉저항을 낮추어 줄 수 있다.Therefore, the metal-silver alloy powder maintains the powder shape at high temperature by increasing the intrinsic melting point of silver due to the surface oxidation of the alloy metal, thereby facilitating the penetration of the etched anti-reflective layer (ARC), thereby widening the contact area with silicon, thereby increasing the contact resistance. Can be lowered.

또한, 니켈 등의 합금에 사용되는 금속은 은의 산화와 이온화를 억제하는 전자 보상 기능을 하는 희생양극과 같은 역할을 하여 은 이온의 발생을 억제함으로서 은 이온의 실리콘으로의 마이그레이션을 억제한다.In addition, metals used in alloys such as nickel serve as sacrificial anodes having an electron compensation function that suppresses oxidation and ionization of silver, thereby suppressing generation of silver ions, thereby suppressing migration of silver ions to silicon.

유리 프릿(glass frit)은 통상적으로 태양전지 전극 페이스트에 사용되는 유리 프릿이 사용될 수 있으며, 일예로는 연화점이 400 내지 600 ℃인 납 실리케이트 유리, 납 보로실리케이트 유리, 비스무스계 유리 또는 리튬계 유리등을 사용할 수 있다. 입경은 1 내지 10㎛인 것을 사용하는 것이 좋다. 바람직하게는 유리 프릿은 금속-은 합금 분말 100중량부에 대해서 1 내지 6 중량부로 포함되는 것이 바람직하다. 6 초과인 경우 직렬저항값 상승의 문제점이 있고, 1 미만인 경우 실리콘 웨이퍼와 전극과의 접착성 열화의 문제점이 있다.Glass frit may be a glass frit commonly used in a solar cell electrode paste. For example, lead silicate glass, lead borosilicate glass, bismuth glass, or lithium glass having a softening point of 400 to 600 ° C. Can be used. It is preferable to use the particle diameter of 1-10 micrometers. Preferably the glass frit is contained in 1 to 6 parts by weight based on 100 parts by weight of the metal-silver alloy powder. If it is more than 6, there is a problem of increasing the series resistance value, and if it is less than 1, there is a problem of adhesion deterioration between the silicon wafer and the electrode.

수지조성물은 다른 구성성분과 기계적 혼합을 통하여 금속-은 분말 페이스트를 인쇄에 적합한 점도 및 유변학적 특성을 부여한다. 수지조성물은 수지중합체와 용매의 혼합물일 수 있다. 상기 수지중합체로는 에틸셀룰로오스, 에틸셀룰로오스와 페놀수지의 중합체, 목재 로진(rosin) 또는 알콜의 폴리메타크릴레이트 등을 사용할 수 있다. 바람직하기로는 에틸셀룰로오스가 좋다. 또한 상기 용매로는 부틸카비톨아세테이트, 부틸카비톨, 프필렌글리콜모노 메틸에테르, 디프로필렌글리콜모노메틸에테르, 프로필렌글리콜모노메틸에테르프로피오네이트, 에틸에테르프로피오네이트, 터핀올, 프로필렌글리콜모노메틸에테르아세테이트, 디메틸아미노 포름알데히드, 메틸에틸케톤, 감마 부티로락톤, 또는 에틸락테이트 등을 단독 또는 2 종 이상 혼합 하여 사용할 수 있다. The resin composition imparts suitable viscosity and rheological properties for printing metal-silver powder pastes through mechanical mixing with other components. The resin composition may be a mixture of a resin polymer and a solvent. The resin polymer may be ethyl cellulose, polymer of ethyl cellulose and phenol resin, wood rosin or polymethacrylate of alcohol. Preferably, ethyl cellulose is preferable. As the solvent, butyl carbitol acetate, butyl carbitol, propylene glycol mono methyl ether, dipropylene glycol monomethyl ether, propylene glycol monomethyl ether propionate, ethyl ether propionate, terpinol, propylene glycol monomethyl Ether acetate, dimethylamino formaldehyde, methyl ethyl ketone, gamma butyrolactone or ethyl lactate may be used alone or in combination of two or more thereof.

수지조성물은 금속-은 분말 100중량부에 대해서 10 내지 20 중량부로 포함되는 것이 바람직하며, 중합체와 용매는 1:10 ~ 1:4 의 중량비로 혼합된 것을 사용하는 것이 바람직하다. 수지조성물이 10 중량부 이하로 포함되는 경우 웨이퍼에 부착력이 낮아 전극박리 불량이 일어나며, 20 중량부를 초과하여 포함되는 경우 소성시 연소 분해로 제거되는 부피가 커 전극의 높이 감소가 크므로 효율 저하가 발생되기 때문이다. 중합체와 용매의 비는 1:10를 초과하는 경우 중합체 성분량이 너무 적어 웨이퍼 부착성이 확보되지 않으며 또한 수지조성물의 점도가 낮아 최종 페이스트 점도 확보가 어렵고, 1:4 미만에서는 점도가 높고 연소분해성분 부피가 커 전극 높이 감소를 유발하기 때문이다.The resin composition is preferably contained in an amount of 10 to 20 parts by weight based on 100 parts by weight of the metal-silver powder, and it is preferable to use a mixture of a polymer and a solvent in a weight ratio of 1:10 to 1: 4. When the resin composition is included in 10 parts by weight or less, the adhesion of the wafer is low, resulting in poor electrode peeling. When the resin composition is included in an amount of more than 20 parts by weight, the volume of the electrode removed during combustion is large and the height of the electrode is large, thereby decreasing efficiency. Because it occurs. When the ratio of polymer and solvent exceeds 1:10, the amount of polymer components is too small to secure wafer adhesion, and the viscosity of the resin composition is low, making it difficult to secure final paste viscosity. This is because the volume is large, causing the electrode height to decrease.

또한, 본 발명에 따른 태양전지 전극 형성용 페이스트는 유기산 및 유기산염을 더 포함할 수 있다. 유기산 및 유기산염으로서는 로진산, 아세트산 은, 시크릭산 은, 벤조산 은, 로진산 은 등이 사용가능하며, 이것은 인쇄성을 높이고 전극의 넓이와 높이를 고르게 하는 효과가 있다. 이것는 금속-은 분말 100중량부에 대해서 1 내지 2의 중량부로 포함되는 것이 바람직하다. 1중량부 미만에서는 인쇄성 개선 효과에 영향이 없으며, 2 중량부 초과해서는 점도를 높이고 불순물 함량 증가에 따른 직렬저항값 상승에 우려가 있기 때문이다.In addition, the paste for forming a solar cell electrode according to the present invention may further include an organic acid and an organic acid salt. As the organic acid and the organic acid salt, rosin acid, silver acetate, silver citric acid, silver benzoic acid silver, rosin acid silver and the like can be used, which has the effect of increasing the printability and leveling the width and height of the electrode. This is preferably included in an amount of 1 to 2 parts by weight based on 100 parts by weight of the metal-silver powder. If the amount is less than 1 part by weight, the effect of improving printability is not affected. If the amount is more than 2 parts by weight, the viscosity is increased and there is a concern about the increase in the series resistance value due to the increase in the impurity content.

또한, 본 발명에 따른 태양전지 전극 형성용 페이스트는 소결보조제를 더 포함할 수 있다. 본 발명에서는 소결보조제로서 미세 은 분말을 혼입하였으며, 이는 입자크기가 0.1 ~ 0.5μm의 크기로서 혼입 시 충진율 향상과 소결 치밀도 향상에 효과 가 있다. 첨가 함량은 금속-은 분말 100중량부에 대해 1 내지 15 중량부가 바람직하며, 1 중량부 이하는 충진 및 소결 치밀 효과가 없으며, 15 중량부 이상은 미세 은 분말 용융 덩어리를 형성하여 직렬저항에 문제를 야기시키기 때문이다. In addition, the paste for forming a solar cell electrode according to the present invention may further include a sintering aid. In the present invention, fine silver powder is mixed as the sintering aid, which has an effect of improving the filling rate and the sintered densities when mixed with the particle size of 0.1 ~ 0.5μm. The added content is preferably 1 to 15 parts by weight with respect to 100 parts by weight of the metal-silver powder, 1 part by weight or less has no filling and sintering dense effect, and 15 parts by weight or more forms a fine silver powder molten mass, which causes problems in series resistance. Because it causes.

이하에서는 태양전지 전극 형성용 페이스트의 제조방법을 설명한다. 제조방법은 금속-은 합금분말 제조 및 혼합단계, 유리프릿 혼합단계, 수지조성물 혼합단계, 교반단계, 및 분쇄단계를 포함한다.Hereinafter, a method of manufacturing a paste for forming a solar cell electrode will be described. The production method includes a metal-silver alloy powder preparation and mixing step, a glass frit mixing step, a resin composition mixing step, a stirring step, and a grinding step.

금속-은 합금분말 제조 및 혼합단계는 금속-은 합금분말을 제조 후 투입하는 단계로서, 금속-은 합금분말은 열분해법, 화학환원법, 플라즈마 분쇄법 등의 어떠한 제법으로 제조한 것이라도 사용 가능하나 열분해법으로 제조하는 것이 가장 바람직하다. The metal-silver alloy powder preparation and mixing step is a step in which the metal-silver alloy powder is prepared after the preparation. The metal-silver alloy powder may be prepared by any method such as pyrolysis, chemical reduction, or plasma grinding. It is most preferable to prepare by the pyrolysis method.

열 분해법에 따르는 경우 본 발명에 따르는 금속-은 합금분말은 전구물질로서 금속과 은을 포함한 화합물을 적정비율로 혼합하여 증류수에 용해 또는 분산시켜 용액화한 다음, 분무장치를 이용하여 용액을 액적으로 증발 또는 분무시키고 분무된 액적을 열원에 의한 분해작용으로 분해시킴으로써 제조된다.According to the thermal decomposition method, the metal-silver alloy powder according to the present invention is a precursor, a compound containing a metal and silver in an appropriate ratio, dissolved or dispersed in distilled water and liquefied, and then the solution is sprayed using a spray device. It is prepared by evaporation or spraying and decomposition of the sprayed droplets by decomposition by a heat source.

이러한 열분해법으로 제조된 금속-은 합금분말은 합금화가 용이하고, 밀도가 높으며, 순도가 높으며, 입자 형상이 진구형에 가깝고, 융점이 높아 높은 효율을 내는 데 유리하다.The metal-silver alloy powder prepared by this pyrolysis method is easy to alloy, has high density, high purity, close to spherical shape, and high melting point, which is advantageous for high efficiency.

유리프릿 혼합단계는 전술한 금속-은 합금분말에 유리프릿을 혼합하는 단계로서, 바람직하게 금속-은 합금 분말 100중량부에 대해서 1 내지 6 중량부로 포함시킨다. The glass frit mixing step is a step of mixing the glass frit to the above-described metal-silver alloy powder, preferably 1 to 6 parts by weight based on 100 parts by weight of the metal-silver alloy powder.

수지조성물 혼합단계는 유리프릿이 혼합된 금속-은 합금분말에 수지조성물을 혼합 하는 단계로서, 금속-은 분말 100중량부에 대해서 10 내지 20 중량부를 포함시키는 것이 바람직하다. The resin composition mixing step is a step of mixing the resin composition to the metal-silver alloy powder mixed with glass frit, it is preferable to include 10 to 20 parts by weight based on 100 parts by weight of the metal-silver powder.

전술한 금속-은 합금분말 제조단계, 유리프릿 혼합단계, 수지조성물 혼합단계는 서로 순서상 변경될 수 있는 관계로서, 예컨대, 수지조성물을 먼저 제공한 다음, 금속-은 합금분말을 혼합시키고, 유리프릿을 혼합시키는 등의 변형이 해당기술의 통상의 지식을 가진자는 당연히 변경가능할 것이다. The above-described metal-silver alloy powder manufacturing step, glass frit mixing step, and resin composition mixing step may be changed in order, for example, the resin composition is first provided, then the metal-silver alloy powder is mixed, and the glass Modifications, such as mixing frits, will of course be changeable to those skilled in the art.

다음으로, 교반단계는 혼합된 합금분말, 유리프릿, 수지조성물의 혼합물을 교반하는 단계이다. Next, the stirring step is a step of stirring the mixture of the alloy powder, the glass frit, the resin composition mixed.

한편, 태양전지 전극형성용 페이스트의 제조방법에는 전술한 교반단계전에 첨가제를 더 혼합하는 첨가제 혼합단계를 포함할 수 있다. 첨가제로는 전술한 소결보조제, 점도조정제등이 포함될수 있다. 소결보조제로는 미세 은분말이 사용될 수 있고, 점도조정제로는 부틸카비톨, 부킬카비톨아세테이트, 알파테피놀이 사용될 수 있다.On the other hand, the manufacturing method of the solar cell electrode forming paste may include an additive mixing step of further mixing the additives before the above-mentioned stirring step. Additives may include the aforementioned sintering aids, viscosity modifiers and the like. Fine silver powder may be used as the sintering aid, and butyl carbitol, butyl carbitol acetate, and alpha tepinool may be used as the viscosity modifier.

이하에서는 본 발명의 바람직한 실시예를 제시한다. 실시예에 사용된 배합조성은 표1에 나타내었다.Hereinafter, a preferred embodiment of the present invention. The compounding composition used in the examples is shown in Table 1.

- 도전성 페이스트의 제조Preparation of Conductive Paste

[실시예1]Example 1

주석의 함유비율이 20중량%인 주석-은 합금 분말과 납계 및 무연계 유리 프릿을 주석-은 합금분말 100중량부에 대해서 4 중량부로 함유하는 혼합물을 제조하였다. 이 혼합물에, 에틸셀룰로즈 수지와 부틸카비톨 용매를 조성비 1 : 4 로 혼합한 수지 조성물을 금속-은 합금분말 100중량부에 대해서 16 중량부로 포함하도록 첨가하였다. 또한, 소결보조제로서 미세 은 분말을 주석-은 합금분말 100중량부 대비 10중량부가 되도록 첨가하였고, 점도조정제로서 부틸카비톨을 수지조성물 100중량부에 대해 25중량부를 첨가하였다. 이 혼합물을 만능 혼합기로 예비 혼합한 후, 혼련기로 혼련하여 태양 전지 전극용 페이스트를 얻었다.A mixture containing 4 parts by weight of tin-silver alloy powder having a tin content of 20% by weight and lead-based and lead-free glass frit based on 100 parts by weight of tin-silver alloy powder was prepared. To this mixture, a resin composition containing an ethyl cellulose resin and a butyl carbitol solvent in a composition ratio of 1: 4 was added so as to contain 16 parts by weight with respect to 100 parts by weight of the metal-silver alloy powder. In addition, fine silver powder is used as a sintering aid. 10 parts by weight relative to 100 parts by weight of the alloy powder was added, and 25 parts by weight of butyl carbitol was added to 100 parts by weight of the resin composition as a viscosity modifier. The mixture was premixed with a universal mixer, and then kneaded with a kneader to obtain a solar cell electrode paste.

[실시예2]Example 2

주석-은 합금분말의 주석 함유비율이 10%인 것을 제외하고는 실시예 1과 동일하게 태양전지 전극용 페이스트를 제조하였다. The paste for a solar cell electrode was manufactured in the same manner as in Example 1 except that the tin-containing alloy tin-containing ratio was 10%.

[실시예3]Example 3

주석-은 합금분말의 주석 함유비율이 5%인 것을 제외하고는 실시예 1과 동일하게 태양전지 전극용 페이스트를 제조하였다.A paste for a solar cell electrode was manufactured in the same manner as in Example 1, except that the tin-containing alloy tin content was 5%.

[실시예4]Example 4

주석-은 합금분말의 주석 함유비율이 0.5%인 것을 제외하고는 실시예 1과 동일하게 태양전지 전극용 페이스트를 제조하였다. The paste for a solar cell electrode was manufactured in the same manner as in Example 1 except that the tin-containing alloy tin content was 0.5%.

[비교예1][Comparative Example 1]

순도 99.9%의 은 분말을 사용한 것을 제외하고는 실시예 1과 동일하게 태양전지 전극용 페이스트를 제조하였다. A paste for a solar cell electrode was manufactured in the same manner as in Example 1 except that silver powder having a purity of 99.9% was used.

[표1] Table 1

성분ingredient 실시예1Example 1 실시예2Example 2 실시예3Example 3 실시예4Example 4 비교예1Comparative Example 1 은 합금분말 (%)
(주석 함량 %)
Silver Alloy Powder (%)
(Tin content%)
73.8
(20)
73.8
20
73.8
(10)
73.8
10
73.8
(5)
73.8
(5)
73.8
(0.5)
73.8
(0.5)
73.8
(0)
73.8
(0)
유리 프릿(%)Glass frit (%) 33 33 33 33 33 소결보조제
(미세 은 분말)
Sintering Aid
(Fine silver powder)
8.28.2 8.28.2 8.28.2 8.28.2 8.28.2
수지 결합제 (%)Resin Binder (%) 1212 1212 1212 1212 1212 점도 조정제 (%)Viscosity Modifier (%) 33 33 33 33 33

- 태양전지의 제조-Manufacturing of solar cell

p형의 단결정 (125mm, 5인치) 실리콘 웨이퍼(110)를 전면에 표면자국을 없애기 위한 에칭을 실시한 후, 5족원소(P, As, Sb)를 도펀트로 하여 음극층(n형 반도체층;120)을 형성시키고, ARC (anti-reflection coating)층(130)을 음극층(120) 상에 형성한다(도 1 참조). 다음으로, 후면에 은 (silver) 버스(Bus) 전극(140) 및 알루미늄으로 된 제2전극(150)을 순차적으로 인쇄한다(도 2 참조). 다음으로 다시 전면에 실시예 1 내지 4 및 비교예 1 내지 2에서 제조한 태양전지 전극 형성용 페이스트로 스크린 프린팅 기법으로 전면 인쇄한 후 컨베이어식 건조기에 약 200℃에서 웨이퍼를 건조하며, 400℃ ~ 950℃의 설정된 온도에서 컨베이어식 소성로에 통과시킴으로써 제1전극(160)을 형성하여 태양전지를 제조한다(도 3 참조). 이 때, 실리콘 웨이퍼의 에칭 후 태양광이 닿는 면적을 넓히기 위해 텍스처링(texturing) 공정이 더 포함될 수 있다.After the p-type single crystal (125 mm, 5 inch) silicon wafer 110 is etched to remove surface traces on the entire surface, the cathode layer (n-type semiconductor layer; 120, and an anti-reflection coating (ARC) layer 130 is formed on the cathode layer 120 (see FIG. 1). Next, the silver bus electrode 140 and the second electrode 150 made of aluminum are sequentially printed on the rear surface (see FIG. 2). Next, the solar cell electrode forming pastes prepared in Examples 1 to 4 and Comparative Examples 1 to 2 were completely printed on the front surface by screen printing, and then the wafers were dried at about 200 ° C. in a conveyor dryer. The solar cell is manufactured by forming the first electrode 160 by passing through a conveyor kiln at a set temperature of 950 ° C. (see FIG. 3). In this case, a texturing process may be further included to widen the area where sunlight is exposed after etching the silicon wafer.

[실험예][Experimental Example]

Belval S. A Company사 제조의 셀테스터(Pasan CT801 model cell tester)를 사용하여 Eff: 변환 효율(%), FF: 충전 요소(%), Voc: 개방 전압(V), Isc: 단락 전류(A), Rs: 직렬 저항(Ω), Rsh: 션트 저항(Ω)를 측정하여 표 2과 같은 결과를 얻 었다.Eff: conversion efficiency (%), FF: charging element (%), Voc: open voltage (V), Isc: short circuit current (A) using a Belval S. A Company cell tester (Pasan CT801 model cell tester). ), Rs: series resistance (Ω) and Rsh: shunt resistance (Ω) were measured.

[표2] [Table 2]

페이스트 종류Paste Type EFF(%)EFF (%) FF(%)FF (%) Voc(V)Voc (V) ISC(A)ISC (A) Rs(Ω)Rs (Ω) Rsh(Ω)Rsh (Ω) 실시예 1Example 1 15.915.9 72.9772.97 0.62280.6228 5.4165.416 0.01350.0135 13.36113.361 실시예 2Example 2 16.74316.743 76.9376.93 0.62460.6246 5.3945.394 0.01040.0104 21.36921.369 실시예 3Example 3 17.50517.505 77.677.6 0.62500.6250 5.5275.527 0.00930.0093 33.38633.386 실시예 4Example 4 15.81515.815 72.472.4 0.62390.6239 5.4215.421 0.01250.0125 12.21912.219 비교예 1Comparative Example 1 14.3714.37 66.0466.04 0.61940.6194 5.445.44 0.01790.0179 6.8796.879

표 2과 같이 금속-은 합금분말의 사용으로 태양전지의 특성이 향상된다. 특히 실시예 3에서와 같이, 주석함량이 5%인 주석-은 합금 분말이 가장 높은 효율을 나태내었다.As shown in Table 2, the use of metal-silver alloy powder improves the characteristics of the solar cell. In particular, as in Example 3, the tin-silver alloy powder with 5% tin content exhibited the highest efficiency.

이상에서는 본 발명의 여러 실시예에 따른 태양전지 전극용 페이스트에 대해 설명하였으나, 본 발명은 상술한 실시예들에 한정되지 않으며, 본 발명이 속한 분야의 통상의 지식을 가진 자는 본 발명의 개념을 벗어나지 않고 변형이 가능하고 이러한 변형은 본 발명의 범위에 속한다.In the above description for the solar cell electrode paste according to various embodiments of the present invention, the present invention is not limited to the above-described embodiments, those skilled in the art belong to the concept of the present invention Modifications are possible without departing, and such modifications are within the scope of the present invention.

전술한 발명에 대한 권리범위는 이하의 청구범위에서 정해지는 것으로서, 명세서 본문의 기재에 구속되지 않으며, 청구범위의 균등범위에 속하는 변형과 변경은 모두 본 발명의 범위에 속할 것이다. The scope of the above-described invention is defined in the following claims, not bound by the description in the text of the specification, all modifications and variations belonging to the equivalent scope of the claims will fall within the scope of the invention.

도 1 내지 도 4는 본 발명의 일실시예에 따른 태양전지 전극용 페이스트의 제조과정을 나타내는 도면.1 to 4 is a view showing a manufacturing process of the paste for a solar cell electrode according to an embodiment of the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

110 : 실리콘 웨이퍼 120 : 음극층110 silicon wafer 120 cathode layer

130 : 반사방지층 140 : 버스전극130: antireflection layer 140: bus electrode

150 : 제2전극 160 : 제1전극150: second electrode 160: first electrode

Claims (15)

삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 반사방지층을 포함하는 태양전지 전극의 형성방법으로서, As a method of forming a solar cell electrode comprising an antireflection layer, 주석과 은을 포함한 화합물을 혼합하여 증류수에 용해 또는 분산시켜 용액화하고, 분무장치를 이용하여 용액을 액적으로 증발 또는 분무시키고 분무된 액적을 열원에 의해 분해시켜 입도가 0.5 내지 3 μm이고, 주석이 전체 합금분말중량의 0.1 내지 20중량%인 합금분말을 제조하는 주석-은 합금분말 제조단계;A compound containing tin and silver is mixed to dissolve or disperse in distilled water for solution, and the solution is evaporated or sprayed into a droplet using a spray device, and the sprayed droplet is decomposed by a heat source to have a particle size of 0.5 to 3 μm, Tin-silver alloy powder manufacturing step of producing an alloy powder of 0.1 to 20% by weight of the total alloy powder weight; 상기 주석-은 합금 분말 100중량부에 대해서 연화점이 400 내지 600 ℃인 유리프릿을 1 내지 6 중량부로 혼합하는 유리프릿 혼합단계;A glass frit mixing step of mixing the glass frit having a softening point of 400 to 600 ° C. in an amount of 1 to 6 parts by weight based on 100 parts by weight of the tin-silver alloy powder; 1:10 ~ 1:4 의 중량비로 혼합되는 수지중합체와 용매로 이루어지는 수지조성물을 상기 주석-은 합금 분말 100중량부에 대해서 10 내지 20 중량부로 혼합하는 수지조성물 혼합단계;  A resin composition mixing step of mixing a resin composition comprising a resin polymer and a solvent mixed in a weight ratio of 1:10 to 1: 4 at 10 to 20 parts by weight based on 100 parts by weight of the tin-silver alloy powder; 로진산 또는 로진산 은을 상기 주석-은 분말 100중량부에 대해서 1 내지 2의 중량부로 포함시키는 유기산 혼합단계;An organic acid mixing step of including rosin acid or rosin acid silver in an amount of 1 to 2 parts by weight based on 100 parts by weight of the tin-silver powder; 상기 주석-은 합금분말, 유리프릿, 수지조성물 및 유기산에 소결보조제로 입도가 0.1 ~ 0.5μm인 미세 은 분말을 상기 주석-은 분말 100중량부에 대해 1 내지 15 중량부로 포함시키고, 점도조정제를 넣고 교반하는 태양전지 전극용 페이스트 제조단계;The tin-silver alloy powder, glass frit, resin composition and organic acid containing a fine silver powder having a particle size of 0.1 ~ 0.5μm as a sintering aid to 1 to 15 parts by weight based on 100 parts by weight of the tin-silver powder, a viscosity modifier Preparing and preparing a paste for a solar cell electrode; 상기 페이스트를 상기 반사방지층이 있는 면에 도포하여 도막을 형성하는 도막형성단계; 및A film forming step of applying the paste to a surface having the anti-reflection layer to form a coating film; And 상기 도막을 소성하는 소성단계를 포함하는 태양전지 전극의 형성방법. Forming a solar cell electrode comprising a firing step of firing the coating film. 삭제delete
KR1020090107637A 2009-11-09 2009-11-09 Paste for solar cell electrode KR101002694B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090107637A KR101002694B1 (en) 2009-11-09 2009-11-09 Paste for solar cell electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090107637A KR101002694B1 (en) 2009-11-09 2009-11-09 Paste for solar cell electrode

Publications (1)

Publication Number Publication Date
KR101002694B1 true KR101002694B1 (en) 2010-12-21

Family

ID=43513128

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090107637A KR101002694B1 (en) 2009-11-09 2009-11-09 Paste for solar cell electrode

Country Status (1)

Country Link
KR (1) KR101002694B1 (en)

Similar Documents

Publication Publication Date Title
KR101159787B1 (en) ZnO-based glass frit composition and aluminium paste composition for rear contacts of solar cell using the same
KR101693840B1 (en) Paste composition for solar cell front electrode and solar cell using thereof
EP3146529B1 (en) A silver paste containing bismuth oxide and its use in solar cells
US20140373904A1 (en) Paste composition for solar cell electrode and electrode produced therefrom
JP6042931B2 (en) Conductive paste containing lead-free glass frit
EP3270421B1 (en) Electroconductive paste for forming solar cell electrode
CN107258002B (en) Silver paste composition, front electrode for solar cell formed using same, and solar cell using same
EP3032547B2 (en) A conductive paste containing lead-free glass frit
JP2018078120A (en) Thick-film composition containing antimony oxides and their use in manufacture of semiconductor devices
JP2016110971A (en) Conductive paste containing lead-free glass frit
EP2994942B1 (en) Method of manufacturing electrode of solar cell
KR20130042524A (en) Silver paste composition and solar cell using the same
KR20150089939A (en) Glass frit composition and Electrode composition for solar cell using the same
JP5934411B1 (en) Conductive paste containing lead-free glass frit
US20130186463A1 (en) Conductive silver paste for a metal-wrap-through silicon solar cell
US20200048140A1 (en) Glass frit, conductive paste and use of the conductive paste
KR20120115128A (en) Ag paste composition for forming electrode and preparation method thereof
JP2016110974A (en) Conductive paste containing lead-free glass frit
JP2017092251A (en) Conductive composition
KR101972384B1 (en) Paste composition of solar cell front electrode and manufacturing method thereof
KR101765185B1 (en) Method of preparing silver coated glass frit and silver paste composition for solar cell using the same
JP6042932B2 (en) Conductive paste containing lead-free glass frit
KR101611456B1 (en) Paste composition for manufacturing solar-cell electrode comprising phosphoric dispersant
US20130160835A1 (en) Back-side electrode of p-type solar cell and method for forming the same
KR101868638B1 (en) Paste composition for front electrode of silicon solar cell

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
A302 Request for accelerated examination
E902 Notification of reason for refusal
AMND Amendment
E90F Notification of reason for final refusal
AMND Amendment
E601 Decision to refuse application
E801 Decision on dismissal of amendment
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20131127

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20141212

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20151209

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170525

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee