KR100997612B1 - 식물의 노화 조절에 관여하는 사이토키닌 수용체 ahk3,이의 변이체 및 이들을 이용하여 식물의 노화를지연시키는 방법 - Google Patents

식물의 노화 조절에 관여하는 사이토키닌 수용체 ahk3,이의 변이체 및 이들을 이용하여 식물의 노화를지연시키는 방법 Download PDF

Info

Publication number
KR100997612B1
KR100997612B1 KR1020030037659A KR20030037659A KR100997612B1 KR 100997612 B1 KR100997612 B1 KR 100997612B1 KR 1020030037659 A KR1020030037659 A KR 1020030037659A KR 20030037659 A KR20030037659 A KR 20030037659A KR 100997612 B1 KR100997612 B1 KR 100997612B1
Authority
KR
South Korea
Prior art keywords
plant
leu
ahk3
aging
gene
Prior art date
Application number
KR1020030037659A
Other languages
English (en)
Other versions
KR20040106810A (ko
Inventor
남홍길
김효정
우혜련
이인철
Original Assignee
학교법인 포항공과대학교
제노마인(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 학교법인 포항공과대학교, 제노마인(주) filed Critical 학교법인 포항공과대학교
Priority to KR1020030037659A priority Critical patent/KR100997612B1/ko
Priority to PCT/KR2004/001398 priority patent/WO2004108931A1/en
Publication of KR20040106810A publication Critical patent/KR20040106810A/ko
Application granted granted Critical
Publication of KR100997612B1 publication Critical patent/KR100997612B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8262Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield involving plant development
    • C12N15/8266Abscission; Dehiscence; Senescence
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Peptides Or Proteins (AREA)

Abstract

본 발명은 식물의 노화 조절에 관여하는 사이토키닌 수용체 AHK3, 이의 변이체 또는 이들을 암호화하는 폴리뉴클레오티드를 이용하여 식물의 노화를 지연시키는 방법에 관한 것이다. 보다 상세하게는 서열번호 10의 아미노산 서열을 갖는 사이토키닌 수용체 AHK3, 상기 서열번호 10의 아미노산 서열에서 243번째 아미노산인 프롤린(proline)이 세린(serine)으로 치환된 변이형 사이토키닌 수용체 AHK3 및 이들을 암호화하는 폴리뉴클레오티드를 이용하여 식물체의 노화를 지연시키는 방법에 관한 것이다. 본 발명에 따른 AHK3 유전자 또는 이의 변이형 유전자를 식물체에 도입하여 과발현시킴으로써 식물의 노화를 지연시킬 수 있으며, 이를 통해 식물의 생산성 향상 및 저장 효율 증대 등이 도모될 수 있다.
사이토키닌 수용체, AHK3, 점 돌연변이, 노화 지연

Description

식물의 노화 조절에 관여하는 사이토키닌 수용체 AHK3, 이의 변이체 및 이들을 이용하여 식물의 노화를 지연시키는 방법{Cytokinin receptor AHK3 involved in senescence regulation of plant, mutant thereof and method for delaying senescence of plant using the same}
도 1은 애기장대 야생형(Col)과 노화지연 변이체 ore12의 노화 지연 표현형을 비교한 것이다.
A: 네 번째 좌엽이 나온 후 경과 일수(days after fourth rosette leaf emergence; 이하 'DAE'라 한다)에 따른 잎의 노화 정도를 보여주는 사진
B: 28 DAE에서 관찰한 전체 식물(whole plant)의 모습을 보여주는 사진
도 2는 애기장대 야생형(Col)과 노화 지연 변이체 ore12에서 DAE에 따른 엽록소 함량의 변화(A) 및 광합성 활성의 변화(B)를 나타내는 그래프로서, 오차 막대(error bar)는 표준편차(SD; n=60)이다.
도 3은 애기장대 야생형(Col)과 노화 지연 변이체 ore12에서 DAE에 따른 광합성 유전자(cab)와 노화관련 유전자(SAG12)의 발현 양상을 나타내는 노던 블럿 분석결과이다.
도 4는 애기장대 게놈 상에서 ORE12 유전자의 위치를 나타내는 유전자 지도이다.
사선 막대: 보완 실험에 사용된 7.2kb의 DNA 단편
도 5는 세포 내 AHK3-GFP 융합 단백질의 위치를 보여주는 사진이다.
A: 투과 전자 현미경 하에서 관찰한 사진
B: 공초점 현미경 하에서 관찰한 사진
도 6은 리포터 유전자인 GUSAHK3 유전자의 프로모터에 연결시켜 애기장대에 도입한 후, GUS 염색을 수행한 결과를 나타내는 사진이다.
A: 명조건 하에서 7일 된 개체
A안의 박스: 명조건 하에서 7일된 개체의 뿌리
B: 명조건 하에서 10일 된 개체
C: 명조건 하에서 15일 된 개체
도 7AHK3 유전자 과발현 변이체에서 AHK3 유전자의 발현 수준(expression level)을 확인하기 위하여 수행한 RT-PCR의 결과(A) 및 암조건 하에서 시간(DAT: days after dark treatment)에 따른 상기 변이체들의 광합성 활성의 변화(B)를 조사한 결과를 나타낸 것이다.
col: 애기장대 야생형
ore12 : AHK3 유전자의 점 돌연변이체
S40-1, S75-1: AHK3 유전자의 과발현 변이체
도 8은 암조건 하에서 ORE12 유전자 과발현 변이체들의 시간(DAT)에 따른 광합성 활성의 변화를 나타낸 것이다.
ore12ox-13, -14, -18: ORE12 유전자의 과발현 변이체
도 9은 애기장대 야생형(col)과 ore12에서 A형 반응 조절 유전자들(type-A-response regulator genes; ARR3-7, ARR9, ARR15)의 발현 수준을 확인하기 위하여, RT-PCR을 수행한 결과이다.
Actin8: 양성 대조구
본 발명은 식물의 노화 조절에 관여하는 AHK3 수용체, 이의 변이체 또는 이들을 암호화하는 폴리뉴클레오티드를 이용하여 식물의 노화를 지연시키는 방법에 관한 것이다. 보다 상세하게는 서열번호 10의 아미노산 서열을 갖는 사이토키닌 수용체 AHK3, 상기 서열번호 10의 아미노산 서열에서 243번째 아미노산인 프롤린(proline)이 세린(serine)으로 치환된 변이형 사이토키닌 수용체 AHK3 및 이들을 암호화하는 폴리뉴클레오티드를 이용하여 식물체의 노화를 지연시키는 방법에 관한 것이다.
식물의 노화는 식물발생의 마지막 단계로서 노화의 개시는 식물 발달 단계에 있어 급격한 전환점이라 할 수 있다. 노화가 진행됨에 따라 식물은 점차적으로 합성능력이 저하되고 세포 내 구조물과 거대분자들이 순차적으로 분해되면서 세포의 항상성을 잃게 되고, 결국 죽음에 이르게 된다(Matile et al., Elservier, 413- 440, 1992; Nooden et al., Senescence and aging in Plant, Academic press 1988; Thiman et al., CRC press 85-115, 1980; Thomas et al., Annu. Rev. Plant Physiol. 123:193-219, 1993). 이러한 식물의 노화는 일련의 연속된 생화학적 및 생리학적 현상으로서, 유전적으로 계획되어 있어 세포, 조직 및 기관의 수준에서 매우 정교하고, 능동적으로 진행된다. 식물의 노화는 세포가 퇴화하는 과정인 동시에 겨울철에 성장기관의 양분을 생식기관으로 이동시키는데 필요한 과정이며, 이는 식물의 진화과정 동안 환경에 적응하기 위해 능동적으로 획득한 유전형질이라고 생각되고 있다. 식물의 노화는 생물학적 중요성 뿐 아니라 작물의 생산성이나 수확 후 저장 효율에 있어서의 개량 가능성 때문에 산업적으로 중요성이 높다. 이에 따라 식물의 노화 현상을 밝히고, 식물의 노화를 지연시키기 위한 유전학적, 분자 생물학적, 생리학적 및 생화학적 연구가 활발히 진행되고 있다.
최근에 노화 특이적인 SAG12 유전자의 프로모터에 IPT 유전자를 연결하여 특정 노화 단계에서 특이적으로 식물 생장 호르몬인 싸이토키닌의 합성을 조절함으로써 노화의 진행을 지연시키는데 성공한 바 있다. 이 방법으로 노화를 지연시킨 담배의 경우, 개화시기나 다른 기형을 유도하지 않으면서 50% 이상의 생산성 증가를 이룰 수 있었다(Gan et al., Science 22:1986-1988, 1995). 또한, 노화 과정에서 일어나는 생화학적 변화와 관련된 활성을 갖거나 또는 신호전달 체계에 관여하는 분해 관련 유전자를 조작하여 식물의 노화를 지연시키려는 연구가 진행되어 왔다. 그 대표적인 예로는 안티센스 RNA(antisense RNA)를 이용하여 세포벽 분해와 관련된 폴리갈락투로나제(polygalacturonase) 유전자의 발현을 저해시킴으로써 토마토 의 연화를 방지하여 운송성과 저장성을 증대시킨 플레브 세이브(Flavr savr)라고 하는, 상업화된 토마토가 있다(Giovannoni et al., Plant Cell 1(1):53-63, 1989). 또한, 지질 분해에 관련되는 인지질 분해효소 D(phospholipase D)를 안티센스로 하여 발현을 저해시킬 경우, 식물 호르몬에 의한 노화가 지연된다는 연구결과가 보고된 바 있다(Fan et al., Plant Cell 9(12):2183-2196, 1997). SAG12 프로모터에 연결된 옥수수의 호메오박스(homeobox) 유전자인 kn1(knotted 1)가 도입된 형질전환 담배에서 잎의 노화가 지연된다는 연구결과가 보고된 바 있다(Ori et al., Plant Cell 11:917-927, 1999). 이외에도 빛의 광수용체 중 피토크롬(phytochrome)이 식물 노화에 영향을 주는 것으로 보고되었다. 예컨대, 귀리의 PhyA 유전자를 과발현시킨 형질전환 담배에서 엽록소 및 총 세포 내 단백질 양의 감소 지연 등의 노화 지연 표현형이 관찰되었다(Cherry et al.,Plant Physiology 96:775-785, 1991). 또한, 애기장대의 PhyB 유전자를 과발현시킨 감자의 잎에서 수명이 연장됨이 관찰되었으며, 이 경우 형질전환 감자의 잎에서 엽록소 감소의 시작 시기는 정상 감자와 같았으나 엽록소의 완전 분해 시기는 3~4주 정도 더 길어진 것으로 관찰되었다(Thiele et al., Plant physiology 120:73-81, 1999).
그러나, 식물의 노화는 많은 유전자들이 관여하는 일련의 연속된 생화학적 및 생리학적 현상이기 때문에, 아직까지 식물의 노화 조절에 관여하는 유전자, 이의 기능 및 상기 유전자를 이용한 식물의 수명 조절 방법에 관한 연구는 미흡한 실정이다.
본 발명자들은 이전에 잎 수명 조절에 관여하는 여러 유전자들 및 이를 이 용하여 식물의 수명을 조절하는 방법에 대하여 규명한 바 있다(대한민국 등록특허 제10-350213호, 대한민국 특허출원 제 2001-50748호 및 대한민국 특허출원 제2001-50774호). 이에 더하여, 식물의 노화 조절에 관여하는 신규 유전자를 규명하기 위하여 계속 연구하던 중, 사이토키닌 수용체의 일종인 AHK3가 식물의 노화 조절에 관여한다는 것과 상기 수용체의 변이가 식물체에서 노화를 지연시킨다는 것을 규명함으로써 본 발명을 완성하였다.
따라서, 본 발명의 목적은 식물의 노화를 지연시키는 변이형 사이토키닌 수용체 AHK3을 제공하는 것이다.
본 발명의 다른 목적은 상기 변이형 사이토키닌 수용체 AHK3을 암호화하는 폴리뉴클레오티드를 제공하는 것이다.
또한, 본 발명의 또 다른 목적은 사이토키닌 수용체 AHK3 또는 이의 변이형을 암호화하는 폴리뉴클레오티드를 이용하여 식물의 노화를 지연시키는 방법을 제공하는 것이다.
본 발명의 다른 목적은 식물체 내에서 사이토키닌 수용체 AHK3의 염기서열의 일부를 변이시킴으로써 식물의 노화를 지연시키는 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 사이토키닌 수용체 AHK3의 유전자 발현을 조절하는 그의 프로모터를 제공하는 것이다.
나아가, 본 발명의 다른 목적은 상기 프로모터를 이용하여 식물의 특정 발달 단계에서 목적 유전자의 발현을 유도하는 방법을 제공하는 것이다.
상기와 같은 목적을 달성하기 위하여, 본 발명은 서열번호 10으로 기재되는 사이토카인 수용체 AHK3의 아미노산 서열에서 243번째 아미노산인 프롤린(proline)이 세린(serine)으로 치환된, 변이형 사이토키닌 수용체 AHK3을 제공한다.
본 발명의 다른 목적을 달성하기 위하여, 본 발명은 상기 변이형 사이토키닌 수용체 AHK3을 암호화하는 폴리뉴클레오티드를 제공한다.
또한, 본 발명의 또 다른 목적을 달성하기 위하여, 본 발명은 서열번호 8 또는 서열번호 10의 아미노산 서열을 암호화하는 폴리뉴클레오티드를 식물체 내로 도입하여 과발현시키는 것을 포함하는 식물의 노화를 지연시키는 방법을 제공한다.
본 발명의 다른 목적을 달성하기 위하여, 본 발명은 식물체 내 서열번호 9로 표시되는 AHK3 유전자의 염기서열에서 727번째 염기인 사이토신(cytosine: C)을 티민(thymine; T)으로 점 돌연변이(point mutation)시키는 것을 포함하는 식물의 노화를 지연시키는 방법을 제공한다.
본 발명의 또 다른 목적을 달성하기 위하여, 서열번호 13으로 기재되는 염기서열을 갖는 AHK3 유전자의 프로모터를 제공한다.
나아가, 본 발명의 다른 목적을 달성하기 위하여, 상기 프로모터의 하류에 연결된 목적 유전자를 포함하는 재조합 발현 벡터를 식물체에 도입하는 단계를 포함하는, 식물의 특정 발달 단계에서 목적 유전자의 발현을 유도하는 방법을 방법을 제공한다.
본 발명에서 "ore12"란, AHK3 유전자의 염기서열 상에 점 돌연변이(point mutation)가 일어나 노화 지연 표현형을 나타내는 '기능-획득 돌연변이체(gain-of-function mutant)'를 말하는 것으로서, 상기 점 돌연변이는 서열번호 9로 기재되는 AHK3 유전자의 염기서열에서 727번째 염기인 C가 T로 치환된 것이다.
본 발명에서 "ORE12 유전자"란, ore12에서 변이가 유발된 유전자로서, 점 돌연변이가 일어난 AHK3 유전자를 말한다. 본 발명에 따른 ORE12 유전자는 서열번호 7로 기재되는 염기서열을 가진다.
또한, 본 발명에서 "ahk3-1" 또는 "ahk3-2"란, T-DNA 삽입에 의해 AHK3 유전자가 불활성화된 '녹아웃 돌연변이체'를 말한다.
본 발명에서 "S40-1" 또는 'S75-1"란, CaMV 35S 프로모터의 조절 하에서 AHK3 유전자가 과발현되도록 유전자 조작된, 'AHK3 유전자의 과발현 돌연변이체'를 말한다.
나아가, 본 발명에서 "ore12ox-13", "ore12ox-14" 또는 "ore12ox-18 "이란, CaMV 35S 프로모터의 조절 하에서 ORE12 유전자가 과발현되도록 유전자 조작된, 'ORE12 유전자의 과발현 돌연변이체'를 말한다.
이하, 본 발명을 상세히 설명한다.
사이토키닌은 정단 분열조직(shoot meristem)과 잎의 형성(leaf formation), 세포 분열(cell division), 엽록체 생물발생설(choloroplast biogenesis) 및 노화(senescence)에 관여하는 중요한 식물 호르몬이다(Hwang et al., Nature 413(6854):383-389, 2001). 사이토키닌의 신호전달(cytokinin signal transduction)은 신호 유입에 반응하는 히스티딘 단백질 카이네이즈(Histidine protein kinase)와 신호 방출을 매개하는 반응 조절자(response regulator)로 구성된 2개의 구성요소 시스템(two-component system or two-component signalling circuit)을 통해 이루어진다(Hwang et al., Nature 413(6854)383-389, 2001; Hwang et al., Plant Physiol. 129(2):500-515, 2002). 사이토키닌의 신호전달은 세포막에서 다양한 히스티딘 카이네이즈(histidine kinase)의 활성을 통해 시작된다. 상기 히스티딘 카이네이즈는 사이토키닌 수용체로서 사이토키닌이 결합함으로써 신호를 인지하고, 상기 신호는 히스티딘 카이네이즈의 히스티딘 잔기로부터 반응 조절자들의 아스팔테이트(aspartate) 잔기로의 인산화 반응을 통하여 연속적으로 전달된다. 이 때 다양한 히스티딘 포스포트랜스미터(phosphotransmitter)가 사이토키닌에 의존하여 세포질과 핵 사이의 신호전달 셔틀(signalling shuttles)의 역할을 한다. 상기와 같은 전달 기작을 통해 세포 내 대사를 조절하는 일련의 유전자들의 발현이 조절된다. 현재까지 AHK2, AHK3, AHK4 등 다양한 히스티딘 카이네이즈들이 사이토키닌 수용체로서 알려졌으나(Yamada et al., Plane Cell Physiol. 42(9):1017-1023, 2001), 이들의 구체적인 기능에 대해서는 아직 밝혀지지 않았다.
본 발명은 사이토키닌 신호전달에 관여하는 사이토키닌 수용체의 하나인 AHK3가 식물의 잎 노화를 조절한다는 것을 최초로 규명하였다. 또한, AHK3 유전 자의 기능 획득 돌연변이(gain-of-function mutation)가 야생형에 비해 증가된 잎 수명을 보이는 것을 여러 실험을 통해 확인하였으며, 사이토키닌 초기 반응 유전자(cytokinin early response genes)인 A형 ARR 유전자들의 발현이 야생형에 비해 현저히 높은 수준으로 유도된다는 것을 확인하였다. 이 결과들은 AHK3가 애기장대에서 잎 노화를 조절하는 사이토키닌 수용체라는 직접적인 증거를 제공한다. 이에 따라, 본 발명은 식물의 잎 노화를 지연시키는 변이형 사이토키닌 수용체 AHK3과 이를 암호화하는 폴리뉴클레오티드를 제공한다.
본 발명에서 제공되는 변이형 사이토키닌 수용체 AHK3는, 서열번호 10으로 기재되는 사이토키닌 수용체 AHK3의 아미노산 서열에서 243번째 아미노산인 프롤린이 세린으로 치환되어 있으며, 구체적으로 서열번호 8로 기재되는 아미노산 서열을 갖는다. 또한, 본 발명에 따른 변이형 사이토키닌 수용체 AHK3를 암호화하는 폴리뉴클레오티드는 서열번호 9로 기재되는 AHK3 유전자의 염기서열에서 727번째 염기인 사이토신이 티민으로 치환되어 있으며, 바람직하게는 서열번호 7로 기재되는 염기서열을 갖는다.
본 발명의 일 실시예에서는 식물의 잎 노화를 조절하는 신규한 유전자를 탐색하기 위하여, 자연적인 노화과정 동안의 잎 수명과 암에 의해 유도된 노화 과정 동안의 잎 수명을 잎 황화현상(leaf yellowing)으로 비교 조사하여 잎의 노화가 지연된 형질을 나타내는 돌연변이체를 선발하였다. 먼저, 돌연변이 유발제인 EMS(ethyl-methyl sulfonic acid)가 처리된 종자들을 파종하고, 성장한 개체들 중에서 육안으로 잎의 황화 속도가 느린 개체를 선발하였다(도 1 참조). 선발된 노화 지연 변이체를 'ore12'라 명명하였다. 이후, 잎의 엽록소 함량 및 광합성 활성 측정을 통해 ore12의 형질을 조사한 결과, ore12가 야생형에 비해 노화가 지연된 형질을 나타내는 것을 확인할 수 있었다(도 2 참조).
엽록소 a/b 결합 단백질(chlorophyll a/b binding protein), 엽록체 리보솜 단백질 S17(chloroplast ribosomal protein S17)과 같은 광합성 관련 유전자 발현은 잎 성장시에는 증가하다가 노화단계가 되면 감소하고, 이와 반대로 각종 노화 관련 유전자 SAG12, SEN4SEN5 등의 발현은 노화의 진행에 따라 증가하는 것으로 알려져 있다(Nam et al., Curr. Opin. Biotech. 8:200-207, 1997). 따라서, 본 발명의 다른 실시예에서는 ore12에서 나타나는 노화의 지연이 생리적 수준뿐만 아니라 분자 수준에서도 작용하는 것인지 확인하기 위하여, 광합성 유전자(cab) 및 노화 관련 유전자(SAG12)의 발현 양상을 조사하였다. 그 결과, 야생형의 경우 cab 유전자의 발현이 연령 의존적으로 감소되었으나, ore12에서는 24 DAE(days after fourth rosette leaf emergence)까지 높은 수준으로 유지됨을 확인할 수 있었다(도 3 참조). 또한, 동일한 시간에 야생형에서는 SAG12 유전자의 발현이 증가된 반면, ore12에서는 검출되지 않았다. 이는 ore12의 노화 지연 효과가 생리적 수준은 물론 분자적 수준에서 나타나는 효과임을 의미한다.
일반적으로 잎의 노화는 유전자 내에 이미 예정되어 있는 것으로 받아들여 지고 있지만, 노화의 시작과 진행은 ABA(abscicsic acid), MeJA(methyl jasmonate) 및 에틸렌(ethylene)과 같은 식물 호르몬 또는 암처리에 의해 변화될 수 있다고 알려져 있다(Hensel et al., Plant Cell 5:553, 1993; Weaver et al., Plant Mol. Biol. 37(3):455-69, 1998; Zeevaart et al., Annu. Rev. Plant. Physiol. Plant Mol. Biol. 39:439-473, 1988; He et al., Plant Physiol. 128(3):876-884, 2002; Grbic et al., Plant J. 8:595-602, 1995). 따라서, 본 발명의 또 다른 실시예에서는, 이러한 식물 호르몬 또는 암 처리에 따른 ore12에서의 잎 수명 변화를 엽록소 함량 및 광합성 활성을 통해 조사하였다. 그 결과, 야생형의 경우에는 식물 호르몬 또는 암 처리에 의해 엽록소 함량 및 광합성 활성이 크게 감소하여 노화가 촉진되었으나, ore12에서는 그 영향이 크게 감소하여 노화 촉진 호르몬을 처리하더라도 노화가 지연됨을 확인할 수 있었다(결과 미도시).
본 발명의 다른 실시예에서는 ore12에서 노화 지연을 유발하는 유전자를 찾기 위하여, 유전자 지도를 작성하여 해당 유전자를 탐색하였다. 그 결과, ORE12 유전자는 애기장대의 1번 염색체 상의 M235 유전자좌(locus)로부터 6.18±0.92 cM(centimorgans)에 위치하며, 보다 상세하게는 BAC F17L21에 위치함을 확인하였다(도 4 참조). ORE12 유전자를 포함하고 있는 부위의 염기서열을 분석한 결과, 그 부위에 ORF가 존재함을 확인하였다. 상기 ORF의 서열을 NCBI BLAST에서 분석한 결과, 상기 서열에서는 히스티딘 카이네이즈 3를 암호화하는 AHK3 유전자(At1g27320)의 단일 염기쌍이 번역시작 부위와 인접한 727 뉴클레오티드 위치에서 사이토신(C)에서 티민(T)으로 치환되어 있고, 상기 변이로 인해 아미노산 서열의 243 위치에서 프롤린이 세린으로 치환됨을 확인할 수 있었다. 이후, 점 돌연변이된 AHK3 유전자가 ORE12 유전자와 일치하는 것인지 확인하기 위하여, AHK3 유전자를 ore12에 도입하여 보완 실험(complementation test)을 수행한 결과, 상기 AHK3 유전자가 ore12의 잎 노화 지연 표현형을 보완시키기에 충분함을 확인하였다. 이로부터 ORE12 유전자가 애기장대의 사이토키닌 수용체로 알려진 AHK3 유전자가 점 돌연변이된 유전자임을 확인하였다.
또한, 본 발명은 사이토키닌 수용체 AHK3(서열번호 10) 또는 이의 변이형(서열번호 8)을 암호화하는 폴리뉴클레오티드를 이용하여 식물의 노화를 지연시키는 방법을 제공한다. 상기 폴리뉴클레오티드는 서열번호 9 또는 서열번호 7로 기재되는 염기서열을 갖는 것이 바람직하다. 상기 방법은 상기 폴리뉴클레오티드를 이의 발현을 조절할 수 있는 프로모터에 연결하여 식물체 내로 도입하여 과발현시키는 것을 포함한다. 상기 프로모터로는 모든 시간대에 상시적으로 목적 유전자의 발현을 유도하는 프로모터(constitutive promoter)를 사용할 수 있으며, 그 예로는 CaMV 35S 프로모터(Odell et al., Nature 313:810-812, 1985), Rsyn7 프로모터(미국특허출원 제08/991,601호), 라이스 액틴(rice actin) 프로모터(McElroy et al., Plant Cell 2:163-171, 1990), 유비퀴틴 프로모터(Christensen et al., Plant Mol. Biol. 12:619-632, 1989) 및 ALS 프로모터(미국 특허출원 제08/409,297) 등이 있 다. 이외에도 미국특허 제5,608,149; 제5,608,144호; 제5,604,121호; 제5,569,597호; 제5,466,785호, 제5,399,680호; 제5,268,463호; 및 제5,608,142호 등에 개시된 프로모터들을 모두 사용할 수 있다. 바람직하게는 CaMV 35S 프로모터를 사용한다. 또한, 본 발명에 따른 폴리뉴클레오티드의 식물체로의 도입은 공지의 식물체 형질전환방법을 이용할 수 있다. 예컨대, 아그로박테리움(Agrobacterium) 매개 형질전환법, 전기천공법(electroporation), 입자충격법(microparticle bombardment), 폴리에틸렌 글리콜 침전법(polyethylene glycol-mediated uptake) 등을 이용할 수 있다. 바람직하게는 아그로박테리움 매개 형질전환법을 이용한다. 본 발명의 바람직한 실시예에서는 서열번호 7로 기재되는 염기서열을 갖는 ORE12 유전자 또는 서열번호 9로 기재되는 AHK3 유전자를 CaMV 35S 프로모터에 연결하고, 아그로박테리움 매개 형질전환법으로 애기장대 야생형에 도입시켰다. 각 형질전환체의 노화 지연 형질을 조사한 결과, 두 형질전환체 모두 노화 지연 표현형을 나타냄을 확인하였다(도 7도 8 참조).
또한, 본 발명은 식물체 내 AHK3 유전자를 돌연변이시킴으로써 식물의 노화를 지연시키는 방법을 제공한다. 구체적으로는 식물체 내 서열번호 9로 기재되는 AHK3 유전자의 염기서열에서 727번째 염기인 사이토신을 티민으로 점 돌연변이시키는 것을 포함하는 식물의 노화를 지연시키는 방법을 제공한다. 상기 점 돌연변이는 EMS(ethyl methane sulfonate), 아질산(nitrous acid) 또는 UV와 같은 돌연변이 유발제(mutagen) 처리법 또는 부위특이 돌연변이 유발법(site-directed mutagenesis)(N. Swamy et al., Biochemistry 39:12162-12171, 2000)에 의해 유발될 수 있다. 본 발명의 바람직한 실시예에서는 애기장대 야생형에 EMS를 처리하여 돌연변이를 유도하였으며, 상기 EMS 처리로 인해 서열번호 9로 기재되는 AHK3 유전자의 염기서열에서 727번째 염기인 사이토신이 티민으로 점 돌연변이된 식물체(ore12)가 노화 지연 표현형을 보임을 확인하였다(도 1 내지 도 2 참조).
본 발명에 따른 변이형 사이토키닌 수용체 AHK3가 식물의 노화 지연 효과에 미치는 기작은 다음과 같이 추정할 수 있다. 사이토키닌이 AHK3 수용체에 결합하고, 이를 통해 사이토키닌 신호 전달이 이루어져 노화가 지연되는 정상적인 사이토키닌 신호 전달 시스템에 있어서, 본 발명의 변이형 사이토키닌 수용체 AHK3는 사이토키닌이 없이도 사이토키닌과 결합한 것과 같은 상태 또는 그로부터 신호를 받은 상태가 되어 지속적인 신호 전달을 유발하는 것으로 사료된다. 또는 사이토키닌에 대한 변이형 사이토키닌 수용체의 친화력(affinity)이 증가되어 지속적인 신호전달을 유발하는 것일 수도 있다.
또한, AHK3 수용체의 과발현에 의한 식물의 노화 지연 효과는 식물 내에서 내인성(endogenous) 사이토키닌이 결합할 수 있는 AHK3의 양이 한정되어 있다는 가정 하에서 설명될 수 있다. 즉, 정상적인 상태에서는 AHK3의 양이 한정되어 있으므로 사이토키닌 신호 전달이 지속적으로 이루어질 수 없으나, AHK3 유전자를 과발현시키는 경우에는 내인성 사이토키닌에 결합할 수 있는 AHK3의 양이 많아지게 되므로, 지속적인 사이토키닌 신호 전달이 이루어지게 되는 것이다.
본 발명에 따른 식물의 노화 지연 방법이 적용될 수 있는 식물로는 상치, 배추, 감자, 무를 포함하는 쌍자엽 식물(dicotyledonous plant) 또는 벼, 보리, 바나나를 포함하는 단자엽 식물(monocotyledonous plant)이 모두 이용될 수 있다. 구체적으로, 벼, 밀, 보리, 옥수수, 콩, 감자, 팥, 귀리, 수수를 포함하는 식량작물류; 아라비돕시스, 배추, 무, 고추, 딸기, 토마토, 수박, 오이, 양배추, 참외, 호박, 파, 양파, 당근을 포함하는 채소작물류; 인삼, 담배, 목화, 참깨, 사탕수수, 사탕무우, 들깨, 땅콩, 유채를 포함하는 특용작물류; 사과나무, 배나무, 대추나무, 복숭아, 양다래, 포도, 감귤, 감, 자두, 살구, 바나나를 포함하는 과수류; 장미, 글라디올러스, 거베라, 카네이션, 국화, 백합, 튤립을 포함하는 화훼류; 및 라이그라스, 레드클로버, 오차드그라스, 알파알파, 톨페스큐, 페레니얼라이그라스를 포함하는 사료작물류가 모두 이용될 수 있다. 특히, 토마토와 같이 과피가 얇아 노화에 따른 품질 저하가 급격히 나타나는 식용 채소 또는 과일, 그리고 잎이 주된 상품으로 거래되는 식물 등에 본 발명에 따른 식물의 노화 지연 방법을 적용할 경우, 저장 효율을 높이는데 효과적이다.
아울러, 본 발명은 사이토키닌 수용체 AHK3 또는 이의 변이형, 이들을 암호화하는 폴리뉴클레오티드, 이들의 절편 또는 유도체를 이용하여 식물의 노화 관련 물질을 탐색하는 방법을 제공한다. 상기 노화 관련 물질은 유전자, 단백질 또는 화학물질(chemical)일 수 있다. 보다 구체적으로는 사이토키닌 수용체 AHK3를 암 호화하는 AHK3 유전자 또는 이의 변이형 유전자와 염기서열을 비교하여 높은 서열 상동성을 가진 유전자를 탐색하거나, 또는 상기 유전자들의 일부분을 탐침으로 하여 노화 유도제(촉진제)를 처리한 식물체로부터 추출한 RNA 또는 mRNA를 주형으로 하여 제조한 cDNA와 혼성화 반응을 수행함으로써 유사 유전자를 탐색할 수 있다. 또한, 직접적으로 상기 AHK3 유전자 또는 이의 변이형 유전자와 결합하는 물질 또는 이들의 발현을 억제 또는 활성화하는 화학물질 등을 탐색할 수 있다. 아울러, AHK3 수용체 또는 이의 변이형과의 단백질 결합 양상을 분석하여 노화 관련 단백질을 탐색할 수도 있으며, 본 발명에 따른 AHK3 수용체 또는 이의 변이형의 활성을 억제 또는 활성화하는 화학물질을 탐색할 수 있다. 일반적으로 사용되는 DNA 칩, 단백질 칩, 중합효소 연쇄반응(PCR), 노던 블럿, 서던 블럿, 웨스턴 블럿, 효소 면역 반응(ELISA), 2-D 겔 분석, 효모 이중 혼성화 반응(yeast two hybrid system) 및 시험관 내 결합 어세이(in vitro binding assay)를 포함하는 다양한 방법으로 탐색을 수행할 수 있다.
나아가, 본 발명은 노화 조절에 관여하는 사이토키닌 수용체 AHK3를 암호화하는 AHK3 유전자의 프로모터를 제공한다. 상기 프로모터는 구체적으로 서열번호 13으로 기재되는 서열을 가지며, 식물의 발달 단계에 특이적으로 목적 유전자의 발현을 유도한다. 주로 노화 단계에서 목적 유전자의 발현을 유도한다. 즉, 본 발명에 따른 프로모터는 발달하는 기관(developing organs)에서는 목적 유전자의 발현을 거의 유도하지 않는 반면, 성숙한 잎(mature leaves)에서는 매우 높은 수준으 로 유도한다. 또한, 식물의 뿌리보다는 신초 기관에서 매우 높은 수준으로 목적 유전자의 발현을 유도한다. 본 발명의 바람직한 실시예에서는 상기 AHK3 유전자의 프로모터에 리포터 유전자인 GUS 유전자를 연결하여 이를 애기장대 야생형에 도입하였다. 형질전환된 식물체에서 GUS 염색을 수행한 결과, GUS 유전자의 발현은 식물의 성숙한 부분(예: 완전히 성장한 잎 또는 뿌리의 노화된 부분)에 제한되어 검출되었으며, 또한 뿌리에서보다 신초에서 더 높은 수준으로 검출되었다(도 6 참조). 따라서, 본 발명에 따른 프로모터는 식물의 특정 발달 단계에서 목적 유전자의 발현을 유도하기 위한 발현 벡터의 구성요소로 사용될 수 있으며, 상기 발현 벡터를 이용하여 식물의 특정 발달 단계에서 목적 유전자의 발현을 유도할 수 있다. 특히, 식물의 노화를 지연시키는 단백질을 암호화하는 유전자, 예컨대 IPT 유전자, PhyA 유전자 또는 PhyB 유전자를 본 발명에 따른 프로모터에 연결하여 식물체에 도입시킴으로써 노화 단계에서 상기 유전자의 발현을 유도하여 식물의 노화를 지연시킬 수 있다.
이하, 본 발명을 실시예에 의해 상세히 설명한다.
단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.
<실시예 1>
노화 지연 돌연변이체 스크리닝
EMS가 처리된 M2 종자들(ABRC seed stock center에서 분양받음)을 파종하여 약 23℃로 온도가 조절되는 온실에서 성장시켰다. 연령 의존적인 식물 노화에 따른 엽록소의 감소로 인해 잎이 황화되는 정도를 육안으로 관찰하여 야생형에 비해 잎의 황화 속도가 느린 1개의 개체를 선발하여, 상기 변이체를 'ore12'로 명명하였다. ore12는, 도 1에서 보는 바와 같이, 자연 상태에서 육안으로 확인하였을 때 잎 노화(In planta leaf senescence)에서 연령 의존적으로 지연된 노화 징후(delayed senescence symptoms)를 나타내었다. 그러나, 전체 식물(whole plant) 형태에서는 야생형과 큰 차이를 보이지 않았다.
<실시예 2>
ore12 의 노화 지연 형질 조사
대표적인 노화 관련 마커인 엽록소 함량 및 광합성 활성을 측정하여 상기 실시예 1에서 얻은 ore12의 잎 수명(leaf longevity)을 조사하였다(Fan et al., Plant Cell 9:2183-2196, 1997; Oh et al., Plant J. 12:527-535, 1997). 이를 위해, 노화 지연 변이체 ore12 및 대조군으로 사용될 야생형 개체들을 22℃, 16시간 명조건/8시간 암조건으로 환경이 조절되는 생장실(growth room, Korea Instrument Inc.)에서 성장시켰으며, 각 실험에는 세번째 또는 네번째 좌엽(rosette leaf)을 사용하였다.
<2-1> 엽록소 함량 측정
4번째 좌엽이 나온 후 12일째 되는 날(12 DAE)부터 40일째 되는 날(40 DAE) 까지 4일 간격으로 각 식물체로부터 잎을 채취하였다. 이후, 각 시료 잎을 80℃에서 95% 에탄올로 끓여 엽록소를 추출하였다. 이후, 추출액의 흡광도를 648nm 및 664nm에서 측정하여 엽록소 함량을 조사하였다. 엽록소 함량은 잎의 중량(fresh weight)에 대한 엽록소 농도로 표시하였다(Vermon et al., Anal. Chem. 32:1142-1150, 1960). 그 결과, 야생형에서는 24 DAE에서 엽록소 함량이 약 70% 정도 소실되었으나, 동일한 시기의 ore12에서는 잎이 황화되기 시작함을 확인할 수 있었다(도 2의 A 참조).
<2-2> 광합성 활성 측정
광합성 활성은 오 등의 방법(Oh et al., Plant Mol. Biol. 30:939, 1996)에 따라 측정하였다. 이를 위해, 각 DAE의 잎을 15분간 암처리한 후 식물 효율 분석기(plant efficiency analyzer)를 이용하여 엽록소의 형광을 측정하였다. 광합성 활성은 엽록소의 형광도 특성을 이용한 PSⅡ(photosystemⅡ)의 광화학적 효율(photochemical efficiency)로 나타내었다. 상기 광화학적 효율은 형광도 최대치(maximum value of fluorescence; Fm)에 대한 최대 변형 형광도(maximum variable fluorescence; Fv)의 비율 (Fv/Fm)로 계산하였다. 상기 수치가 높을수록 광합성 활성이 좋음을 나타낸다. 그 결과, 광합성 활성의 감소 또한 야생형에 비해 ore12에서 지연됨을 확인할 수 있었다(도 2의 B 참조).
상기 결과들로부터, ore12는 엽록소 함량 감소 및 광합성 활성 감소로 표현 되는 노화에 따른 생화학적 변화가 야생형에 비해 더디게 진행되어 노화 지연표현형(delayed leaf senescence phenotype)을 나타낸다는 것을 확인할 수 있었다.
<실시예 3>
ore12 에서 광합성 유전자 및 노화 관련 유전자의 발현 양상 조사
ore12로부터 16, 20, 24, 28 및 32 DAE의 잎을 채취하였다. 대조구인 야생형으로부터는 16, 20 및 24 DAE의 잎을 채취하였다. 채취된 각 시료 잎으로부터 트리-시약(Tri-reagent, Sigma)을 이용하여 전체 RNA를 추출하였으며, 각 레인 별로 10 ㎍의 RNA를 로딩하였다. 이후, 서열번호 1로 기재되는 염기서열을 갖는 노화 관련 유전자 SAG12서열번호 2로 기재되는 염기서열을 갖는 광합성 유전자 Cab(chlorophyll a/b binding protein)을 탐침으로 이용하여 노던 블럿을 수행하였다(Woo et al., Plant Cell 13:1779-1790, 2001).
그 결과, 도 3에서 보는 바와 같이, 광합성 유전자 Cab의 발현이 야생형에서는 연령 의존적으로 감소되었으나, ore12에서는 24 DAE까지 높은 수준으로 유지됨을 확인할 수 있었다. 한편, 노화 관련 유전자 SAG12의 발현이 24 DAE에 야생형에서는 증가된 반면, 동일한 시기의 ore12에서는 검출되지 않았다. 이러한 사실은 ore12가 생리적 수준뿐만 아니라 분자적 수준에서도 노화의 시작을 연기시켜 잎의 수명을 연장시킨다는 것을 의미한다. 또한, 상기 실험의 결과는 광합성과 같은 동화 활성(anabolic activity) 및 자가 유지 유전자 활성(self-maintenance gene activity)이 잎의 성장시 증가하다가 노화단계에서는 감소하는 것으로 보고된 이전 의 연구결과와도 일치하는 것이다(Nam H. G. Curr. Opin. Biotech. 8:200-207, 1997).
<실시예 4>
노화 유도제 처리에 따른 ore12 의 노화 형질 조사
노화를 유도(또는 촉진)하는 것으로 알려진 암(darkness) 및 다양한 식물 호르몬의 처리에 의해 ore12의 잎 수명이 변화되는지 엽록소 함량 및 광합성 활성 변화 측정을 통해 조사하였다.
<4-1> 암 처리
애기장대 야생형(col) 및 ore12로부터 12 DAE에 있는 72개의 독립된 잎을 분리하여 이를 3 mM 2-[N-모폴리노]-에탄술폰산완충액(2-[N-morpholino]-ethanesulfonic acid, pH 5.8; 이하 'MES 완충용액'이라 한다) 2 ㎖에 부유시킨 후, 빛이 새지 않는 박스에 넣고 22℃에서 두면서 매일 각 6 개의 독립된 잎에 대해 광합성 활성 및 엽록소 함량을 상기 실시예 2와 동일한 방법으로 측정하였다. 그 결과, 암 처리 6일 후 야생형의 광합성 활성은 30%로 감소하였으나, ore12는 90%의 활성을 유지하는 것을 확인하였다(결과 미도시). 또한, 엽록소 함량도 광합성 활성과 유사하게 ore12에서는 감소 양상이 둔화되어, 암 처리 6 일 후 야생형은 10%를 나타내는데 반해, ore12는 이의 8배인 80%을 나타내는 것을 확인하였다(결과 미도시).
<4-2> 식물 호르몬 처리
12 DAE에 있는 36 개의 독립된 잎을 100 μM ABA 또는 100 μM MeJA을 포함하는 MES 완충용액 2 ㎖에 부유시켰다. 대조구의 잎은 ABA 또는 MeJA를 첨가하지 않은 MES 완충용액에 부유시켰다. 이와 같은 식물 호르몬 처리는 계속적으로 빛을 쬐어주는 상태로 22℃에서 5일간 수행했다. 이후, 광합성 활성 및 엽록소 함량을 상기 실시예 2와 동일한 방법에 따라 측정하였다.
그 결과, ABA와 MeJA 처리 후 야생형의 광합성 활성은 각각 30% 및 40%로 감소하였으나, ore12는 모두 80%로 유지하였으며, 엽록소 함량 감소는 광합성 활성과 유사하게 ore12에서 감소 양상이 둔화됨을 확인하였다(결과 미도시). 이러한 결과들은 ore12가 식물의 노화 촉진 호르몬들에 대하여 민감성이 낮아 이들에 의한 노화의 진행을 억제함으로써 식물의 수명을 연장시킬 수 있음을 보여주는 것이다.
<실시예 5>
ore12 돌연변이 표현형의 유전적 분리 분석
본 발명에 따른 노화 지연 변이체 ore12를 애기장대 야생형(col)과 교배하여 F1 및 F2 자손을 얻었다. 이들을 대상으로 노화 표현형의 유전적 분리 분석을 수행하였다. 그 결과, 모든 F1 식물체들은 정상적인 노화 징후를 나타내었다. 그러나, F2 식물체들의 경우에는 약 1/3이 노화 지연 표현형을 나타내었다. 이와 같은 F2 분리는 ore12 돌연변이가 단성의 열성 핵 돌연변이(monogenic recessive nuclear mutation)임을 나타내는 것이다. 그 결과를 하기 표 1에 나타내었다.
ore12와 야생형의 교배로 얻은 자손의 표현형의 분리
자손(progeny) 개체수 표현형
야생형 노화 지연
F1 식물체 20 20 0
F2 식물체 441 335 106

<실시예 6>
유전자 지도에 기초한 ORE12 유전자 클로닝 및 서열 분석
ore12에 대한 정확한 유전학적 정보를 얻기 위하여, CAPS(cleaved amplified polymorphic sequence) 표지인자를 이용하여 유전자 지도를 작성하였다. 먼저, ore12를 애기장대 야생형 란즈버그 에렉타(Landsverg erecta; Ler)와 교배하고, 이로부터 F2 자손을 얻었다. F2 자손 중 노화 지연 표현형을 보이는 919개의 식물체를 선발하여 실험에 사용하였다. CAPS 표지인자는 애기장대 게놈 서열 데이터(http://www.arabidopsis.org)를 이용하여 제작하였다. 유전자 지도 작성 결과, 도 4에 도시된 바와 같이, ORE12 유전자는 1번 염색체 상의 M235 위치로부터 6.18±0.92 cM(centimorgans)에 위치하며, 보다 상세하게는 BAC F17L21에 위치하는 것을 확인할 수 있었다.
이후, 본 발명자들은 ORE12 유전자를 클로닝하기 위하여, ORE12 유전자로부터 919 개체 당 각각 1개의 재조합체를 얻을 수 있는 위치에 있는 두 개의 CAPS 표 지인자, F17L21-3A와 F17L21-4A을 제작하였다. 상기 CAPS 표지 중 F17L21-3A는 서열번호 3서열번호 4로 기재되는 염기서열을 갖는 올리고뉴클레오티드를 프라이머로 하여 PCR을 통해 증폭된 1.2 kb 크기의 산물로서, Col에서 유래한 2개의 Dde I 절단 부위와 Ler에서 유래한 2개의 Dde I 절단 부위를 갖는다. 또한, 다른 하나인 F17L21-4A는 서열번호 5서열번호 6으로 기재되는 염기서열을 갖는 올리고뉴클레오티드를 프라이머로 하여 PCR을 통해 증폭된 1.4 kb 크기의 산물로서, Col에서 유래한 1개의 EcoRI 절단 부위와 Ler에서 유래한 2개의 EcoRI 절단 부위를 갖는다. 상기 2개의 CAPS 표지인자를 이용하여 유전자 지도를 작성한 결과, ORE12 유전자를 포함할 것으로 예상되는 부위에 ORF(open reading frame)가 존재함을 확인하였다. 상기 부위의 염기서열을 분석하여 야생형의 것과 비교 분석하였다.
그 결과, ore12에서의 ORF에서 점 돌연변이가 일어났음을 확인할 수 있었다. NCBI BLAST에서 검색한 결과, 상기 ORF는 애기장대의 히스티딘 카이네이즈 3(histidine kinase 3)을 암호화하는 AHK3 유전자(진뱅크 등록번호 AB046870)의 염기서열임을 확인하였다. ore12에서 일어난 점 돌연변이는 구체적으로 상기 AHK3 유전자의 염기서열에서 727번째 염기에서 일어났으며, 상기 염기는 '사이토신'에서 '티민'으로 치환되어 있었다. 또한, 염기서열의 점 돌연변이로 인해 243번째 아미노산이 '프롤린'에서 '세린'으로 치환됨을 확인할 수 있었다. 점 돌연변이가 일어난 AHK3 유전자, 즉 ORE12 유전자의 염기서열을 서열번호 7로 기재하였으며, 이로부터 암호화되는 단백질의 아미노산 서열을 서열번호 8로 기재하였다. 또한, 진뱅크 등록번호 AB046870에 개시된 AHK3 유전자의 염기서열을 서열번호 9로 기재하였 으며, 이로부터 암호화되는 AHK3 수용체, 즉 히스티딘 카이네이즈 3의 아미노산 서열을 서열번호 10으로 기재하였다.
<실시예 7>
ORE12 유전자의 보완 실험
본 발명자들은 점돌연변이가 일어난 AHK3 유전자가 ORE12 유전자에 해당하는지 확인하기 위하여, AHK3 유전자를 포함하는 DNA 단편을 ore12에 도입하였다. 이를 위해, 먼저 AHK3 유전자를 포함하는 7.2 kb의 DNA 절편을 서열번호 11서열번호 12로 기재되는 염기서열을 갖는 올리고뉴클레오티드를 프라이머로 하여 PCR로 증폭하였다. PCR은 94℃에서 2분간 가열하여 주형 DNA를 변성시킨 다음, 94℃에서 30초; 및 68℃에서 8분간의 조건을 한 싸이클(cycle)로 하여 총 30회 반복 수행한 후, 72℃에서 10분간 최종 반응시켜 수행하였다. 증폭된 PCR 산물을 1% 아가로스 겔 전기영동으로 확인한 다음, 이를 겔로부터 분리하여 GEM T easy 벡터(Promega, USA)에 삽입하였다. 이후, 상기 벡터로부터 다시 AHK3 유전자를 분리하여 식물 형질전환용 벡터인 pCAMBIA1300(MRC, USA)에 서브클로닝하였다. AHK3 유전자를 포함하는 재조합 벡터를 ore12에 도입하여 보완 실험(complementation test)을 수행하였다. 형질전환된 개체들(ore12/AHK3)의 T2 세대에서 항생제 저항성 및 표현형을 관찰한 결과, 하기 표 2에서 보는 바와 같이, AHK3 유전자를 포함하는 DNA 절편이 ore12를 보완할 수 있음을 확인하였다. 이로부터 ORE12 유전자는 애기장대의 사이토키닌 수용체로 알려진 AHK3 유전자가 점 돌연변이된 것임을 확인할 수 있었다.
유전자 도입에 의한ore12의 보완 실험
유전형 하이그로마이신 저항성 χ2 표현형 χ2
Hygr Hygs 야생형 노화 지연형
야생형 - - - 36 0 -
ore12 - - - 0 36
ore12/AHK3 77 23 0.21
P>0.5
38 12 0.027
P>0.5
χ2 값: 자손들이 나타낼 것이라고 예상되는 표현형 비율인 3:1 또는 15:1(Hygr:Hygs 또는 야생형:노화 지연형)에 대한 것으로서, 「χ2=Σ(관찰값-기대값)2/기대값」의 식으로 계산하였다.
Hygr: 하이그로마이신 저항성
Hygs: 하이그로마이신 민감성
<실시예 8>
AHK3 유전자의 발현 특성 조사
<8-1> 세포 내 발현 위치 조사
소수성 분석(hydrophobicity analysis)을 통해 AHK3 유전자의 N 말단 부분에 3개의 추정되는 트랜스멤브레인 단편이 존재함이 이전에 규명된 바 있으며, 이로부터 AHK3 수용체가 플라즈마 막에 위치하는 것으로 추정되었다(Ueguchi et al., Plant Cell Physiol. 42(2):231-235, 2001). 따라서, 본 발명자들은 AHK3-GFP(green fluorescence protein) 융합 단백질을 이용하여 AHK3 수용체의 세포 내 위치를 조사하였다.
상기 실시예 7과 동일한 방법에 따라 PCR을 수행하여 AHK3 유전자를 증폭하였다. 증폭된 유전자를 35SC4PPK-sGFP(Wan-ling Chiu et al., Current Biology 6:325-330, 1996)를 포함하는 플라스미드에 삽입하였다. AHK3-GFP 융합단백질 발현 플라스미드를 CsCl-EtBr 맥시프랩(maxiprep)을 이용하여 정제하였다. 폴리에틸렌 글리콜을 이용한 방법을 통해 애기장대 잎 조직에서 만들어진 4 x 104 원형질체에 40 μg의 플라스미드를 트렌스펙션시켰다. 융합 플라스미드의 발현은 형질 전환 후 23℃에서 15시간 후에 관찰하였으며 GFP 형광은 니콘 TE200 형광 현미경(Nikon TE200 fluorescent microscopy)과 레이카 TCSNT 공초점 현미경(Leica TCSNT confocal microscopy) 하에서 관찰하였다.
그 결과, 도 5에 도시된 바와 같이, AHK3-GFP 융합단백질의 발현은 주로 플라즈마 막에서 검출되었다. 이 결과는 AHK3가 애기장대의 플라즈마 막을 통과하여 사이토키닌 시그널을 전달할 수 있음을 나타내는 것이다.
<8-2> 식물에서의 발현 패턴 조사
유전자의 발현 패턴을 조사하기 위하여, AHK3 유전자의 상류에 위치하여 그의 발현을 조절하는, 서열번호 13으로 기재되는 염기서열을 갖는 2kb의 프로모터 부위를 PCR로 증폭시켰다. 이 때 프라이머로는 서열번호 14서열번호 15로 기재되는 염기서열을 갖는 올리고뉴클레오티드를 이용하였다. PCR은 94℃에서 2분간 가열하여 주형 DNA를 변성시킨 다음, 94℃에서 40초; 57℃에서 1분; 및 72℃에서 1분 30초간의 조건을 한 싸이클로 하여 총 35회 반복 수행한 후, 72℃에서 10분간 최종 반응시켜 수행하였다. 이후, 증폭된 PCR 산물을 GUS 유전자를 포함하고 있는 바이너리 벡터 pCAMBIA1303(MRC, USA)의 SmaⅠ제한효소 부위에 삽입하였다. 제조된 벡터를 애기장대 야생형(col)에 도입하여 T3 호모라인을 선발하였다. 이후, 형질전환된 T3 호모라인(homoline) 식물체를 백색광(white light) 하에서 7일, 10일 및 15일간 키운 후, GUS 염색을 수행하여 식물의 여러 발달 단계에서 GUS 유전자의 발현을 조사하였다.
그 결과, 도 6의 A에서 보는 바와 같이, GUS 유전자는 7일령의 유식물체(seedling)의 자엽(cotyledon)과 배축(hypocotyl)에서 강하게 발현하는 반면, 나오는 1차 잎들(emerging primary leaves)과 뿌리의 유관속(vascular bundle)에서는 매우 약하게 발현함을 확인할 수 있었다. 또한, 식물체가 생장함에 따라, GUS 유전자의 발현은 완전히 성장한 잎(fully expanded leaves)과 뿌리의 노화된 부분(older parts)과 같은 식물의 성숙한 부분(mature parts)으로 제한되어 나타났다. 나아가, 뿌리에서의 GUS 유전자의 발현은 식물체의 에어리얼 파트(aerial part)에서 보다 비교적 약하게 나타났다(도 6의 B C 참조). 특히, 신초에서 높은 수준으로 발현함이 관찰되었다.
사이토키닌 수용체로 이미 알려진 AHK4는 뿌리에서 우세하게 발현하며(Ueguchi et al., Plant Cell Physiol. 42(2):231-235, 2001), AHK4의 기능 상실 돌연변이체(loss of function mutant)의 표현형이 신초가 아닌 뿌리에서 주로 관찰되었다고 보고된 바 있다(Ueguchi et al., Plant Cell Physiol. 42(7): 751-755, 2001). 이 같은 사실을 고려할 때에, 본 실험 결과는 AHK3가 사이토키닌의 항노화 작용과 관련된 세포내 수준을 유지하기 위하여 애기장대의 신초(정단; shoot), 특히 성숙한 부분에서 주요한 사이토키닌 수용체로 기능함을 암시한다.
<실시예 9>
AHK3 유전자의 녹아웃 돌연변이체의 노화 형질 조사
식물의 잎 노화에서 AHK3가 사이토키닌 수용체로서 어떤 역할을 하는지 알아보기 위하여, SIGnAL 애기장대 녹아웃 풀(SIGnAL Arabidopsis knockout pools)(http://signal.salk.edu/cgi-bin/tdnaexpress)을 대상으로 PCR 및 T-DNA 삽입에 의한 항생제 저항성을 조사하여 AHK3 유전자가 녹아웃된 호모라인을 선발하였다. AHK3 유전자의 불활성화 여부를 조사하기 위하여 서열번호 16 서열번호 17로 기재되는 염기서열을 갖는 프라이머와 서열번호 18 서열번호 19로 기재되는 염기서열을 갖는 프라이머를 이용하여 PCR을 각각 수행하였다. T-DNA 삽입에 의해 AHK3 유전자가 녹아웃된 2개체를 선발하였으며, 이들을 각각 'ahk3-1'과 'ahk3-2'로 명명하였다. 상기 선발된 ahk3-1ahk3-2를 4-7일간 암처리하여 노화를 유도하였다. 이후, 노화 지연 형질이 나타나는지 육안으로 관찰하였다. 그 결 과, 잎의 노화 지연 표현형이 나타나지 않음을 확인할 수 있었다(결과 미도시). 이 결과는 AHK3의 외부 세포질 도메인(extracytoplasmic domain)에서의 단일 아미노산 변화(single amino acid change)가 노화 지연 표현형을 일으키는 기능 획득 돌연변이(gain-of-function mutation)임을 제시하는 것이다.
<실시예 10>
AHK3 유전자의 과발현 변이체의 노화 형질 조사
AHK3의 단일 아미노산 변화가 기능 획득 돌연변이인지를 더욱 확인하기 위하여, 유전자의 상시 발현을 유도하는 CaMV 35S 프로모터를 이용하여 애기장대 아생형에서 AHK3 유전자의 과발현을 유도하였다.
먼저, 서열번호 11서열번호 12로 기재되는 염기서열을 갖는 올리고뉴클레오티드를 프라이머로 이용하여 AHK3 유전자의 전장 cDNA를 RT-PCR로 증폭하였다. 애기장대에서 분리한 총 RNA를 주형으로 하여 50℃에서 30분간 반응시켜 1차 cDNA를 합성하였다. 이후, 94℃에서 2분간 가열하여 상기 DNA를 변성시킨 다음, 94℃에서 30초; 52℃에서 30초; 및 72℃에서 5분간의 조건을 한 싸이클로 하여 총 30회 반복 수행한 후, 72℃에서 10분간 최종 반응시켰다. 증폭된 PCR 산물을 pNB96 벡터(포항공대 식물분자유전학 실험실에서 제공받음)에 삽입한 후, 이를 아그로박테리움 튜메파시엔스 AGL1 균주(Lazo et al., Biotechnology 9:963-967,1991)(ATCC BAA-101)에 도입하였다. 이후, 플로랄 딥 방법(Clough et al., Plant J. 16(6):735-743, 1998)에 따라 상기 형질전환된 아그로박테리움으로 애기 장대 야생형(col)을 형질전환시켰다. 그리고 나서, 항생제 저항성을 나타내는 T3 호모라인을 선발하였다. 2개체를 선발하였으며, 이들을 각각 'S40-1' 및 'S75-1'로 명명하였다.
선발된 T3 호모라인에서 전체 RNA를 추출하고, 상기와 동일한 방법에 따라 RT-PCR을 수행하였다. 그 결과, 도 7의 A에 도시된 바와 같이, AHK3 유전자의 발현 수준(expression level)이 야생형에 비해 현저히 증가하였음을 확인할 수 있었다. 또한, 선발된 T3 호모라인을 암 조건에서 5-6일 동안 배양한 후, 12 DAE에 있는 네번째 잎을 채취하였다. 이후, 상기 실시예 <2-1>의 방법에 따라 광합성 활성을 측정하여 노화 지연 양상을 조사하였다. 그 결과, 도 7의 B에 도시된 바와 같이, ore12의 노화 지연 표현형보다는 약하기는 하지만, 야생형에 비해 지연된 노화 지연 양상이 나타남을 확인할 수 있었다. 또한, ore12와 유사하게, 형질전환된 식물체에서는 지속적인 사이토키닌 신호 전달에 의한 형태학적인 표현형(adult morphological phenotype)이 나타나지 않았다(결과 미도시). 이는 애기장대의 노화 지연에 있어서 ORE12, 즉 점돌연변이가 일어난 AHK3가 정상적인 AHK3보다 더 특이적으로 관련하는 사이토키닌 수용체라는 것을 나타내는 것이다.
<실시예 11>
ORE12 유전자(점돌연변이된 AHK3 유전자)의 과발현 변이체의 노화 형질 조사
점돌연변이가 일어난 AHK3 유전자, 즉 서열번호 7의 ORE12 유전자를 애기장 대 야생형에서 과발현시킨 경우에도 노화 지연 표현형이 나타나는지 조사하였다.
ore12로부터 추출된 DNA를 주형으로 하고, 서열번호 11서열번호 12로 기재되는 염기서열을 갖는 올리고뉴클레오티드를 프라이머로 사용하여 상기 실시예 10과 동일한 방법에 따라 PCR을 수행하였다. PCR은 94℃에서 2분간 가열하여 상기 DNA를 변성시킨 다음, 94℃에서 30초; 52℃에서 30초; 및 72℃에서 5분간의 조건을 한 싸이클로 하여 총 30회 반복 수행한 후, 72℃에서 10분간 최종 반응시켜 수행하였다. 이후, 상기 실시예 10과 동일한 방법에 따라 애기장대 야생형을 형질전환시키고, T2 라인을 3개체 선발하였다. 선발된 형질전환 개체들을 각각 'ore12ox-13', 'ore12ox-14' 및 'ore12ox-18 '이라 명명하였다. 이후, ORE12 유전자 과발현 식물체들의 노화 지연 양상을 상기 실시예 10과 동일한 방법으로 관찰하였다. 그 결과, 도 8에 도시된 바와 같이, ore12와 마찬가지로 노화 지연 표현형이 나타남을 확인할 수 있었다.
<실시예 12>
ore12 에서 사이토키닌 반응 유전자들의 발현 양상 조사
ore12에서 나타나는 잎 노화 지연 표현형이 지속적인 사이토키닌 신호 전달에 의한 것인지를 규명하기 위하여, 본 발명자들은 사이토키닌에 의해 매우 특이적으로 유도되는 A형 ARR 유전자들(type-A-response regulator genes)의 발현 양상을 조사하였다(Brandstatter et al., Plant Cell 10:1009-1020, 1998; Taniguchi et al., FEBS Lett. 429:259-262, 1998; Imamura et al., Plant Cell Physiol. 40:733-742, 1999). 16 DAE에 야생형과 ore12의 세번째 및 네번째 잎으로부터 트리-시약 키트(Tri-Reagent kit, molecular research center, USA)를 이용하여 전체 RNA를 각각 추출하였다. 1㎍의 각 RNA를 주형으로 하고, 1차 스트랜드 cDNA 합성 킷트(first strand cDNA synthesis kit, Roche, Germany)를 이용하여 65℃에서 5분; 42℃에서 60분; 및 85℃에서 5분의 조건으로 1차 cDNA를 합성하였다. 이후, 합성된 cDNA를 주형으로 하고, 하기 표 3에 기재된 다양한 ARR 유전자들에 특이적인 프라이머를 이용하여 PCR을 수행하였다. PCR은 94℃에서 2분간 가열하여 주형 DNA를 변성시킨 후, 94℃에서 40초; 52℃에서 1분; 및 72℃에서 1분 30초를 한 싸이클로 하여 총 35회 반복 수행한 다음, 72℃에서 10분간 최종 반응시켜 수행하였다. 이후, 1% 아가로스 겔 전기영동으로 PCR 산물을 확인하였다.
그 결과, 도 9에 도시된 바와 같이, ore12에서 다양한 A형 ARR 유전자들의 발현 수준이 야생형에 비해 현저히 증가되었음을 확인할 수 있었다. 이는 ore12에서 나타나는 노화 지연 표현형이 2개의 구성요소 시스템의 포스포릴레이를 통한 지속적인 사이토키닌 신호전달에 기인한 것임을 보여준다.
A형 ARRs
유전자 명 정방향/역방향 프라이머의 서열번호
1 ARR3 서열번호 20/서열번호 21
2 ARR4 서열번호 22/서열번호 23
3 ARR5 서열번호 24/서열번호 25
4 ARR6 서열번호 26/서열번호 27
5 ARR7 서열번호 28/서열번호 29
6 ARR9 서열번호 30/서열번호 31
7 ARR15 서열번호 32/서열번호 33
8 Actin8(양성대조구) 서열번호 34/서열번호 35

이상 살펴본 바와 같이, 본 발명에서는 종래 사이토키닌 수용체로 알려진 AHK3가 식물의 노화 조절에 관여한다는 것과, 상기 AHK3 유전자의 돌연변이가 식물체에서 노화를 지연시킴을 규명하였다. 본 발명에 따른 AHK3 유전자 또는 이의 변이형 유전자를 식물체에 도입하여 과발현시킴으로써 식물의 노화를 지연시킬 수 있으며, 이를 통해 식물의 생산성 향상 및 저장 효율 증대 등이 도모될 수 있다. 또한, 본 발명의 AHK3 유전자, 이의 변이형 유전자 또는 이들로부터 발현되는 단백질은 식물의 노화 기작 연구, 노화 관련 물질의 탐색 등에 유용하게 사용될 수 있다.
<110> Genomine Inc. Postech Foundation <120> Cytokinin receptor AHK3 involved in senescence regulation of plant, mutant thereof and method for delaying senescence of plant using the same <130> NP03-0060 <160> 35 <170> KopatentIn 1.71 <210> 1 <211> 1253 <212> DNA <213> Arabidopsis thaliana <400> 1 aaaaattaag agcaaaagtc atttaacttt cctaaaacaa tggctttaaa acatatgcaa 60 atctttctct tcgtcgctat attttcatca ttctgtttct ccatcactct ttctcgtcca 120 ctcgacaatg aactcatcat gcaaaagagg cacatcgagt ggatgactaa acacggccgt 180 gtctacgcgg atgtgaagga ggaaaacaat cgctacgttg tgttcaaaaa caacgtcgaa 240 cgcattgaac atttaaatag cattcctgcc ggaagaactt tcaaacttgc ggtaaatcag 300 tttgctgatt taaccaatga cgaatttcgt tccatgtaca ctggtttcaa aggtgtctcg 360 gcattatcta gccaaagcca aactaaaatg tcgccgttta ggtaccaaaa cgtttcttct 420 ggtgctttgc cggtttctgt tgactggagg aagaaaggag ctgtgacccc tatcaagaat 480 caaggcagct gcggatgttg ttgggcgttt tcagcggttg cggctattga aggagcaaca 540 caaataaaga aagggaaact tatatctttg tcagaacaac agcttgttga ttgcgacaca 600 aacgattttg gctgcgaagg cggtttaatg gatactgcgt ttgagcatat aaaagcgact 660 ggcggcttga caactgagtc aaattatcct tacaaaggcg aagacgctac ttgcaattcc 720 aaaaagacca atccaaaagc aacttctatt acaggttatg aggatgtccc ggttaatgat 780 gagcaagcac tgatgaaggc agtggcacac caaccggtta gcgttggaat tgaaggaggt 840 ggttttgatt tccaattcta ttcgtctggt gtgttcactg gagagtgcac tacgtatctt 900 gatcatgcag taactgcgat tggatacggc gaatctacta acggatcaaa gtattggatc 960 atcaagaatt catggggaac aaaatgggga gaaagtggat atatgaggat tcaaaaagat 1020 gtcaaggata aacaaggact atgtggtctt gccatgaaag cttcttaccc aactatatga 1080 attcaaaacc gtgttaagct tttaattgtg tatgtttgtg tgggattgat gtctaaaaat 1140 aatttgaatt gttttatgta aaaaaattgt atttagactg ttgtatgcat tttatgaaat 1200 tgtaagctta tgtaatgcaa aggattgata attttcgaaa aaaaaaaaaa aaa 1253 <210> 2 <211> 933 <212> DNA <213> Arabidopsis thaliana <400> 2 cctgcgccgg cgttccagcc gagcgggcaa gaaacaatgc caccaaacac ctctcgtcca 60 catctttctc ctttggtggc aaacacaacg acagatagag agaaacgatg gcgtcgaact 120 cgcttatgag ctgtggcata gccgccgtgt acccttcgct tctctcttct tccaagtcta 180 aattcgtatc cgccggagtt ccactcccaa acgccgggaa tgttggtcgt atcagaatgg 240 ctgctcactg gatgcctggc gagccacgac cagcttacct tgacggttct gctcctggtg 300 actttgggtt tgacccactt ggacttggag aagttccagc gaaccttgag agatacaaag 360 agtcagagct catccactgt agatgggcta tgctcgctgt tcctgggatt ttggtaccag 420 aagcattagg atatggaaac tgggttaagg ctcaggaatg ggcagcacta ccagggggtc 480 aagccactta cttgggaaac ccagtcccgt ggggtacttt gcccacaatc ttggccattg 540 agttcttagc cattgcattt gttgagcacc agagaagtat ggagaaagac cctgagaaga 600 agaagtaccc gggaggcgca tttgaccctc ttggatactc gaaggacccc aagaagctcg 660 aggaattgaa agttaaagag atcaagaacg ggcggcttgc gctgttggcg tttgtaggat 720 tctgtgtgca acagtcggct tacccgggga caggaccatt ggagaacttg gcaactcact 780 tggcggatcc atggcacaac aacattggcg atattgttat ccctttcaac taatgaatgt 840 aaaaatagaa atatgtgtac cttatgagct ttatgtgtat caaaaacact gtgtaatgaa 900 agacagattt gtgaaaaaaa aaaaaaaaaa aaa 933 <210> 3 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> F17L21-3A forward primer <400> 3 gagattctcc ttctacgatc gc 22 <210> 4 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> F17L21-3A reverse primer <400> 4 tcagccaatc tccttacctt cg 22 <210> 5 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> F17L21-4A forward primer <400> 5 caccagacga ttagggttac ga 22 <210> 6 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> F17L21-4A reverse primer <400> 6 ctaatgtact tagctatctc tagc 24 <210> 7 <211> 3111 <212> DNA <213> Arabidopsis thaliana <400> 7 atgagtctgt tccatgtgct agggtttggt gtcaagattg ggcatctctt ctggatgcta 60 tgctgctggt ttgtttcttg gttcgttgat aatgggatcg aggacaagtc tggtctttta 120 gttggctctg tcggtgatct tgagaagact aagatgacta cgttgaagaa gaagaacaag 180 atgtggttct ggaataagat ctctagcagc ggactcaaga tcccgagttt ctcttatcag 240 tttcttggct ctgttaaatt caacaaggcg tggtggagga agcttgtggt ggtttgggtt 300 gtcttctggg tcttggtctc tatttggacg ttttggtact ttagctcgca agctatggag 360 aagaggaaag agacgctagc tagtatgtgt gatgagagag ctcgtatgct gcaggatcag 420 ttcaacgtta gcatgaatca tgttcaagcc atgtctatct tgatctcaac cttccaccat 480 ggcaagattc cttctgctat cgatcagaga acattctcag agtacactga tagaacttcc 540 tttgagaggc ctcttactag cggggtagct tatgctatga gggtgctcca ttcagagagg 600 gaagagttcg agaggcaaca aggttggact attaggaaga tgtattctct tgaacaaaac 660 ccagttcaca aggatgacta tgacctggaa gctttggaac catcccctgt ccaagaagag 720 tacgcttcag tcatctttgc tcaggacact gtttctcacg ttgtttctct cgatatgctg 780 tctgggaaag aagatcgtga aaacgttttg cgggccagga gttcaggtaa aggggttttg 840 acagctcctt tcccattgat aaagacaaat agacttgggg tgatcctgac atttgcagtg 900 tacaagagag atctcccctc caatgcaacg ccaaaagaga gaattgaggc tactaacggg 960 tatctcgggg gagtgtttga cattgagtcc ctggtagaaa acttgcttca acagctggct 1020 agcaagcaaa cgattcttgt caatgtgtac gatatcacca atcactctca accgattagc 1080 atgtatggta caaatgtgtc ggctgatggg ttggaacgtg ttagtccact aatctttggc 1140 gatccattga gaaagcatga gatgcgttgc agatttaagc agaaaccacc atggccagtg 1200 ctatcaatgg tgacatcatt cggtatcctt gtgattgcgt tacttgttgc acatataatc 1260 cacgcaaccg ttagtcgaat acacaaagtt gaagaagatt gtgataaaat gaagcagctc 1320 aagaaaaagg ctgaagcagc agatgttgca aagtcacagt tccttgccac tgtttcacat 1380 gaaatcagaa ctccaatgaa tggtgttcta ggaatgttgc atatgcttat ggacacagag 1440 ttagatgtta cgcaacagga ttatgttagg accgcacagg caagtggaaa agctttagtc 1500 tcgctaataa atgaggtttt ggaccaagca aagattgaat ctggaaagct tgaacttgag 1560 gaggtgcggt ttgatttgag aggaatatta gatgatgtcc tgtcactctt ctctagcaag 1620 tcccaacaaa agggggtgga gttggcagta tacatatctg atcgtgttcc agatatgtta 1680 attggtgatc ctgggaggtt tcgacaaata ctcacaaatc ttatgggtaa ttccattaag 1740 ttcactgaga aaggacacat ctttgtaact gttcatttgg tggatgagct atttgaatct 1800 atcgatggag agacagcatc atctccggaa agtacactga gtgggcttcc agttgcagac 1860 cggcagagga gctgggaaaa ctttaaagct ttcagctcca acgggcatcg gagctttgaa 1920 ccatctcccc ctgatataaa cctaatcgtc tcagttgagg atactggcgt agggatccct 1980 gtagaagcgc agtcccgtat ttttacgcct ttcatgcaag tcggaccatc catatccagg 2040 acgcatggag gcacaggaat tggacttagc ataagcaaat gtctagttgg actgatgaag 2100 ggagaaattg gattctcgag tactcccaag gttgggtcca cattcacatt tactgctgta 2160 ttttccaatg ggatgcaacc agctgaaaga aagaatgaca acaaccagcc catattctcg 2220 gaattccggg gcatgaaagc tgtggttgtg gaccataggc ctgcaagggc aaaagtctcg 2280 tggtaccatt ttcagcgtct tggaattcga gtcgaagtag ttccacgtgt tgaacaggct 2340 ctacattatc tgaagattgg tactaccact gtgaatatga tactcataga gcaagaaata 2400 tggaataggg aagcagatga tttcattaaa aagctacaga aagaccctct tttcctttct 2460 cctaagttga ttttgttagc aaactcagta gaatcgtcaa tatcagaggc tttatgcacc 2520 ggtatagatc ctccaatagt gatagtgaaa ccattgaggg cgagtatgct agcagcaact 2580 ttgcagaggg gattgggtat tggaatcaga gaaccacctc aacacaaggg acctcctgct 2640 ttgattctca ggaatcttct ccttggtaga aaaattttaa tcgtggatga taacaacgta 2700 aacctcagag tggcagcggg agctctgaaa aagtacggag ctgatgtggt ctgcgctgag 2760 agtgggataa aggcaatctc attgcttaag ccacctcacg agtttgatgc ttgcttcatg 2820 gacattcaga tgccagaaat ggatggattt gaagctacaa ggagaatacg agatatggaa 2880 gaggagatga acaagagaat aaagaatggg gaggctttga tagtagagaa cggtaacaaa 2940 acaagctggc atcttccggt attagcaatg acggcagatg tgatccaagc aacgcatgag 3000 gaatgtctga agtgtggaat ggatgggtat gtatcaaaac catttgaagc agagcagctg 3060 tacagggaag tttctcgctt tttcaattcg ccttcagata cagaatcata a 3111 <210> 8 <211> 1036 <212> PRT <213> Arabidopsis thaliana <400> 8 Met Ser Leu Phe His Val Leu Gly Phe Gly Val Lys Ile Gly His Leu 1 5 10 15 Phe Trp Met Leu Cys Cys Trp Phe Val Ser Trp Phe Val Asp Asn Gly 20 25 30 Ile Glu Asp Lys Ser Gly Leu Leu Val Gly Ser Val Gly Asp Leu Glu 35 40 45 Lys Thr Lys Met Thr Thr Leu Lys Lys Lys Asn Lys Met Trp Phe Trp 50 55 60 Asn Lys Ile Ser Ser Ser Gly Leu Lys Ile Pro Ser Phe Ser Tyr Gln 65 70 75 80 Phe Leu Gly Ser Val Lys Phe Asn Lys Ala Trp Trp Arg Lys Leu Val 85 90 95 Val Val Trp Val Val Phe Trp Val Leu Val Ser Ile Trp Thr Phe Trp 100 105 110 Tyr Phe Ser Ser Gln Ala Met Glu Lys Arg Lys Glu Thr Leu Ala Ser 115 120 125 Met Cys Asp Glu Arg Ala Arg Met Leu Gln Asp Gln Phe Asn Val Ser 130 135 140 Met Asn His Val Gln Ala Met Ser Ile Leu Ile Ser Thr Phe His His 145 150 155 160 Gly Lys Ile Pro Ser Ala Ile Asp Gln Arg Thr Phe Ser Glu Tyr Thr 165 170 175 Asp Arg Thr Ser Phe Glu Arg Pro Leu Thr Ser Gly Val Ala Tyr Ala 180 185 190 Met Arg Val Leu His Ser Glu Arg Glu Glu Phe Glu Arg Gln Gln Gly 195 200 205 Trp Thr Ile Arg Lys Met Tyr Ser Leu Glu Gln Asn Pro Val His Lys 210 215 220 Asp Asp Tyr Asp Leu Glu Ala Leu Glu Pro Ser Pro Val Gln Glu Glu 225 230 235 240 Tyr Ala Ser Val Ile Phe Ala Gln Asp Thr Val Ser His Val Val Ser 245 250 255 Leu Asp Met Leu Ser Gly Lys Glu Asp Arg Glu Asn Val Leu Arg Ala 260 265 270 Arg Ser Ser Gly Lys Gly Val Leu Thr Ala Pro Phe Pro Leu Ile Lys 275 280 285 Thr Asn Arg Leu Gly Val Ile Leu Thr Phe Ala Val Tyr Lys Arg Asp 290 295 300 Leu Pro Ser Asn Ala Thr Pro Lys Glu Arg Ile Glu Ala Thr Asn Gly 305 310 315 320 Tyr Leu Gly Gly Val Phe Asp Ile Glu Ser Leu Val Glu Asn Leu Leu 325 330 335 Gln Gln Leu Ala Ser Lys Gln Thr Ile Leu Val Asn Val Tyr Asp Ile 340 345 350 Thr Asn His Ser Gln Pro Ile Ser Met Tyr Gly Thr Asn Val Ser Ala 355 360 365 Asp Gly Leu Glu Arg Val Ser Pro Leu Ile Phe Gly Asp Pro Leu Arg 370 375 380 Lys His Glu Met Arg Cys Arg Phe Lys Gln Lys Pro Pro Trp Pro Val 385 390 395 400 Leu Ser Met Val Thr Ser Phe Gly Ile Leu Val Ile Ala Leu Leu Val 405 410 415 Ala His Ile Ile His Ala Thr Val Ser Arg Ile His Lys Val Glu Glu 420 425 430 Asp Cys Asp Lys Met Lys Gln Leu Lys Lys Lys Ala Glu Ala Ala Asp 435 440 445 Val Ala Lys Ser Gln Phe Leu Ala Thr Val Ser His Glu Ile Arg Thr 450 455 460 Pro Met Asn Gly Val Leu Gly Met Leu His Met Leu Met Asp Thr Glu 465 470 475 480 Leu Asp Val Thr Gln Gln Asp Tyr Val Arg Thr Ala Gln Ala Ser Gly 485 490 495 Lys Ala Leu Val Ser Leu Ile Asn Glu Val Leu Asp Gln Ala Lys Ile 500 505 510 Glu Ser Gly Lys Leu Glu Leu Glu Glu Val Arg Phe Asp Leu Arg Gly 515 520 525 Ile Leu Asp Asp Val Leu Ser Leu Phe Ser Ser Lys Ser Gln Gln Lys 530 535 540 Gly Val Glu Leu Ala Val Tyr Ile Ser Asp Arg Val Pro Asp Met Leu 545 550 555 560 Ile Gly Asp Pro Gly Arg Phe Arg Gln Ile Leu Thr Asn Leu Met Gly 565 570 575 Asn Ser Ile Lys Phe Thr Glu Lys Gly His Ile Phe Val Thr Val His 580 585 590 Leu Val Asp Glu Leu Phe Glu Ser Ile Asp Gly Glu Thr Ala Ser Ser 595 600 605 Pro Glu Ser Thr Leu Ser Gly Leu Pro Val Ala Asp Arg Gln Arg Ser 610 615 620 Trp Glu Asn Phe Lys Ala Phe Ser Ser Asn Gly His Arg Ser Phe Glu 625 630 635 640 Pro Ser Pro Pro Asp Ile Asn Leu Ile Val Ser Val Glu Asp Thr Gly 645 650 655 Val Gly Ile Pro Val Glu Ala Gln Ser Arg Ile Phe Thr Pro Phe Met 660 665 670 Gln Val Gly Pro Ser Ile Ser Arg Thr His Gly Gly Thr Gly Ile Gly 675 680 685 Leu Ser Ile Ser Lys Cys Leu Val Gly Leu Met Lys Gly Glu Ile Gly 690 695 700 Phe Ser Ser Thr Pro Lys Val Gly Ser Thr Phe Thr Phe Thr Ala Val 705 710 715 720 Phe Ser Asn Gly Met Gln Pro Ala Glu Arg Lys Asn Asp Asn Asn Gln 725 730 735 Pro Ile Phe Ser Glu Phe Arg Gly Met Lys Ala Val Val Val Asp His 740 745 750 Arg Pro Ala Arg Ala Lys Val Ser Trp Tyr His Phe Gln Arg Leu Gly 755 760 765 Ile Arg Val Glu Val Val Pro Arg Val Glu Gln Ala Leu His Tyr Leu 770 775 780 Lys Ile Gly Thr Thr Thr Val Asn Met Ile Leu Ile Glu Gln Glu Ile 785 790 795 800 Trp Asn Arg Glu Ala Asp Asp Phe Ile Lys Lys Leu Gln Lys Asp Pro 805 810 815 Leu Phe Leu Ser Pro Lys Leu Ile Leu Leu Ala Asn Ser Val Glu Ser 820 825 830 Ser Ile Ser Glu Ala Leu Cys Thr Gly Ile Asp Pro Pro Ile Val Ile 835 840 845 Val Lys Pro Leu Arg Ala Ser Met Leu Ala Ala Thr Leu Gln Arg Gly 850 855 860 Leu Gly Ile Gly Ile Arg Glu Pro Pro Gln His Lys Gly Pro Pro Ala 865 870 875 880 Leu Ile Leu Arg Asn Leu Leu Leu Gly Arg Lys Ile Leu Ile Val Asp 885 890 895 Asp Asn Asn Val Asn Leu Arg Val Ala Ala Gly Ala Leu Lys Lys Tyr 900 905 910 Gly Ala Asp Val Val Cys Ala Glu Ser Gly Ile Lys Ala Ile Ser Leu 915 920 925 Leu Lys Pro Pro His Glu Phe Asp Ala Cys Phe Met Asp Ile Gln Met 930 935 940 Pro Glu Met Asp Gly Phe Glu Ala Thr Arg Arg Ile Arg Asp Met Glu 945 950 955 960 Glu Glu Met Asn Lys Arg Ile Lys Asn Gly Glu Ala Leu Ile Val Glu 965 970 975 Asn Gly Asn Lys Thr Ser Trp His Leu Pro Val Leu Ala Met Thr Ala 980 985 990 Asp Val Ile Gln Ala Thr His Glu Glu Cys Leu Lys Cys Gly Met Asp 995 1000 1005 Gly Tyr Val Ser Lys Pro Phe Glu Ala Glu Gln Leu Tyr Arg Glu Val 1010 1015 1020 Ser Arg Phe Phe Asn Ser Pro Ser Asp Thr Glu Ser 1025 1030 1035 <210> 9 <211> 3111 <212> DNA <213> Arabidopsis thaliana <400> 9 atgagtctgt tccatgtgct agggtttggt gtcaagattg ggcatctctt ctggatgcta 60 tgctgctggt ttgtttcttg gttcgttgat aatgggatcg aggacaagtc tggtctttta 120 gttggctctg tcggtgatct tgagaagact aagatgacta cgttgaagaa gaagaacaag 180 atgtggttct ggaataagat ctctagcagc ggactcaaga tcccgagttt ctcttatcag 240 tttcttggct ctgttaaatt caacaaggcg tggtggagga agcttgtggt ggtttgggtt 300 gtcttctggg tcttggtctc tatttggacg ttttggtact ttagctcgca agctatggag 360 aagaggaaag agacgctagc tagtatgtgt gatgagagag ctcgtatgct gcaggatcag 420 ttcaacgtta gcatgaatca tgttcaagcc atgtctatct tgatctcaac cttccaccat 480 ggcaagattc cttctgctat cgatcagaga acattctcag agtacactga tagaacttcc 540 tttgagaggc ctcttactag cggggtagct tatgctatga gggtgctcca ttcagagagg 600 gaagagttcg agaggcaaca aggttggact attaggaaga tgtattctct tgaacaaaac 660 ccagttcaca aggatgacta tgacctggaa gctttggaac catcccctgt ccaagaagag 720 tacgctccag tcatctttgc tcaggacact gtttctcacg ttgtttctct cgatatgctg 780 tctgggaaag aagatcgtga aaacgttttg cgggccagga gttcaggtaa aggggttttg 840 acagctcctt tcccattgat aaagacaaat agacttgggg tgatcctgac atttgcagtg 900 tacaagagag atctcccctc caatgcaacg ccaaaagaga gaattgaggc tactaacggg 960 tatctcgggg gagtgtttga cattgagtcc ctggtagaaa acttgcttca acagctggct 1020 agcaagcaaa cgattcttgt caatgtgtac gatatcacca atcactctca accgattagc 1080 atgtatggta caaatgtgtc ggctgatggg ttggaacgtg ttagtccact aatctttggc 1140 gatccattga gaaagcatga gatgcgttgc agatttaagc agaaaccacc atggccagtg 1200 ctatcaatgg tgacatcatt cggtatcctt gtgattgcgt tacttgttgc acatataatc 1260 cacgcaaccg ttagtcgaat acacaaagtt gaagaagatt gtgataaaat gaagcagctc 1320 aagaaaaagg ctgaagcagc agatgttgca aagtcacagt tccttgccac tgtttcacat 1380 gaaatcagaa ctccaatgaa tggtgttcta ggaatgttgc atatgcttat ggacacagag 1440 ttagatgtta cgcaacagga ttatgttagg accgcacagg caagtggaaa agctttagtc 1500 tcgctaataa atgaggtttt ggaccaagca aagattgaat ctggaaagct tgaacttgag 1560 gaggtgcggt ttgatttgag aggaatatta gatgatgtcc tgtcactctt ctctagcaag 1620 tcccaacaaa agggggtgga gttggcagta tacatatctg atcgtgttcc agatatgtta 1680 attggtgatc ctgggaggtt tcgacaaata ctcacaaatc ttatgggtaa ttccattaag 1740 ttcactgaga aaggacacat ctttgtaact gttcatttgg tggatgagct atttgaatct 1800 atcgatggag agacagcatc atctccggaa agtacactga gtgggcttcc agttgcagac 1860 cggcagagga gctgggaaaa ctttaaagct ttcagctcca acgggcatcg gagctttgaa 1920 ccatctcccc ctgatataaa cctaatcgtc tcagttgagg atactggcgt agggatccct 1980 gtagaagcgc agtcccgtat ttttacgcct ttcatgcaag tcggaccatc catatccagg 2040 acgcatggag gcacaggaat tggacttagc ataagcaaat gtctagttgg actgatgaag 2100 ggagaaattg gattctcgag tactcccaag gttgggtcca cattcacatt tactgctgta 2160 ttttccaatg ggatgcaacc agctgaaaga aagaatgaca acaaccagcc catattctcg 2220 gaattccggg gcatgaaagc tgtggttgtg gaccataggc ctgcaagggc aaaagtctcg 2280 tggtaccatt ttcagcgtct tggaattcga gtcgaagtag ttccacgtgt tgaacaggct 2340 ctacattatc tgaagattgg tactaccact gtgaatatga tactcataga gcaagaaata 2400 tggaataggg aagcagatga tttcattaaa aagctacaga aagaccctct tttcctttct 2460 cctaagttga ttttgttagc aaactcagta gaatcgtcaa tatcagaggc tttatgcacc 2520 ggtatagatc ctccaatagt gatagtgaaa ccattgaggg cgagtatgct agcagcaact 2580 ttgcagaggg gattgggtat tggaatcaga gaaccacctc aacacaaggg acctcctgct 2640 ttgattctca ggaatcttct ccttggtaga aaaattttaa tcgtggatga taacaacgta 2700 aacctcagag tggcagcggg agctctgaaa aagtacggag ctgatgtggt ctgcgctgag 2760 agtgggataa aggcaatctc attgcttaag ccacctcacg agtttgatgc ttgcttcatg 2820 gacattcaga tgccagaaat ggatggattt gaagctacaa ggagaatacg agatatggaa 2880 gaggagatga acaagagaat aaagaatggg gaggctttga tagtagagaa cggtaacaaa 2940 acaagctggc atcttccggt attagcaatg acggcagatg tgatccaagc aacgcatgag 3000 gaatgtctga agtgtggaat ggatgggtat gtatcaaaac catttgaagc agagcagctg 3060 tacagggaag tttctcgctt tttcaattcg ccttcagata cagaatcata a 3111 <210> 10 <211> 1036 <212> PRT <213> Arabidopsis thaliana <400> 10 Met Ser Leu Phe His Val Leu Gly Phe Gly Val Lys Ile Gly His Leu 1 5 10 15 Phe Trp Met Leu Cys Cys Trp Phe Val Ser Trp Phe Val Asp Asn Gly 20 25 30 Ile Glu Asp Lys Ser Gly Leu Leu Val Gly Ser Val Gly Asp Leu Glu 35 40 45 Lys Thr Lys Met Thr Thr Leu Lys Lys Lys Asn Lys Met Trp Phe Trp 50 55 60 Asn Lys Ile Ser Ser Ser Gly Leu Lys Ile Pro Ser Phe Ser Tyr Gln 65 70 75 80 Phe Leu Gly Ser Val Lys Phe Asn Lys Ala Trp Trp Arg Lys Leu Val 85 90 95 Val Val Trp Val Val Phe Trp Val Leu Val Ser Ile Trp Thr Phe Trp 100 105 110 Tyr Phe Ser Ser Gln Ala Met Glu Lys Arg Lys Glu Thr Leu Ala Ser 115 120 125 Met Cys Asp Glu Arg Ala Arg Met Leu Gln Asp Gln Phe Asn Val Ser 130 135 140 Met Asn His Val Gln Ala Met Ser Ile Leu Ile Ser Thr Phe His His 145 150 155 160 Gly Lys Ile Pro Ser Ala Ile Asp Gln Arg Thr Phe Ser Glu Tyr Thr 165 170 175 Asp Arg Thr Ser Phe Glu Arg Pro Leu Thr Ser Gly Val Ala Tyr Ala 180 185 190 Met Arg Val Leu His Ser Glu Arg Glu Glu Phe Glu Arg Gln Gln Gly 195 200 205 Trp Thr Ile Arg Lys Met Tyr Ser Leu Glu Gln Asn Pro Val His Lys 210 215 220 Asp Asp Tyr Asp Leu Glu Ala Leu Glu Pro Ser Pro Val Gln Glu Glu 225 230 235 240 Tyr Ala Pro Val Ile Phe Ala Gln Asp Thr Val Ser His Val Val Ser 245 250 255 Leu Asp Met Leu Ser Gly Lys Glu Asp Arg Glu Asn Val Leu Arg Ala 260 265 270 Arg Ser Ser Gly Lys Gly Val Leu Thr Ala Pro Phe Pro Leu Ile Lys 275 280 285 Thr Asn Arg Leu Gly Val Ile Leu Thr Phe Ala Val Tyr Lys Arg Asp 290 295 300 Leu Pro Ser Asn Ala Thr Pro Lys Glu Arg Ile Glu Ala Thr Asn Gly 305 310 315 320 Tyr Leu Gly Gly Val Phe Asp Ile Glu Ser Leu Val Glu Asn Leu Leu 325 330 335 Gln Gln Leu Ala Ser Lys Gln Thr Ile Leu Val Asn Val Tyr Asp Ile 340 345 350 Thr Asn His Ser Gln Pro Ile Ser Met Tyr Gly Thr Asn Val Ser Ala 355 360 365 Asp Gly Leu Glu Arg Val Ser Pro Leu Ile Phe Gly Asp Pro Leu Arg 370 375 380 Lys His Glu Met Arg Cys Arg Phe Lys Gln Lys Pro Pro Trp Pro Val 385 390 395 400 Leu Ser Met Val Thr Ser Phe Gly Ile Leu Val Ile Ala Leu Leu Val 405 410 415 Ala His Ile Ile His Ala Thr Val Ser Arg Ile His Lys Val Glu Glu 420 425 430 Asp Cys Asp Lys Met Lys Gln Leu Lys Lys Lys Ala Glu Ala Ala Asp 435 440 445 Val Ala Lys Ser Gln Phe Leu Ala Thr Val Ser His Glu Ile Arg Thr 450 455 460 Pro Met Asn Gly Val Leu Gly Met Leu His Met Leu Met Asp Thr Glu 465 470 475 480 Leu Asp Val Thr Gln Gln Asp Tyr Val Arg Thr Ala Gln Ala Ser Gly 485 490 495 Lys Ala Leu Val Ser Leu Ile Asn Glu Val Leu Asp Gln Ala Lys Ile 500 505 510 Glu Ser Gly Lys Leu Glu Leu Glu Glu Val Arg Phe Asp Leu Arg Gly 515 520 525 Ile Leu Asp Asp Val Leu Ser Leu Phe Ser Ser Lys Ser Gln Gln Lys 530 535 540 Gly Val Glu Leu Ala Val Tyr Ile Ser Asp Arg Val Pro Asp Met Leu 545 550 555 560 Ile Gly Asp Pro Gly Arg Phe Arg Gln Ile Leu Thr Asn Leu Met Gly 565 570 575 Asn Ser Ile Lys Phe Thr Glu Lys Gly His Ile Phe Val Thr Val His 580 585 590 Leu Val Asp Glu Leu Phe Glu Ser Ile Asp Gly Glu Thr Ala Ser Ser 595 600 605 Pro Glu Ser Thr Leu Ser Gly Leu Pro Val Ala Asp Arg Gln Arg Ser 610 615 620 Trp Glu Asn Phe Lys Ala Phe Ser Ser Asn Gly His Arg Ser Phe Glu 625 630 635 640 Pro Ser Pro Pro Asp Ile Asn Leu Ile Val Ser Val Glu Asp Thr Gly 645 650 655 Val Gly Ile Pro Val Glu Ala Gln Ser Arg Ile Phe Thr Pro Phe Met 660 665 670 Gln Val Gly Pro Ser Ile Ser Arg Thr His Gly Gly Thr Gly Ile Gly 675 680 685 Leu Ser Ile Ser Lys Cys Leu Val Gly Leu Met Lys Gly Glu Ile Gly 690 695 700 Phe Ser Ser Thr Pro Lys Val Gly Ser Thr Phe Thr Phe Thr Ala Val 705 710 715 720 Phe Ser Asn Gly Met Gln Pro Ala Glu Arg Lys Asn Asp Asn Asn Gln 725 730 735 Pro Ile Phe Ser Glu Phe Arg Gly Met Lys Ala Val Val Val Asp His 740 745 750 Arg Pro Ala Arg Ala Lys Val Ser Trp Tyr His Phe Gln Arg Leu Gly 755 760 765 Ile Arg Val Glu Val Val Pro Arg Val Glu Gln Ala Leu His Tyr Leu 770 775 780 Lys Ile Gly Thr Thr Thr Val Asn Met Ile Leu Ile Glu Gln Glu Ile 785 790 795 800 Trp Asn Arg Glu Ala Asp Asp Phe Ile Lys Lys Leu Gln Lys Asp Pro 805 810 815 Leu Phe Leu Ser Pro Lys Leu Ile Leu Leu Ala Asn Ser Val Glu Ser 820 825 830 Ser Ile Ser Glu Ala Leu Cys Thr Gly Ile Asp Pro Pro Ile Val Ile 835 840 845 Val Lys Pro Leu Arg Ala Ser Met Leu Ala Ala Thr Leu Gln Arg Gly 850 855 860 Leu Gly Ile Gly Ile Arg Glu Pro Pro Gln His Lys Gly Pro Pro Ala 865 870 875 880 Leu Ile Leu Arg Asn Leu Leu Leu Gly Arg Lys Ile Leu Ile Val Asp 885 890 895 Asp Asn Asn Val Asn Leu Arg Val Ala Ala Gly Ala Leu Lys Lys Tyr 900 905 910 Gly Ala Asp Val Val Cys Ala Glu Ser Gly Ile Lys Ala Ile Ser Leu 915 920 925 Leu Lys Pro Pro His Glu Phe Asp Ala Cys Phe Met Asp Ile Gln Met 930 935 940 Pro Glu Met Asp Gly Phe Glu Ala Thr Arg Arg Ile Arg Asp Met Glu 945 950 955 960 Glu Glu Met Asn Lys Arg Ile Lys Asn Gly Glu Ala Leu Ile Val Glu 965 970 975 Asn Gly Asn Lys Thr Ser Trp His Leu Pro Val Leu Ala Met Thr Ala 980 985 990 Asp Val Ile Gln Ala Thr His Glu Glu Cys Leu Lys Cys Gly Met Asp 995 1000 1005 Gly Tyr Val Ser Lys Pro Phe Glu Ala Glu Gln Leu Tyr Arg Glu Val 1010 1015 1020 Ser Arg Phe Phe Asn Ser Pro Ser Asp Thr Glu Ser 1025 1030 1035 <210> 11 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> PCR forward primer for AHK3 genomic region <400> 11 catcgaaggt cgactagtag tgctcaacga aa 32 <210> 12 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> PCR reverse primer for AHK3 genomic region <400> 12 aatcgagatc ccgggctata ccatgattac a 31 <210> 13 <211> 1970 <212> DNA <213> Arabidopsis thaliana <400> 13 ttgatcctta gctcttgcgt cgtgcttttt caacaggcga gagaggatcg agagggttag 60 ataatttact gaaaaattat acgaatggac caagactaga gatactgaaa tgagtgtttg 120 acgatacttt aaatgggcct tatatttttc aagttgggcc cgttaatata tgggacaatc 180 aacagtatag ctcaattggt aaattgacta acttcatttg attcctacac catttaaaga 240 tttttaatca aattctgata taactaagat aatattttaa agcatttaac taacatggaa 300 aattatgaaa tgaaatatta attttggata gaaaatttaa aacatttatc tttgtgaaat 360 aaaaagaaag tctcttataa tataacttgt aaagtaatcc tttaaattct aaaagatcta 420 aaacaaaatg agttaaatcc tatgtctatg tgttgaatct ggaagatcga ggtggaagaa 480 aaaggatcat gattcatggg tgagagaaca accgttgatt ggtgtgtttc aactttcaag 540 caatcccatt ttaaaaaaat aaatttatgt aagcaattgc aaacaaaatg aaatgattat 600 gctttaagat atcgacacgt gtaaaacaga tgacgtacca agaaaataaa tgattctgta 660 ttttgtttta gccatttgtt ttttctttaa aggaaagtgt atgttgaaat tgaaaaaaca 720 aaccgagtta tatatataga gttatttgac taaagaagga agctttggtt aaactaactt 780 gtataattct tttgtgtagt ttagttttga taaaatggcc aaacaatttt ggtcacttta 840 ccaactactg caaaaaaacc attttcataa taataaattg taacacgcct tttattttta 900 ttattggagg gtgagaactg agaccatata tgcctttgtt cccttcttgt gggtcccttt 960 agcctttttt tttcttttgc ctgcgccgtt tagtgttttt tcttttatat ataaatagag 1020 gtaagttatt ttaccaatca tttggtgtta ttaatagtag tattaatgag gttctaaact 1080 tgtttataaa aatcagatct tactaaacaa actcaaagaa tctcaactat gaacattttt 1140 cttctagaat cgagttttaa catcatcatc agcaggatat aattttttgt gtttgaattt 1200 tatctgtatt ttttttagga gtacataagc agcttaagat taaaatatat attaatggaa 1260 gtatgaatga aaaaagaaaa gaaagataat cagataatag agagagagag agagagaagg 1320 aagcagacat ttgtcttcca ccatattctt ctcatctttt ccgatgatag attcttcttc 1380 ttcttcttct tctactacta cttctgctcc tctttcttaa gtttctccat ttgataattc 1440 actcaagtct ccagctcctc ttcttcttct cgttgcttta ttcgctctct ttcactcatc 1500 atcatcacac tcaaagattt ctgttgtatt ggagcaagct ctagcgaatt ttcgtactcc 1560 ccttgtagaa ttttagtttc ctgttttaga tttcgaggaa tctcgctttg gaaactttaa 1620 gctcctgttc aaagtttcta cctttgttta ttttgttttt gttttcttct ctcttatctt 1680 tcgtcatctt tgattaagta accactttga tctctcaatt tcagcctttg ggttgtctaa 1740 tctgacacgt tcctctgtct tagctttcct tttctcttct cgtttgtggg aagcctacaa 1800 ggattaatta ttaaataccc aaccccaaaa aattcttcct ttttgattct ctgattcgtc 1860 cctttttgta catggtttct gtttggttgt tagagcttct tgctgagttg aattgagctg 1920 gttgcaatca ctctgtttct tgggggttga tcgtgtattc aagtggtgga 1970 <210> 14 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> PCR forward primer for AHK3 promoter region <400> 14 ttgatcctta gctcttgcgt cgtg 24 <210> 15 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> PCR reverse primer for AHK3 promoter region <400> 15 tccaccactt ggatccacga tcaacc 26 <210> 16 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> PCR forward primer <400> 16 caagaaaaag gctgaagcag ca 22 <210> 17 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> PCR reverse primer <400> 17 tctgcaactg gaagcccact c 21 <210> 18 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> PCR forward primer <400> 18 tggctagcaa gcaaacgatt c 21 <210> 19 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> PCR reverse primer <400> 19 ccccttttgt tgggacttgc t 21 <210> 20 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> PCR forward primer for ARR3 gene <400> 20 catttcctac tcttttctca ctatg 25 <210> 21 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> PCR reverse primer for ARR3 gene <400> 21 agatcgttat cacacggatc tct 23 <210> 22 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> PCR forward primer for ARR4 gene <400> 22 gttactataa gctcgtctat ggc 23 <210> 23 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> PCR reverse primer for ARR4 gene <400> 23 acacggcatc ccagaatagt tc 22 <210> 24 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> PCR forward primer for ARR5 gene <400> 24 ctactcttct tgatatggct gag 23 <210> 25 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> PCR reverse primer for ARR5 gene <400> 25 tatcgtacgt ggaatctgat aaac 24 <210> 26 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> PCR forward primer for ARR6 gene <400> 26 cattcgttga tcaatggctg aag 23 <210> 27 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> PCR reverse primer for ARR6 gene <400> 27 atcggagagc tcagatcttt gc 22 <210> 28 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> PCR forward primer for ARR7 gene <400> 28 ctgagtttga caatggcggt tg 22 <210> 29 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> PCR reverse primer for ARR7 gene <400> 29 gctaaggtct tggcctctat ac 22 <210> 30 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> PCR forward primer for ARR9 gene <400> 30 atgggtatgg cagcagaatc gc 22 <210> 31 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> PCR reverse primer for ARR9 gene <400> 31 tcagacagcg gttgcgatac c 21 <210> 32 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> PCR forward primer for ARR15 gene <400> 32 atggctctca gagatttatc ttct 24 <210> 33 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> PCR reverse primer for ARR15 gene <400> 33 ttaaccccta gactctaatt tgatc 25 <210> 34 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> PCR forward primer for Actin8 gene <400> 34 aatcagatgt ggatctctaa ggca 24 <210> 35 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> PCR reverse primer for Actin8 gene <400> 35 tccgagtttg aagaggctac aaac 24

Claims (17)

  1. 서열번호 10으로 기재되는 사이토키닌 수용체 AHK3의 아미노산 서열에서 243번째 아미노산인 프롤린(proline)이 세린(serine)으로 치환된, 변이형 사이토키닌 수용체 AHK3.
  2. 제 1항의 변이형 사이토키닌 수용체 AHK3을 암호화하는 폴리뉴클레오티드.
  3. 제 2항에 있어서, 서열번호 7로 기재되는 염기서열을 갖는 폴리뉴클레오티드.
  4. 제 2항의 폴리뉴클레오티드를 포함하는 재조합 벡터.
  5. 제 4항의 재조합 벡터로 형질전환된 박테리아.
  6. 서열번호 8의 아미노산 서열을 암호화하는 폴리뉴클레오티드를 식물체 내로 도입하여 과발현시키는 것을 포함하는 식물의 노화를 지연시키는 방법.
  7. 제 6항에 있어서, 상기 폴리뉴클레오티드는 서열번호 7로 기재되는 염기서열을 갖는 것을 특징으로 하는 방법.
  8. 제 6항에 있어서, 상기 식물체는 쌍자엽 식물 또는 단자엽 식물인 것을 특징으로 하는 방법.
  9. 식물체 내 서열번호 9로 기재되는 AHK3 유전자의 염기서열에서 727번째 염기인 사이토신(cytosine; C)을 티민(thymine; T)으로 점 돌연변이(point mutation)시키는 것을 포함하는 식물의 노화를 지연시키는 방법.
  10. 제 9항에 있어서, 점 돌연변이는 돌연변이 유발제(mutagen) 처리법 또는 부위특이 돌연변이 유발법(site-directed mutagenesis)에 의해 수행하는 것을 특징으 로 하는 방법.
  11. 제 9항에 있어서, 상기 식물체는 쌍자엽 식물 또는 단자엽 식물인 것을 특징으로 하는 방법.
  12. 서열번호 8 또는 10으로 기재되는 폴리펩티드 또는 이를 암호화하는 폴리뉴클레오티드를 노화 관련 물질과 접촉시켜 DNA 칩, 단백질 칩, 중합효소 연쇄반응(PCR), 노던 블럿, 서던 블럿, 웨스턴 블럿, 효소 면역 반응(ELISA), 2-D 겔 분석, 효모 이중 혼성화 반응(yeast two hybrid system) 및 시험관 내 결합 어세이(in vitro binding assay)로 이루어진 군에서 선택된 방법을 이용하여 식물의 노화 관련 물질을 탐색하는 방법.
  13. 삭제
  14. 삭제
  15. 삭제
  16. 삭제
  17. 삭제
KR1020030037659A 2003-06-11 2003-06-11 식물의 노화 조절에 관여하는 사이토키닌 수용체 ahk3,이의 변이체 및 이들을 이용하여 식물의 노화를지연시키는 방법 KR100997612B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020030037659A KR100997612B1 (ko) 2003-06-11 2003-06-11 식물의 노화 조절에 관여하는 사이토키닌 수용체 ahk3,이의 변이체 및 이들을 이용하여 식물의 노화를지연시키는 방법
PCT/KR2004/001398 WO2004108931A1 (en) 2003-06-11 2004-06-11 Cytokinin receptor ahk3 involved in senescence regulation of plant and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030037659A KR100997612B1 (ko) 2003-06-11 2003-06-11 식물의 노화 조절에 관여하는 사이토키닌 수용체 ahk3,이의 변이체 및 이들을 이용하여 식물의 노화를지연시키는 방법

Publications (2)

Publication Number Publication Date
KR20040106810A KR20040106810A (ko) 2004-12-18
KR100997612B1 true KR100997612B1 (ko) 2010-11-30

Family

ID=33509673

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030037659A KR100997612B1 (ko) 2003-06-11 2003-06-11 식물의 노화 조절에 관여하는 사이토키닌 수용체 ahk3,이의 변이체 및 이들을 이용하여 식물의 노화를지연시키는 방법

Country Status (2)

Country Link
KR (1) KR100997612B1 (ko)
WO (1) WO2004108931A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2272862B1 (en) * 2009-07-10 2012-03-21 Freie Universität Berlin Rock2 and rock3, two new gain-of-function variants of the cytokinin receptors AHK2 and AHK3
US8907164B2 (en) 2010-04-19 2014-12-09 The Samuel Roberts Noble Foundations, Inc. Regulating nutrient allocation in plants
CN111471707B (zh) * 2020-03-23 2023-06-09 南京农业大学 一种延缓森林草莓叶片衰老的载体及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002099079A2 (en) * 2001-06-06 2002-12-12 The General Hospital Corporation Cytokinin response regulators and uses thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG135907A1 (en) * 2001-03-15 2007-10-29 Sumitomo Chemical Co Analysis of agonist-activity and antagonist-activity to cytokinin receptor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002099079A2 (en) * 2001-06-06 2002-12-12 The General Hospital Corporation Cytokinin response regulators and uses thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GenBank Accession No. AA046870.1(2001.08.21.)*

Also Published As

Publication number Publication date
KR20040106810A (ko) 2004-12-18
WO2004108931A1 (en) 2004-12-16

Similar Documents

Publication Publication Date Title
US20090044293A1 (en) Plants with altered root architecture, involving the rt1 gene, related constructs and methods
US20090064373A1 (en) Plants with altered root architecture, related constructs and methods involving genes encoding nucleoside diphosphatase kinase (ndk) polypeptides and homologs thereof
US20150299723A1 (en) Plants with altered root architecture, related constructs and methods involving genes encoding leucine rich repeat kinase (llrk) polypeptides and homologs thereof
US20110138501A1 (en) Plants with altered root architecture, related constructs and methods involving genes encoding protein phophatase 2c (pp2c) polypeptides and homologs thereof
US20110039263A1 (en) Plants having altered agronomic characteristics under nitrogen limiting conditions and related constructs and methods involving genes encoding lnt2 polypeptides and homologs thereof
US20140068811A1 (en) Drought tolerant plants and related constructs and methods involving genes encoding zinc-finger (c3hc4-type ring finger) family polypeptides
US20160017361A1 (en) Plants with altered root architecture, related constructs and methods involving genes encoding exostosin family polypeptides and homologs thereof
KR20120121350A (ko) 식물의 생산성 증대 기능, 노화 지연 기능 및 스트레스 내성 기능을 갖는 atpg7 단백질과 그 유전자 및 이들의 용도
KR100997612B1 (ko) 식물의 노화 조절에 관여하는 사이토키닌 수용체 ahk3,이의 변이체 및 이들을 이용하여 식물의 노화를지연시키는 방법
KR20110092148A (ko) 식물의 노화 지연 기능 및 스트레스 내성 기능을 갖는 athg1 단백질과 그 유전자 및 이들의 용도
US20140007298A1 (en) Plants with altered root architecture, related constructs and methods involving genes encoding protein phophatase 2c (pp2c) polypeptides and homologs thereof
KR20130046180A (ko) 식물의 생산성 증대 기능, 노화 지연 기능 및 스트레스 내성 기능을 갖는 atpg4 단백질과 그 유전자 및 이들의 용도
KR100438887B1 (ko) 애기장대로부터 분리한 식물의 잎 수명 조절 유전자 ore4 및 그 변이형 유전자
US20140196173A1 (en) Plants having altered agronomic characteristics under nitrogen limiting conditions and related constructs and methods involving genes encoding lnt6 polypeptides and homologs thereof
KR100475359B1 (ko) 식물의 잎 수명 조절 유전자를 이용하여 식물의 노화를지연시키는 방법
WO2015150412A1 (en) Transgenic plants with increased number of fruits and seeds and method for obtaining thereof
KR20150003099A (ko) 식물의 생산성 증대 기능, 스트레스 내성 기능 및 노화 지연 기능을 갖는 atpg6 단백질과 그 유전자 및 이들의 용도
KR20120121351A (ko) 식물의 생산성 증대 기능, 노화 지연 기능 및 스트레스 내성 기능을 갖는 atpg8 단백질과 그 유전자 및 이들의 용도
US20110035837A1 (en) Plants having altered agronomic characteristics under nitrogen limiting conditions and related constructs and methods involving genes encoding lnt3 polypeptides
KR20130095482A (ko) 식물의 생산성 증대 기능, 노화 지연 기능 및 스트레스 내성 기능을 갖는 atpg3 단백질과 그 유전자 및 이들의 용도
KR101973551B1 (ko) 배추 유래 BrRH22 유전자를 이용한 환경 스트레스 내성이 증가된 형질전환 식물체의 제조방법 및 그에 따른 식물체
US20110191910A1 (en) Plants with altered root architecture, related constructs and methods involving genes encoding lectin protein kinase (lpk) polypeptides and homologs thereof
US20080201803A1 (en) Plants with altered root architecture, involving the rum1 gene, related constructs and methods
KR101077964B1 (ko) 식물의 잎 수명 조절 단백질, 그 유전자 및 이들의 용도
CA2729099A1 (en) Plants with altered root architecture, related constructs and methods involving genes encoding rep2 polypeptides and homologs thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20131219

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20141124

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee