KR100978031B1 - Single Crystal Si nanoribbons and the manufacturing method of the same - Google Patents

Single Crystal Si nanoribbons and the manufacturing method of the same Download PDF

Info

Publication number
KR100978031B1
KR100978031B1 KR1020080011323A KR20080011323A KR100978031B1 KR 100978031 B1 KR100978031 B1 KR 100978031B1 KR 1020080011323 A KR1020080011323 A KR 1020080011323A KR 20080011323 A KR20080011323 A KR 20080011323A KR 100978031 B1 KR100978031 B1 KR 100978031B1
Authority
KR
South Korea
Prior art keywords
single crystal
nanoribbons
silicon
crystal silicon
nanoribbon
Prior art date
Application number
KR1020080011323A
Other languages
Korean (ko)
Other versions
KR20090085430A (en
Inventor
최헌진
박태언
성한규
정한나
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Priority to KR1020080011323A priority Critical patent/KR100978031B1/en
Publication of KR20090085430A publication Critical patent/KR20090085430A/en
Application granted granted Critical
Publication of KR100978031B1 publication Critical patent/KR100978031B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure

Abstract

본 발명은 단결정 규소 나노리본(Single crystal Si nanoribbon) 및 그 제조방법에 관한 것으로, 보다 상세하게는, 불순물이 존재하지 않는 규소 기판(Si substrate)을 일정두께의 티타늄(Ti)층과 백금(Pt)층을 연속적으로 피복하고, 그 위에 출발물질로서 사염화규소(silicon-tetra chloride, SiCl4)를 기상-액상-고상 기구(vapor-liquid-solid mechanism, VLS mechanism)에 의하여 물질이동(transporting)시킴으로써 생성 및 성장된 단결정 규소 나노리본 및 그 제조방법에 관한 것이다. 이 때, 촉매로서의 백금(Pt)과, 티타늄 층의 사용은 본 발명의 핵심적 요소라 할 것이다. 이로써, 신뢰성 있으며, 재현성이 우수한 고기능성의 1차원 규소 나노구조를 생성할 수 있으며, 특히 높은 결정도(high crystallinity), 반도성(semiconductivity) 및 매우 뚜렷한 표면영역(high specific surface area) 등과 같은 독창적인 물성을 가진 단결정 규소 나노리본을 제조할 수 있다. 이러한 단결정 규소 나노리본은 센서, 광전장치, 전자장치 및 전기화학적 나노장치 등에 응용가능한 장점을 갖는다. 즉, 이러한 나노리본의 CMOS에 대한 호환성은 나노리본을 기존의 규소 관련 제조공정이 적용가능한 장치에 충분히 응용할 수 있다.The present invention relates to a single crystal Si nanoribbon and a method for manufacturing the same. More specifically, a silicon substrate (Si substrate) free of impurities is formed of a titanium (Ti) layer and platinum (Pt) having a predetermined thickness. ) Layer is successively coated and produced by transporting silicon-tetra chloride (SiCl4) as a starting material by vapor-liquid-solid mechanism (VLS mechanism). And grown single crystal silicon nanoribbons and a method of manufacturing the same. At this time, the use of platinum (Pt) and the titanium layer as a catalyst will be a key element of the present invention. This makes it possible to produce highly functional, highly reproducible, one-dimensional silicon nanostructures, and in particular, such as high crystallinity, semiconductivity and very specific surface area. Single crystal silicon nanoribbons having a physical property can be prepared. Such single crystal silicon nanoribbons have advantages that can be applied to sensors, optoelectronic devices, electronic devices, and electrochemical nanodevices. In other words, the compatibility of the nanoribbons with CMOS makes it possible to apply the nanoribbons to devices that can be applied to existing silicon-related manufacturing processes.

단결정, 규소, 나노리본, 나노와이어, 톱날형상, 백금, 티타늄 Monocrystalline, Silicon, Nanoribbon, Nanowire, Saw Blade Shape, Platinum, Titanium

Description

단결정 규소 나노리본 및 그 제조방법{Single Crystal Si nanoribbons and the manufacturing method of the same}Single Crystal Si nanoribbons and the manufacturing method of the same

본 발명은 단결정 규소 나노리본(Single crystal Si nanoribbon) 및 그 제조방법에 관한 것으로, 보다 상세하게는, 불순물이 존재하지 않는 규소 기판(규소 substrate)을 일정두께의 티타늄(Ti)층과 백금(Pt)층을 연속적으로 피복하고, 그 위에 출발물질로서 사염화규소(Silicon-tetra chloride, SiCl4)를 기상-액상-고상 기구(vapor-liquid-solid mechanism, VLS mechanism)에 의하여 물질이동(transporting)시킴으로써 생성 및 성장된 단결정 규소 나노리본 및 그 제조방법에 관한 것이다. The present invention relates to a single crystal Si nanoribbon and a method for manufacturing the same. More specifically, a silicon substrate (silicon substrate) free of impurities is formed of a titanium (Ti) layer and platinum (Pt) having a predetermined thickness. ) Layer is continuously coated and produced by transporting silicon tetrachloride (SiCl4) as a starting material by vapor-liquid-solid mechanism (VLS mechanism). And grown single crystal silicon nanoribbons and a method of manufacturing the same.

나노재료(nano materials)는 벌크재료(bulk materials)와 상이한 전기적, 자기적, 광학적, 기계적 물성 등으로 인해 많은 연구의 대상이 되고 있다. 나노미터 크기란 산술적으로는 마이크로미터(10-6 m) 크기를 1/1000으로 축소한 것이지만 물질의 크기가 작아질수록 주어진 공간에서 좀 더 다양하고 특이한 물리, 화학적 특성을 보인다는 것이 나노재료의 특징이다. 즉, 대부분의 물질들은 마이크로미터 크 기에서 대부분 벌크 형태에서 나타나는 물리적 특성을 유지하지만, 나노미터 크기로 축소되면 벌크 형태와는 아주 상이한 물리적 특성을 보이는 것이 보통이다. Nano materials have been the subject of much research due to their electrical, magnetic, optical and mechanical properties, which are different from bulk materials. The nanometer size is arithmetically reduced to micrometer (10 -6 m) to 1/1000, but the smaller the material, the more diverse and unusual physical and chemical properties in a given space. It is characteristic. That is, most of the materials retain the physical properties of the bulk form at most micrometers, but when scaled down to nanometers, they usually exhibit very different physical properties from the bulk form.

특히, 1차원 나노재료인 나노튜브, 나노와이어 및 나노리본은 벌크재료와 확연히 대비되는 새로운 물성과 나노크기 영역의 장치 발전에 있어서 잠재력이 큰 분야로서 집중 연구대상이 되고 있다. In particular, nanotubes, nanowires, and nanoribbons, which are one-dimensional nanomaterials, have been intensively researched as fields having great potential in the development of new physical properties and nano-sized devices, which are clearly contrasted with bulk materials.

이러한 1차원 나노재료 및 나노리본들은 이와 관련된 광학적, 기계적, 전기적 나노 장치의 개발에 있어서 나노미터 크기의 직사각형 구조를 갖는 형상학적 요소에 기인하는 새로운 물성을 제공해 줄 수 있다. These one-dimensional nanomaterials and nanoribbons can provide new properties due to the morphological elements having a nanometer-sized rectangular structure in the development of optical, mechanical and electrical nanodevices related thereto.

나노리본의 결정구조, 화학적 성분, 미세구조는 제조된 나노리본의 최종물성에 지대한 영향을 미치게 된다.The crystal structure, chemical composition, and microstructure of the nanoribbons have a great influence on the final physical properties of the manufactured nanoribbons.

이러한 최적화된 물성을 구현하면서도 동시에 원하는 크기의 나노리본을 제조하는 기술에 있어서, 3-5(Ⅲ-Ⅴ)족 및 산화물 반도체 나노리본 등에서 광자의 웨이브 가이드, 레이징 작용(lasing action), 비선형적 편광현상(nonlinear polarization) 및 높은 기계적 유동성(high mechanical flexibility) 등 새로운 물성이 발견되었으나, 단결정 규소 나노리본의 생성, 성장기술은 그 필요성에 비해서 아직 개발되지 않은 실정이다.In order to realize such optimized properties and at the same time produce nanoribbons of desired size, waveguide, lasing action, nonlinearity of photons in 3-5 (III-V) group and oxide semiconductor nanoribbons Although new physical properties such as nonlinear polarization and high mechanical flexibility have been found, the production and growth technology of single crystal silicon nanoribbons has not been developed yet.

특히, 단결정 규소 나노리본이 CMOS와 호환성을 갖도록 하여 각종 광학장치, 전자장치 등에 적용가능하도록 하려면 일정 수준 이상의 폭과 두께를 갖도록 제조되어야 하는 바, 기존의 나노와이어에 비해 대폭 향상된 폭과 두께를 갖는 나노리본의 제조가 용이하지 아니한 문제점이 있었다.In particular, in order for the single crystal silicon nanoribbons to be compatible with CMOS and to be applicable to various optical devices and electronic devices, the single crystal silicon nanoribbons should be manufactured to have a width and thickness of a predetermined level or more. There was a problem that the production of nanoribbon was not easy.

본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 신뢰성과 재현성이 우수한 1차원 단결정 규소 나노구조의 구현을 목적으로 한다.The present invention has been made to solve the above problems, and an object of the present invention is to implement a one-dimensional single crystal silicon nanostructure excellent in reliability and reproducibility.

또한, 본 발명은 높은 결정도와 반도성 및 뚜렷한 표면영역(high specific surface area)을 갖는 단결정 규소 나노리본의 제조방법을 구현하는 것을 다른 목적으로 한다.In addition, another object of the present invention is to implement a method for producing single crystal silicon nanoribbons having high crystallinity, semiconductivity, and high specific surface area.

또한, 본 발명은 센서, 전자장치, 광전장치, 전기화학장치 등에 응용가능하여 CMOS와 호환성을 갖는 단결정 규소 나노리본의 제조방법을 구현하는 것을 또 다른 목적으로 한다.In addition, another object of the present invention is to implement a method for manufacturing single crystal silicon nanoribbons compatible with CMOS, which is applicable to sensors, electronic devices, photoelectric devices, electrochemical devices, and the like.

또한, 본 발명은 기존의 방법에 의해 구현된 나노구조보다 더 두꺼운 두께와 넓은 폭을 갖는 단결정 규소 나노리본의 제조방법 및 그 방법으로 제조되는 나노리본을 구현하는 것을 또 다른 목적으로 한다.In addition, another object of the present invention is to implement a method for producing a single crystal silicon nanoribbon having a thicker thickness and a wider width than a nanostructure implemented by a conventional method, and a nanoribbon prepared by the method.

본 발명은 상기와 같은 목적을 달성하기 위하여, 규소 기판 위에 티타늄 층을 형성하는 단계; 상기 티타늄 층 위에 백금 층을 형성하는 단계; 및 상기 티타늄 층과 백금 층이 형성된 규소 기판에 규소화합물을 가하여 상기 기판상에서 단결정 규소 나노리본을 형성하는 단계;를 포함하여 구성되는 단결정 규소 나노리본의 제조방법을 제공한다.The present invention to achieve the above object, forming a titanium layer on a silicon substrate; Forming a platinum layer over the titanium layer; And forming a single crystal silicon nanoribbon on the substrate by adding a silicon compound to the silicon substrate having the titanium layer and the platinum layer formed thereon.

여기서, 상기 단결정 규소 나노리본을 형성하는 단계는, 먼저 상기 규소화합 물을 가하여 단결정 규소 나노와이어를 형성한 후, 반응시간을 더 연장함으로써 형성되는 단계인 것이 바람직하다.Here, the forming of the single crystal silicon nanoribbons is preferably a step formed by first adding the silicon compound to form single crystal silicon nanowires and then further extending the reaction time.

또한, 상기 단결정 규소 나노리본을 형성하는 단계는, 상기 단결정 규소 나노와이어로부터 규소가 톱날형상으로 성장되어 형성되는 단계인 것이 바람직하다.In addition, the step of forming the single crystal silicon nanoribbons, it is preferable that the silicon is grown in a saw blade shape from the single crystal silicon nanowires are formed.

또한, 상기 단결정 규소 나노와이어는 [110] 방향으로 성장하여 형성되고, 상기 나노리본은 상기 나노와이어로부터 [1-12]방향으로 성장하여 형성되는 것이 바람직하다.In addition, the single crystal silicon nanowires are formed by growing in the [110] direction, the nanoribbon is preferably formed by growing in the [1-12] direction from the nanowires.

또한, 상기 단결정 규소 나노리본은 5 내지 50nm의 두께와, 0.1 내지 2㎛의 폭으로 형성되는 것이 바람직하다.In addition, the single crystal silicon nanoribbon is preferably formed with a thickness of 5 to 50nm, and a width of 0.1 to 2㎛.

또한, 상기 백금층은 1 내지 10nm, 상기 티타늄 층은 10 내지 30nm의 두께인 것이 바람직하다.In addition, the platinum layer is 1 to 10nm, the titanium layer is preferably 10 to 30nm thickness.

또한, 상기 규소화합물은 사염화규소(SiCl4)인 것이 바람직하다.In addition, the silicon compound is preferably silicon tetrachloride (SiCl 4).

또한, 본 발명은 상기와 같은 목적을 달성하기 위하여, 5 내지 50nm의 두께와, 0.1 내지 2㎛의 폭을 갖는 단결정 규소 나노리본을 제공한다.In addition, the present invention provides a single crystal silicon nanoribbons having a thickness of 5 to 50nm, and a width of 0.1 to 2㎛ in order to achieve the above object.

본 발명은 다음과 같은 효과와 장점을 갖는다.The present invention has the following effects and advantages.

본 발명에 의해 제조되는 단결정 규소 나노리본은 신뢰성과 재현성이 우수하다.The single crystal silicon nanoribbons produced by the present invention are excellent in reliability and reproducibility.

또한, 본 발명에 의해 제조되는 단결정 규소 나노리본은 높은 결정도와 반도성 및 뚜렷한 표면영역(specific surface area)을 갖는다.In addition, the single crystal silicon nanoribbons produced by the present invention have high crystallinity, semiconductivity and distinct surface area.

또한, 본 발명에 의해 제조되는 단결정 규소 나노리본은 센서, 전자장치, 광전장치, 전기화학장치 등에 응용가능하며, CMOS와 호환성을 가지므로, CMOS를 대체할 수 있는 작용효과를 갖는다.In addition, the single crystal silicon nanoribbons manufactured by the present invention are applicable to sensors, electronic devices, photoelectric devices, electrochemical devices, and the like, and are compatible with CMOS, and thus have an effect of replacing CMOS.

또한, 본 발명에 의해 제조되는 단결정 규소 나노리본은 기존의 방법에 의해 구현된 나노구조보다 더 두꺼운 두께와 넓은 폭을 가지므로, 응용의 폭이 매우 넓은 작용효과를 갖는다.In addition, since the single crystal silicon nanoribbon prepared by the present invention has a thicker thickness and a wider width than the nanostructure implemented by the conventional method, the application has a wide range of effects.

이하, 본 발명을 그 바람직한 실시예를 기초로 보다 상세히 설명하기로 한다.Hereinafter, the present invention will be described in more detail based on the preferred embodiments thereof.

단결정 규소(Si) 나노리본은 규소 기판위에서 기체-액체-고체(vapor-liquid-solid, VLS) 기구를 사용하여 합성 및 형성되며, 이 때, 촉매로서 백금(Pt)을 사용한다. 이러한 나노리본은 규소화합물, 바람직하게는 사염화규소(silicon-tetra chloride, SiCl4)를 10 내지 30nm (바람직하게는 20nm) 두께의 티타늄(Ti)층과 1 내지 10nm (바람직하게는 5nm) 두께의 백금(Pt)층이 연속적으로 코팅된 규소기판위에 물질이동시킴으로써 성장된다.Single crystal silicon (Si) nanoribbons are synthesized and formed on a silicon substrate using a vapor-liquid-solid (VLS) apparatus, using platinum (Pt) as a catalyst. Such nanoribbons comprise a silicon compound, preferably silicon-tetra chloride (SiCl 4), having a thickness of 10-30 nm (preferably 20 nm) of titanium and a thickness of 1-10 nm (preferably 5 nm) of platinum. The (Pt) layer is grown by mass transfer on a successively coated silicon substrate.

도 1은 본 발명의 일 실시예에 의하여 기판위에 성장된 단결정 규소 나노리본의 주사전자현미경(SEM, Scanning electron microscopy)을 이용하여 관찰한 미세구조를 나타내며, 도 2와 3은 본 발명의 일 실시예에 의한 단결정 규소 나노리본의 SEM 및 투과전자현미경(TEM, Transmission electron microscopy)을 이용하여 관찰한 미세구조를 나타낸다. 여기서 위 나노리본은 10 내지 30nm의 두께와, 2㎛이하의 폭과 수백 ㎛의 길이로 특정되었다. 1 illustrates a microstructure observed using a scanning electron microscope (SEM) of a single crystal silicon nanoribbon grown on a substrate according to an embodiment of the present invention, Figures 2 and 3 is an embodiment of the present invention The microstructures observed by SEM and transmission electron microscopy (TEM) of single crystal silicon nanoribbons according to the examples are shown. The nanoribbons were characterized by a thickness of 10-30 nm, a width of less than 2 μm and a length of several hundred μm.

도 4는 본 발명의 일 실시예에 의한 단결정 규소 나노리본의 고배율 투과전자현미경(HRTEM, High-resolution Transmission electron microscopy)을 이용하여 관찰한 미세구조로서 도시된 바와 같이, 결함(defect)이나 2차상(secondary phase)이 생성되지 아니한 단결정체가 관찰되었다. 여기서, 특정영역전자회절(SAED, selected area electron diffraction)분석에 의하면 나노리본은 다이아몬드 구조의 단결정임을 알 수 있다. 4 is a microstructure observed using a high-resolution transmission electron microscopy (HRTEM) of a single crystal silicon nanoribbon according to an embodiment of the present invention, as shown as a defect (defect) or secondary phase Single crystals were observed in which no secondary phase was produced. Here, according to the selected area electron diffraction (SAED) analysis, it can be seen that the nanoribbons are single crystals of diamond structure.

또한, 도 5는 본 발명의 일실시예에 의한 단결정 규소 나노리본의 에너지 분산형 X선 측정장치(EDX, Energy dispersive X-ray spectroscopy) 분석결과로서, 도시된 바와 같이, 본 발명에 의한 단결정 규소 나노리본은 백금(Pt)과 티타늄(Ti)을 포함한 불순물이 존재하지 않는 것으로 나타났다.5 is an energy dispersive X-ray spectroscopy (EDX) analysis result of single crystal silicon nanoribbons according to an embodiment of the present invention, as shown, as shown, single crystal silicon according to the present invention The nanoribbon was found to be free of impurities, including platinum (Pt) and titanium (Ti).

단결정 규소 나노리본의 생성기구를 성장시간을 변수로 하여 조사하였던 바, 이를 도시하여 도 6의 처리시간에 따른 본 발명의 일 실시예에 의한 단결정 규소 나노리본의 연속 진행 단계로써 나타내었다. The production mechanism of the single crystal silicon nanoribbons was investigated by using the growth time as a variable, which is shown as a continuous progress step of the single crystal silicon nanoribbons according to an embodiment of the present invention according to the treatment time of FIG. 6.

먼저, 1차원의 규소 나노와이어를 [110]방향으로 성장시킨다. 이 후, 반응시간이 증가함에 따라, 톱날형상(saw-like shape)의 단부가 나노와이어(nanowire)의 기저부(base line)를 따라 [1-12]방향으로 성장하기 시작한다.First, one-dimensional silicon nanowires are grown in the [110] direction. Thereafter, as the reaction time increases, the end of the saw-like shape begins to grow in the [1-12] direction along the base line of the nanowire.

반응시간이 계속 증가함에 따라, 상기 나노와이어로부터 성장되고 있는 톱날형상 성장체의 규소 삼각꼭지점 사잇공간이 충진되기 시작하며, 모든 사잇공간이 충진되고 나면 도 6에서 보여지는 바와 같은 나노리본이 생성된다.As the reaction time continues to increase, the silicon triangular vertices of the sawtooth-grown body growing from the nanowires begin to be filled, and after all the interspaces are filled, a nanoribbon as shown in FIG. 6 is generated. .

도 7은 본 발명의 일 실시예에 의한 단결정 규소 나노리본에 있어, 나노와이어, 톱날형상의 단부 및 나노와이어와 톱날형상의 단부사이의 계면에 대한 투과전자현미경에 의한 분석 사진이다. 여기서, [-111]영역의 축을 따라 기록된 SAED 패턴은 리본내의 나노와이어 부분이 [110] 방향을 따라 성장하였음과, 톱날형상의 단부가 [1-12] 방향을 따라 성장하였음을 각각 보여준다. FIG. 7 is an analysis photograph of a single crystal silicon nanoribbon according to an embodiment of the present invention by transmission electron microscopy for an interface between a nanowire, an end portion of a saw blade, and an interface between the nanowire and an end portion of the saw blade. Here, the SAED pattern recorded along the axis of the [-111] region shows that the nanowire portion in the ribbon grew along the [110] direction and the saw blade-shaped end portion grew along the [1-12] direction.

규소 나노리본의 성장 기구는 잘 알려진 VLS 기구에 기초하며, 모든 공정은 ZnO 광대역나노시트, 특히 “1D branching and subsequent 2D interpace filling” 공정과 유사하다. The growth mechanism of silicon nanoribbons is based on the well-known VLS mechanism, and all processes are similar to ZnO broadband nanosheets, especially the “1D branching and subsequent 2D interpace filling” process.

여기서, 백금(Pt) 촉매와 티타늄(Ti) 중간층이 나노리본의 성장에 가장 중요한 요소가 됨을 주의해야 한다.Here, it should be noted that the platinum (Pt) catalyst and the titanium (Ti) interlayer are the most important factors for the growth of nanoribbons.

이러한 매개변수를 고려함으로써 이러한 공정을 요약할 수 있는 바, 이를 도 8에 의해서도 알 수 있다. 먼저, 나노와이어는 백금촉매를 통해 VLS 기구에 의해 성장한다.This process can be summarized by considering these parameters, which can also be seen by FIG. 8. First, nanowires are grown by the VLS apparatus through platinum catalysts.

정량적 분석에 의하면, 톱날형상(saw-like shape)의 단부에서는 촉매로 사용된 백금이 검출되지 않았으며, 따라서 나노와이어의 기저부로부터 생성되는 톱날형상의 단부는 VLS 기구에 기여하는 것이 아니라, 제한된 확산과정(limited diffusion)과 과포화된 기체분위기(supersaturated vapor environment)하에서 진행된 기상-고상 기구(vapor-solid mechanism)에 기여한다.Quantitative analysis showed that platinum used as catalyst was not detected at the end of the saw-like shape, so that the saw-shaped end produced from the base of the nanowire did not contribute to the VLS mechanism, but rather limited diffusion. It contributes to the vapor-solid mechanism, which proceeds under limited diffusion and supersaturated vapor environment.

이러한 분위기하에서, 형상학적 불안정성은 촉매가 사용되지 않은 VS 기구를 통해 야기될 수 있으며, 이러한 톱날형상의 단부에서는 전형적인 fern-like ice crystal이 관찰된다. Under this atmosphere, morphological instability can be caused by the VS mechanism without the catalyst being used, and at this saw blade end, a typical fern-like ice crystal is observed.

이와 같은 단계에서 중요한 점은 규소 나노와이어가 c.a. 20nm의 직경으로 [110]방향으로 성장하면, VS 기구는 나노와이어의 기저부 측면에서부터 톱날형상의 단부가 [1-12]방향으로 에피택셜 성장하도록 유도한다.An important point at this stage is that silicon nanowires are c.a. Growing in the [110] direction with a diameter of 20 nm, the VS instrument induces the sawtooth-shaped end to epitaxially grow in the [1-12] direction from the base side of the nanowire.

본 발명의 실시예에 대한 비교예로서 금(Au) 촉매 또는 티타늄(Ti)층이 존재하지 않는 백금(Pt) 촉매를 사용하였던 바, 그 결과 [111]방향으로는 c.a. 50nm 이상의 직경을 갖도록 성장하는 톱날형상의 단부가 존재하지 않음을 알 수 있었다.As a comparative example of an embodiment of the present invention, a gold (Au) catalyst or a platinum (Pt) catalyst without a titanium (Ti) layer was used. As a result, c.a. It was found that there was no saw blade end portion growing to have a diameter of 50 nm or more.

즉, 본 발명에서와 같은 일정 크기 이상의 나노리본 생성은 티타늄 층과 백금층의 존재하에서만 가능하다고 할 수 있는 것이다.In other words, nanoribbons of a predetermined size or more as in the present invention can be said to be possible only in the presence of a titanium layer and a platinum layer.

규소 나노와이어를 성장시키기 위한 기존의 금(Au) 촉매 시스템과 비교하여, 본 발명에서 촉매로서 사용된 백금은 표면에너지 뿐만 아니라 규소와의 공융점이 보다 높다. 그러므로, VLS 기구의 초기단계에서 금 촉매 시스템에서보다 작은 크기의 액적(droplet)이 형성될 수 있다. 백금-규소 공융점(830℃)과 비교하여 보다 더 높은 백금-티타늄 공융점(1310℃)은 VLS 기구의 초기단계에서 규소 기판으로부터 백금촉매로 규소가 용해되어 들어가는 것을 방해하며, 따라서 보다 작은 크기의 액적을 형성하는데 기여한다. Compared with existing gold (Au) catalyst systems for growing silicon nanowires, the platinum used as catalyst in the present invention has a higher eutectic point with silicon as well as surface energy. Therefore, droplets of smaller size may be formed in the early stages of the VLS apparatus than in the gold catalyst system. The higher platinum-titanium eutectic point (1310 ° C.) compared to the platinum-silicon eutectic point (830 ° C.) prevents silicon from dissolving into the platinum catalyst from the silicon substrate in the early stages of the VLS instrument, and thus the smaller size. Contributes to the formation of droplets.

VLS 기구에서의 나노와이어의 직경은 액상 촉매의 액적 크기에 따라 좌우되므로 백금촉매와 티타늄층의 도움으로 성장된 규소 나노와이어는 20nm 이하의 직경을 갖게 되며, 이를 도 6에 나타내었다. 이러한 직경 영역에서는 규소 나노와이어는 이른바 edge tension이라고 불리는 규소 표면에너지가 액상-고상 계면에너지로 서 상호작용하므로 [110]방향으로 성장하기 쉽다. Since the diameter of the nanowires in the VLS apparatus depends on the droplet size of the liquid catalyst, the silicon nanowires grown with the help of the platinum catalyst and the titanium layer have a diameter of 20 nm or less, which is shown in FIG. 6. In this diameter region, silicon nanowires tend to grow in the [110] direction because silicon surface energy called edge tension interacts as a liquid-solid interface energy.

톱날형상의 성장은, Mullin-Sekerka instability에서 전형적으로 관찰되는 바와 같이, 과포화된 기상분위기에서는 나노와이어의 측면에서의 결정성장이 확산제한된(diffusion limited) 결과이다.Saw blade growth is a result of diffusion limited crystal growth in terms of nanowires in a supersaturated gas atmosphere, as is typically observed in Mullin-Sekerka instability.

나노와이어의 표면에너지는 성장방향, 직경에 의해 결정되며, 본 발명에 의한 나노와이어는 과포화 공정분위기하에서 톱날형상 단부의 성장을 가능하게 하는 표면에너지를 가질 수 있다. The surface energy of the nanowires is determined by the growth direction and the diameter, and the nanowires according to the present invention may have surface energy that enables the growth of the saw blade-shaped end portion under the supersaturation process atmosphere.

Side branch interspace의 planar filling은 branch들 사이의 오목한 구석부에서 기상의 선택적 응집(selected agglomeration)에 의해 이루어지며, 위 구석부는 화학적 포텐셜(즉, 평형부분 기압)이 볼록부 또는 평면부에서 보다 낮은데, 이는 Gibbs-Thomson 관계로부터 설명될 수 있다. Planar filling of the side branch interspace is achieved by selective agglomeration of the gas phase in the concave corners between the branches, the upper corners having lower chemical potentials (i.e. equilibrium pressure) than at the convex or flat sections. This can be explained from the Gibbs-Thomson relationship.

요컨대, 나노리본의 성장은 3가지 연속기구에 의해서 설명될 수 있으며, 이는 다음과 같다. In short, the growth of nanoribbons can be explained by three continuous mechanisms, which are as follows.

(1) 나노와이어의 기저부로부터 [110]방향으로의 성장(백금 촉매와 티타늄 완충층을 사용한 VLS 공정을 통해서 가능하다) (1) Growth in the [110] direction from the base of the nanowires (available through the VLS process using a platinum catalyst and a titanium buffer layer)

(2) 톱날형상의 단부 성장(과포화 분위기하에서의 VS 공정에 의해서 가능하다) (2) Saw blade-shaped end growth (possible by VS process under supersaturated atmosphere)

(3) planar filling (선택적 응축)(3) planar filling (optional condensation)

도 8에는 본 발명의 일 실시예에 의해 제조되는 단결정 규소 나노리본의 생 성과정을 도식화 하여 나타낸 도면으로서, 전술한 바와 같은 본 발명의 실시예는 도시된 바와 같은 과정을 통하여 완성된다.FIG. 8 is a diagram illustrating the production of a single crystal silicon nanoribbon prepared according to an embodiment of the present invention, the embodiment of the present invention as described above is completed through the process as shown.

본 발명에서와 같은 규소 나노리본의 성장모델은 특성화되고, 신뢰성 있으며, 재현성이 우수한 새로운 영역의 1차원 규소 나노구조를 구축할 수 있도록 한다. The growth model of the silicon nanoribbons as in the present invention allows the construction of new areas of one-dimensional silicon nanostructures that are characterized, reliable and excellent in reproducibility.

본 발명에서와 같이 제조된 단결정 나노리본이 독창적 물성, 예를 들면 높은 결정도, 반도성 및 매우 뚜렷한 표면영역 등과 같은 성질을 가지고 있으며, 이로부터 센서, 광전장치, 전자장치 및 전기화학적 나노장치 등에 응용가능하다. The monocrystalline nanoribbons prepared as in the present invention have properties such as unique physical properties, such as high crystallinity, semiconductivity and very pronounced surface area, and from this, sensors, optoelectronic devices, electronic devices and electrochemical nanodevices, etc. Applicable.

이러한 단결정 규소 나노리본의 CMOS에 대한 호환성은 나노리본을 기존의 규소 제조공정에 의한 장치에 적용가능하도록 할 수 있을 것이다.The compatibility of the single crystal silicon nanoribbons with CMOS may enable the nanoribbons to be applied to devices using existing silicon manufacturing processes.

도 1은 본 발명의 일실시예에 의하여 기판위에 성장된 단결정 규소 나노리본의 주사전자현미경(SEM, Scanning electron microscopy)을 이용하여 관찰한 미세구조사진.1 is a microstructure photograph of a single crystal silicon nanoribbon grown on a substrate by using a scanning electron microscope (SEM, Scanning electron microscopy) according to an embodiment of the present invention.

도 2는 본 발명의 일실시예에 의한 단결정 규소 나노리본의 SEM 을 이용하여 관찰한 미세구조사진. Figure 2 is a microstructure photograph observed using the SEM of the single crystal silicon nanoribbon according to an embodiment of the present invention.

도 3은 본 발명의 일실시예에 의한 단결정 규소 나노리본의 투과전자현미경(TEM, Transmission electron microscopy)을 이용하여 관찰한 미세구조사진.FIG. 3 is a microstructure photograph of a single crystal silicon nanoribbon using a transmission electron microscopy (TEM). FIG.

도 4는 본 발명의 일실시예에 의한 단결정 규소 나노리본의 고배율 투과전자현미경(HRTEM, High-resolution Transmission electron microscopy)을 이용하여 관찰한 미세구조사진.4 is a microstructure photograph of a single crystal silicon nanoribbon according to an embodiment of the present invention using high-resolution transmission electron microscopy (HRTEM).

도 5는 본 발명의 일실시예에 의한 단결정 규소 나노리본의 에너지 분산형 X선 측정장치(EDX, Energy dispersive X-ray spectroscopy) 분석결과를 나타낸 도면.5 is a view showing an energy dispersive X-ray spectroscopy (EDX) analysis results of single crystal silicon nanoribbons according to an embodiment of the present invention.

도 6은 본 발명의 단결정 규소 나노리본의 생성기구에 관한 것으로 반응시간에 따른 나노리본의 연속 진행 단계를 나타내는 사진.Figure 6 relates to the production mechanism of the single crystal silicon nanoribbons of the present invention a photo showing the continuous progress of the nanoribbons with reaction time.

도 7은 본 발명의 일 실시예에 의한 단결정 규소 나노리본의 나노와이어, 톱날형상의 단부 및 나노와이어와 톱날형상의 단부사이의 계면에 대한 투과전자현미경에 의한 분석 사진.Fig. 7 is a photograph of analysis by transmission electron microscopy for the interface between the nanowires, the saw blade-shaped end portions, and the nanowires and the saw blade-shaped ends of the single crystal silicon nanoribbons according to an embodiment of the present invention.

도 8은 본 발명의 일 실시예에 의한 단결정 규소 나노리본의 생성과정을 도 식화하여 나타낸 도면이다.8 is a diagram illustrating a production process of a single crystal silicon nanoribbon according to an embodiment of the present invention.

Claims (8)

규소 기판 위에 티타늄 층을 형성하는 단계;Forming a titanium layer on the silicon substrate; 상기 티타늄 층 위에 백금 층을 형성하는 단계; 및Forming a platinum layer over the titanium layer; And 상기 티타늄 층과 백금 층이 형성된 규소 기판에 규소화합물을 가하여 단결정 규소 나노와이어를 형성하는 단계;Adding a silicon compound to the silicon substrate on which the titanium layer and the platinum layer are formed to form single crystal silicon nanowires; 상기 단결정 규소 나노와이어로부터 단결정 규소 나노리본을 형성하는 단계;Forming single crystal silicon nanoribbons from the single crystal silicon nanowires; 를 포함하여 구성되는 것을 특징으로 하는 단결정 규소 나노리본의 제조방법.Method of producing a single crystal silicon nanoribbon characterized in that it comprises a. 삭제delete 제 1 항에 있어서,The method of claim 1, 상기 단결정 규소 나노리본을 형성하는 단계는,Forming the single crystal silicon nanoribbons, 상기 단결정 규소 나노와이어로부터 규소가 톱날형상으로 성장되어 형성되는 단계인 것을 특징으로 하는 단결정 규소 나노리본의 제조방법.Method for producing a single crystal silicon nanoribbon, characterized in that the step of growing silicon is formed in the saw blade shape from the single crystal silicon nanowires. 제 1 항에 있어서,The method of claim 1, 상기 단결정 규소 나노와이어는 [110] 방향으로 성장하여 형성되고, 상기 나노리본은 상기 나노와이어로부터 [1-12]방향으로 성장하여 형성되는 것을 특징으로 하는 단결정 규소 나노리본의 제조방법.The single crystal silicon nanowires are formed by growing in the [110] direction, wherein the nanoribbon is a method of producing a single crystal silicon nanoribbons, characterized in that formed by growing in the [1-12] direction from the nanowires. 제 1 항, 제 3 항 및 제 4 항 중 어느 한 항에 있어서,The method according to any one of claims 1, 3 and 4, 상기 나노리본은 5 내지 50nm의 두께와, 0.1 내지 2㎛의 폭으로 형성되는 것을 특징으로 하는 단결정 규소 나노리본의 제조방법.The nanoribbons are 5 to 50nm in thickness, 0.1 to 2㎛ method for producing a single crystal silicon nanoribbon, characterized in that formed. 제 1 항, 제 3 항 및 제 4 항 중 어느 한 항에 있어서,The method according to any one of claims 1, 3 and 4, 상기 백금층은 1 내지 10nm, 상기 티타늄 층은 10 내지 30nm의 두께인 것을 특징으로 하는 단결정 규소 나노리본의 제조방법.The platinum layer is a method of producing a single crystal silicon nanoribbon, characterized in that the thickness of 1 to 10nm, the titanium layer is 10 to 30nm. 제 1 항, 제 3 항 및 제 4 항 중 어느 한 항에 있어서,The method according to any one of claims 1, 3 and 4, 상기 규소화합물은 사염화규소(SiCl4)인 것을 특징으로 하는 단결정 규소 나노리본의 제조방법.The silicon compound is silicon tetrachloride (SiCl4) method for producing a single crystal silicon nanoribbon characterized in that. 삭제delete
KR1020080011323A 2008-02-04 2008-02-04 Single Crystal Si nanoribbons and the manufacturing method of the same KR100978031B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080011323A KR100978031B1 (en) 2008-02-04 2008-02-04 Single Crystal Si nanoribbons and the manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080011323A KR100978031B1 (en) 2008-02-04 2008-02-04 Single Crystal Si nanoribbons and the manufacturing method of the same

Publications (2)

Publication Number Publication Date
KR20090085430A KR20090085430A (en) 2009-08-07
KR100978031B1 true KR100978031B1 (en) 2010-08-26

Family

ID=41205452

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080011323A KR100978031B1 (en) 2008-02-04 2008-02-04 Single Crystal Si nanoribbons and the manufacturing method of the same

Country Status (1)

Country Link
KR (1) KR100978031B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101121164B1 (en) * 2009-07-10 2012-03-19 연세대학교 산학협력단 Method for Preparing Graphene Nano-Ribbon
CN106868580B (en) * 2017-03-01 2018-12-14 厦门大学 A kind of preparation method of the silicon nanobelt based on electrochemical corrosion
CN111785953B (en) * 2020-07-08 2021-06-11 厦门大学 Modification method of lithium ion battery silicon negative electrode material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040035691A (en) * 2001-07-25 2004-04-29 난테로 인크. Electromechanical memory array using nanotube ribbons and method for making same
KR20070011550A (en) * 2004-04-30 2007-01-24 나노시스, 인크. Systems and methods for nanowire growth and harvesting
KR100844094B1 (en) 2007-02-16 2008-07-04 연세대학교 산학협력단 Semiconductor device with nano-wire structure, semiconductor memory device having the same, and method of manufacturing the semiconductor memory device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040035691A (en) * 2001-07-25 2004-04-29 난테로 인크. Electromechanical memory array using nanotube ribbons and method for making same
KR20070011550A (en) * 2004-04-30 2007-01-24 나노시스, 인크. Systems and methods for nanowire growth and harvesting
KR100844094B1 (en) 2007-02-16 2008-07-04 연세대학교 산학협력단 Semiconductor device with nano-wire structure, semiconductor memory device having the same, and method of manufacturing the semiconductor memory device

Also Published As

Publication number Publication date
KR20090085430A (en) 2009-08-07

Similar Documents

Publication Publication Date Title
Teo et al. Silicon-based low-dimensional nanomaterials and nanodevices
Mohan et al. Realization of conductive InAs nanotubes based on lattice-mismatched InP∕ InAs core-shell nanowires
Zhu et al. Formation of chiral branched nanowires by the Eshelby Twist
Moewe et al. Atomically sharp catalyst-free wurtzite GaAs∕ AlGaAs nanoneedles grown on silicon
US7220310B2 (en) Nanoscale junction arrays and methods for making same
Cao et al. Ultra‐thin trigonal selenium nanoribbons developed from series‐wound beads
JP4819701B2 (en) Nanowhisker growth with controlled orientation
Davidson III et al. Supercritical Fluid–Liquid–Solid Synthesis of Gallium Arsenide Nanowires Seeded by Alkanethiol‐Stabilized Gold Nanocrystals
US6863943B2 (en) Semiconducting oxide nanostructures
TW200406814A (en) Nanostructures and methods for manufacturing the same
Salhi et al. Nanowires: a new pathway to nanotechnology-based applications
Zhang et al. Nanowires
Cornet et al. Onset of stacking faults in InP nanowires grown by gas source molecular beam epitaxy
KR100978031B1 (en) Single Crystal Si nanoribbons and the manufacturing method of the same
CN100351169C (en) Nano-fiber or nano-tube comprising v group transition metal dichalcogenide crystals, and method for preparation thereof
Lugstein et al. Growth of branched single-crystalline GaAs whiskers on Si nanowire trunks
Li et al. Controllable Synthesis and Growth Model of Amorphous Silicon Nanotubes with Periodically Dome‐Shaped Interiors
KR101287611B1 (en) Method for fabricating silicon nanowire
KR20070104034A (en) Method of manufacturing tips for field emission, tips for field emission manufactured by the same, and device comprising the same
Zhang et al. Emergence of nanowires
Saleem et al. Germanium-catalyzed growth of single-crystal GaN nanowires
Radhakrishnan et al. Chemical beam epitaxy of highly ordered network of tilted InP nanowires on silicon
Wu et al. Ordered quantum-ring chains grown on a quantum-dot superlattice template
Huang et al. From Germanium Nanowires to Germanium− Silicon Oxide Nanotubes: Influence of Germanium Tetraiodide Precursor
Murty et al. Nanostructured materials with high application potential

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130626

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140708

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150721

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160809

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee