KR100976184B1 - Spiral type shear reinforcement device and bars arrangement structure thereof - Google Patents

Spiral type shear reinforcement device and bars arrangement structure thereof Download PDF

Info

Publication number
KR100976184B1
KR100976184B1 KR1020100012360A KR20100012360A KR100976184B1 KR 100976184 B1 KR100976184 B1 KR 100976184B1 KR 1020100012360 A KR1020100012360 A KR 1020100012360A KR 20100012360 A KR20100012360 A KR 20100012360A KR 100976184 B1 KR100976184 B1 KR 100976184B1
Authority
KR
South Korea
Prior art keywords
spiral
root
reinforcement
shear
slab
Prior art date
Application number
KR1020100012360A
Other languages
Korean (ko)
Inventor
류승일
Original Assignee
류승일
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 류승일 filed Critical 류승일
Priority to KR1020100012360A priority Critical patent/KR100976184B1/en
Application granted granted Critical
Publication of KR100976184B1 publication Critical patent/KR100976184B1/en
Priority to MYPI2012003606A priority patent/MY165697A/en
Priority to CN201180008666.6A priority patent/CN102812190B/en
Priority to PCT/KR2011/000810 priority patent/WO2011099742A2/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/01Reinforcing elements of metal, e.g. with non-structural coatings
    • E04C5/06Reinforcing elements of metal, e.g. with non-structural coatings of high bending resistance, i.e. of essentially three-dimensional extent, e.g. lattice girders
    • E04C5/0645Shear reinforcements, e.g. shearheads for floor slabs
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/43Floor structures of extraordinary design; Features relating to the elastic stability; Floor structures specially designed for resting on columns only, e.g. mushroom floors
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/01Reinforcing elements of metal, e.g. with non-structural coatings
    • E04C5/06Reinforcing elements of metal, e.g. with non-structural coatings of high bending resistance, i.e. of essentially three-dimensional extent, e.g. lattice girders
    • E04C5/0604Prismatic or cylindrical reinforcement cages composed of longitudinal bars and open or closed stirrup rods
    • E04C5/0618Closed cages with spiral- or coil-shaped stirrup rod
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/16Structures made from masses, e.g. of concrete, cast or similarly formed in situ with or without making use of additional elements, such as permanent forms, substructures to be coated with load-bearing material
    • E04B1/165Structures made from masses, e.g. of concrete, cast or similarly formed in situ with or without making use of additional elements, such as permanent forms, substructures to be coated with load-bearing material with elongated load-supporting parts, cast in situ
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Reinforcement Elements For Buildings (AREA)

Abstract

PURPOSE: A spiral shear reinforcing unit and an arrangement structure of slab reinforcing bars using the same are provided to be conveniently manufactured by minimizing the amount of reinforcing bars. CONSTITUTION: A spiral shear reinforcing unit(100a) comprises a spiral bar, an upper bar, and a lower bar. The spiral bar is spirally curved. The height of the spiral bar is bigger than the width. The upper bar is arranged the inner top of the spiral bar in a longitudinal direction. The lower bar is arranged in the inner bottom of the spiral bar in a longitudinal direction.

Description

나선형 전단보강체 및 이를 이용한 슬래브 철근의 배근구조{Spiral type shear reinforcement device and bars arrangement structure thereof}Spiral type shear reinforcement device and bars arrangement structure

본 발명은 무량판구조에서 기둥과 슬래브 접합부의 전단보강에 관한 것으로, 더욱 상세하게는 최소의 철근량으로 전단보강 효과를 극대화할 수 있는 것은 물론 슬래브 철근의 배근방향에 유연하게 대응하면서 적용할 수 있는 전단보강체와 이를 바람직하게 이용한 슬래브 철근의 배근구조에 관한 것이다.
The present invention relates to the shear reinforcement of the column and the slab joint in a flat plate structure, and more specifically, it can be applied to flexibly correspond to the reinforcement direction of the slab reinforcement as well as to maximize the shear reinforcement effect with a minimum amount of rebar. It relates to a shear reinforcement and the reinforcement structure of the slab reinforcement using the same.

무량판구조는 보 없이 슬래브만으로 바닥을 구성하고 그 슬래브의 하중을 직접 기둥에 전달하는 구조방식이다. 무량판구조는 기둥 주변으로 과도한 응력 집중 현상이 발생하기 때문에 슬래브가 펀칭 전단파괴될 우려가 큰데, 전단파괴를 억제하기 위해 통상 무량판구조에서는 기둥과 슬래브의 접합부를 전단 보강한다.Flat plate structure is a structural method that consists of the slab only without a beam and transfers the load of the slab directly to the column. The flat plate structure is highly susceptible to punching shear failure due to excessive stress concentration around the column. In order to suppress the shear failure, the flat plate structure generally shear-reinforces the joint between the column and the slab.

전통적인 전단 보강방법에는 기둥 주위에 지판(drop panel)과 주두(capital)를 시공하여 단면을 확대하는 방법이 있으나, 이 방법은 지판이나 주두 형성을 위한 거푸집을 설치해야 하는 등 시공성이 떨어진다. 이에 최근에는 슬래브 철근 배근과정에서 기둥과의 접합부에 전단보강체를 설치하여 전단 내력을 증가시키는 방법이 주로 적용되고 있다. 도 1은 종래 전단보강체를 설치하여 전단 보강한 다양한 방식을 보여준다.Conventional shear reinforcement method has a method of expanding the cross-section by installing a drop panel and a capital around the column, but this method is inferior in construction, such as the need to install formwork for forming the fingerboard or the head. Recently, a method of increasing shear strength by installing a shear reinforcement at a junction with a column in slab reinforcement is mainly applied. Figure 1 shows a variety of ways to shear reinforcement by installing a conventional shear reinforcement.

도 1(a)는 슬래브철근에 스티럽(띠철근)을 감아 이것으로 전단내력을 보강한 방식이다. 이 방식은 통상의 철근 자재를 사용하는 방식이므로 자재 수급이 용이하고 경제적이라는 장점이 있다. 그러나 이 방식은 스티럽이 슬래브 철근의 바깥 둘레를 감싸기 때문에 피복두께를 적절히 유지하기 어렵고, 스티럽 결속과 관련한 현장 작업이 번거로워 시공성이 좋지 못하다는 단점이 있다. Figure 1 (a) is a method of reinforcing the shear strength by winding a styrup (strip reinforcing bar) on the slab rebar. This method has a merit that it is easy and economical to supply materials because it uses a conventional rebar material. However, this method has a disadvantage in that it is difficult to maintain the coating thickness properly because the stirup wraps around the outer circumference of the slab reinforcing bar, and the construction work is difficult because of the cumbersome field work related to the stirrer binding.

도 1(b)는 H형강 또는 채널을 종,횡으로 설치하여 이것으로 전단내력을 보강한 방식이다. 이 방식은 형강재의 사용에 따라 필요 이상의 강재가 소요됨은 물론 건물의 자중이 증가하고, 콘크리트의 타설시 밀실한 충전을 위해 세심한 주의가 필요하다는 단점이 있다.Figure 1 (b) is a method of reinforcing the shear strength by installing the H-shaped steel or channel vertically and horizontally. This method has disadvantages that it takes more steel than necessary according to the use of the section steel, and the weight of the building increases, and careful attention is required for tight filling of concrete.

도 1(c)는 평철판에 다수의 스터드 볼트를 용접한 전단보강체를 설치하여 이것으로 전단내력을 보강한 방식이다. 이 방식은 다수의 스터드 볼트를 일정 간격으로 이격시키면서 용접해야 하는 등 전단보강체의 제작이 번거롭고, 사선방향으로 진행되는 전단파괴에 효과적으로 대응하지 못한다는 단점이 있다.Figure 1 (c) is a method of reinforcing the shear strength by installing a shear reinforcing body welded a plurality of stud bolts on a flat iron plate. This method is cumbersome to produce a shear reinforcement, such as welding a plurality of stud bolts spaced at regular intervals, there is a disadvantage that it does not effectively cope with the shear failure in the diagonal direction.

도 1(d)는 철근을 입체 트러스 모양으로 조립한 전단보강체(1본의 상부근, 2본의 하부근, 2본의 래티스근)를 설치하여 이것으로 전단내력을 보강한 방식이다. 이 방식은 사선방향으로 진행되는 전단파괴에 효과적으로 대응할 수 있다는 이점이 있으나, 철근량이 많아져 경제적이지 못하고 전단보강체의 제작이 복잡하다는 단점이 있다. 뿐만 아니라 전단보강체와 배력근 사이에 간섭이 발생하기 때문에 전단보강체를 기둥 주변에 사방으로 설치하지 못하고 배력근과 평행한 방향으로 기둥을 관통하도록 설치해야만 하는 단점이 있다. Figure 1 (d) is a method of reinforcing the shear strength by installing a shear reinforcing body (one upper bar, two lower bars, two lattice muscles) assembled the reinforcing bar in a three-dimensional truss shape. This method has the advantage that it can effectively cope with the shear failure in the oblique direction, but has the disadvantage that the amount of rebar is not economical and the production of shear reinforcement is complicated. In addition, because the interference between the shear reinforcement and the reinforcement is generated, there is a disadvantage that the shear reinforcement should not be installed in all directions around the column, but must be installed to penetrate the column in a direction parallel to the reinforcement.

도 1(e)는 철근을 평면 트러스 모양으로 조립한 전단보강체(1본의 상부근, 1본의 하부근, 2본의 래티스근)를 설치하여 이것으로 전단내력을 보강한 방식이다. 이 방식은 도 1(d)의 입체 트러스에 비해 철근량을 줄일 수 있는 이점이 있으나, 전단보강체의 제작 문제는 물론 전단보강체의 일방향 설치 문제는 그대로 내재한다.
FIG. 1 (e) is a method of reinforcing shear strength by installing shear reinforcing bodies (one upper bar, one lower bar, and two lattice bars) in which reinforcing bars are assembled in a flat truss shape. This method has the advantage of reducing the amount of rebar compared to the three-dimensional truss of Figure 1 (d), but the problem of the one-way installation of the shear reinforcement as well as the problem of manufacturing the shear reinforcement.

본 발명은 상기한 종래 무량판구조에서의 전단보강방법에 관한 문제를 해결하고자 개발된 것으로서, 다음과 같은 기술적 과제를 갖는다.The present invention was developed to solve the problems related to the shear reinforcement method in the conventional flat plate structure, and has the following technical problems.

첫째, 본 발명은 사선방향으로 진행되는 전단파괴에 효과적으로 대응하면서도 철근량을 최소화할 수 있는 전단보강체를 제공하고자 한다.First, the present invention is to provide a shear reinforcing body that can minimize the amount of rebar while effectively responding to the shear failure proceeds in an oblique direction.

둘째, 본 발명은 철근의 개수를 최소화하고 철근 상호 간의 용접부위를 최소화하여 간편하게 제작할 수 있는 전단보강체를 제공하고자 한다.Second, the present invention is to provide a shear reinforcing body that can be easily produced by minimizing the number of reinforcing bars and minimizing the welding sites between the bars.

셋째, 본 발명은 배력근과의 간섭문제를 해결하여 기둥 주변에 사방으로 설치할 수 있는 전단보강체를 제공하고자 한다.Third, the present invention is to provide a shear reinforcing body that can be installed in all directions around the column by solving the interference problem with the reinforcement muscle.

넷째, 본 발명은 전단보강체를 바람직하게 이용한 슬래브 철근의 배근구조를 제공하고자 한다.
Fourth, the present invention is to provide a reinforcement structure of the slab reinforcement using the shear reinforcement.

상기한 기술적 과제를 해결하기 위해 본 발명은 나선근에 의한 나선형 전단보강체와 이에 의한 슬래브 철근의 배근구조를 제공한다.In order to solve the above technical problem, the present invention provides a helical shear reinforcing body by the spiral muscle and the reinforcement structure of the slab reinforcement thereby.

본 발명에 따른 나선형 전단보강체는, 길이방향을 따라 나선으로 굽어지는 것으로 너비보다 높이가 크면서 너비방향으로 원호(原戶)를 그리는 장방형(長方形) 타원 나선으로 형성된 나선근; 상기 나선근의 길이방향을 따라 나선근의 상부 고점 또는 나선근의 일 측면 상부에 내접하게 배치되어 접합된 1본의 상부근; 상기 나선근의 길이방향을 따라 나선근의 하부 저점 또는 나선근의 타측면 하부에 내접하게 배치되어 접합된 1본의 하부근;으로 구성되는 것을 특징으로 한다.Spiral shear reinforcing body according to the present invention, the spiral bent along the longitudinal direction is larger than the width of the spiral is formed of a rectangular elliptic helix that draws an arc in the width direction while being higher than the width; One upper root indirectly disposed and joined to an upper point of the spiral root along the longitudinal direction of the spiral root or to an upper side of the spiral root; Characterized in that consisting of; the lower root of the spiral roots along the longitudinal direction of the spiral roots or inferior to the lower side of the other side of the spiral roots indirectly disposed.

본 발명에 따른 슬래브의 배근구조는, 주근과 배력근이 격자로 교차 배근되는 슬래브 하부철근; 주근과 배력근이 격자로 교차 배근되는 슬래브 상부철근; 상기 슬래브 상·하부철근 사이에서 기둥 주변에 배근되는 상기한 나선형 전단보강체;로 구성되는 것을 특징으로 한다.
The slab reinforcement structure of the slab according to the present invention, the slab lower reinforcing bar main bar and the reinforcement muscles cross the reinforcement; A slab upper reinforcing bar where the major and the reinforcing bars cross into the lattice; Characterized in that it consists of; the helical shear reinforcing body is disposed around the column between the upper and lower reinforcement of the slab.

본 발명에 따르면 다음과 같은 효과를 기대할 수 있다.According to the present invention, the following effects can be expected.

첫째, 본 발명에 따른 전단보강체는 나선근을 이용하기 때문에 철근의 사선배치가 가능하며, 이에 따라 본 발명에 따른 전단보강체를 이용하면 사선방향으로 진행되는 전단파괴에 효과적으로 대응할 수 있다.First, the shear reinforcement body according to the present invention can be arranged diagonally because the reinforcing bar is used, and accordingly the shear reinforcement body according to the present invention can effectively cope with the shear failure in the diagonal direction.

둘째, 본 발명은 1본의 나선근, 1본의 상부근, 1본의 하부근 등 모두 3본의 철근으로 전단보강체를 구성하기 때문에, 본 발명에 따른 전단보강체는 종래 전단보강체에 비해 사용하는 철근의 개수를 줄이고 철근 상호 간의 용접부위를 줄이면서 간단하게 제작하여 공급할 수 있다. Second, since the present invention constitutes a shear reinforcement with three reinforcing bars, such as one spiral, one upper, and one lower, the shear reinforcing body according to the present invention is a conventional shear reinforcing body. Compared to reducing the number of rebars used and reducing the welding area between the rebars can be easily manufactured and supplied.

셋째, 본 발명에 따른 전단보강체는 상부근과 하부근의 간단한 위치 조정으로 배력근과의 간섭문제를 간단하게 해결할 수 있으며, 이에 따라 기둥 주변에 사방으로 설치할 수 있다.
Third, the shear reinforcement body according to the present invention can easily solve the problem of interference with the reinforcement muscles by simply adjusting the upper and lower muscles, it can be installed in all directions around the column.

도 1은 종래 전단보강체에 의한 다양한 보강방식을 도시한다.
도 2 내지 도 4는 본 발명에 따른 나선형 전단보강체의 다양한 실시예를 도시한다.
도 5a 내지 도 5d는 도 2와 도 3의 나선형 전단보강체를 이용하여 슬래브 철근을 배근한 상태를 도시한다.
Figure 1 shows a variety of reinforcement method by a conventional shear reinforcement.
2 to 4 show various embodiments of a helical shear reinforcement body in accordance with the present invention.
5A to 5D show a state in which the slab reinforcement is reinforced using the helical shear reinforcing bodies of FIGS. 2 and 3.

도 2 내지 도 4는 본 발명에 따른 나선형 전단보강체에 대한 다양한 실시예를 보여주는데, 본 발명에 따른 나선형 전단보강체(100a, 100b, 100c)는 나선근(110), 1본의 상부근(120), 1본의 하부근(130)을 기본 구성으로 한다. 특히 본 발명은 장방형 타원 나선으로 형성된 나선근(110)을 필수적인 구성으로 포함한다는데 기술적 특징이 있다. 2 to 4 show various embodiments of the helical shear reinforcement body according to the present invention, the helical shear reinforcement body (100a, 100b, 100c) according to the present invention is a spiral root 110, one upper root ( 120) and one lower root 130 as a basic configuration. In particular, the present invention has a technical feature to include as an essential configuration the spiral root 110 formed of a rectangular ellipse helix.

본 발명에서 나선근(110)은 길이방향을 따라 나선으로 굽어지는 것으로, 너비방향 정면에서 볼 때 너비보다 높이가 크면서 너비방향으로 원호(原戶)를 그리는 장방형(長方形) 타원 나선으로 형성된 부재이다(도 2(b) 및 도 3(b) 참조). 이러한 나선근(110)은 길이방향 측면에서 보면 도 2(c) 및 도 3(c)에서와 같이 반복적인 삼각 트러스를 형성하며, 이에 따라 나선근(110)은 사선방향의 전단파괴에 효과적으로 대응하는 구성이 된다.In the present invention, the spiral root 110 is bent in a spiral along the longitudinal direction, a member formed of a rectangular elliptic spiral that draws an arc in the width direction while having a height greater than the width when viewed from the front in the width direction. (See FIGS. 2 (b) and 3 (b)). The spiral root 110 forms a repetitive triangular truss as shown in Figs. 2 (c) and 3 (c) when viewed in the longitudinal direction, whereby the spiral root 110 effectively copes with the shear failure in the diagonal direction. It becomes the structure to say.

나선근(110)은 슬래브 철근의 상·하부 주근(BR1, TR1) 간격만큼의 높이로 제작하며, 그래야 피복두께를 확보할 수 있고 아울러 나선근(110)의 사선방향 요소에 의한 전단보강효과를 극대화할 수 있다. 또한 나선근(110)은 원호의 내부 직경(D)이 나선근(110) 직경(d)의 4배로 가공하는 것(D=4d)이 바람직한데, 그래야 나선근(110)의 너비를 최소화하면서 나선근(110)의 안정적인 굽힘 가공을 유도할 수 있다. 나선근(110)의 너비가 최소가 될 때 전단보강체(100a, 100b, 100c)의 효율적인 설계가 가능하다.The spiral root 110 is manufactured at the same height as the spacing of the upper and lower main bars (BR1, TR1) of the slab reinforcing bar, so that the cover thickness can be secured, and the shear reinforcement effect is caused by the diagonal element of the spiral bar 110. It can be maximized. In addition, it is preferable that the spiral root 110 processes the inner diameter (D) of the arc to four times the diameter (d) of the spiral root (D), so that the width of the spiral root 110 is minimized. Stable bending of the spiral root 110 can be induced. Efficient design of the shear reinforcement (100a, 100b, 100c) is possible when the width of the spiral root 110 is minimum.

도 2는 본 발명에 따른 나선형 전단보강체(100a)에 대한 제1실시예인데, 제1실시예는 슬래브 철근 중 배력근(BR2, TR2)과 동일한 방향으로 설치하기 위해 제안된 단위 나선형 전단보강체(100a)의 예이다. 제1실시예는 배력근((BR2, TR2)과 동일한 방향으로 평행하게 설치하기 때문에 배력근(BR2, TR2)과의 간섭문제가 일어나지 않는다. 이에 따라 제1실시예는 상부근(120)과 하부근(130)이 각각 나선근(110)의 길이방향을 따라 나선근(110)의 상부 고점(高點)과 하부 저점(邸點)에 내접하게 배치되어 용접 접합된다.Figure 2 is a first embodiment of the helical shear reinforcement (100a) according to the present invention, the first embodiment is a unit helical shear reinforcement proposed for installation in the same direction as the reinforcement bars (BR2, TR2) of the slab reinforcement It is an example of the sieve 100a. Since the first embodiment is installed in parallel in the same direction as the back muscles BR2 and TR2, there is no problem of interference with the back muscles BR2 and TR2. The lower roots 130 are inscribed and welded to the upper high point and the lower low point of the spiral root 110 along the longitudinal direction of the spiral root 110, respectively.

도 3은 본 발명에 따른 나선형 전단보강체(100b)에 대한 제2실시예인데, 제2실시예는 슬래브 철근 중 주근(BR1, TR1)과 동일한 방향으로 설치하기 위해 제안된 단위 나선형 전단보강체(100b)의 예이다. 제2실시예는 배력근(BR2, TR2)과 교차하는 방향으로 설치하기 때문에 배력근(BR2, TR2)과의 간섭문제가 일어난다. 이에 따라 제2실시예는 상부근(120)과 하부근(130)이 각각 나선근(110)의 길이방향을 따라 나선근(110)의 일 측면 상부와 타 측면 하부에 내접하게 배치되어 용접 접합된다. 배력근(BR2, TR2)과의 간섭을 고려하여 상부근(120)은 나선근(110)의 상부 고점에서 배력근(BR2, TR2)의 직경만큼 아래에서 접합하고, 하부근(130)은 나선근(110)의 하부 고점에서 배력근(BR2, TR2)의 직경만큼 위에서 접합하는 것이다.Figure 3 is a second embodiment of the helical shear reinforcement (100b) according to the present invention, the second embodiment is a unit helical shear reinforcement proposed to be installed in the same direction as the main bars (BR1, TR1) of the slab rebar This is an example of 100b. Since the second embodiment is installed in the direction intersecting with the back muscles BR2 and TR2, the interference problem with the back muscles BR2 and TR2 occurs. Accordingly, in the second embodiment, the upper and lower roots 120 and the lower roots 130 are internally disposed at the upper side of one side of the spiral root 110 and the lower side of the other side along the longitudinal direction of the spiral root 110, respectively, and thus are welded to each other. do. Considering the interference with the back muscles BR2 and TR2, the upper muscle 120 is joined below the diameter of the back muscles BR2 and TR2 at the upper high point of the spiral muscle 110, and the lower muscle 130 is the spiral. At the lower high point of the root 110 is to join above the diameter of the back muscles (BR2, TR2).

도 4는 본 발명에 따른 나선형 전단보강체(100c)에 대한 제3실시예인데, 제3실시예는 단위 나선형 전단보강체(100a, 100b)를 집합화한 집합 나선형 전단보강체(100c)의 예이다. 제3실시예는 단위 나선형 전단보강체(100a, 100b) 복수 개를 병렬로 이격 배치하고 단위 나선형 전단보강체(100a, 100b) 상호 간을 연결선(140)으로 연결하는 것으로 완성할 수 있다. 이러한 집합 나선형 전단보강체(100c)는 설치작업을 일원화할 수 있어 작업성에 유리한 형태가 된다. 도 4는 도 2의 단위 나선형 전단보강체(100a)로 완성한 예인데, 보는 바와 같이 연결선(140)을 나선근(110)에서 연장시켜 이용하고 있다.Figure 4 is a third embodiment of the helical shear reinforcement (100c) according to the present invention, the third embodiment of the aggregate helical shear reinforcement (100c) of the unit helical shear reinforcement (100a, 100b) Yes. The third embodiment may be completed by arranging a plurality of unit helical shear reinforcement (100a, 100b) spaced in parallel and connecting the unit helical shear reinforcement (100a, 100b) to each other by a connection line (140). The aggregate helical shear reinforcement (100c) can be unified installation work to form a favorable workability. 4 is an example completed with the unit spiral shear reinforcement 100a of FIG. 2, and as shown, the connecting line 140 is extended from the spiral root 110 and used.

도 5a 내지 도 5d는 도 2와 도 3의 나선형 전단보강체(100a, 100b)를 이용하여 슬래브 철근을 배근한 상태를 나타낸다. 보는 바와 같이 주근(BR1, TR1)과 배력근(BR2, TR2)을 격자로 교차시키면서 슬래브 상·하부철근을 배근하고, 기둥(C) 주변으로 슬래브 상·하부철근 사이에 나선형 전단보강체(100a, 100b)를 배근한다. 다만 도 2의 나선형 전단보강체(100a)는 배력근(BR2, TR2)과 동일한 방향으로 배근하고, 도 3의 나선형 전단보강체(100b)는 주근(BR1, TR1)과 동일한 방향으로 배근한다. 배근순서는 슬래브 하부철근을 배근한 후 나선형 전단보강체(100a, 100b)를 슬래브 하부철근 위에 얹어 배근하고 슬래브 상부철근을 배근하는 과정으로 진행하며, 나선형 전단보강체(100a, 100b)는 결속선으로 슬래브 하부철근에 묶어 고정한다. 단위 나선형 전단보강체(100a, 100b) 대신에 앞서 살펴본 도 4와 같은 집합 나선형 전단보강체(100c)를 이용할 수 있음은 물론이다. 이로써 도 5a 내지 도 5d에서와 같이 나선형 전단보강체가 기둥 주변에 사방으로 배치된다.
5A to 5D show a state in which the slab reinforcement is reinforced using the helical shear reinforcing bodies 100a and 100b of FIGS. 2 and 3. As shown, the upper and lower reinforcing bars of the slab are reinforced while intersecting the main bars BR1 and TR1 with the reinforcement bars BR2 and TR2, and the spiral shear reinforcement 100a is disposed between the upper and lower bars of the slab around the column C. , 100b). However, the spiral shear reinforcement 100a of FIG. 2 reinforces in the same direction as the reinforcement bars BR2 and TR2, and the spiral shear reinforcement 100b of FIG. 3 reinforces in the same direction as the main roots BR1 and TR1. In order to reinforce the slab bottom reinforcing bar, the spiral shear reinforcements (100a, 100b) are placed on top of the slab bottom reinforcement, and the slab upper reinforcing bars are progressed. Tie and fasten it to the slab lower rebar. Instead of the unit helical shear reinforcement (100a, 100b) it is a matter of course that the aggregate helical shear reinforcement (100c) as shown in Figure 4 can be used. As a result, as shown in FIGS. 5A to 5D, the helical shear reinforcing body is disposed all around the column.

이상에서 본 발명은 구체적인 실시예를 참조하여 상세히 설명되었으나, 실시예는 본 발명을 예시하기 위한 것일 뿐이므로, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 치환, 부가 및 변형된 실시 형태들 역시 아래에 첨부한 특허청구범위에 의하여 정하여지는 본 발명의 보호범위에 속한다고 할 것이다.
The present invention has been described in detail above with reference to specific embodiments, but the embodiments are only for illustrating the present invention, and thus the embodiments substituted, added, and modified within the scope without departing from the spirit of the present invention are also described below. It will be said to belong to the protection scope of the present invention as defined by the claims appended hereto.

100a, 100b, 100c: 전단보강체
110: 나선근
120: 상부근
130: 하부근
140: 연결선
C: 기둥
TR1, TR2: 상부철근
BR1, BR2: 하부철근
100a, 100b, 100c: shear reinforcement
110: spiral root
120: upper root
130: lower muscle
140: connecting line
C: pillar
TR1, TR2: Upper Bar
BR1, BR2: Lower rebar

Claims (6)

길이방향을 따라 나선으로 굽어지는 것으로, 너비보다 높이가 크면서 너비방향으로 원호(原戶)를 그리는 장방형(長方形) 타원 나선으로 형성된 나선근(110);
상기 나선근(110)의 길이방향을 따라 나선근(110)의 상부 고점(高點)에 내접하게 배치되어 접합된 1본의 상부근(120);
상기 나선근(110)의 길이방향을 따라 나선근(110)의 하부 저점(邸點)에 내접하게 배치되어 접합된 1본의 하부근(130);
으로 구성되는 것을 특징으로 하는 단위 나선형 전단보강체(100a).
A spiral root 110 that is bent in a spiral along the longitudinal direction and is formed of a rectangular elliptic spiral that has a height greater than the width and draws an arc in the width direction;
One upper root 120 inscribed and inscribed at an upper high point of the spiral root 110 along the longitudinal direction of the spiral root 110;
A lower root 130 of the spiral roots 110 disposed in the inner bottom of the spiral roots 110 in the inward direction and joined to the lower bottom of the spiral roots 110;
Unit helical shear reinforcing body (100a), characterized in that consisting of.
길이방향을 따라 나선으로 굽어지는 것으로, 너비보다 높이가 크면서 너비방향으로 원호(原戶)를 그리는 장방형(長方形) 타원 나선으로 형성된 나선근(110);
상기 나선근(110)의 길이방향을 따라 나선근(110)의 일 측면 상부에 내접하게 배치되어 접합된 1본의 상부근(120);
상기 나선근(110)의 길이방향을 따라 나선근(110)의 타 측면 하부에 내접하게 배치되어 접합된 1본의 하부근(130);
으로 구성되는 것을 특징으로 하는 단위 나선형 전단보강체(100b).
A spiral root 110 that is bent in a spiral along the longitudinal direction and is formed of a rectangular elliptic spiral that has a height greater than the width and draws an arc in the width direction;
A single upper root 120 disposed in an inscribed manner in an upper portion of one side of the spiral root 110 along the longitudinal direction of the spiral root 110;
One lower root 130 inscribed and disposed in the lower side of the other side of the spiral root 110 along the longitudinal direction of the spiral root 110;
Unit helical shear reinforcing body (100b), characterized in that consisting of.
제1항 또는 제2항에서,
상기 나선근(110)은, 원호의 내부 직경(D)이 나선근(110) 직경(d)의 4배로 형성되는 것(D=4d)을 특징으로 단위 나선형 전단보강체(100a,100b).
The method of claim 1 or 2,
The spiral root 110 is a unit spiral shear reinforcement (100a, 100b) characterized in that the inner diameter (D) of the arc is formed four times the diameter (d) of the spiral root (D).
제1항 또는 제2항에 따른 단위 나선형 전단보강체(100a, 100b) 복수 개가 병렬로 이격 배치되되, 단위 나선형 전단보강체(100a, 100b) 상호 간이 연결선(140)으로 연결되는 것을 특징으로 하는 집합 나선형 전단보강체(100c).The plurality of unit spiral shear reinforcement (100a, 100b) according to claim 1 or 2 is disposed in parallel spaced apart, the unit spiral shear reinforcement (100a, 100b) is characterized in that connected to each other by a simple connecting line 140 Assembly spiral shear reinforcement (100c). 제4항에서,
상기 연결선(140)은 상기 단위 나선형 전단보강체(100a)의 나선근(110)에서 연장되는 것을 특징으로 하는 집합 나선형 전단보강체(100c).
In claim 4,
The connecting line 140 extends from the spiral root 110 of the unit helical shear reinforcement (100a), the aggregate helical shear reinforcement (100c).
주근(BR1)과 배력근(BR2)이 격자로 교차 배근되는 슬래브 하부철근;
주근(TR1)과 배력근(TR2)이 격자로 교차 배근되는 슬래브 상부철근;
상기 슬래브 하부철근과 슬래브 상부철근 사이에서 배력근(BR2, TR2)과 동일한 방향으로 기둥(C) 주변에 배근되는 제1항에 따른 나선형 전단보강체(100a);
상기 슬래브 하부철근과 슬래브 상부철근 사이에서 주근(BR1, TR1)과 동일한 방향으로 기둥(C) 주변에 배근되는 제2항에 따른 나선형 전단보강체(100b);
으로 구성되는 것을 특징으로 하는 슬래브 철근의 배근구조.
Slab lower reinforcing bars, in which the main bar BR1 and the back bar BR2 intersect in a lattice;
Slab upper reinforcing bar main bar (TR1) and the reinforcement bar (TR2) to cross the lattice;
Spiral shear reinforcement (100a) according to claim 1 to be reinforced around the column (C) in the same direction as the reinforcement bar (BR2, TR2) between the slab lower reinforcing bar and the slab upper reinforcing bar;
Spiral shear reinforcement (100b) according to claim 2 which is arranged around the column (C) in the same direction as the main bars (BR1, TR1) between the lower slab and the upper slab;
Reinforcement structure of the slab reinforcement, characterized in that consisting of.
KR1020100012360A 2010-02-10 2010-02-10 Spiral type shear reinforcement device and bars arrangement structure thereof KR100976184B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020100012360A KR100976184B1 (en) 2010-02-10 2010-02-10 Spiral type shear reinforcement device and bars arrangement structure thereof
MYPI2012003606A MY165697A (en) 2010-02-10 2011-02-08 Spiral shear force reinforcing body and slab reinforcing bar arranging structure using the same
CN201180008666.6A CN102812190B (en) 2010-02-10 2011-02-08 Spiral sheer reinforcement and bar arrangement of slab steel bars using same
PCT/KR2011/000810 WO2011099742A2 (en) 2010-02-10 2011-02-08 Spiral sheer reinforcement and bar arrangement of slab steel bars using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100012360A KR100976184B1 (en) 2010-02-10 2010-02-10 Spiral type shear reinforcement device and bars arrangement structure thereof

Publications (1)

Publication Number Publication Date
KR100976184B1 true KR100976184B1 (en) 2010-08-17

Family

ID=42759679

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100012360A KR100976184B1 (en) 2010-02-10 2010-02-10 Spiral type shear reinforcement device and bars arrangement structure thereof

Country Status (4)

Country Link
KR (1) KR100976184B1 (en)
CN (1) CN102812190B (en)
MY (1) MY165697A (en)
WO (1) WO2011099742A2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101247322B1 (en) * 2010-10-13 2013-03-25 주식회사 포스코건설 Shearing force supplement structure of building construction using rebar
KR101268802B1 (en) 2011-02-18 2013-05-28 이창남 Shear Reinforcing Space Grid of RC Structural Members
KR101514772B1 (en) * 2013-10-31 2015-04-24 한국토지주택공사 Shear Reinforcing system of Flat Slab by spiral type reinforcing member
KR101560712B1 (en) * 2014-04-24 2015-10-16 주식회사 옥타곤엔지니어링 Reinforcing bar assembly manufacturing method for vertical structural body and construction method of vertical structure using the same
KR102091436B1 (en) * 2019-11-08 2020-03-20 류승일 Shear reinforcement for reinforced concrete walls and the installation method thereof
RU197370U1 (en) * 2019-09-10 2020-04-23 Светлана Валерьевна Богачёва Node assembly of bezel-free prefabricated-monolithic overlapping with a column
KR20200104529A (en) 2019-02-27 2020-09-04 한국기술교육대학교 산학협력단 Shearing force reinforcement structure of slab-column joint in reinfoced concrete construction
KR102670069B1 (en) * 2023-06-08 2024-05-27 삼성이앤에이 주식회사 Pre-assembly spiral stirrup

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4406103A (en) * 1978-02-28 1983-09-27 Amin Ghali Shear reinforcement for concrete flat slabs
KR100676627B1 (en) 2005-07-04 2007-02-01 재단법인서울대학교산학협력재단 Shear reinforcement device arranged in the slab-column connection and the shear reinforcement structure using the device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI69179C (en) * 1984-01-24 1985-12-10 Rakennusvalmiste Oy FOERFARANDE FOER TILLVERKNING AV SPIRALARMERINGAR OCH AV DESSABESTAOENDE KOMBINERAD SPIRALMERINGSANORDNING
SE513987C2 (en) * 1999-07-16 2000-12-04 Jacobsson & Widmark Ab Concrete slab construction as well as ways to build such a structure
ITAR20030018A1 (en) * 2003-04-14 2003-07-14 Anton Massimo Galluccio BROKEN PROPELLER BRACKET AND METHOD FOR REALIZING THE REINFORCEMENT OF CONCRETE STRUCTURES
US20050257482A1 (en) * 2003-04-14 2005-11-24 Galluccio Anton M Broken-spiral stirrup and method for implementing the reinforcement of concrete structures
KR20060038665A (en) * 2004-11-01 2006-05-04 대한주택공사 Shear reinforcement device arranged in the slab-column connection and the shear reinforcement structure using the device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4406103A (en) * 1978-02-28 1983-09-27 Amin Ghali Shear reinforcement for concrete flat slabs
KR100676627B1 (en) 2005-07-04 2007-02-01 재단법인서울대학교산학협력재단 Shear reinforcement device arranged in the slab-column connection and the shear reinforcement structure using the device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101247322B1 (en) * 2010-10-13 2013-03-25 주식회사 포스코건설 Shearing force supplement structure of building construction using rebar
KR101268802B1 (en) 2011-02-18 2013-05-28 이창남 Shear Reinforcing Space Grid of RC Structural Members
KR101514772B1 (en) * 2013-10-31 2015-04-24 한국토지주택공사 Shear Reinforcing system of Flat Slab by spiral type reinforcing member
KR101560712B1 (en) * 2014-04-24 2015-10-16 주식회사 옥타곤엔지니어링 Reinforcing bar assembly manufacturing method for vertical structural body and construction method of vertical structure using the same
KR20200104529A (en) 2019-02-27 2020-09-04 한국기술교육대학교 산학협력단 Shearing force reinforcement structure of slab-column joint in reinfoced concrete construction
RU197370U1 (en) * 2019-09-10 2020-04-23 Светлана Валерьевна Богачёва Node assembly of bezel-free prefabricated-monolithic overlapping with a column
KR102091436B1 (en) * 2019-11-08 2020-03-20 류승일 Shear reinforcement for reinforced concrete walls and the installation method thereof
KR102670069B1 (en) * 2023-06-08 2024-05-27 삼성이앤에이 주식회사 Pre-assembly spiral stirrup

Also Published As

Publication number Publication date
MY165697A (en) 2018-04-20
WO2011099742A8 (en) 2013-01-03
CN102812190A (en) 2012-12-05
WO2011099742A2 (en) 2011-08-18
CN102812190B (en) 2015-04-08
WO2011099742A3 (en) 2011-12-29

Similar Documents

Publication Publication Date Title
KR100976184B1 (en) Spiral type shear reinforcement device and bars arrangement structure thereof
JP3116896U (en) Assembly structure of spiral stirrup and steel frame
KR100971736B1 (en) Shear reinforcement with dual anchorage function each up and down
CN101936054B (en) Steel truss web combined PC beam and construction method thereof
KR101272116B1 (en) Connection structure of prestressed concrete composite girder having corrugated steel plate web
KR101228135B1 (en) Composite beam using steel member with shear parts to upper part of steel member and bridge construction method using the same
JP5610270B2 (en) Reinforcement structure around through hole of concrete beam
KR100676627B1 (en) Shear reinforcement device arranged in the slab-column connection and the shear reinforcement structure using the device
KR20130000105A (en) Reinforcement structure for slab bending and beam for enduring earthquake
KR101816767B1 (en) Reinforced concrete reinforced concrete structure
KR20090033735A (en) Shear reinforcement device for junctional region of slab and column, and manufacturing mathod of it
KR100952931B1 (en) Shear force reinforcing apparatus of concrete filled steel tube column-reinforced concrete flat slab joint
KR100952930B1 (en) Shear force reinforcing apparatus of concrete filled steel tube column-reinforced concrete flat slab joint
KR100947339B1 (en) Shear reinforcement device for junctional region of column-slab
JP4712021B2 (en) Reinforcing bars and bar arrangements used for reinforcement in reinforced concrete structures
CN201778436U (en) Hybrid polycarbonate (PC) girder with steel truss webs
KR101111242B1 (en) Composite girder used steel-concrete and manufacturing method thereof
KR101255004B1 (en) Girder for use in construction of building
KR20130090453A (en) Reinforcement member and girder using the same
CN211622278U (en) Structural steel concrete structural column and steel bar connecting structure
KR101177316B1 (en) Shear reinforcement device for junctional region of column-slab
KR101355147B1 (en) Shear reinforcement device for junctional region of column-slab
KR20060038665A (en) Shear reinforcement device arranged in the slab-column connection and the shear reinforcement structure using the device
KR101247322B1 (en) Shearing force supplement structure of building construction using rebar
KR101357263B1 (en) Shear reinforcement device for junctional region of column-slab

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130620

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140703

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160803

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170810

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180806

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190805

Year of fee payment: 10