KR100965851B1 - Processes for the pretreatment of lignocellulosic biomasses by popping method, and processes for the production of saccharides and bio-ethanol using the same - Google Patents

Processes for the pretreatment of lignocellulosic biomasses by popping method, and processes for the production of saccharides and bio-ethanol using the same Download PDF

Info

Publication number
KR100965851B1
KR100965851B1 KR1020070102493A KR20070102493A KR100965851B1 KR 100965851 B1 KR100965851 B1 KR 100965851B1 KR 1020070102493 A KR1020070102493 A KR 1020070102493A KR 20070102493 A KR20070102493 A KR 20070102493A KR 100965851 B1 KR100965851 B1 KR 100965851B1
Authority
KR
South Korea
Prior art keywords
pretreatment
biomass
lignocellulosic
processes
bioethanol
Prior art date
Application number
KR1020070102493A
Other languages
Korean (ko)
Other versions
KR20090037078A (en
Inventor
배현종
위승곤
신한기
임기표
김용환
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Priority to KR1020070102493A priority Critical patent/KR100965851B1/en
Publication of KR20090037078A publication Critical patent/KR20090037078A/en
Application granted granted Critical
Publication of KR100965851B1 publication Critical patent/KR100965851B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C11/00Regeneration of pulp liquors or effluent waste waters
    • D21C11/0007Recovery of by-products, i.e. compounds other than those necessary for pulping, for multiple uses or not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • C10L1/023Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for spark ignition
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
    • C12P7/10Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate substrate containing cellulosic material
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C1/00Pretreatment of the finely-divided materials before digesting
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C3/00Pulping cellulose-containing materials
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P2201/00Pretreatment of cellulosic or lignocellulosic material for subsequent enzymatic treatment or hydrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Abstract

본 발명은 팝핑법(popping method)을 이용한 리그노셀룰로스계 바이오매스의 전처리 방법, 및 이를 이용한 당화합물 및 바이오에탄올의 생산방법에 관한 것으로서, 기존에 사용되던 전처리 방법에 비해 소비되는 에너지가 절감됨과 동시에 화학물질의 처리 없이 친환경적인 방법으로 비교적 간단하게 리그노셀룰로스계 바이스매스를 전처리할 수 있을 뿐만 아니라, 전처리에 의해 얻어진 생물질은 효소를 이용한 생물공학적 공정에 매우 효과적이므로, 바이오에탄올을 생산하기 위해 투입되는 에너지 및 비용을 절감하고 화학물질 처리에 따른 환경오염도 줄일 수 있다.The present invention relates to a pretreatment method of lignocellulosic biomass using a popping method, and a production method of sugar compounds and bioethanol using the same, which reduces energy consumption compared to a conventional pretreatment method. At the same time, not only can the lignocellulosic visemass be pretreated relatively simply in an environmentally friendly way without chemical treatment, but the biomass obtained by the pretreatment is very effective for the biotechnological process using enzymes, so that bioethanol can be produced. To reduce the energy and cost of the waste, and to reduce the environmental pollution caused by chemical treatment.

리그노셀룰로스, 팝핑, 전처리, 당화합물, 바이오에탄올, 바이오에너지, 효소 당화 Lignocellulosic, popping, pretreatment, sugar compounds, bioethanol, bioenergy, enzyme saccharification

Description

팝핑법을 이용한 리그노셀룰로스계 바이오매스의 전처리 방법, 및 이를 이용한 당화합물 및 바이오에탄올의 생산방법{Processes for the pretreatment of lignocellulosic biomasses by popping method, and processes for the production of saccharides and bio-ethanol using the same}Processes for the pretreatment of lignocellulosic biomasses by popping method, and processes for the production of saccharides and bio-ethanol using the same}

본 발명은 당화합물(saccharides) 및 바이오에탄올(bio-ethanol) 생산을 위한 리그노셀룰로스계 바이오매스(lignocellulosic biomasses)의 전처리 방법(pretreatment process)에 관한 것으로서, 보다 상세하게는, 팝핑법(popping method)을 이용한 리그노셀룰로스계 바이오매스의 전처리 방법, 및 이를 이용한 당화합물 및 바이오에탄올의 생산방법에 관한 것이다.The present invention relates to a pretreatment process of lignocellulosic biomasses for the production of sugar compounds and bio-ethanol, and more particularly, to the popping method. The present invention relates to a pretreatment method of lignocellulosic biomass using the present invention, and a method of producing a sugar compound and bioethanol using the same.

리그노셀룰로스계 바이오매스는 자연계 초목의 잎, 줄기, 뿌리 등으로서 이들을 분해 또는 전환하여 인간생활에 유용한 물질, 즉 섬유소(셀룰로스, 펄프), 포도당, 자일로스(자일란), 정제 리그닌과 이들의 유도물질인 에탄올, 자일리톨 등을 다량 얻을 수 있다. 특히, 최근에는 지구 온난화에 의한 온실효과와 석유고갈 문제를 해결하기 위하여 당화합물을 이용한 바이오에너지(bio-energy) 생산에 많은 관심이 집중되고 있는 바, 목본 및 초본류의 재생가능한 리그노셀룰로스로부터 생 산하는 제2세대 셀룰로스 에탄올에 관한 연구가 미국을 중심으로 진행되고 있다. 전처리가 끝난 목질계 바이오매스로부터 연료용 에탄올을 생산하는 반응 메커니즘은 크게 두 가지로 '당화(saccharification)'와 '발효(fermentation)'라 할 수 있다. '당화'는 셀룰로스 성분이 효소의 작용에 의해 글루코스로 전환되는 과정이며, 셀룰라제(cellulase)가 셀룰로스의 반응표면에 흡착하여 셀룰로스를 셀로바이오스(cellobiose)로 바꾸는 과정과 이렇게 생성된 셀로바이오스가 β-글루코시다제(β-glucosidase)의 효소반응에 의해 글루코스로 전환되는 과정으로 나눌 수 있다. '발효'는 당화 과정에 의해 생성된 글루코스가 효모 등의 미생물에 의해 혐기성 조건 하에서 에탄올과 이산화탄소로 전환되는 과정을 일컫는다. 일반적인 바이오매스로부터 에탄올로의 생물학적 전환공정을 도 1에 나타내었다.Lignocellulosic biomass is a leaf, stem, root, etc. of natural vegetation that breaks down or converts them into useful materials for human life, such as cellulose (cellulose, pulp), glucose, xylose, purified lignin and their induction. A large amount of ethanol, xylitol and the like can be obtained. In particular, in order to solve the greenhouse effect and petroleum depletion problem caused by global warming, much attention has been focused on the production of bio-energy using sugar compounds. Research on second generation cellulose ethanol is underway in the United States. There are two main reaction mechanisms for producing ethanol for fuel from pretreated wood-based biomass: 'saccharification' and 'fermentation'. 'Saccharification' is the process by which the cellulose component is converted into glucose by the action of an enzyme, the process by which cellulase is adsorbed on the reaction surface of cellulose to convert cellulose into cellobiose, and the cellobiose thus produced is β It can be divided into the process of conversion to glucose by the enzymatic reaction of -glucosidase (β-glucosidase). 'Fermentation' refers to a process in which glucose produced by saccharification is converted into ethanol and carbon dioxide under anaerobic conditions by microorganisms such as yeast. The biological conversion process from general biomass to ethanol is shown in FIG. 1.

리그노셀룰로스계 바이오매스의 생물공학적 가수분해에 주로 영향을 미치는 것에는 섬유소의 결정화도, 다공성이 있으며, 리그닌이나 헤미셀룰로스의 함량 또한 중요한 변수로 작용한다. 리그노셀룰로스계 바이오매스는, 종류에 따라 구성비의 차이는 있지만, 주로 탄수화물(셀룰로스와 헤미셀룰로스)과 리그닌으로 구성되어 있다. 리그닌은 페닐프로파노이드의 복잡한 3차원 구조를 가지고 있으며, 각각 에스테르 결합과 공유결합을 이루고 있다. 헤미셀룰로스는 셀룰로스와 리그닌의 가교역할을 하고 있으며, 헤미셀룰로스와 리그닌의 결합은 효소나 산 분해 시 셀룰로스의 가수분해를 방해하는 역할을 한다. 효소를 이용한 생물학적 가수분해 시 효소의 흡착능은 셀룰로스의 표면적과 매우 높은 상관관계를 가지고 있다. 가수분해 속도는 효소의 흡착량이 증가할수록 증가하며, 흡착된 효소와 섬유소의 결정화 도에 의해 결정된다.The major influences on the biotechnical hydrolysis of lignocellulosic biomass include crystallinity and porosity of fibrin, and lignin or hemicellulose content also plays an important role. The lignocellulosic biomass is composed mainly of carbohydrates (cellulose and hemicellulose) and lignin, although the composition ratio varies depending on the type. Lignin has a complex three-dimensional structure of phenylpropanoid, each covalently formed with an ester bond. Hemicellulose acts as a bridge between cellulose and lignin, and the binding of hemicellulose to lignin interferes with the hydrolysis of cellulose during enzyme or acid degradation. The enzyme's adsorption capacity during biological hydrolysis using enzymes has a high correlation with the surface area of cellulose. The rate of hydrolysis increases as the amount of enzyme adsorbed increases and is determined by the crystallinity of the adsorbed enzyme and cellulose.

현재까지 리그노셀룰로스계 바이오매스를 당화시키기 위해서는 전처리 공정이 필수적인 것으로 알려져 있다. 효과적인 전처리 공정은 섬유소의 함량을 증가시키고, 미세섬유의 결정성을 감소시켜, 바이오매스의 단위면적 당 효소의 흡착율을 높임으로써, 섬유소의 반응성 증가에 의해 효소 가수분해 능력을 증가시키는 것이어야 한다. 전처리 방법으로는 다양한 리그노셀룰로스계 바이오매스의 종류에 따라 다양한 물리적·화학적 방법, 예를 들어 증기 폭쇄법, 알칼리 처리법, 이산화황 처리법, 과산화수소 처리법, 초임계 암모니아 처리법, 약산 추출 처리법, 암모니아 동결 폭쇄법 등이 알려져 있으며, 실제로 이들 방법을 조합하여 수행하고 있다. 이와 같은 전처리 방법들 중 약산 추출 처리법과 증기 폭쇄법이 폭넓게 연구되었다. 증기 폭쇄법은 리그노셀룰로스계를 고압의 증기로 일정시간 소부한 후 폭발적으로 분출하는 방법으로 부식성이 적고, 리그닌도 쉽게 용해될 수 있도록 비교적 작은 조각으로 분해된다. 그러나 증기 폭쇄법은 반응온도가 높아야 하므로(200∼225 ℃ 내외) 유용물질인 셀룰로스까지도 심하게 분해되어 유용 고형물의 수율이 낮아지는(70∼80%, 자일란 포함) 큰 문제점을 가지고 있다. 또한, 헤미셀룰로스가 분해되어 생기는 유용물질인 자일란의 회수율도 65% 미만에 그치며 초산, 푸르푸랄 등 다종다양하고 회수이용이 불가한 부산물이 다량 생성되는 단점을 가지고 있다. 약산 추출 처리법은 고온고압(190 ℃ 내외)의 반응기에 목재 등을 미분쇄하여 장입하고 그 틈새로 저농도의 산(황산 등)을 흘려보내어 주로 헤미셀룰로스와 일부 리그닌을 추출 제거하는 방법이다. 이 방법은 반응기 내의 온도와 개개 입자의 반응 시간을 균등하게 하고 추출 분해물의 반응기 내 체류시간을 일정하게 유지할 수 있으므로 초기 분해물의 고온 상태에서의 장시간 반응에 의한 과도한 분해, 전환에 의한 부산물 생성을 줄이고 고형물(셀룰로스 및 리그닌) 회수율을 높일 수 있으며 자일란의 회수율도 80∼90% 이상으로 할 수 있다. 그러나 이 방법은 증기 폭쇄에서와 같은 바이오매스 조직의 물리적 파쇄를 유발하기 어렵고 따라서 원료를 미분쇄(약 1 ㎜ 이하)하여 투입하여야 하므로 추출수에 미세입자가 동반하여 배관이 폐색되거나 처리 전 미분쇄에 과도한 동력이 소요되는 등의 문제점이 있다. 그 외에도 유사한 장치에서 유기용매나 액체 암모니아를 이용하거나 분해 촉매로 염기, 이산화황가스, 과산화수소수를 이용한 전처리 방법이 있으나, 소요되는 화학물질이 고가일 뿐만 아니라 이들의 회수 장치비가 추가되어 시설비가 증가하는 등이 커다란 단점으로 지적되고 있어 펄프·제지 등의 특수한 용도의 몇몇을 제외하고는 실제적인 적용이 거의 이루어지지 않고 있다.To date, pretreatment is known to be essential for saccharifying lignocellulosic biomass. An effective pretreatment process should be to increase the content of cellulose, decrease the crystallinity of the microfibers, and increase the enzyme adsorption per unit area of the biomass, thereby increasing the enzyme hydrolysis capacity by increasing the reactivity of the cellulose. Pretreatment methods include various physical and chemical methods, such as steam decay, alkali, sulfur dioxide, hydrogen peroxide, supercritical ammonia, weak acid extraction and ammonia free decay, depending on the type of lignocellulosic biomass. Etc. are known and are actually carried out by combining these methods. Among these pretreatment methods, weak acid extraction and steam decay methods have been extensively studied. Steam decay method is a method of baking the lignocellulosic system with high pressure steam for a certain period of time and explodingly, which is less corrosive. However, the steam decay method requires a high reaction temperature (around 200 to 225 ° C.), so that cellulose, which is a useful substance, is severely decomposed, and thus the yield of useful solids is low (70 to 80%, including xylan). In addition, the recovery rate of xylan, which is a useful substance produced by decomposition of hemicellulose, is also less than 65%, and has a disadvantage in that a large amount of various by-products, such as acetic acid and furfural, that are not available for recovery are generated. The weak acid extraction method is a method of pulverizing and loading wood and the like into a reactor at high temperature and high pressure (about 190 ° C.), and flowing a low concentration of acid (such as sulfuric acid) into a gap to extract and remove mainly hemicellulose and some lignin. This method equalizes the temperature in the reactor with the reaction time of the individual particles and maintains the residence time of the extracted decomposition products in the reactor, thus reducing the formation of by-products due to excessive decomposition and conversion by prolonged reactions in the high temperature state of the initial decomposition products. The recovery rate of solids (cellulose and lignin) can be increased, and the recovery rate of xylan can also be 80-90% or more. However, this method is difficult to cause physical crushing of biomass tissues such as in steam crushing, and thus the raw materials must be pulverized (about 1 mm or less), so that the fine water is accompanied by fine particles in the extract water, or the pulverization before processing There is a problem such as excessive power consumption. In addition, there is a pretreatment method using organic solvent or liquid ammonia in a similar device or using base, sulfur dioxide gas, and hydrogen peroxide as a decomposition catalyst, but the cost of chemicals is high and the cost of the equipment is increased due to the additional cost of recovery equipment. The back is pointed out as a big disadvantage, and practical application is hardly achieved except for some of special use such as pulp and paper.

이와 같이, 일반적으로 물리적 방법은 공정이 느리고, 에너지 소비가 많아 경제성이 떨어지며, 화학적 방법은 강산이나 강알칼리성 화합물을 사용하여 비용이 높고, 대용량 공정에는 부적합하며, 독성이 높아 환경에 악영향을 미치므로, 환경문제를 일으키기지 않고 소비되는 에너지를 절감할 수 있는 효과적인 전처리 방법의 개발이 절실히 필요하였다.As such, physical methods are generally economical due to slow processes, high energy consumption, and chemical methods are expensive due to the use of strong acids or strong alkaline compounds, unsuitable for high-volume processes, and have high toxicity and adversely affect the environment. In addition, there is an urgent need to develop an effective pretreatment method that can reduce energy consumption without causing environmental problems.

본 발명자들은 상기한 종래기술의 문제를 해결하기 위하여, 새로운 리그노셀 룰로스계 바이오매스의 전처리 방법을 개발하기 위하여 지속적인 연구를 수행한 결과, 화학물질의 처리 없이 팝핑(popping)법을 이용하여 리그노셀룰로스계 바이오매스를 전처리하는 방법을 개발해내고, 이로부터 얻어진 생물질(biomaterial)이 효소를 이용한 당화공정에 매우 효과적임을 확인하고, 본 발명을 완성하기에 이르렀다.In order to solve the above-mentioned problems of the prior art, the present inventors have conducted continuous research to develop a new lignocellulosic cellulose-based biomass pretreatment method, and thus, using a popping method without chemical treatment, After developing a method for pretreatment of nocellulose-based biomass, it was confirmed that the biomaterial obtained therefrom was very effective in the saccharification process using enzymes, and thus the present invention was completed.

따라서 본 발명의 목적은 팝핑법에 의해 리그노셀룰로스계 바이오매스를 전처리하는 방법을 제공하기 위한 것이다.It is therefore an object of the present invention to provide a method for pretreatment of lignocellulosic biomass by popping.

본 발명의 다른 목적은 상기 전처리 방법을 이용한 리그노셀룰로스계 바이오매스로부터 당화합물 및 바이오에탄올을 생산하는 방법을 제공하기 위한 것이다.Another object of the present invention is to provide a method for producing a sugar compound and bioethanol from lignocellulosic biomass using the pretreatment method.

첫째, 본 발명은 리그노셀룰로스계 바이오매스를 팝핑하는 단계를 포함하는, 리그노셀룰로스계 바이오매스의 가수분해를 위한 전처리 방법에 관한 것이다.First, the present invention relates to a pretreatment method for hydrolysis of lignocellulosic biomass, comprising popping lignocellulosic biomass.

둘째, 본 발명은Second, the present invention

1) 리그노셀룰로스계 바이오매스를 팝핑하여 전처리하고;1) pretreatment by popping lignocellulosic biomass;

2) 전처리된 바이오매스를 당화시키거나 당화 및 발효시키는:2) saccharifying or saccharifying and fermenting the pretreated biomass:

단계를 포함하는, 리그노셀룰로스계 바이오매스로부터 당화합물 또는 바이오에탄올을 생산하는 방법에 관한 것이다.It relates to a method for producing a sugar compound or bioethanol from lignocellulosic biomass comprising the step.

본 발명에서는, 바이오매스를 수침(水浸)한 후 팝핑하는 것이 바람직하며, 5~25 ㎏f/㎠의 압력 하에 팝핑하는 것이 바람직하다. 또한, 당화효소, 예를 들어 셀룰라제, 자일라나제, β-글루코시다제 및 이들의 혼합물로 구성된 그룹으로부터 선택되는 당화효소를 사용하여 당화를 수행하는 것이 바람직하다. 당화효소는 바이오매스 100 중량부에 대하여 1~20 중량부의 양으로 사용하는 것이 바람직하며, 당화와 발효를 단일 반응기 내에서 수행하는 것이 바람직하다.In the present invention, the biomass is preferably immersed and then popped, and is preferably popped under a pressure of 5 to 25 kgf / cm 2. It is also preferable to perform saccharification using a glycosylase selected from the group consisting of glycosylase such as cellulase, xylanase, β-glucosidase and mixtures thereof. The glycosylase is preferably used in an amount of 1 to 20 parts by weight based on 100 parts by weight of the biomass, and saccharification and fermentation are preferably performed in a single reactor.

본 발명에 따르면, 기존에 사용되던 전처리 방법에 비해 소비되는 에너지가 절감됨과 동시에 화학물질의 처리 없이 친환경적인 방법으로 비교적 간단하게 리그노셀룰로스계 바이스매스를 전처리할 수 있을 뿐만 아니라, 전처리에 의해 얻어진 생물질은 효소를 이용한 생물공학적 공정에 매우 효과적인 것으로 나타났다. 따라서 바이오에탄올을 생산하기 위해 투입되는 에너지 및 비용을 절감하고 화학물질 처리에 따른 환경오염도 줄일 수 있다.According to the present invention, it is possible to pre-treat lignocellulosic vise masses relatively simply in an environmentally friendly way without the treatment of chemicals and at the same time saving energy compared to the pretreatment methods used in the past, Biomass has been shown to be very effective for biotechnological processes using enzymes. Therefore, energy and cost input to produce bioethanol can be reduced and environmental pollution due to chemical treatment can be reduced.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 리그노셀룰로스계 바이오매스로부터 당화합물 및 바이오에탄올을 생산하는데 있어서, 팝핑법을 이용한 전처리 방법에 관한 것이다. 본 발명에서는 리그노셀룰로스계 바이오매스로 가을에 추수하고 남은 볏짚과 옥수수대를 사용할 수 있으나, 본 발명의 범위가 이들로 제한되는 것은 아니다. 본 발명에서는 볏짚과 옥수수대를 수침한(예를 들어, 하루 동안 충분히 물에 담가둔) 후, 팝핑하는 것이 바람직하다. 또한, 5~25 ㎏f/㎠, 특히 15~25 ㎏f/㎠의 압력 하에 팝핑하는 것이 바람직하다. 본 발명에 따라 전처리된 바이오매스는, 화학성분을 분석한 결과, 전처리되지 않은 것에 비해, 회분, 홀로셀룰로스, 리그닌 등의 함량에서 큰 차이는 없는 것으로 나타났다(표 1a 및 1b 참조). 그러나 도 2에 나타낸 바와 같이, 물리적·형태적으로 큰 변화를 일으킨 것으로 나타났다.The present invention relates to a pretreatment method using a popping method in producing sugar compounds and bioethanol from lignocellulosic biomass. In the present invention, it is possible to use rice straw and corn straw left in the autumn as lignocellulosic biomass, but the scope of the present invention is not limited thereto. In the present invention, it is preferable to immerse rice straw and corn stalks (for example, soak it in water for a day) and then pop it. It is also preferable to pop under a pressure of 5-25 kgf / cm 2, in particular 15-25 kgf / cm 2. The biomass pretreated according to the present invention showed no significant difference in the content of ash, holocellulose, lignin, etc., as compared to unpretreated chemical components (see Tables 1a and 1b). However, as shown in FIG. 2, it showed that a big change was made physically and morphologically.

상기 전처리된 바이오매스에 당화효소를 가하여 당화공정을 수행하고, 당화 후 분해산물의 환원당을 DNS(3,5-dinitrosalicylic acid)법을 사용하여 측정하였다. 그 결과 볏짚의 경우, 무처리 바이오매스는 단지 0.00 내지 0.07의 가수분해율을 나타냄에 비해, 전처리된 바이오매스는 최대 1.21에 달하는 높은 가수분해율을 나타내었다. 옥수수대의 경우, 무처리 바이오매스는 단지 0.00 내지 0.06의 가수분해율을 나타냄에 비해, 전처리된 바이오매스는 0.42~1.31에 달하는 높은 가수분해율을 나타내었다(도 3 및 4 참조). 따라서 본 발명에 따른 전처리 방법은 효소를 이용한 생물공학적 공정에 매우 적합한 것으로 확인되었다.The saccharification process was performed by adding saccharase to the pretreated biomass, and the reduced sugar of the degradation product after saccharification was measured using DNS (3,5-dinitrosalicylic acid) method. As a result, in the case of rice straw, the untreated biomass showed a hydrolysis rate of only 0.00 to 0.07, whereas the pretreated biomass showed a high hydrolysis rate of up to 1.21. For corn cobs, the untreated biomass showed a hydrolysis rate of only 0.00 to 0.06, whereas the pretreated biomass showed high hydrolysis rates of 0.42 to 1.31 (see FIGS. 3 and 4). Therefore, the pretreatment method according to the present invention was found to be very suitable for biotechnological processes using enzymes.

상기 전처리된 생물질의 당화공정은 통상적인 방법에 따라 산 당화(acid saccharification)에 의해 수행될 수도 있으나, 효소 당화(enzymatic saccharification)에 의해 수행되는 것이 보다 바람직하다. 효소 당화를 위해서는, 예를 들어, 셀룰라제, 자일라나제, β-글루코시다제 및 이들의 혼합물로 구성된 그룹으로부터 선택되는 당화효소를 사용하는 것이 바람직하다. 대표적으로, 당화효소로는 중량비 1~2:1~2, 특히 1:1의 셀룰라제와 자일라나제의 혼합효소를 사용할 수 있다. 당화효소는 바이오매스 100 중량부에 대하여 1~20 중량부의 양으로 사용하는 것이 바람직하다. 당화공정은 40~45 ℃의 온도에서 6~24 시간, 특히 12~24 시간 동안 수행하는 것이 바람직하다.The pretreatment of the biomass may be performed by acid saccharification according to a conventional method, but more preferably by enzymatic saccharification. For enzyme saccharification, preference is given to using glycosylase selected from the group consisting of, for example, cellulase, xylanase, β-glucosidase and mixtures thereof. Representatively, the glycosylase may be a mixed enzyme of cellulase and xylanase in a weight ratio of 1 to 2: 1 to 2, especially 1: 1. The glycosylase is preferably used in an amount of 1 to 20 parts by weight based on 100 parts by weight of the biomass. The saccharification process is preferably carried out at a temperature of 40 ~ 45 ℃ for 6 to 24 hours, in particular 12 to 24 hours.

본 발명에서는, 바이오에탄올 생산을 위하여, 당화과정과 발효과정을 각각 다른 반응기에서 수행하는 '분리 당화발효(Separate Hydrolysis and Fermentation, SHF) 공정'과 하나의 반응기에서 당화과정과 발효과정을 동시에 수행하는 '동시 당화발효(Simultaneous Saccharification and Fermentation, SSF) 공정' 중 어느 것도 사용가능하다. 분리 당화발효 공정은 당화과정과 발효과정에서 효소와 효모에 대해 각각 최적화된 조건 하에 반응시킬 수 있다는 장점이 있는 반면, 효소반응은 그 중간생성물과 최종생성물인 셀로바이오스와 글루코스에 의해 억제영향을 받기 때문에 반응이 진행됨에 따라 축적된 글루코스의 농도가 높아지면 반응이 종결되는 단점이 있으며, 이를 극복하기 위해 효소의 양을 늘려야만 하므로 경제적이지 못한 측면이 있다. 이에 비해, 동시 당화발효 공정에서는 당화과정에서 글루코스가 생성되자마자 효모가 발효과정에 의해 글루코스를 바로 제거하고 반응기 내에 당의 축적을 최소화할 수 있으므로, 분리 당화발효 공정에서 나타나는 최종 생성물의 억제작용을 방지할 수 있고 효소의 가수분해 반응을 향상시킬 수 있으며, 부가적으로 장치비의 절감과 낮은 효소 투입량에 의한 비용감소 효과를 볼 수 있고, 반응기 내에 에탄올이 존재하므로 오염문제를 감소시킬 수 있는 장점이 있다. 따라서 본 발명에서는 동시 당화발효 공정을 사용하는 것이 바람직하다.In the present invention, for the production of bioethanol, the 'Separate Hydrolysis and Fermentation (SHF) process' to perform the saccharification process and the fermentation process in different reactors, and the saccharification process and fermentation process in one reactor at the same time Any of the Simultaneous Saccharification and Fermentation (SSF) processes can be used. The isolated saccharification fermentation process has the advantage that it can be reacted under the optimized conditions for enzyme and yeast respectively in the saccharification process and fermentation process, whereas the enzymatic reaction is inhibited by the intermediate and the final product cellobiose and glucose. Therefore, there is a disadvantage in that the reaction is terminated when the concentration of glucose increases as the reaction proceeds, and in order to overcome this, the amount of the enzyme must be increased so that it is not economical. In contrast, in the simultaneous saccharification fermentation process, as soon as glucose is produced during the saccharification process, the yeast can immediately remove glucose by the fermentation process and minimize the accumulation of sugar in the reactor, thereby preventing the inhibitory action of the final product in the separated saccharification fermentation process. It is possible to improve the hydrolysis reaction of the enzyme, and additionally, it is possible to reduce the device cost and reduce the cost due to the low amount of enzyme input, and there is an advantage of reducing the contamination problem because ethanol is present in the reactor. . Therefore, in the present invention, it is preferable to use a simultaneous saccharification fermentation process.

바이오에탄올 생산을 위한 발효균주로는 효모, 예를 들어 사카로마이세스 세레비지에(Saccharomyces cerevisiae)를 사용할 수 있으며, 높은 당 농도에서도 발효를 수행할 수 있는 내당성 균주와 효소 당화의 최적온도인 40~45 ℃ 부근에서도 에탄올 전환이 가능한 내열성 균주, 고가의 효소 사용량 절감과 고농도의 에탄올 생산을 위해 당화 및 발효를 동시에 수행할 수 있는 재조합 균주, 예를 들어, 크렙시엘라 옥시토카(Klebsiella oxytoca) P2, 브레타노마이세스 커스터 시(Brettanomyces curstersii), 사카로마이세스 우브즈런(Saccharomyces uvzrun), 캔디다 브래시카에(Candida brassicae) 등 당업계에 알려진 통상적인 균주 중 어느 것이라도 사용할 수 있다. 발효공정은 당화공정과 별도로 수행 시 25~30 ℃, 특히 29 ℃의 온도에서 10~20 시간 동안 수행하는 것이 바람직하다.Yeast, for example Saccharomyces cerevisiae , can be used as a fermentation strain for the production of bioethanol, and the optimum temperature for saccharogenic strains and enzyme saccharification that can be fermented at high sugar concentrations is 40. Heat resistant strain capable of converting ethanol even around ~ 45 ℃, recombinant strain capable of simultaneously glycosylation and fermentation to reduce the use of expensive enzymes and high concentration of ethanol, for example, Klebsiella oxytoca P2 , may be used any of the breather Gaetano My process Custer City (Brettanomyces curstersii), saccharide as MY access probe jeureon (Saccharomyces uvzrun), known in the art such as a conventional strain Candida lash probe car (Candida brassicae) would. When the fermentation process is performed separately from the saccharification process, it is preferable to carry out for 10 to 20 hours at a temperature of 25 ~ 30 ℃, especially 29 ℃.

이하, 본 발명을 실시예에 의해 보다 구체적으로 설명하나, 이는 본 발명의 이해를 돕기 위한 것일 뿐 본 발명의 범위를 어떤 식으로든 제한하고자 하는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, which are intended to aid the understanding of the present invention but are not intended to limit the scope of the present invention in any way.

참고예 1: 옥수수 및 볏짚의 화학성분 분석Reference Example 1: Chemical Composition Analysis of Corn and Rice Straw

가을에 추수하고 남은 볏짚과 옥수수대를 시료로 사용하였다. 볏짚과 옥수수대는 기건 상태로 방치한 후 2~3 ㎝로 절단하였다. 옥수수와 볏짚을 40~60 메쉬의 분말로 제조한 후 화학성분을 분석하였다. 볏짚의 화학성분을 분석한 결과를 표 1a에 나타내었다.The remaining straw and cornstalks harvested in the fall were used as samples. Rice straw and corn stalks were cut to 2-3 cm after being left in the dry condition. Corn and rice straw were prepared into powder of 40-60 mesh and analyzed for chemical composition. The results of analyzing the chemical composition of rice straw are shown in Table 1a.

Figure 112007072945165-pat00001
Figure 112007072945165-pat00001

실시예 1: 팝핑법을 이용한 전처리Example 1 Pretreatment Using Popping Method

가을에 추수하고 남은 볏짚과 옥수수대 100 ㎎을 하루 동안 충분히 물에 담가 두었다. 그 후 팝핑기(popping machine)를 사용하여 5~25 ㎏f/㎠의 압력 하에 파쇄를 실시하였다. 전처리된 볏짚과 옥수수대의 외관을 사진으로 촬영하여, 도 2에 나타내었다. 또한, 그 화학성분을 분석하여 그 결과를 표 1b에 나타내었다. In the autumn, 100 mg of the remaining straw and corn stalks were soaked in water for a day. Thereafter, crushing was carried out using a popping machine under a pressure of 5-25 kgf / cm 2. Photographs of the appearance of the pretreated rice straw and corncob are shown in FIG. 2. In addition, the chemical composition was analyzed and the results are shown in Table 1b.

Figure 112007072945165-pat00002
Figure 112007072945165-pat00002

상기 도면 및 표에 나타낸 바와 같이, 팝핑기를 사용하여 전처리된 바이오매스는 전처리되지 않은 것에 비해, 회분, 홀로셀룰로스, 리그닌 등의 함량에서 큰 차이는 없는 것으로 나타났으나, 물리적·형태적으로 큰 변화를 일으킨 것으로 나타났다. As shown in the figures and tables, the biomass pretreated using the popping machine was found to have no significant difference in the content of ash, holocellulose, lignin, etc., compared with the non-pretreated, but physically and morphologically significant changes. It appeared to cause.

실시예 2: 효소에 의한 당화Example 2: Glycosylation

무처리(대조구) 및 팝핑기를 사용하여 파쇄한(실험구) 볏짚과 옥수수대 50 ㎎에 각각 셀룰라제(CBDⅡ와 Cel5C) 1 ㎎, 자일라나제(XynT) 1 ㎎ 및 혼합효소(CBDⅡ+XynT와 Cel5C+XynT) 1 ㎎을 가하고, 40 ℃의 온도에서 12 시간 동안 당화공정을 수행하였다. 당화 후 볏짚과 옥수수대 분해산물의 환원당을 DNS법을 사용하여 측정하였다. 그 결과를 도 3 및 4에 나타내었다.50 mg of untreated (control) and crushed (experimental) rice straw and corn stalks (50 mg), 1 mg of cellulase (CBD II and Cel5C), 1 mg of xylanase (XynT) and mixed enzymes (CBD II + XynT and 1 mg of Cel5C + XynT) was added, and a saccharification process was performed at a temperature of 40 ° C. for 12 hours. After saccharification, reducing sugars of rice straw and maize soybean products were measured using DNS method. The results are shown in FIGS. 3 and 4.

상기 도면에 나타낸 바와 같이, 볏짚의 경우, 무처리구는 단지 0.00 내지 0.07의 가수분해율을 나타냄에 비해, 팝핑 처리된 실험구는 최대 1.21에 달하는 높은 가수분해율을 나타내었다. 옥수수대의 경우, 무처리구는 단지 0.00 내지 0.06의 가수분해율을 나타냄에 비해, 팝핑 처리된 실험구는 0.42~1.31에 달하는 높은 가수분해율을 나타내었다. 이러한 결과는 팝핑 처리된 바이오매스가 효소를 이용한 생물공학적 공정에 매우 적합한 것임을 명확히 보여주는 것이라 할 수 있다.As shown in the figure, in the case of rice straw, the untreated ball showed only a hydrolysis rate of 0.00 to 0.07, whereas the popped experimental ball showed a high hydrolysis rate of up to 1.21. For cornstalk, the untreated plots showed only a hydrolysis rate of 0.00 to 0.06, whereas the popped experimental plots showed a high hydrolysis rate of 0.42 to 1.31. These results clearly show that the popped biomass is very suitable for biotechnological processes using enzymes.

실시예 3: 바이오에탄올의 생산Example 3: Production of Bioethanol

가을에 추수하고 남은 볏짚과 옥수수대 50 ㎎을 하루 동안 충분히 물에 담가 두었다. 그 후 팝핑기를 사용하여 21 ㎏f/㎠의 압력 하에 파쇄를 실시하였다. 전처리된 볏짚과 옥수수대에 각각 셀룰라제(CBDⅡ와 Cel5C) 1 ㎎, 자일라나제(XynT) 1 ㎎ 및 혼합효소(CBDⅡ+XynT와 Cel5C+XynT) 1 ㎎을 가하였다. 여기에 바이오에탄올 생산을 위한 발효균주로 사카로마이세스 세레비지에 15 g/ℓ를 가하여, 29 ℃의 온도에서 15 시간 동안 동시 당화발효 공정을 수행하여 바이오에탄올을 생산하였다.In the fall, 50 mg of the remaining straw and corn stalks were soaked in water for a day. Thereafter, crushing was carried out using a popping machine under a pressure of 21 kgf / cm 2. 1 mg of cellulase (CBDII and Cel5C), 1 mg of xylanase (XynT) and 1 mg of mixed enzyme (CBDII + XynT and Cel5C + XynT) were added to the pretreated rice straw and corn stalks, respectively. 15 g / l was added to Saccharomyces cerevisiae as a fermentation strain for bioethanol production, and bioethanol was produced by performing a simultaneous saccharification fermentation process at a temperature of 29 ° C. for 15 hours.

도 1은 일반적인 바이오매스로부터 에탄올로의 생물학적 전환공정을 보여주는 모식도이고;1 is a schematic diagram showing a biological conversion process from general biomass to ethanol;

도 2는 팝핑기를 사용한 전처리 후 옥수수대와 볏짚의 형태 변화를 보여주는 사진이며;Figure 2 is a photograph showing the shape change of cornstalks and rice straw after pretreatment using a popping machine;

도 3은 팝핑기를 사용한 전처리 후 볏짚의 효소 가수분해율 변화를 나타낸 그래프이고;3 is a graph showing the change of enzyme hydrolysis rate of rice straw after pretreatment using a popping machine;

도 4는 팝핑기를 사용한 전처리 후 옥수수대의 효소 가수분해율 변화를 나타낸 그래프이다.Figure 4 is a graph showing the change in enzyme hydrolysis rate of cornstalk after pretreatment using popping machine.

Claims (9)

삭제delete 삭제delete 삭제delete 1) 리그노셀룰로스계 바이오매스를 5~25 ㎏f/㎠의 압력 하에 팝핑(popping)하여 전처리하고;1) pre-treat the lignocellulosic biomass by popping under a pressure of 5-25 kgf / cm 2; 2) 전처리된 바이오매스를 당화효소를 사용하여 당화 및 발효시키는:2) Saccharification and fermentation of the pretreated biomass using glycosylase: 단계를 포함하는, 리그노셀룰로스계 바이오매스로부터 바이오에탄올을 생산하는 방법.A method for producing bioethanol from lignocellulosic biomass comprising the step. 제4항에 있어서, 단계 1)에서 리그노셀룰로스계 바이오매스를 수침한 후 5~25 ㎏f/㎠의 압력 하에 팝핑하는, 리그노셀룰로스계 바이오매스로부터 바이오에탄올을 생산하는 방법.The method of claim 4, wherein the bioethanol is produced from the lignocellulosic biomass after immersion in the lignocellulosic biomass in step 1) and popping under a pressure of 5-25 kgf / cm 2. 삭제delete 제4항 또는 제5항에 있어서, 당화효소는 셀룰라제, 자일라나제, β-글루코시다제 및 이들의 혼합물로 구성된 그룹으로부터 선택되는 것인, 리그노셀룰로스계 바이오매스로부터 바이오에탄올을 생산하는 방법.The method for producing bioethanol from lignocellulosic biomass according to claim 4 or 5, wherein the glycosylase is selected from the group consisting of cellulase, xylanase, β-glucosidase and mixtures thereof. Way. 제4항 또는 제5항에 있어서, 단계 2)에서 당화효소를 바이오매스 100 중량부에 대하여 1~20 중량부의 양으로 사용하는, 리그노셀룰로스계 바이오매스로부터 바이오에탄올을 생산하는 방법.The method for producing bioethanol from lignocellulosic biomass according to claim 4 or 5, wherein the glycosylase is used in step 2) in an amount of 1 to 20 parts by weight based on 100 parts by weight of the biomass. 제4항 또는 제5항에 있어서, 단계 2)에서 당화와 발효를 단일 반응기 내에서 수행하는, 리그노셀룰로스계 바이오매스로부터 바이오에탄올을 생산하는 방법.The process according to claim 4 or 5, wherein the saccharification and fermentation in step 2) are carried out in a single reactor.
KR1020070102493A 2007-10-11 2007-10-11 Processes for the pretreatment of lignocellulosic biomasses by popping method, and processes for the production of saccharides and bio-ethanol using the same KR100965851B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070102493A KR100965851B1 (en) 2007-10-11 2007-10-11 Processes for the pretreatment of lignocellulosic biomasses by popping method, and processes for the production of saccharides and bio-ethanol using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070102493A KR100965851B1 (en) 2007-10-11 2007-10-11 Processes for the pretreatment of lignocellulosic biomasses by popping method, and processes for the production of saccharides and bio-ethanol using the same

Publications (2)

Publication Number Publication Date
KR20090037078A KR20090037078A (en) 2009-04-15
KR100965851B1 true KR100965851B1 (en) 2010-06-28

Family

ID=40761888

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070102493A KR100965851B1 (en) 2007-10-11 2007-10-11 Processes for the pretreatment of lignocellulosic biomasses by popping method, and processes for the production of saccharides and bio-ethanol using the same

Country Status (1)

Country Link
KR (1) KR100965851B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101163024B1 (en) 2010-11-15 2012-07-09 전남대학교산학협력단 Process for the pre-treatment of waste paper to improve saccharification yield and process for the production of saccharides and bio-ethanol using the same
KR101863226B1 (en) 2016-11-30 2018-06-01 한국세라믹기술원 Fusion apparatus for treating biomass continueously using chemical method and physical method simultaneously and treating method of biomass using the same
KR101996934B1 (en) 2018-05-24 2019-07-05 한국세라믹기술원 Fusion apparatus for treating biomass continueously using chemical method and physical method simultaneously and treating method of biomass using the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101036853B1 (en) * 2010-01-29 2011-05-25 전남대학교산학협력단 Process for the pre-treatment of lignocellulosic biomass by popping method combined with wet milling and process for the production of saccarification and bio-ethanol using the same
KR101037708B1 (en) * 2010-04-30 2011-05-30 전남대학교산학협력단 Process for the pre-treatment of lignocellulosic biomass by popping method combined with microwave and process for the production of saccarification and bio-ethanol using the same
CN113729110B (en) * 2021-09-26 2024-01-09 中国科学院天津工业生物技术研究所 High-efficiency low-cost pretreatment combined solid state fermentation method for biomass material and application of biomass material in single-cell protein feed production
CN115029194A (en) * 2022-06-23 2022-09-09 四川凸酒酒业有限公司 Preparation method of white spirit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010058065A (en) * 1999-12-24 2001-07-05 손재익 Process for producing ethanol with high concentration from wood hydrolysate using low-temperature sterilization
KR20020060135A (en) * 2002-06-19 2002-07-16 김휘주 Manufacturing Method of High Contented Biodegra dable Steam Exploded Biomass Block·Graft Copolymers Matrix Compound
KR20050071595A (en) * 2002-10-30 2005-07-07 산또리 가부시키가이샤 Method of manufacturing plant finished product
KR20070077476A (en) * 2007-04-09 2007-07-26 주식회사 바이피엘 Production method of bio-ethanol from by-product of beer fermentation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010058065A (en) * 1999-12-24 2001-07-05 손재익 Process for producing ethanol with high concentration from wood hydrolysate using low-temperature sterilization
KR20020060135A (en) * 2002-06-19 2002-07-16 김휘주 Manufacturing Method of High Contented Biodegra dable Steam Exploded Biomass Block·Graft Copolymers Matrix Compound
KR20050071595A (en) * 2002-10-30 2005-07-07 산또리 가부시키가이샤 Method of manufacturing plant finished product
KR20070077476A (en) * 2007-04-09 2007-07-26 주식회사 바이피엘 Production method of bio-ethanol from by-product of beer fermentation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101163024B1 (en) 2010-11-15 2012-07-09 전남대학교산학협력단 Process for the pre-treatment of waste paper to improve saccharification yield and process for the production of saccharides and bio-ethanol using the same
KR101863226B1 (en) 2016-11-30 2018-06-01 한국세라믹기술원 Fusion apparatus for treating biomass continueously using chemical method and physical method simultaneously and treating method of biomass using the same
KR101996934B1 (en) 2018-05-24 2019-07-05 한국세라믹기술원 Fusion apparatus for treating biomass continueously using chemical method and physical method simultaneously and treating method of biomass using the same

Also Published As

Publication number Publication date
KR20090037078A (en) 2009-04-15

Similar Documents

Publication Publication Date Title
Khan et al. A review on the role of pretreatment technologies in the hydrolysis of lignocellulosic biomass of corn stover
US8563277B1 (en) Methods and systems for saccharification of biomass
AU2010324474B2 (en) Method for processing vegetable biomass
Díaz-Blanco et al. Optimization of dilute acid pretreatment of Agave lechuguilla and ethanol production by co-fermentation with Escherichia coli MM160
JP5325793B2 (en) Process for fermentative production of ethanol from solid lignocellulosic material comprising the step of treating the solid lignocellulosic material with an alkaline solution to remove lignin
US20220090156A1 (en) Methods and Systems For Saccharification of Biomass
KR100965851B1 (en) Processes for the pretreatment of lignocellulosic biomasses by popping method, and processes for the production of saccharides and bio-ethanol using the same
US9809867B2 (en) Carbon purification of concentrated sugar streams derived from pretreated biomass
DK2836602T3 (en) Methods and systems for biomass suction
Awoyale et al. Harnessing the potential of bio‐ethanol production from lignocellulosic biomass in Nigeria–a review
Silverstein A comparison of chemical pretreatment methods for converting cotton stalks to ethanol
EP1874942A1 (en) Fermentation of glucose and xylose in cellulosic biomass using genetically modified saccharomyces cerevisiae and a simultaneous saccharification and co-fermentation process
Kamal et al. Sustainable and optimized bioethanol production using mix microbial consortium of Saccharomyces cerevisiae and Candida cantarelli
Thota et al. Innovative consortia of micro and macro fungal systems: cellulolytic enzyme production from groundnut shell biomass and supportive structural analysis
Petrova et al. Perspectives for the production of bioethanol from lignocellulosic materials
Burhan et al. Evaluation of simultaneous saccharification and fermentation of oil palm empty fruit bunches for xylitol production
KR101010183B1 (en) Processes for producing saccharides and bio-ethanol from red algae
Kálmán et al. Possible ways of bio-refining and utilizing the residual lignocelluloses of corn growing and processing
Tsoutsos Modelling hydrolysis and fermentation processes in lignocelluloses-to-bioalcohol production
Wardani et al. Ethanol Production from Oil Palm Trunk: A Combined Strategy Using an Effective Pretreatment and Simultaneous Saccharification and Cofermentation
Igwebuike Experimental study on the potential of different feedstock on second generation bioethanol production: setting a methodology
Fehér Investigation of corn fibre utilisation in biorefinery approach
Igwebuike et al. Renewable Energy Potential: Second-Generation Biomass as Feedstock for Bioethanol Production
Niju et al. Lignocellulosic Sugarcane Tops for Bioethanol Production: An Overview
Singh et al. Bioethanol Production From Brassica Napus Biomass And Pineapple Waste

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E902 Notification of reason for refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130513

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140407

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150507

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160324

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170613

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190523

Year of fee payment: 10