KR100929100B1 - 직교 주파수 분할 다중 접속 방식을 사용하는 통신 시스템에서 서브 채널 할당 장치 및 방법 - Google Patents

직교 주파수 분할 다중 접속 방식을 사용하는 통신 시스템에서 서브 채널 할당 장치 및 방법 Download PDF

Info

Publication number
KR100929100B1
KR100929100B1 KR1020030049341A KR20030049341A KR100929100B1 KR 100929100 B1 KR100929100 B1 KR 100929100B1 KR 1020030049341 A KR1020030049341 A KR 1020030049341A KR 20030049341 A KR20030049341 A KR 20030049341A KR 100929100 B1 KR100929100 B1 KR 100929100B1
Authority
KR
South Korea
Prior art keywords
sequence
subchannel
subcarrier
base station
groups
Prior art date
Application number
KR1020030049341A
Other languages
English (en)
Other versions
KR20050009583A (ko
Inventor
황인석
윤순영
성상훈
조재희
허훈
노관희
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020030049341A priority Critical patent/KR100929100B1/ko
Priority to US10/894,220 priority patent/US7633900B2/en
Publication of KR20050009583A publication Critical patent/KR20050009583A/ko
Application granted granted Critical
Publication of KR100929100B1 publication Critical patent/KR100929100B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/023Multiplexing of multicarrier modulation signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 전체 주파수 대역을 다수의 서브 캐리어 대역들로 분할하고, 미리 설정된 설정 개수의 서브 캐리어 대역들의 집합인 서브 채널들을 구비하는 무선 통신 시스템에서, 미리 설정된 설정 구간에서 상기 서브 캐리어 대역들을 분류하여 상기 기지국들의 개수와 동일한 개수의 서브 캐리어 그룹들을 생성하고, 특정 기지국에 대해서, 소정 제어에 따라 설정된 설정 시퀀스에 상응하게 상기 그룹들 각각에서 해당 서브 캐리어 대역들을 검출하여 상기 특정 기지국에 대한 서브 채널로 할당한다.
서브 채널, 시간-주파수 영역, 2차원 서브 채널 할당, 갈로아 필드, 서브 채널 할당기

Description

직교 주파수 분할 다중 접속 방식을 사용하는 통신 시스템에서 서브 채널 할당 장치 및 방법{APPARATUS AND METHOD FOR ASSIGNING SUB CHANNEL IN COMMUNICATION SYSTEM USING ORTHOGONAL FREQUENCY DIVISION MULTIPLE ACCESS SCHEME}
도 1은 본 발명의 실시예에서의 기능을 수행하기 위한 OFDMA 통신 시스템의 송신기 구조를 개략적으로 도시한 도면
도 2는 본 발명의 실시예에 따른 시간-주파수 2차원 영역에서 서브 채널들 할당을 개략적으로 도시한 도면
도 3은 본 발명의 실시예에 따른 데이터 송신을 위한 서브 채널 할당을 개략적으로 도시한 도면
도 4는 본 발명의 실시예에 따른 서브 캐리어 할당 과정을 도시한 순서도
본 발명은 직교 주파수 분할 다중 접속(OFDMA: Orthogonal Frequency Division Multiple Access, 이하 "OFDMA"이라 칭하기로 한다) 방식을 사용하는 통 신 시스템(이하 "OFDMA 통신 시스템"이라 칭하기로 한다)에 관한 것으로서, 특히 적응적으로 서브 채널을 할당하는 장치 및 방법에 관한 것이다.
이동 통신 시스템은 3세대 이동 통신 시스템에서 4세대(4G: 4th Generation) 이동 통신 시스템으로 발전해나가고 있는 상태이다. 상기 4세대 이동 통신 시스템은 이전 세대의 이동 통신 시스템들과 같이 단순한 무선 통신 서비스에 그치지 않고 유선 통신 네트워크와 무선 통신 네트워크와의 효율적 연동 및 통합 서비스를 목표로 하여 표준화되고 있다. 따라서 무선 통신 네트워크에서 유선 통신 네트워크의 용량(capacity)에 근접하는 대용량 데이터를 전송할 수 있는 기술 개발이 요구되고 있다.
삭제
삭제
그래서, 상기 4세대 이동 통신 시스템에서는 유·무선 채널에서 고속데이터 전송에 유용한 방식으로 직교 주파수 분할 다중(OFDM: Orthogonal Frequency Division Multiplexing, 이하 "OFDM"이라 칭하기로 한다) 방식이 활발하게 연구되고 있다. 상기 OFDM 방식은 멀티-캐리어(Multi-Carrier)를 사용하여 데이터를 전송하는 방식으로서, 직렬로 입력되는 심벌(Symbol)열을 병렬 변환하여 이들 각각을 상호 직교성을 갖는 다수의 서브 캐리어(sub-carrier)들, 즉 다수의 서브 캐리어 채널(sub-carrier channel)들로 변조하여 전송하는 멀티캐리어 변조(MCM : Multi Carrier Modulation) 방식의 일종이다.
상기 OFDM 방식 기술은 디지털 오디오 방송(Digital Audio Broadcasting: DAB)과 디지털 텔레비젼, 무선 근거리 통신망(WLAN: Wireless Local Area Network) 그리고 무선 비동기 전송 모드(WATM: Wireless Asynchronous Transfer Mode) 등의 디지털 전송 기술에 광범위하게 적용되어지고 있다. 즉, 하드웨어적인 복잡도(Complexity)로 인하여 널리 사용되지 못하다가 최근 고속 푸리에 변환(FFT: Fast Fourier Transform, 이하 "FFT"라 칭하기로 한다)과 역 고속 푸리에 변환(IFFT: Inverse Fast Fourier Transform, 이하 "IFFT"라 칭하기로 한다)을 포함한 각종 디지털 신호 처리 기술이 발전함으로써 실현 가능해 졌다. 상기 OFDM 방식은 종래의 주파수 분할 다중(FDM: Frequency Division Multiplexing) 방식과 비슷하나 무엇보다도 다수개의 서브 캐리어들간의 직교성(Orthogonality)을 유지하여 전송함으로써 고속 데이터 전송시 최적의 전송 효율을 얻을 수 있는 특징을 가지며, 또한 주파수 사용 효율이 좋고 다중 경로 페이딩(multi-path fading)에 강한 특성이 있어 고속 데이터 전송시 최적의 전송 효율을 얻을수 있다는 특징을 가진다. 또한, 주파수 스펙트럼을 중첩하여 사용하므로 주파수 사용이 효율적이고, 주파수 선택적 페이딩(frequency selective fading)에 강하고, 다중경로 페이딩에 강하고, 보호구간을 이용하여 심벌간 간섭(ISI: Inter Symbol Interference) 영향을 줄일 수 있으며, 하드웨어적으로 등화기 구조를 간단하게 설계하는 것이 가능하며, 임펄스(impulse)성 잡음에 강하다는 장점을 가지고 있어서 통신시스템 구조에 적극 활용되고 있는 추세에 있다.
한편, 상기 OFDM 방식에 기반한 다중 접속 방식이 상기 OFDMA 방식이다. 상기 OFDMA 방식은 한 개의 OFDM 심벌(symbol)내의 서브 캐리어(sub-carrier)들을 다수의 사용자들, 즉 다수의 단말기들이 분할하여 사용하는 방식이다. 상기 OFDMA 방식을 사용하는 통신 시스템으로 IEEE(Institute of Electrical and Electronics Engineers) 802.16 기반 통신 시스템이 있다. IEEE 802.16 통신 시스템은 단말기의 이동성을 고려하는 시스템이다. 상기 IEEE 802.16e 통신 시스템은 1024 포인트(1024-point) 혹은 2048 포인트(2048-point) 역고속 푸리에 변환(IFFT: Inverse Fast Fourier Transform, 이하 "IFFT"라 칭하기로 한다)을 사용할 수 있다. 예컨대, 2048 포인트 IFFT 사용시, 1702개의 서브 캐리어들은 신호 송수신에 사용되고, 나머지 서브캐리어들은 보호 구간(guard band)으로 사용할 수 있다. 상기 1702개의 서브 캐리어들중 166개의 서브 캐리어들은 파일럿(pilot) 서브 캐리어들로 사용하고, 상기 166개의 서브 캐리어들을 제외한 1536개의 서브 캐리어들은 데이터(data) 서브 캐리어들로 사용한다. 또한, 상기 1536개의 데이터 서브 캐리어들을 48개씩 분류하여 총 32개의 서브 채널(sub-channel)로 생성하고, 상기 서브 채널들을 시스템 상황에 맞게 다수의 사용자들에게 할당한다. 여기서, 상기 서브 채널이라 함은 다수의 서브 캐리어들로 구성되는 채널을 의미하며, 여기서는 48개의 서브 캐리어들이 1개의 서브 채널을 구성하는 것이다. 결과적으로, 상기 OFDMA 통신 시스템은 시스템에서 사용하는 전체 서브 캐리어들, 특히 데이터 서브 캐리어들을 전체 주파수 대역에 분산시켜 주파수 다이버시티 이득(frequency diversity gain)을 획득하는 것을 목적으로 하는 통신 시스템이다.
상기 2048 포인트 IFFT를 사용하는 IEEE 802.16e 통신 시스템에서는 OFDM 심벌 당 1702개의 서브 캐리어들을 사용한다. 따라서 다중 셀(multi cell) 환경에서 서브 채널간 충돌 특성이 비교적 좋은 리드 솔로몬(RS: Reed Solomon) 시퀀스(sequence)를 사용하여 서브 채널들을 할당할 경우 41*40 = 1640의 이므로 약 40여개의 셀(cell)들을 구분하는 것이 가능하다.
삭제
그러나, 통신 시스템의 발전에 따라 네트워크(network) 설계를 용이하도록 하기 위해서는 구분할 수 있는 셀들의 개수가 적어도 100개 정도까지는 증가될 필요가 있다. 구분 가능한 셀들의 개수 면에서 주파수 영역에서만 서브 채널을 구성하는 상기 OFDMA 방식은 한계가 존재한다. 한편, 1.25[MHz]의 협대역(narrow band)을 사용하는 Flash-OFDM 방식은 128 포인트 IFFT를 사용하여, 113개의 OFDM 심벌들로 구성된 한 주기 동안에 서로 다른 서브 캐리어들을 도약하는 113개의 도약 시퀀스(hopping sequence)를 기본 자원 할당 단위로 정의한다. 상기 Flash-OFDM 방식을 사용하는 통신 시스템(이하 "Flash-OFDM 통신 시스템"이라 칭하기로 한다)은 네트워크를 설계할 때 상기 도약 시퀀스를 113개의 셀들 각각마다 상이하게 정의함으로써 서로 다른 113개의 셀들을 구분하는 것이 가능하다. 그러나, 상기 Flash-OFDM 방식 역시 협대역 전용인 방식으로서 현재 필요성이 대두되고 있는 용량 증대에는 기여할 수 없다는 문제점을 가진다.
따라서, 본 발명의 목적은 OFDMA 통신 시스템에서 서브 캐리어 할당 장치 및 방법을 제공함에 있다.
본 발명의 다른 목적은 OFDMA 통신 시스템에서 시간-주파수 2차원의 서브 캐리어 할당 장치 및 방법을 제공함에 있다.
본 발명의 다른 목적은 OFDMA 통신 시스템에서 기지국 구분을 위한 서브 캐리어 할당 장치 및 방법을 제공함에 있다.
본 발명의 또 다른 목적은 OFDM 통신 시스템에서 인접 기지국의 서브 채널간 충돌을 최소화하는 서브 캐리어 할당 장치 및 방법을 제공함에 있다.
상기한 목적들을 달성하기 위한 본 발명의 제1장치는; 전체 주파수 대역을 다수의 서브 캐리어 대역들로 분할하고, 미리 설정된 설정 개수의 서브 캐리어 대역들의 집합인 서브 채널들을 구비하는 무선 통신 시스템에서, 상기 무선 통신 시스템을 구성하는 기지국들 각각에 상기 서브 채널들을 할당하는 장치에 있어서, 미리 설정된 설정 구간에서 상기 서브 캐리어 대역들을 분류하여 미리 설정된 개수의 서브 캐리어 그룹들을 생성하고, 특정 기지국에 대해서, 소정 제어에 따라 설정된 설정 시퀀스에 상응하게 상기 그룹들 각각에서 해당 서브 캐리어 대역들을 검출하여 상기 특정 기지국에 대한 서브 채널로 할당하는 서브 채널 할당기와, 송신할 데이터가 발생하면 상기 서브 채널 할당기가 할당한 서브 채널을 통해서 상기 데이터를 송신하는 송신기를 포함함을 특징으로 한다.
상기한 목적들을 달성하기 위한 본 발명의 제2장치는; 전체 주파수 대역을 다수의 서브 캐리어 대역들로 분할하고, 미리 설정된 설정 개수의 서브 캐리어 대역들의 집합인 서브 채널들을 구비하는 무선 통신 시스템에서, 상기 무선 통신 시스템을 구성하는 기지국들 각각에 상기 서브 채널들을 할당하는 장치에 있어서, 미리 설정된 설정 개수의 심벌 구간들 각각에서 상기 서브 캐리어 대역들을 미리 설정된 설정 개수로 분류하여 미리 설정된 개수의 서브 캐리어 그룹들을 생성하고, 임의의 제1기지국에 대해서, 소정 제어에 따라 설정된 제1서브 채널로 할당되는 서브 캐리어들의 인덱스를 나타내는 제1시퀀스에 상응하게 상기 그룹들 각각에서 해당 서브 캐리어 대역들을 검출하여 상기 제1기지국의 제1서브 채널로 할당하고, 상기 임의의 제1기지국과 상이한 제2기지국에 대해서, 상기 제1시퀀스를 미리 설정한 설정 횟수 치환한 제2시퀀스에 상응하게 상기 그룹들 각각에서 해당 서브 캐리어 대역들을 검출하여 상기 제2기지국의 제1서브 채널로 할당하는 서브 채널 할당기와, 송신할 데이터가 발생하면 상기 서브 채널 할당기가 할당한 서브 채널들을 통해서 상기 데이터를 송신하는 송신기를 포함함을 특징으로 한다.
상기한 목적들을 달성하기 위한 본 발명의 제1방법은; 전체 주파수 대역을 다수의 서브 캐리어 대역들로 분할하고, 미리 설정된 설정 개수의 서브 캐리어 대역들의 집합인 서브 채널들을 구비하는 무선 통신 시스템에서, 상기 무선 통신 시스템을 구성하는 기지국들 각각에 상기 서브 채널들을 할당하는 방법에 있어서, 미리 설정된 개수의 서브 캐리어 그룹들을 생성하는 과정과, 특정 기지국에 대해 설정된 시퀀스에 상응하게 상기 그룹들 각각에서 해당 서브 캐리어 대역들을 검출하는 과정과, 상기 그룹들 각각에서 검출한 서브 캐리어 대역들을 상기 특정 기지국에 대한 서브 채널로 할당하는 과정을 포함함을 특징으로 한다.
상기한 목적들을 달성하기 위한 본 발명의 제2방법은; 전체 주파수 대역을 다수의 서브 캐리어 대역들로 분할하고, 미리 설정된 설정 개수의 서브 캐리어 대역들의 집합인 서브 채널들을 구비하는 무선 통신 시스템에서, 상기 무선 통신 시스템을 구성하는 기지국들 각각에 상기 서브 채널들을 할당하는 방법에 있어서, 미리 설정된 설정 개수의 심벌 구간들 각각에서 상기 서브 캐리어 대역들을 미리 설정된 설정 개수로 분류하는 과정과, 미리 설정된 개수의 서브 캐리어 그룹들을 생성하는 과정과, 임의의 제1기지국에 대해서, 소정 제어에 따라 설정된 제1서브 채널로 할당되는 서브 캐리어들의 인덱스를 나타내는 제1시퀀스에 상응하게 상기 그룹들 각각에서 해당 서브 캐리어 대역들을 검출하는 과정과, 상기 제1시퀀스에 상응하게 상기 그룹들 각각에서 검출한 서브 캐리어 대역들을 상기 제1기지국의 제1서브 채널로 할당하는 과정과, 상기 임의의 제1기지국과 상이한 제2기지국에 대해서, 상기 제1시퀀스를 미리 설정한 설정 횟수 치환한 제2시퀀스에 상응하게 상기 그룹들 각각에서 해당 서브 캐리어 대역들을 검출하는 과정과, 상기 제2시퀀스에 상응하게 상기 그룹들 각각에서 검출한 서브 캐리어 대역들을 상기 제2기지국의 제1서브 채널로 할당하는 과정을 포함함을 특징으로 한다.
이하, 본 발명에 따른 바람직한 실시예를 첨부한 도면을 참조하여 상세히 설명한다. 하기의 설명에서는 본 발명에 따른 동작을 이해하는데 필요한 부분만이 설명되며 그 이외 부분의 설명은 본 발명의 요지를 흩트리지 않도록 생략될 것이라는 것을 유의하여야 한다.
본 발명은 직교 주파수 분할 다중 접속(OFDMA: Orthogonal Frequency Division Multiple Access, 이하 "OFDMA"이라 칭하기로 한다) 방식을 사용하는 통신 시스템(이하 "OFDMA 통신 시스템"이라 칭하기로 한다)에서 시간-주파수 영역(time-frequency domain)의 2차원 영역에서 서브 채널(sub-channel)을 할당한다. 그래서, 본 발명은 상기 OFDMA 통신 시스템에서 구분 가능한 셀(cell), 즉 기지국(BS: Base Station)들의 수를 증가시키고, 또한 인접 기지국들간 서브 채널간 충돌을 최소화도록 한다. 상기 기지국은 하나의 셀을 관장하며 서비스를 할 수도 있고, 다수의 셀을 관장하며 서비스를 할 수도 있으나 여기서는 설명의 편의상 하나의 기지국은 하나의 셀만을 관장한다고 가정하기로 한다.
그러면 여기서 도 1을 참조하여 본 발명의 실시예에 따른 OFDMA 통신 시스템의 구조를 설명하기로 한다.
상기 도 1은 본 발명의 실시예에서의 기능을 수행하기 위한 OFDMA 통신 시스템의 송신기 구조를 개략적으로 도시한 도면이다.
상기 도 1을 참조하면, 먼저 상기 OFDMA 통신 시스템의 송신기는 CRC(Cyclick Redundancy Check) 삽입기(CRC inserter)(111)와, 인코더(encoder)(113)와, 심벌 매핑기(symbol mapper)(115)와, 서브 채널 할당기(sub-channel allocator)(117)와, 직렬/병렬 변환기(serial to parallel converter)(119)와, 파일럿 심벌 삽입기(pilot symbol inserter)(121)와, 역고속 푸리에 변환(IFFT: Inverse Fast Fourier Transform, 이하 "IFFT"라 칭하기로 한다)기(123)와, 병렬/직렬 변환기(parallel to serial converter)(125)와, 보호 구간 삽입기(guard interval inserter)(127)와, 디지털/아날로그 변환기(digital to analog converter)(129)와, 무선 주파수(RF: Radio Frequency, 이하 "RF"라 칭하기로 한다) 처리기(processor)(131)로 구성된다.
먼저, 전송하고자 하는 사용자 데이터 비트(user data bits) 및 제어 데이터비트(control data bits)가 발생하면, 상기 사용자 데이터 비트 및 제어 데이터 비트는 상기 CRC 삽입기(111)로 입력된다. 여기서, 상기 사용자 데이터 비트 및 제어 데이터 비트를 "정보 데이터 비트(information data bits)"라고 칭하기로 한다. 상기 CRC 삽입기(111)는 상기 정보 데이터 비트를 입력하여 CRC 비트를 삽입한 후 상기 인코더(113)로 출력한다. 상기 인코더(113)는 상기 CRC 삽입기(111)에서 출력한 신호를 입력하여 미리 설정되어 있는 코딩(coding) 방식으로 코딩한 후 상기 심벌 매핑기(115)로 출력한다. 여기서, 상기 코딩 방식은 소정 코딩 레이트(coding rate)를 가지는 터보 코딩(turbo coding) 방식 혹은 컨벌루셔널 코딩(convolutional coding) 방식 등이 될 수 있다.
상기 심벌 매핑기(115)는 상기 인코더(113)에서 출력한 코딩된 비트(coded bits)를 미리 설정되어 있는 설정 변조 방식으로 변조하여 변조 심벌로 생성한 후 상기 서브 채널 할당기(117)로 출력한다. 여기서, 상기 변조 방식은 QPSK(Quadrature Phase Shift Keying) 방식 혹은 16QAM(Quadrature Amplitude Modulation) 방식 등이 있다. 상기 서브 채널 할당기(117)는 상기 심벌 매핑기(115)에서 출력한 변조 심벌들을 입력하여 서브 채널을 할당한 후 상기 직렬/병렬 변환기(119)로 출력한다. 여기서, 상기 서브 채널 할당기(117)에서 서브 채널을 할당하는 동작은 본 발명에서 제안하는 서브 채널 할당 방식에 상응하게 수행되며, 본 발명에서 제안하는 서브 채널 할당 방식은 하기에서 설명하기로 한다. 상기 직렬/병렬 변환기(119)는 상기 서브 채널 할당기(117)에서 출력하는 서브 채널이 할당된 직렬 변조 심벌들을 입력하여 병렬 변환한 후 상기 파일럿 심벌 삽입기(121)로 출력한다. 상기 파일럿 심벌 삽입기(121)는 상기 직렬/병렬 변환기(119)에서 출력한 병렬 변환된 변조된 심벌들에 파일럿 심벌들을 삽입한 후 상기 IFFT기(123)로 출력한다.
상기 IFFT기(123)는 상기 파일럿 심벌 삽입기(121)에서 출력한 신호를 입력하여 N-포인트(N-point) IFFT를 수행한 후 상기 병렬/직렬 변환기(125)로 출력한다. 상기 병렬/직렬 변환기(125)는 상기 IFFT기(123)에서 출력한 신호를 입력하여 직렬 변환한 후 상기 보호 구간 삽입기(127)로 출력한다. 상기 보호 구간 삽입기(127)는 상기 병렬/직렬 변환기(125)에서 출력한 신호를 입력하여 보호 구간 신호를 삽입한 후 상기 디지털/아날로그 변환기(129)로 출력한다. 여기서, 상기 보호 구간은 상기 OFDMA 통신시스템에서 OFDM 심벌을 송신할 때 이전 OFDM 심벌 시간에 송신한 OFDM 심벌과 현재 OFDM 심벌 시간에 송신할 현재 OFDM 심벌간에 간섭(interference)을 간섭을 제거하기 위해서 삽입된다. 또한, 상기 보호 구간은 일정 구간의 널(null) 데이터를 삽입하는 형태로 제안되었으나, 상기 보호 구간에 널 데이터를 전송하는 형태는 수신기에서 OFDM 심벌의 시작점을 잘못 추정하는 경우 서브 캐리어들간에 간섭이 발생하여 수신 OFDM 심벌의 오판정 확률이 높아지는 단점이 존재하여 시간 영역의 OFDM 심벌의 마지막 일정 비트들을 복사하여 유효 OFDM 심벌에 삽입하는 형태의 "Cyclic Prefix" 방식이나 혹은 시간 영역의 OFDM 심벌의 처음 일정 비트들을 복사하여 유효 OFDM 심벌에 삽입하는 "Cyclic Postfix" 방식으로 사용하고 있다.
상기 디지털/아날로그 변환기(129)는 상기 보호 구간 삽입기(127)에서 출력한 신호를 입력하여 아날로그 변환한 후 상기 RF 처리기(131)로 출력한다. 여기서, 상기 RF 처리기(131)는 필터(filter)와 전처리기(front end unit) 등의 구성들을 포함하며, 상기 디지털/아날로그 변환기(129)에서 출력한 신호를 실제 에어(air)상에서 전송 가능하도록 RF 처리한 후 송신 안테나(Tx antenna)를 통해 에어(air)상으로 전송한다.
그러면 여기서 본 발명에서 제안하는 서브 채널 할당 및 상기 할당된 서브 채널들을 사용하는 방식에 대해서 설명하기로 한다.
(1) 시간-주파수 2차원 영역의 서브 채널 할당 방식
서브 채널을 구성하는 서브 캐리어들의 인덱스(index)들은 리드 솔로몬(RS: Reed Solomon) 시퀀스(sequence)를 사용하여 할당하며, 상기 할당된 서브 캐리어 인덱스들에 해당하는 서브 캐리어들을 가지고 상기 서브 채널을 구성한다. 상기 OFDMA 통신 시스템을 구성하는 전체 서브 캐리어들은 Q-1개의 그룹들로 분류되며, 상기 Q-1개의 그룹들 각각은 Q개의 연속된 서브 캐리어들로 구성된다.
한편, 상기 리드 솔로몬 시퀀스는 갈로아 필드(Galois Field, 이하 "Galois Field"라 칭하기로 한다)에서 정의되며, 상기 Galois Field(Q)는 Q개의 엘리먼트(element)들 {0, 1, 2, ... , Q-1}로 구성된다. 여기서, 상기 Q는 Galois Field의 크기를 나타내며, 상기 Q가 소수(prime number)인 경우에 Galois Field(Q)에서 덧셈 연산과 곱셈 연산은 하기 수학식 1과 같이 정의된다.
Figure 112007095149188-pat00001
Figure 112007095149188-pat00002
한편, 상기 Galois Field(Q)에서 정의되는 시퀀스 S는 상기 Q-1개의 그룹들 각각에서 할당된, 서브 채널을 구성하는 서브 캐리어들의 위치를 나타내는 서브 채널 시퀀스이다. 상기 서브 채널을 구성하는 서브 캐리어들의 인덱스들은 하기 수학식 2와 같이 표현된다.
Figure 112003026247873-pat00003
상기 수학식 2에서, i는 상기 OFDMA 통신 시스템의 전체 Q-1개의 그룹들중 어느 그룹에 해당하는지를 나타내는 그룹 인덱스(group index)를 나타내며, 상기 그룹 인덱스 i는 0, 1, ... , Q-2중 어느 한 값을 가진다. 또한, 상기 수학식 2에서 상기 S(i)는 순열 S의 (i+1)번째 엘리먼트로 해당 그룹의 서브 캐리어들의 위치를 나타낸다.
상기 수학식 2와 같은 시퀀스, 즉 상기 서브 채널을 구성하는 서브 캐리어들의 인덱스들을 나타내는 시퀀스가 정의되면 상기 시퀀스에 상응하는 서브 채널이 정의될 수 있다. 일 예로, 상기 OFDMA 통신 시스템의 전체 서브 캐리어들의 수가 {0, 1, 2, ... , 41}의 인덱스를 가지는 42개라고 가정할 때, 상기 42개의 서브 캐리어들을 6개의 그룹으로 분류할 수 있다. 그리고, 길이가 6인 시퀀스를 이용하여 특정한 서브 채널을 구성하는 6개의 서브 캐리어들을 할당할 수 있다. 즉, 서브 채널 시퀀스 S가 {3, 2, 6, 4, 5, 1}의 인덱스로 주어지면 해당 서브 채널은 서브 캐리어들 {3, 9, 20, 25, 33, 36}의 인덱스를 가지는 시퀀스로 구성된다.
또한, 임의의 기지국과 상기 임의의 기지국내 서브 채널의 구분은 기본 시퀀스의 치환(permutation)과 오프셋(offset)을 사용한다. 여기서, 상기 기본 시퀀스 를 "S0"라 정의하기로 하며, 상기 기본 시퀀스 S0는 하기 수학식 3과 같이 표현된다.
Figure 112003026247873-pat00004
상기 수학식 3에서 상기 α는 Galois Field(Q)의 프리미티브 엘리먼트(primitive element)를 나타낸다(
Figure 112007095149188-pat00005
for
Figure 112007095149188-pat00006
). 상기 Galois Field의 크기 Q가 7인 경우(Q = 7) 3이 프리미티브 엘리먼트가 되며, S0 = {3, 32, 33, ... , 35, 36} mod 7 = { 3, 2, 6, 4, 5, 1}이 된다. 여기서, 상기 기본 시퀀스 S0는 상기 OFDMA 통신 시스템을 구성하는 다수의 기지국들중 기준이 되는 기준 기지국의 0번 서브 채널에 할당되는 시퀀스를 나타낸다. 여기서, 상기 기준 기지국은 0번 기지국이라 가정하기로 하며, 상기 0번 기지국이 상기 OFDMA 통신 시스템을 구성하는 기지국들중 제1기지국이 되는 것이다. 또한, 상기 0번 서브 채널이 Q개의 서브 채널들중 제1서브 채널이 되는 것이다.
그리고, 임의의 m번 셀에 할당된 시퀀스 Sm은 상기 기본 시퀀스 S0를 m번 치환한 시퀀스로서 하기 수학식 4와 같이 표현된다.
Figure 112003026247873-pat00007
여기서, 상기 Sm은 m번 기지국의 0번 서브 채널에 할당되는 시퀀스를 나타낸 다.
또한, 상기 m번 기지국내의 서브 채널들 각각을 정의하기 위한 시퀀스 Sm,β은 상기 m번 셀의 0번 서브 채널에 할당되는 시퀀스 Sm에 오프셋 β를 가산한 형태가 되며, 상기 m번 기지국내의 서브 채널들 각각을 정의하기 위한 시퀀스 Sm,β은 하기 수학식 5와 같이 표현된다.
Figure 112003026247873-pat00008
상기 수학식 5에서, GF(Q)는 Galois Field(Q)를 나타낸다.
이런 식으로, 상기 전체 OFDMA 통신 시스템의 Q-1개의 기지국들 각각에 대해서 서브 채널 할당이 가능하며, 따라서 상기 Q-1개의 기지국들 각각에 대해서 Q개의 서브 채널 시퀀스들을 얻을 수 있게 된다. 상기와 같이 얻어진 서브 채널 시퀀스들은 인접한 셀들, 즉 인접한 기지국들간에 최대 1개의 서브 채널 정도만 충돌을 일으킬 가능성이 존재하여 서브 채널 충돌로 인한 시스템 성능 저하 역시 방지한다는 이점을 가진다. 그러면 여기서 하기 표 1 및 표 2를 참조하여 Galois Field의 크기 Q가 7(Galois Field(Q) = 7)이고, α = 3이고, 기본 시퀀스 S0 = {3, 2, 6,4, 5, 1}인 경우의 0번 서브 채널에 대한 기지국별 시퀀스들과 상기 0번 기지국내 각 서브 채널을 지정하기 위한 시퀀스들을 설명하기로 한다.
Figure 112003026247873-pat00009
Figure 112003026247873-pat00010
상기 표 1은 치환을 이용하여 서로 다른 셀의 0번 서브 채널을 할당하는 시퀀스들을 나타낸 것이며, 상기 표 2는 기지국내 서브 채널들 각각의 인덱스들에 오프렛을 가산하여 0번 기지국내 서브 채널들 각각을 할당하는 시퀀스들을 나타낸 것이다. 상기 표 1에 나타낸 바와 같이 최대 1개의 서브 채널 정도만 충돌을 일으킬 가능성이 존재하여 서브 채널 충돌로 인한 시스템 성능 저하는 방지된다. 한편, 상술한 바와는 달리, 상기 표 1과 같이 기본 시퀀스를 치환하여 기지국내 서브 채널들을 구분할 수 있고, 상기 표 2와 같이 기본 시퀀스에 오프셋을 가산하여 각 기지국들을 구분할 수 있는 상이한 시퀀스를 생성할 수도 있다.
한편, 주파수 재사용도가 1인 셀룰라(cellular) 통신 시스템에서는 네트워크 설계를 용이하게 하기 위해, 즉 기지국 설치를 용이하게 하기 위해 전체 시스템에서 구분 가능한 기지국들의 수를 증가시켜야만 한다. 이렇게 구분 가능한 기지국들의 수를 증가시키기 위해서는 상기 Galois Field(Q)의 Q값을 증가시킬 필요가 있다. 또한, 본 발명에서는 상기 구분 가능한 기지국들의 수를 증가시키기 위해 주파수 영역뿐만 아니라 시간 영역까지도 고려하여 2차원 서브 채널 할당 방식을 제안하는 것이다. 일 예로, 하나의 OFDM 심벌당 1552 = 97*16개의 서브 캐리어들을 송신한다고 가정하고, 6개의 OFDM 심벌들을 하나의 서브 캐리어 할당 단위로 사용하면 97*16*6 = 97*96개의 데이터 서브 캐리어들을 사용하는 것으로 간주할 수 있다. 이 경우 상기 서브 채널 수열을 Galois Field(97)상에서 정의하면 96개의 셀 각각에서 97개의 서브 채널들을 할당할 수 있다. Galois Field(97)상의 프리미티브 엘리먼트인 5를 사용한 기본 시퀀스 S0은 상기 수학식 3에 Q = 97, α= 5를 대입하여 계산할 수 있으며, 상기 기본 시퀀스 S0은 하기 수학식 6과 같이 표현된다.
Figure 112003026247873-pat00011
그러면 여기서 도 2를 참조하여 시간-주파수 2차원 영역에서 서브 채널들을 할당하는 과정을 설명하기로 한다.
상기 도 2는 본 발명의 실시예에 따른 시간-주파수 2차원 영역에서 서브 채널들을 할당하는 과정을 개략적으로 도시한 도면이다.
상기 도 2를 설명하기에 앞서, 먼저 상기에서 설명한 바와 같이 OFDMA 통신 시스템에서 96개의 기지국들을 구분 가능하고, 상기 96개의 기지국들 각각에 대해서 97개의 서브 채널들을 구분 가능하도록 서브 캐리어들을 할당하는 경우를 가정하기로 한다. 즉, 상기 도 2에 도시한 바와 같이 97*96개의 서브 캐리어들을 시간-주파수 영역에서 6 OFDM 심벌 구간 동안 96개의 그룹들을 구성하고, 상기 96개의 그룹들 각각에 97개의 연속된 서브 캐리어들을 배치한다. 상기 도 2에서 서브 캐리어 인덱스(sub-carrier index)는 서브 캐리어의 인덱스를 나타내며, 심벌 인덱스(symbol index)는 시간 영역의 OFDM 심벌의 인덱스를 나타낸다.
상기 도 2에서, 상기 Galois Field의 크기 Q = 97이기 때문에 상기 수학식 6의 기본 시퀀스 S0와 상기 수학식 4 및 수학식 5를 사용하면 임의의 m번 기지국내의 서브 채널들 각각을 정의하기 위한 시퀀스
Figure 112003026247873-pat00012
를 생성할 수 있다. 상기 m번 기지국내의 서브 채널들 각각을 정의하기 위한 시퀀스
Figure 112003026247873-pat00013
이 생성되므로 96개의 기지국들 각각에 대해서 97개의 서브 채널들을 할당할 수 있다.
한편, 상기 OFDMA 통신 시스템에서 Q(Q-1)개의 서브캐리어들을 사용하는 경우, 하나의 OFDM 심벌내에서는 Q*N개의 서브 캐리어들을 사용하여 N개의 그룹들을 구성하고, (Q-1)/N개의 OFDM 심벌들을 사용하는 경우, 서브 채널들 각각을 구성하는 서브 캐리어들의 인덱스는 하기 수학식 7과 같이 표현된다.
Figure 112003026247873-pat00014
상기 수학식 7에서,
Figure 112007095149188-pat00015
는 x보다 작거나 같은 최대 정수를 나타낸다. 상기 도 2에서는 Q = 97, N = 16이므로 상기 그룹 인덱스 i는 0 내지 Q-2, 즉 0 내지 95까지의 값들중 어느 한 값을 가지며, 상기 심벌 인덱스 n은 0에서 5의 값들중 어느 한값을 가지게 된다. 또한, 0번 기지국의 0번 서브 채널의 서브캐리어 인덱스는 다음과 같다.
<0번 기지국의 0번 서브 채널 서브캐리어 인덱스>
심벌 0: 5, 122, 222, 334, 409, 493, 622, 685, 806, 926, 1041, 1131, 1193, 1309, 1404, 1491
심벌 1: 83, 124, 232, 384, 465, 579, 664, 701, 789, 938, 1004, 1140, 1238, 1340, 1365, 1490
심벌 2: 78, 99, 204, 341, 444, 571, 624, 695, 856, 885, 1030, 1076, 1209, 1292, 1416, 1551
심벌 3: 92, 169, 263, 345, 464, 574, 639, 770, 843, 917, 996, 1100, 1232, 1310, 1409, 1516
심벌 4: 14, 167, 253, 295, 408, 488, 597, 754, 860, 905, 1033, 1091, 1187, 1279, 1448, 1517
심벌 5: 19, 192, 281, 338, 429, 496, 637, 760, 793, 958, 1007, 1155, 1216, 1327, 1397, 1456
이런 식으로 서브 캐리어들을 할당하게 되면, 상기에서 설명한 바와 같이 서로 다른 셀에 속한 서브 채널들간에 최대 1개의 서브 채널에서만 충돌이 발생할 확률을 가지며, 이런 충돌 발생 확률은 기존의 통신 시스템들에 비해서 굉장히 낮은 확률이 된다. 일 예로, 상기 종래 기술 부분에서 설명한 IEEE(Institute of Electrical and Electronics Engineers) 802.16a 통신 시스템은 각 셀마다 32개의 서브 채널들을 할당할 수 있는데, 상기 서로 다른 셀의 서브채널은 0~5개의 서브 캐리어 위치에서 충돌이 발생한다. 한편, 본 발명에서와 같이 서브 캐리어들을 할당할 경우 서브 채널들을 구성하는 서브 캐리어들간의 충돌 횟수가 0 또는 1로 작아진다.
일 예로, 상기 리드 솔로몬 시퀀스를 사용하는 경우, 서브 채널마다 Q-1개의 서브 캐리어들이 존재하고, 서로 다른 셀의 서브 채널을 구성하는 서브 캐리어의 충돌 횟수가 최대 1이므로, 충돌 서브 캐리어의 비율은 최대 1/(Q-1)이 되고, 이 값은 Q값이 증가될수록 감소된다. 따라서, 본 발명에서 제안하는 시간-주파수의 2차원 서브 캐리어 할당 방안은 구분 가능한 셀들의 개수의 증가뿐만 아니라 충돌 서브 캐리어의 비율도 최소화시킨다는 이점을 가진다.
(2) 데이터 송신을 위한 서브 채널 할당 방식
상기 OFDMA 통신 시스템의 송신기, 즉 기지국은 디코딩 지연 시간(decoding delay time)과 송신할 데이터의 양에 따라 1개의 서브 채널의 일부 혹은 1개 이상의 서브 채널들을 할당하여 데이터를 송신한다. 일 예로, 상기 데이터를 송신하기 위해서 서브 채널 단위로 송신할 데이터들을 삽입하여 총 Q개의 데이터 할당 단위들을 구성할 수 있다. 여기서, 상기 데이터 할당이라 함은 동일한 채널 코딩 방식(channel coding scheme)과 변조 방식(modulation scheme)을 사용하는 자원(resource) 할당 단위를 의미한다. 상기 채널 코딩 방식으로 1/2 터보 코딩 방식을 사용한다고 가정하고, 상기 변조 방식으로 QPSK 방식을 사용한다고 가정하기로 한다. 또한, 일반적으로 코딩 이득(coding gain)은 코드워드(codeword)의 길이가 길수록 증가된다. 예컨대, 상기 코드워드에 포함된 정보비트의 크기가 1000비트 이상이 되면 성능 포화가 발생되므로, 서브 채널당 96개의 서브 캐리어들을 사용하고 변조 방식으로 QPSK 방식과 1/2 채널코드를 사용하는 경우에는 10개 정도의 서브 채널들을 묶어 채널 코딩을 수행해야 코딩 이득을 최대화할 수 있다.
다음으로 도 3을 참조하여 데이터 송신을 위해서 서브 채널을 할당하는 과정을 설명하기로 한다.
상기 도 3은 본 발명의 실시예에 따른 데이터 송신을 위한 서브 채널 할당 과정을 개략적으로 도시한 도면이다.
상기 도 3을 설명하기에 앞서, 먼저 상기 도 2에서 설명한 바와 같이 OFDMA 통신 시스템에서 96개의 기지국들을 구분 가능하고, 상기 96개의 기지국들 각각에 대해서 97개의 서브 채널들을 구분 가능하도록 서브 캐리어들을 할당하는 경우를 가정하기로 한다. 상기 도 3에서는 Q = 97인 경우, 즉 한 개의 셀 내에서 구분 가능한 서브 채널들의 개수가 97개인 경우의 서브 채널들이 그 사용 목적에 맞게 할당된 예를 도시하고 있다.
상기 도 3을 참조하면, 단위 사각형은 16개의 서브 캐리어들로 구성되고, 상기 단위 사각형들을 시간축으로 6 OFDM 심벌 구간으로 묶으면 1개의 서브 채널이 생성된다. 상기 1개의 서브 채널을 "Td"로 표기하고 있다. 여기서, 상기 서브 채널을 구성하는 일부 서브 캐리어들인 16개의 서브 캐리어들을 나타내는 단위 사각형을 "서브 채널 유닛(sub-channel unit)"이라 칭하기로 한다. 상기 1개의 서브 채널은 6개의 서브 채널 유닛들로 구성되는 것이다.
한편, 송신할 데이터의 양이 많을 경우에는 두 개 이상의 서브 채널들을 묶어서 상기 데이터를 송신할 수도 있다. 상기 데이터 송신에 사용되는 서브 채널들은 "Tb"로 표기되어 있다. 즉, 상기 데이터를 송신하기 위해서는 서브 채널 93(SC 93) 내지 서브 채널 96(SC 96)의 4개의 서브 채널들을 사용한다. 여기서, 상기 서브 채널 유닛을 구성하는 서브 캐리어들간의 최대 충돌 횟수는 주파수 영역에서 사용한 서브 채널 인덱스 수와 동일하다. 또한, 상기 Td로 표기된 서브 채널과 Ts로 표기된 일부 서브 채널(3개의 서브 채널 유닛)은 인접 셀간 서브 캐리어 충돌 횟수가 최대 1회이고, Tc로 표기된 서로 다른 서브 채널들의 서브 채널 유닛들과 과 Tb로 표기된 서브 채널들은 최대 충돌 횟수가 각각 3 또는 4가 될 수 있다.
그러면, 서브채널들별로 최대 충돌 횟수 및 디코딩 지연의 상관 관계에 대해 설명하기로 한다. 상기 Td로 표기된 서브 채널과, Tc로 표기된 서로 다른 서브 채널들의 서브 채널 유닛들은 동일한 면적, 즉 동일한 수의 서브 캐리어들을 사용하는데, 상기 Td로 표기된 서브 채널은 인접셀의 Td로 표기된 서브 채널과 충돌이 최대 1회 발생하고, 디코딩 지연은 6 OFDM 심벌들이 된다. 한편, 상기 Tc로 표기된 서로 다른 서브 채널들의 서브 채널 유닛들은 인접셀의 Tc로 표기된 서로 다른 서브 채널들의 서브 채널 유닛들과 충돌이 최대 3회 발생하고 디코딩 지연은 2 OFDM 심벌들이 된다.
즉, 서브 채널 인덱스 SC와 시간 인덱스 t의 이차원 영역에서 상기 서브 채널 유닛을 구성하는 서브 캐리어들의 최대 충돌 횟수와 디코딩 지연 사이에는 트레이드 오프(trade-off) 관계가 존재하고, 6 OFDM 심벌 구간 보다 작은 시간 구간동안 데이터를 송신하는 경우에는 코딩 레이트(coding rate)를 증가시켜야만 한다. 상기 Tc로 표기된 서로 다른 서브 채널들의 서브 채널 유닛들, 즉 서브 채널 3, 서브 채널 4 및 서브 채널 5를 2 OFDM 심벌들 동안 사용하는 경우와 Ts로 표기된 서브 채널 유닛들, 즉 서브 채널 91을 3 OFDM 심벌들 동안 사용하는 경우는 비교적 길이가 짧고 디코딩 지연이 작아야만 하는 데이터를 송신하는데 효과적이다. 여기서, 상기 비교적 길이가 짧고 디코딩 지연이 작아야만 하는 데이터는 일 예로 호출 채널(paging channel) 데이터가 있다. 상기에서 설명한 바와 같이 서브 채널 인덱스 SC와 시간 인덱스 t의 이차원 영역에서 서브 채널을 어떻게 사용할지, 즉 어떤 데이터를 송신할 때 어떤 서브 채널을 할당할지는 상기 OFDMA 통신 시스템에서 제어 채널(control channel)과 데이터 채널(data channel)을 어떻게 구성하는지에 따라 상이해질 수 있다.
(3) 셀룰라 환경에서의 서브 채널 할당 시나리오
도 4는 본 발명의 실시예에 따른 서브 캐리어 할당 과정을 도시한 순서도이다.
상기 도 4를 참조하면, 먼저 기지국은 411단계에서 서브 캐리어를 할당하기 위해 필요한 파라미터(parameter)들, 즉 Galois Field의 크기를 나타내는 변수 Q와, 한 OFDM 심벌내의 그룹들의 수를 나타내는 변수 N과, Galois Field(Q)의 프리미티브 엘리먼트를 나타내는 변수 α를 초기화한다. 또한, 상기 기지국은 상기 411단계에서 상기 초기화한 변수들, 즉 Galois Field의 크기를 나타내는 변수 Q와, 한 OFDM 심벌내의 그룹들의 수를 나타내는 변수 N과, Galois Field(Q)의 프리미티브 엘리먼트를 나타내는 변수 α를 사용하여 기본 시퀀스 S0를 생성한 후 413단계로 진행한다. 여기서, 상기 기본 시퀀스 S0를 생성하는 과정은 상기 수학식 3에서 설명한 바와 같으므로 여기서는 그 상세한 설명을 생략하기로 한다.
상기 413단계에서 상기 기지국은 서브 캐리어를 할당해야하는 기지국, 일 예로 m번 기지국내의 서브 채널들 각각을 정의하기 위한 시퀀스 {Sm, β}을 생성하고 415단계로 진행한다. 여기서, 상기 m번 기지국내의 서브 채널들 각각을 정의하기 위한 시퀀스 {Sm,β}을 생성하는 과정은 상기 수학식 4 및 수학식 5에서 설명한 바와 같이 첫 번째로, 상기 411단계에서 생성된 기본 시퀀스 S0를 m번 치환한 시퀀스 Sm을 생성하고, 두 번째로 상기 기본 시퀀스 S0를 m번 치환한 시퀀스 Sm에 오프셋 β를 가산한 형태의 상기 m번 기지국내의 서브 채널들 각각을 정의하기 위한 시퀀스 {Sm, β}를 생성하는 것이다. 여기서, 상기 m번 기지국내의 서브 채널들 각각을 정의하기 위한 시퀀스 {Sm, β}를 생성하는 과정은 상기 수학식 4 및 수학식 5에서 설명한 바와 동일하므로 여기서는 그 구체적인 설명을 생략하기로 한다. 또한, 상 기 기지국은 상기 415단계와 같은 동작을 상황이 발생할 때마다 수행할 수도 있고, 아니면 테이블(table) 형태로 미리 저장해 놓고 상황이 발생할 때마다 상기 테이블에서 읽어오는 형태로 사용할 수도 있음은 물론이다.
상기 415단계에서 상기 기지국은 송신하고자 하는 데이터를 고려하여 상기 할당된 서브 채널들을 상기 데이터 송신에 사용하도록 할당한 후 종료한다. 여기서, 상기 기지국은 상기 수학식 7에서 설명한 바와 같은 사용 규칙을 사용하여 상기 데이터 송신에 사용될 서브 채널들을 할당하며, 여기서는 그 구체적인 설명을 생략하기로 한다.
(4) 셀룰라 환경에서 파일럿 채널(pilot channel) 구성 방식
일반적으로 셀룰라 통신 시스템에서는 채널 추정(channel estimation) 및 셀 구분을 위해서 파일럿 서브 캐리어를 사용하는데, 본 발명에서는 상기 서브 채널 중 일부를 파일럿 채널로 사용하는 방안을 제안한다. 상기 OFDMA 통신 시스템에서 서브 채널들간의 충돌 특성을 유지하기 위해서는 서브 채널들내에 파일럿 서브 캐리어를 삽입한 후에도 상기 서브 채널들 각각을 구성하는 서브 캐리어들의 위치가 변경되지 않아야만 한다.
그래서, 본 발명에서는 시간-주파수의 2차원 영역에서 정의한 서브 채널들중 일부를 파일럿 채널로 사용하는 방안을 제안한다. 상기 서브 채널들 중 일부를 파일럿 채널로 사용할 경우 상기 파일럿 채널로 할당된 서브 채널들 사이에 서브 캐리어들의 충돌이 최대 1회씩 발생하므로 주파수 재사용률이 1인 셀룰라 시스템에 매우 효율적이다. 또한, 단말기는 초기 셀 탐색(initial cell search)이나 핸드오프(hand off)시에 상기 파일럿 서브 캐리어들의 패턴(pattern)을 보고 셀을 구분할 수 있다. 또한 상기 파일럿 서브 캐리어들을 가지고 인접 셀의 상대적 신호 크기를 결정할 수 있다. 즉, 단말기는 셀마다 파일럿 서브 캐리어의 위치가 상이하므로 데이터 서브 캐리어보다 boosting된 파일럿 서브 캐리어들의 위치를 보고서 셀 탐색을 할 수 있다. 여기서, 상기 파일럿 서브 캐리어는 데이터 서브 캐리어보다 3 ~ 6[dB] 정도 boosting하여 사용함으로써 상기 단말기가 상기 파일럿 서브 캐리어를 쉽게 구분할 수 있도록 한다. 즉, 상기 파일럿 신호는 일종의 기지국 구분 및 채널 추정을 위한 기준 신호(reference signal)이 되는 것이다.
한편 본 발명의 상세한 설명에서는 구체적인 실시예에 관해 설명하였으나, 본 발명의 범위에서 벗어나지 않는 한도내에서 여러 가지 변형이 가능함은 물론이다. 그러므로 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 안되며 후술하는 특허청구의 범위뿐만 아니라 이 특허청구의 범위와 균등한 것들에 의해 정해져야 한다.
상술한 바와 같은 본 발명은, OFDMA 방식을 사용하는 통신 시스템에서 구분 가능한 기지국들의 개수를 최대화하는 서브 채널 할당을 가능하게 한다는 이점을 가진다. 또한, 본 발명에 따른 서브 채널 할당은 인접한 기지국들의 서브 채널들간 충돌이 발생할 확률을 최소화하여 서브 채널 충돌로 인한 시스템 성능 저하를 방지한다는 이점을 가진다. 또한, 본 발명은 할당된 서브 채널들중 일부를 파일럿 채널 로 구성하여 셀 탐색 및 채널 추정의 효율성을 극대화시킨다는 이점을 가진다.

Claims (34)

  1. 전체 주파수 대역을 다수의 서브 캐리어 대역들로 분할하고, 미리 설정된 설정 개수의 서브 캐리어 대역들의 집합인 서브 채널들을 구비하는 무선 통신 시스템에서, 상기 무선 통신 시스템을 구성하는 기지국들 각각에 상기 서브 채널들을 할당하는 방법에 있어서,
    미리 설정된 개수의 서브 캐리어 그룹들을 생성하는 과정과,
    특정 기지국에 대해 설정된 시퀀스에 상응하게 상기 그룹들 각각에서 해당 서브 캐리어 대역들을 검출하는 과정과,
    상기 그룹들 각각에서 검출한 서브 캐리어 대역들을 상기 특정 기지국에 대한 서브 채널로 할당하는 과정을 포함함을 특징으로 하는 서브 채널 할당 방법.
  2. 제1항에 있어서,
    상기 기지국들의 개수와 동일한 개수의 서브 캐리어 그룹들을 생성하는 과정은;
    상기 서브 캐리어 주파수 대역들은 시구간으로 구분되며, 각 시구간에서 상기 서브캐리어 주파수 대역들을 상기 기지국들의 개수와 동일한 개수의 서브 캐리어 그룹들로 생성하는 것임을 특징으로 하는 서브 채널 할당 방법.
  3. 제1항에 있어서,
    상기 시퀀스는 상기 기지국들 각각의 제1서브 채널로 할당되는 서브 캐리어들의 인덱스들을 나타내는 시퀀스임을 특징으로 하는 서브 채널 할당 방법.
  4. 제3항에 있어서,
    상기 시퀀스에 오프셋을 가산하여 새로운 시퀀스를 생성하는 과정과,
    상기 새로운 시퀀스에 상응하게 상기 그룹들 각각에서 서브 캐리어 대역들을 검출하는 과정과,
    상기 새로운 시퀀스에 상응하여 상기 그룹들 각각에서 검출된 서브 캐리어 대역들을 상기 특정 기지국의 서브 채널로 할당하는 과정을 더 포함함을 특징으로 하는 서브 채널 할당 방법.
  5. 제1항에 있어서,
    상기 설정 시퀀스는 갈로아 필드상에서 정의된 시퀀스임을 특징으로 하는 서브 채널 할당 방법.
  6. 제1항에 있어서,
    상기 시퀀스는 하기 수학식 8과 같이 표현됨을 특징으로 하는 서브 채널 할당 방법.
    Figure 112007095149188-pat00016
    상기 수학식 8에서, S0는 상기 설정 시퀀스를 나타내며, Q는 갈로아 필드의 크기를 나타내며, α는 갈로아 필드(Q)의 프리미티브 엘리먼트를 나타냄.
  7. 제1항에 있어서,
    상기 서브 채널을 구성하는 서브 캐리어 대역들중 특정 서브 캐리어 대역들에서는 상기 기지국들을 구분하는 패턴을 가지도록 기준 신호들이 송신되도록 제어하는 과정을 더 포함함을 특징으로 하는 서브 채널 할당 방법.
  8. 전체 주파수 대역을 다수의 서브 캐리어 대역들로 분할하고, 미리 설정된 설정 개수의 서브 캐리어 대역들의 집합인 서브 채널들을 구비하는 무선 통신 시스템에서, 상기 무선 통신 시스템을 구성하는 기지국들 각각에 상기 서브 채널들을 할당하는 방법에 있어서,
    미리 설정된 설정 개수의 심벌 구간들 각각에서 상기 서브 캐리어 대역들을 미리 설정된 설정 개수로 분류하는 과정과,
    미리 설정된 개수의 서브 캐리어 그룹들을 생성하는 과정과,
    임의의 제1기지국에 대해서, 소정 제어에 따라 설정된 제1서브 채널로 할당되는 서브 캐리어들의 인덱스를 나타내는 제1시퀀스에 상응하게 상기 그룹들 각각에서 해당 서브 캐리어 대역들을 검출하는 과정과,
    상기 제1시퀀스에 상응하게 상기 그룹들 각각에서 검출한 서브 캐리어 대역들을 상기 제1기지국의 제1서브 채널로 할당하는 과정과,
    상기 임의의 제1기지국과 상이한 제2기지국에 대해서, 상기 제1시퀀스를 미리 설정한 설정 횟수 치환한 제2시퀀스에 상응하게 상기 그룹들 각각에서 해당 서브 캐리어 대역들을 검출하는 과정과,
    상기 제2시퀀스에 상응하게 상기 그룹들 각각에서 검출한 서브 캐리어 대역들을 상기 제2기지국의 제1서브 채널로 할당하는 과정을 포함함을 특징으로 하는 서브 채널 할당 방법.
  9. 제8항에 있어서,
    상기 제1기지국의 제1서브 채널을 할당한 후 상기 제1시퀀스에 미리 설정된 오프셋을 가산하여 새로운 제3시퀀스를 생성하는 과정과,
    상기 제3시퀀스에 상응하게 상기 그룹들 각각에서 해당 서브 캐리어 대역들을 검출하는 과정과,
    상기 제3시퀀스에 상응하게 상기 그룹들 각각에서 검출한 서브 캐리어 대역들을 상기 제1기지국의 제2서브 채널로 할당하는 과정을 더 포함함을 특징으로 하는 서브 채널 할당 방법.
  10. 제8항에 있어서,
    상기 제2기지국의 제1서브 채널을 할당한 후 상기 제2시퀀스에 미리 설정된 오프셋을 가산하여 새로운 제4시퀀스를 생성하는 과정과,
    상기 제4시퀀스에 상응하게 상기 그룹들 각각에서 해당 서브 캐리어 대역들을 검출하는 과정과,
    상기 제4시퀀스에 상응하게 상기 그룹들 각각에서 검출한 서브 캐리어 대역들을 상기 제2기지국의 제2서브 채널로 할당하는 과정을 더 포함함을 특징으로 하는 서브 채널 할당 방법.
  11. 제8항에 있어서,
    상기 제1시퀀스 내지 제4시퀀스들은 갈로아 필드상에서 정의된 시퀀스들임을 특징으로 하는 서브 채널 할당 방법.
  12. 제8항에 있어서,
    상기 제1시퀀스는 하기 수학식 9와 같이 표현됨을 특징으로 하는 서브 채널 할당 방법.
    Figure 112007095149188-pat00017
    상기 수학식 9에서, S0는 상기 제1시퀀스를 나타내며, Q는 갈로아 필드의 크기를 나타내며, α는 갈로아 필드(Q)의 프리미티브 엘리먼트를 나타냄.
  13. 제8항에 있어서,
    상기 제2시퀀스는 하기 수학식 10과 같이 표현됨을 특징으로 하는 서브 채널 할당 방법.
    Figure 112007095149188-pat00018
    상기 수학식 10에서, Sm은 제m+1기지국의 제1서브 채널에 할당되는 시퀀스를 나타내며, S0는 상기 제1시퀀스를 나타내며, Q는 갈로아 필드의 크기를 나타내며, α는 갈로아 필드(Q)의 프리미티브 엘리먼트를 나타냄.
  14. 제9항에 있어서,
    상기 제3시퀀스는 하기 수학식 11과 같이 표현됨을 특징으로 하는 서브 채널 할당 방법.
    Figure 112007095149188-pat00019
    상기 수학식 11에서, Sm,β는 제m+1기지국내의 서브 채널들 각각을 구성하는 서브 캐리어들의 인덱스들을 나타내는 시퀀스이며, Sm은 제m+1기지국의 제1서브 채널에 할당되는 시퀀스를 나타내며, β는 상기 오프셋을 나타내며, GF(Q)는 갈로아 필드(Q)를 나타냄.
  15. 제8항에 있어서,
    상기 서브 채널을 구성하는 서브 캐리어 대역들중 특정 서브 캐리어 대역들에서는 상기 기지국들을 구분하는 패턴을 가지도록 기준 신호들이 송신되도록 제어하는 과정을 더 포함함을 특징으로 하는 서브 채널 할당 방법.
  16. 전체 주파수 대역을 다수의 서브 캐리어 대역들로 분할하고, 미리 설정된 설정 개수의 서브 캐리어 대역들의 집합인 서브 채널들을 구비하는 무선 통신 시스템에서, 상기 무선 통신 시스템을 구성하는 기지국들 각각에 상기 서브 채널들을 할당하는 장치에 있어서,
    미리 설정된 설정 구간에서 상기 서브 캐리어 대역들을 분류하여 미리 설정된 개수의 서브 캐리어 그룹들을 생성하고, 특정 기지국에 대해서, 소정 제어에 따라 설정된 설정 시퀀스에 상응하게 상기 그룹들 각각에서 해당 서브 캐리어 대역들을 검출하여 상기 특정 기지국에 대한 서브 채널로 할당하는 서브 채널 할당기와,
    송신할 데이터가 발생하면 상기 서브 채널 할당기가 할당한 서브 채널을 통해서 상기 데이터를 송신하는 송신기를 포함함을 특징으로 하는 서브 채널 할당 장치.
  17. 제16항에 있어서,
    상기 서브 채널 할당기는 상기 설정 구간을 미리 설정된 설정 개수의 시구간들로 분할하고, 상기 시구간들 각각에서 상기 서브 캐리어 주파수 대역들을 미리 설정된 설정 개수의 그룹들로 분류하여 상기 기지국들의 개수와 동일한 개수의 서브 캐리어 그룹들을 생성함을 특징으로 하는 서브 채널 할당 장치.
  18. 제16항에 있어서,
    상기 설정 시퀀스는 상기 기지국들 각각의 제1서브 채널로 할당되는 서브 캐리어들의 인덱스들을 나타내는 시퀀스임을 특징으로 하는 서브 채널 할당 장치.
  19. 제18항에 있어서,
    상기 서브 채널 할당기는 상기 특정 기지국에 대해서 상기 제1서브 채널을 할당한 후, 상기 설정 시퀀스에 미리 설정된 오프셋을 가산하여 새로운 시퀀스를 생성하고, 상기 새로운 시퀀스에 상응하게 상기 그룹들 각각에서 서브 캐리어 대역들을 검출하여 상기 특정 기지국의 제2서브 채널로 할당함을 특징으로 하는 서브 채널 할당 장치.
  20. 제16항에 있어서,
    상기 설정 시퀀스는 갈로아 필드상에서 정의된 시퀀스임을 특징으로 하는 서브 채널 할당 장치.
  21. 제16항에 있어서,
    상기 설정 시퀀스는 하기 수학식 12와 같이 표현됨을 특징으로 하는 서브 채널 할당 장치.
    Figure 112007095149188-pat00020
    상기 수학식 12에서, S0는 상기 설정 시퀀스를 나타내며, Q는 갈로아 필드의 크기를 나타내며, α는 갈로아 필드(Q)의 프리미티브 엘리먼트를 나타냄.
  22. 제16항에 있어서,
    상기 송신기는 상기 서브 채널을 구성하는 서브 캐리어 대역들중 특정 서브 캐리어 대역들에서는 상기 기지국들을 구분하는 패턴을 가지도록 기준 신호들을 송신함을 특징으로 하는 서브 채널 할당 장치.
  23. 전체 주파수 대역을 다수의 서브 캐리어 대역들로 분할하고, 미리 설정된 설정 개수의 서브 캐리어 대역들의 집합인 서브 채널들을 구비하는 무선 통신 시스템에서, 상기 무선 통신 시스템을 구성하는 기지국들 각각에 상기 서브 채널들을 할당하는 장치에 있어서,
    미리 설정된 설정 개수의 심벌 구간들 각각에서 상기 서브 캐리어 대역들을 미리 설정된 설정 개수로 분류하여 미리 설정된 개수의 서브 캐리어 그룹들을 생성하고, 임의의 제1기지국에 대해서, 소정 제어에 따라 설정된 제1서브 채널로 할당되는 서브 캐리어들의 인덱스를 나타내는 제1시퀀스에 상응하게 상기 그룹들 각각에서 해당 서브 캐리어 대역들을 검출하여 상기 제1기지국의 제1서브 채널로 할당하고, 상기 임의의 제1기지국과 상이한 제2기지국에 대해서, 상기 제1시퀀스를 미리 설정한 설정 횟수 치환한 제2시퀀스에 상응하게 상기 그룹들 각각에서 해당 서브 캐리어 대역들을 검출하여 상기 제2기지국의 제1서브 채널로 할당하는 서브 채널 할당기와,
    송신할 데이터가 발생하면 상기 서브 채널 할당기가 할당한 서브 채널들을 통해서 상기 데이터를 송신하는 송신기를 포함함을 특징으로 하는 서브 채널 할당 장치.
  24. 제23항에 있어서,
    상기 서브 채널 할당기는 상기 제1시퀀스에 미리 설정된 오프셋을 가산하여 새로운 제3시퀀스를 생성하고, 상기 제3시퀀스에 상응하게 상기 그룹들 각각에서 해당 서브 캐리어 대역들을 검출하여 상기 제1기지국의 제2서브 채널로 할당함을 특징으로 하는 서브 채널 할당 장치.
  25. 제23항에 있어서,
    상기 서브 채널 할당기는 상기 제2기지국의 제1서브 채널을 할당한 후 상기 제2시퀀스에 미리 설정된 오프셋을 가산하여 새로운 제4시퀀스를 생성하고, 상기 제4시퀀스에 상응하게 상기 그룹들 각각에서 해당 서브 캐리어 대역들을 검출하여 상기 제2기지국의 제2서브 채널로 할당함을 특징으로 하는 서브 채널 할당 장치.
  26. 제23항에 있어서,
    상기 제1시퀀스 내지 제4시퀀스들은 갈로아 필드상에서 정의된 시퀀스들임을 특징으로 하는 서브 채널 할당 장치.
  27. 제23항에 있어서,
    상기 제1시퀀스는 하기 수학식 13과 같이 표현됨을 특징으로 하는 서브 채널 할당 장치.
    Figure 112007095149188-pat00021
    상기 수학식 13에서, S0는 상기 제1시퀀스를 나타내며, Q는 갈로아 필드의 크기를 나타내며, α는 갈로아 필드(Q)의 프리미티브 엘리먼트를 나타냄.
  28. 제23항에 있어서,
    상기 제2시퀀스는 하기 수학식 14와 같이 표현됨을 특징으로 하는 서브 채널 할당 장치.
    Figure 112007095149188-pat00022
    상기 수학식 14에서, Sm은 제m+1기지국의 제1서브 채널에 할당되는 시퀀스를 나타내며, S0는 상기 제1시퀀스를 나타내며, Q는 갈로아 필드의 크기를 나타내며, α는 갈로아 필드(Q)의 프리미티브 엘리먼트를 나타냄.
  29. 제24항에 있어서,
    상기 제3시퀀스는 하기 수학식 15와 같이 표현됨을 특징으로 하는 서브 채널 할당 장치.
    Figure 112007095149188-pat00023
    상기 수학식 15에서, Sm,β는 제m+1기지국내의 서브 채널들 각각을 구성하는 서브 캐리어들의 인덱스들을 나타내는 시퀀스이며, Sm은 제m+1기지국의 제1서브 채널에 할당되는 시퀀스를 나타내며, β는 상기 오프셋을 나타내며, GF(Q)는 갈로아 필드(Q)를 나타냄.
  30. 제23항에 있어서,
    상기 송신기는 상기 서브 채널을 구성하는 서브 캐리어 대역들중 특정 서브 캐리어 대역들에서는 상기 기지국들을 구분하는 패턴을 가지도록 기준 신호들을 송신함을 특징으로 하는 서브 채널 할당 장치.
  31. 제1항에 있어서,
    상기 미리 설정된 개수의 서브 캐리어 그룹들은 상기 기지들의 개수와 동일함을 특징으로 하는 서브 채널 할당 방법.
  32. 제8항에 있어서,
    상기 미리 설정된 개수의 서브 캐리어 그룹들은 상기 기지들의 개수와 동일함을 특징으로 하는 서브 채널 할당 방법.
  33. 제16항에 있어서,
    상기 미리 설정된 개수의 서브 캐리어 그룹들은 상기 기지들의 개수와 동일함을 특징으로 하는 서브 채널 할당 장치.
  34. 제23항에 있어서,
    상기 미리 설정된 개수의 서브 캐리어 그룹들은 상기 기지들의 개수와 동일함을 특징으로 하는 서브 채널 할당 장치.
KR1020030049341A 2003-07-18 2003-07-18 직교 주파수 분할 다중 접속 방식을 사용하는 통신 시스템에서 서브 채널 할당 장치 및 방법 KR100929100B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020030049341A KR100929100B1 (ko) 2003-07-18 2003-07-18 직교 주파수 분할 다중 접속 방식을 사용하는 통신 시스템에서 서브 채널 할당 장치 및 방법
US10/894,220 US7633900B2 (en) 2003-07-18 2004-07-19 Apparatus and method for assigning subchannels in an OFDMA communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030049341A KR100929100B1 (ko) 2003-07-18 2003-07-18 직교 주파수 분할 다중 접속 방식을 사용하는 통신 시스템에서 서브 채널 할당 장치 및 방법

Publications (2)

Publication Number Publication Date
KR20050009583A KR20050009583A (ko) 2005-01-25
KR100929100B1 true KR100929100B1 (ko) 2009-11-30

Family

ID=34056908

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030049341A KR100929100B1 (ko) 2003-07-18 2003-07-18 직교 주파수 분할 다중 접속 방식을 사용하는 통신 시스템에서 서브 채널 할당 장치 및 방법

Country Status (2)

Country Link
US (1) US7633900B2 (ko)
KR (1) KR100929100B1 (ko)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100640461B1 (ko) * 2003-07-30 2006-10-30 삼성전자주식회사 직교 주파수 분할 다중 접속 방식을 사용하는 이동 통신시스템에서 서브 채널 할당 장치 및 방법
KR100876757B1 (ko) 2003-10-31 2009-01-07 삼성전자주식회사 통신 시스템에서 서브 채널 구성 시스템 및 방법
JP4358271B2 (ja) * 2004-03-05 2009-11-04 サムスン エレクトロニクス カンパニー リミテッド 多重搬送波を用いる広帯域無線通信システムにおける副搬送波割り当て方法及び装置
WO2006017730A2 (en) * 2004-08-06 2006-02-16 Nextel Communications, Inc. System and method for dividing subchannels in a ofdma network
US7616704B2 (en) * 2005-03-08 2009-11-10 Intel Corporation Broadband multicarrier transmitter with subchannel frequency diversity for transmitting a plurality of spatial streams
KR101084139B1 (ko) * 2005-06-15 2011-11-17 엘지전자 주식회사 DFT spread OFDMA 시스템의 파일럿 전송방법
EP1917772A4 (en) * 2005-08-22 2012-02-22 Korea Electronics Telecomm METHOD FOR PROVIDING BROADCAST / MULTICAST SERVICE DATA IN A CELLULAR OFDM SYSTEM AND SENDING / RECEIVING METHOD, DEVICE AND SYSTEM THEREWITH
US7983350B1 (en) * 2005-10-25 2011-07-19 Altera Corporation Downlink subchannelization module
US20070097901A1 (en) * 2005-10-28 2007-05-03 Nokia Corporation Apparatus, method and computer program product providing common channel arrangements for soft frequency reuse
AU2011202592B2 (en) * 2006-03-20 2012-01-19 Nec Corporation Signalling of resource allocations in a communication system
GB2436416A (en) 2006-03-20 2007-09-26 Nec Corp Signal resource allocation in a communication system using a plurality of subcarriers
US8681715B2 (en) * 2007-01-18 2014-03-25 Panasonic Corporation Radio communication method and radio communication device
US8208574B2 (en) 2007-05-08 2012-06-26 Interdigital Technology Corporation Method and apparatus for reducing interference in space frequency block coding communication
US8472374B2 (en) * 2007-11-07 2013-06-25 Telefonaktiebolaget L M Ericsson (Publ) Distinguishing between synchronized and asynchronous mobile communications networks
US8644275B2 (en) * 2007-12-06 2014-02-04 Telefonbuch Verlag Hans Müller GmbH & Co. KG Method for WLAN localization and location based service supply
KR100860698B1 (ko) * 2008-02-29 2008-09-26 삼성전자주식회사 통신 시스템에서 서브 채널 할당 장치 및 방법
KR101644434B1 (ko) 2009-02-22 2016-08-01 엘지전자 주식회사 하향링크 mimo시스템에 있어서, 하향링크 신호 생성 방법
JP5724476B2 (ja) * 2011-03-10 2015-05-27 株式会社富士通ゼネラル 冷凍サイクル装置
US8908493B2 (en) 2012-05-01 2014-12-09 Src, Inc. NC-OFDM for a cognitive radio
US9755795B2 (en) * 2013-12-18 2017-09-05 Huawei Technologies Co., Ltd. System and method for WLAN OFDMA design of subcarrier groups and frame format
US9936502B2 (en) 2013-12-18 2018-04-03 Huawei Technologies Co., Ltd. System and method for OFDMA resource management in WLAN

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010055320A1 (en) 1994-12-15 2001-12-27 Pierzga Wayne Francis Multiplex communication
KR20020076049A (ko) * 2001-03-27 2002-10-09 (주)텔레시스테크놀로지 데이터 전송 성능을 개선하기 위한 직교주파수 분할 다중통신 시스템 및 방법
US20020147017A1 (en) 2000-12-15 2002-10-10 Xiaodong Li Multi-carrier communications with adaptive cluster configuration and switching

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6377636B1 (en) * 1999-11-02 2002-04-23 Iospan Wirless, Inc. Method and wireless communications system using coordinated transmission and training for interference mitigation
US7224741B1 (en) * 2000-07-24 2007-05-29 Zion Hadad System and method for cellular communications
US7072315B1 (en) * 2000-10-10 2006-07-04 Adaptix, Inc. Medium access control for orthogonal frequency-division multiple-access (OFDMA) cellular networks
ES2186531B1 (es) * 2001-04-19 2005-03-16 Diseño De Sistemas En Silicio, S.A. Procedimiento de acceso multiple y multiple transmision de datos para un sistema multiusuario de transmision digital de datos punto a multipunto sobre red electrica.
US7577118B2 (en) * 2001-07-24 2009-08-18 Intel Corporation System and method of classifying remote users according to link quality, and scheduling wireless transmission of information to the to the users based upon the classifications
KR100507519B1 (ko) * 2002-12-13 2005-08-17 한국전자통신연구원 Ofdma 기반 셀룰러 시스템의 하향링크를 위한 신호구성 방법 및 장치
WO2004077777A1 (en) * 2003-02-28 2004-09-10 Nortel Networks Limited Sub-carrier allocation for ofdm
KR100876757B1 (ko) * 2003-10-31 2009-01-07 삼성전자주식회사 통신 시스템에서 서브 채널 구성 시스템 및 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010055320A1 (en) 1994-12-15 2001-12-27 Pierzga Wayne Francis Multiplex communication
US20020147017A1 (en) 2000-12-15 2002-10-10 Xiaodong Li Multi-carrier communications with adaptive cluster configuration and switching
KR20030060996A (ko) * 2000-12-15 2003-07-16 브로드스톰 텔레커뮤니케이션즈 인코포레이티드 그룹 기반 서브캐리어 할당을 이용하는 멀티캐리어 통신
KR20020076049A (ko) * 2001-03-27 2002-10-09 (주)텔레시스테크놀로지 데이터 전송 성능을 개선하기 위한 직교주파수 분할 다중통신 시스템 및 방법

Also Published As

Publication number Publication date
KR20050009583A (ko) 2005-01-25
US7633900B2 (en) 2009-12-15
US20050013279A1 (en) 2005-01-20

Similar Documents

Publication Publication Date Title
KR100876757B1 (ko) 통신 시스템에서 서브 채널 구성 시스템 및 방법
KR100929100B1 (ko) 직교 주파수 분할 다중 접속 방식을 사용하는 통신 시스템에서 서브 채널 할당 장치 및 방법
KR100640461B1 (ko) 직교 주파수 분할 다중 접속 방식을 사용하는 이동 통신시스템에서 서브 채널 할당 장치 및 방법
KR100713528B1 (ko) 직교 주파수 분할 다중 접속 방식을 사용하는 통신시스템에서 서브 채널 신호 송신 장치 및 방법
AU2005219907B2 (en) Method and apparatus for allocating subcarriers in a broadband wireless communication system using multiple carriers
KR20050053907A (ko) 직교 주파수 분할 다중 접속 방식을 사용하는 이동 통신시스템에서 서브 캐리어 할당 방법
KR20050091599A (ko) 다중 반송파 전송 방식을 사용하는 광대역 무선 통신시스템의 부반송파 할당 방법 및 장치
KR100860698B1 (ko) 통신 시스템에서 서브 채널 할당 장치 및 방법
KR20070104177A (ko) 직교 주파수 분할 다중 접속 방식의 이동 통신 시스템에서순방향 자원을 할당받기 위한 방법 및 장치와 그 시스템

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121030

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20131030

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20141030

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20151029

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20161028

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20171030

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee