KR100927667B1 - Expandable polystyrene particles with improved thermal insulation and flame retardancy and manufacturing method - Google Patents

Expandable polystyrene particles with improved thermal insulation and flame retardancy and manufacturing method Download PDF

Info

Publication number
KR100927667B1
KR100927667B1 KR1020080036013A KR20080036013A KR100927667B1 KR 100927667 B1 KR100927667 B1 KR 100927667B1 KR 1020080036013 A KR1020080036013 A KR 1020080036013A KR 20080036013 A KR20080036013 A KR 20080036013A KR 100927667 B1 KR100927667 B1 KR 100927667B1
Authority
KR
South Korea
Prior art keywords
delete delete
oxide
particles
flame retardancy
flame retardant
Prior art date
Application number
KR1020080036013A
Other languages
Korean (ko)
Other versions
KR20080100763A (en
Inventor
김재천
박희섭
Original Assignee
김재천
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김재천 filed Critical 김재천
Priority to JP2010510197A priority Critical patent/JP2010536941A/en
Priority to EP08753387A priority patent/EP2158258A4/en
Priority to PCT/KR2008/002591 priority patent/WO2008147056A1/en
Priority to CN200880017777A priority patent/CN101796114A/en
Priority to US12/602,364 priority patent/US20100204350A1/en
Publication of KR20080100763A publication Critical patent/KR20080100763A/en
Application granted granted Critical
Publication of KR100927667B1 publication Critical patent/KR100927667B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/18Making expandable particles by impregnating polymer particles with the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/387Borates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant

Abstract

본 발명은 난연성과 단열성이 향상된 발포성 폴리스티렌(EPS) 입자 및 그 제조방법에 관한 것으로, 본 발명의 발포성 폴리스티렌 입자는 입경 1-50μm인 금속 또는 비금속 산화물, 금속 또는 비금속 수산화물, 규산염, 붕산염, 탄산염 중 선택된 1종 또는 2종 이상의 물질을 10~60중량% 함유한다. 본 발명에 의하여 난연성과 단열성이 향상된 스티로폼을 얻을 수 있게 되었다. 이에 따라 보다 얇은 두께의 난연, 단열재가 화재의 위험성 없이 다양한 분야에 폭 넓게 사용될 수 있게 되었다.The present invention relates to expanded polystyrene (EPS) particles having improved flame retardancy and thermal insulation, and to a method for preparing the same, the expanded polystyrene particles of the present invention include a metal or nonmetal oxide having a particle size of 1-50 μm, a metal or nonmetal hydroxide, a silicate, a borate, a carbonate. 10 to 60% by weight of one or more selected materials. According to the present invention, it is possible to obtain styrofoam having improved flame retardancy and thermal insulation. As a result, thinner flame-retardant insulation materials can be widely used in various fields without the risk of fire.

폴리스티렌 입자, 금속 산화물, 비금속 산화물, 금속 수산화물, 비금속 수산화물, 규산염, 붕산염, 탄산염, 난연성, 스티로폼 Polystyrene particles, metal oxides, nonmetal oxides, metal hydroxides, nonmetal hydroxides, silicates, borate salts, carbonates, flame retardant, styrofoam

Description

단열성과 난연성이 향상된 발포성 폴리스티렌 입자 및 그 제조방법{Expandable polystyrene bead with superior adiabatic and flameproof effect and method for producing the same}Expandable polystyrene bead with improved adiabatic and flameproof effect and method for producing the same

본 발명은 단열성과 난연성이 향상된 발포성 폴리스티렌 입자 및 그 제조방법에 관한 것으로, 보다 상세하기로는 난연제로 금속 또는 비금속 산화물, 금속 또는 비금속 수산화물, 규산염, 붕산염, 탄산염 중 선택된 1종 또는 2종 이상의 물질을 10~60중량% 함유하는 단열성 및 난연성이 향상된 발포성 폴리스티렌 비드 및 그 제조방법에 관한 것이다.The present invention relates to expandable polystyrene particles having improved thermal insulation and flame retardancy, and to a method of manufacturing the same, and more particularly, to a flame retardant, at least one selected from metal or nonmetal oxides, metal or nonmetal hydroxides, silicates, borates, and carbonates. It relates to an expandable polystyrene bead containing 10 to 60% by weight and improved flame retardancy and a method for producing the same.

성형된 폴리스티렌 발포체(스티로폼)는 건축물의 단열을 위한 단열재로 널리 사용되고 있다. 스티로폼은 가격이 저렴하고 가공성과 경량성이 우수하다는 장점이 있지만 불에 매우 취약하며, 압출보드(압출법 폴리스티렌 XPS)에 비하여 단열성이 떨어진다는 문제점을 가지고 있다. 단열성이 부족하면 원하는 수준의 단열성을 얻기 위해서는 더 두꺼운 단열재를 사용하여야 하기 때문에 스티로폼 제조 원가상승 과 건축물 내, 외벽의 두께가 두꺼워지는 단점을 가진다.Molded polystyrene foam (styrofoam) is widely used as a heat insulating material for the insulation of buildings. Styrofoam has the advantage of low cost, excellent workability and light weight, but is very vulnerable to fire, and has a problem in that the insulation is inferior to an extruded board (extrusion polystyrene XPS). If the insulation is insufficient, thicker insulation must be used to obtain the desired level of insulation, which increases the cost of manufacturing Styrofoam and increases the thickness of the interior and exterior walls.

이러한 문제점을 해결하고자 한 종래의 기술로, 팽창성 흑연을 스티렌 중합 시 첨가하는 기술이 개시된 바가 있다.As a conventional technique for solving such a problem, a technique of adding expandable graphite during styrene polymerization has been disclosed.

한국공개특허 10-2006-0030155호(발명의 명칭 : 단열특성이 우수한 발포성 폴리스티렌 입자의 제조방법)에서는 흑연입자를 스티렌 중합 과정에서 포함시키고 난연제로서 유기브롬 화합물을 포함시켜 단열성능을 향상 시키는 제조방법이며, 한국공개특허 10-2006-0030155호(발명의 명칭 : 단열특성이 우수한 발포성 폴리스티렌 입자의 제조방법)는 스티렌 중합과정을 거쳐서 얻어진 폴리스티렌 입자를 수성 현탁하고, 현탁제와 흑연, 유기난연제, 용제(톨루엔)를 투입하고 120℃의 온도로 가열하며 발포제를 투입하여 5시간 유지하여 흑연이 함유된 발포성 폴리스티렌 비드를 제조하는 방법이며, 한국공개특허 10-2007-0053953호,(발명의 명칭 : 단열특성이 우수한 발포성 폴리스티렌 입자의 제조방법)는 폴리스티렌 입자에 흑연을 5중량%를 혼합하여 220℃로 용융하며 폴리스티렌을 압출하여 미니 펠렛을 만든 후, 흑연이 함유된 폴리스티렌 입자를 반응기로 이송하고 물, 현탁제, 유기 난연제, 기포 조절제를 투입 혼합하여 120℃의 온도로 가열하며 발포제(펜탄)를 투입하고 5시간 유지하여 탈수 건조 후 흑연이 함유된 발포성 폴리스티렌을 제조하는 방법이다.In Korean Patent Publication No. 10-2006-0030155 (name of the invention: a method for producing expandable polystyrene particles having excellent thermal insulation properties), a method for improving thermal insulation performance by including graphite particles in a styrene polymerization process and including an organic bromine compound as a flame retardant. Korean Patent Laid-Open Publication No. 10-2006-0030155 (name of the invention: a method for producing expandable polystyrene particles having excellent thermal insulation properties) is an aqueous suspension of polystyrene particles obtained through a styrene polymerization process, and a suspending agent, graphite, an organic flame retardant, and a solvent. (Toluene) is added and heated to a temperature of 120 ℃ and blowing agent is maintained for 5 hours to produce a foamed polystyrene beads containing graphite, Korean Patent Publication No. 10-2007-0053953, (Invention name: Insulation Method for producing expandable polystyrene particles having excellent properties) is mixed with 5% by weight of graphite in polystyrene particles and melted at 220 ° C. After extruding the restyrene to make mini pellets, the graphite-containing polystyrene particles are transferred to the reactor, mixed with water, a suspending agent, an organic flame retardant, and a bubble control agent, heated to a temperature of 120 ° C., and a blowing agent (pentane) is added thereto. It is a method of preparing expanded polystyrene containing graphite after dehydration drying for 5 hours.

상기 기술들은 제조 공정에 변화만 있을 뿐 흑연을 폴리스티렌에 포함시킨다는 점에서는 공통되며 발포성 폴리스티렌 비드를 1차 발포하여 숙성시키고 공지의 입자법으로 성형하여 스티로폼을 제조할 때 공통적으로 입자 간의 융착성이 불량하여 성형이 어렵다는 단점이 있다. 또 최종 성형체는 포함된 흑연의 흡수성으로 인 하여 시간이 지날수록 단열성이 저하되는 단점이 있으며, 경제성이 부족하여 아직 본격적으로 실용화 되지 못하고 있다. These techniques are common in that they only include a change in the manufacturing process but include graphite in polystyrene, and when styrofoam is manufactured by primary foaming the expanded polystyrene beads by primary foaming and molding by a known particle method, common fusion between particles is poor. There is a disadvantage that molding is difficult. In addition, due to the absorbency of the graphite contained in the final molded article has a disadvantage in that the thermal insulation is deteriorated with time, the economic feasibility has not yet been practically used.

이러한 문제점 해결을 시도한 것으로, 발포성 폴리스티렌 비드에 알루미늄 분말을 코팅하는 기술로, 한국공개 특허 10-2007-0076026호(발명의 명칭 : 알루미늄 입자로 코팅된 발포성 폴리스티렌 입자 및 그 제조방법)가 있으며, 이 기술은 판상형 알루미늄을 레진(접착제)으로 1차 코팅하여, 발포성 폴리스티렌 비드에 레진으로 코팅된 판상형 알루미늄분말 0.1~25중량%를 폴리프로필렌왁스, 폴리에틸렌 왁스, 폴리스티렌으로 코팅하는 기술이다. In an attempt to solve this problem, as a technique for coating aluminum powder on expandable polystyrene beads, there is a Korean Patent Publication No. 10-2007-0076026 (name of the invention: expandable polystyrene particles coated with aluminum particles and a method of manufacturing the same), The technology is a technique of first coating the plate-shaped aluminum with a resin (adhesive), and coating 0.1-25% by weight of the plate-shaped aluminum powder coated with resin on the expandable polystyrene beads with polypropylene wax, polyethylene wax, and polystyrene.

이 기술은 알루미늄이 적외선을 반사하는 작용을 이용한 것인데, 알루미늄 분말이 고가 인 것에 비하여 단열성능 향상은 미약하고 공정이 복잡하여 경제성이 없어서 실용화되지 못하고 있다.This technology uses aluminum to reflect infrared rays. Compared to aluminum powder, which is expensive, the thermal insulation performance improvement is weak and the process is complicated and economical.

발포성 폴리스티렌 비드의 다른 취약점인 난연성 부족을 해결하기 위한 종래의 기술들은 아래와 같다.Conventional techniques for addressing the lack of flame retardancy, another vulnerability of effervescent polystyrene beads, are as follows.

한국특허공보 제1999-000001호(발명의 명칭 : 난연 폴리스티렌계 수지 및 그 제조방법)에는 폴리스티렌계 수지에 난연제로서 염소화 파라핀, 산화 안티몬, 열팽창성 흑연 등을 첨가하여 난연 폴리스티렌을 제조하는 방법이 개시되어 있다. Korean Patent Publication No. 1999-000001 (Invention name: flame retardant polystyrene resin and its manufacturing method) discloses a method for producing flame retardant polystyrene by adding chlorinated paraffin, antimony oxide, thermally expandable graphite, etc. as a flame retardant to polystyrene resin. It is.

한국공개특허 제1995018241호(발명의 명칭 : 비할로겐계 난연 폴리스티렌계 수지 및 그 제조방법)는 폴리스티렌 수지에 난연제로서 열팽창성 흑연, 적린, 고무 등을 혼합하여 가열하여 압출하는 제조방법이 개시되어 있다. Korean Patent Publication No. 1995018241 (name of the invention: non-halogen flame-retardant polystyrene resin and its manufacturing method) discloses a production method of heating and extruding a mixture of thermally expandable graphite, red phosphorus, rubber, etc. as a flame retardant to a polystyrene resin. .

한국공개특허 제2007-0043839호(발명의 명칭 : 폴리스티렌 발포체용 상승적 난연성 혼합물)는 유기브롬화합물을 난연제로 사용하고 난연제로 헥사브로모시클로도데칸을 사용하고 220℃로 용융 압출하는 방법이 개시되어 있다. Korean Laid-Open Patent Publication No. 2007-0043839 (name of the invention: synergistic flame retardant mixture for polystyrene foam) discloses a method of melt extrusion using an organic bromine compound as a flame retardant, using hexabromocyclododecane as a flame retardant, and at 220 ° C. have.

이러한 기술들은 공통적으로 폴리스티렌수지에 각종 유기 난연제, 흑연 등을 첨가하는 기술로, 이 기술들은 공통적으로 최종 물성이 안정적이지 못하며 연소시 유독가스가 발생하고 난연성 향상효과가 미약하다는 단점이 있다. These technologies are commonly used to add various organic flame retardants, graphite, etc. to the polystyrene resin, these techniques have the disadvantage that the final physical properties in common, the toxic gas is generated during combustion and the flame retardancy improvement is weak.

이러한 단점을 해결하기 위한 종래의 기술로 한국공개특허 제2006-0069721호(발명의 명칭 : 팽창흑연을 함유한 불연성 난연 폴리스티렌 발포체 수지입자의 제조방법)가 있다. 이 기술은 발포성 폴리스티렌 비드에 스팀을 가해 80배-130배로 1차 발포된 발포입자에 팽창흑연을 열경화성 페놀계 바인더로 코팅하고 적절히 유기난연제를 첨가하는 제조방법이다. Conventional technology for solving this disadvantage is Korea Patent Publication No. 2006-0069721 (name of the invention: a method for producing non-combustible flame retardant polystyrene foam resin particles containing expanded graphite). This technique is a method for manufacturing expanded graphite coated with a thermosetting phenolic binder on the first expanded foamed particles by applying steam to the expandable polystyrene beads by 80-130 times and adding an organic flame retardant as appropriate.

이 기술은 80배-130배로 확대된 엄청난 부피의 발포입자에 난연재료를 코팅하는 제조공정의 특징으로 인해 막대한 기계설비 비용이 요구되지만 생산성과 경제성이 부족함은 물론, 최종 제품의 품질이 균일하지 못하며, 난연성 향상효과가 미흡하고 성형이 어려운 단점이 있어 실용화 되지 못하고 있다.This technology requires enormous mechanical costs due to the manufacturing process of coating flame retardant materials on enormous volumes of expanded particles, which are expanded 80-130 times, but lacks productivity and economics, as well as inconsistent product quality. However, there is a disadvantage that the effect of improving the flame retardancy and the molding is difficult, so it has not been put to practical use.

이런 단점을 개선하려는 시도로 한국공개특허 제10-2007-0013367호(발명의 명칭 : 난연 스티로폼 및 그 제조방법)가 있으나 이 기술은 규산소다 용액에 규조토, 규석, 삼산화안티몬 등을 혼합 한 액체를 성형된 스티로폼에 주입하는 것이다. 이 기술은 주입된 액체의 건조가 잘 되지 않기 때문에 생산효율이 매우 저조한 문제점과, 스티로폼에 주입된 규산소다액과 각종 혼합물의 화학반응으로 시간이 지날수록 스티로폼이 산화하고 주입된 수분이 건조하면 난연성능이 소멸되는 단점이 있 다. In an attempt to remedy this drawback, there is a Korean Patent Publication No. 10-2007-0013367 (invention name: flame retardant styrofoam and its manufacturing method), but this technique is a solution of a mixture of diatomaceous earth, silica, antimony trioxide and the like in a sodium silicate solution It is injected into the molded styrofoam. This technology has a problem of poor production efficiency because the injected liquid does not dry well, and the styrofoam oxidizes over time due to chemical reaction of various mixtures of sodium silicate and various mixtures injected into Styrofoam and flame retardant when the injected water dries. The disadvantage is that performance is lost.

상기한 바와 같은 모든 종래 기술의 문제점을 해결하기 위한 기술로 본 발명자들에 의한 한국특허출원 제10-2006-131769호(발명의 명칭 : 난연성이 향상된 발포성 폴리스티렌 비드 및 이를 이용한 폴리스티렌 발포체 및 이들의 제조방법)를 들 수 있다.Korean Patent Application No. 10-2006-131769 by the inventors of the present invention as a technique for solving the problems of all the prior art as described above (inventive name: expandable polystyrene beads with improved flame retardancy and polystyrene foam using the same and their preparation Method).

이 기술은 발포성 폴리스티렌 비드에 아연분말을 0.5~50중량% 함유시킨 것으로 작업성이 매우 우수할 뿐만 아니라 난연성도 상당히 향상되었지만, 비교적 고가인 아연분말이 사용됨으로써 제품의 원가가 지나치게 상승하게 되는 문제점과, 난연성 향상을 위하여 아연분말을 많이 투입하는 경우에는 경량성이 저하되는 문제점을 가지고 있다.This technology contains 0.5 ~ 50% by weight of zinc powder in expandable polystyrene beads, which not only has excellent workability but also greatly improves flame retardancy. However, the use of relatively expensive zinc powder leads to excessive cost increase of the product. In the case where a large amount of zinc powder is added to improve the flame retardancy, there is a problem in that the weight is reduced.

본 발명은 상기한 바와 같은 문제점을 해결하기 위한 것으로, 단열성이 향상된 발포성 폴리스티렌(EPS) 비드를 제공하는 것을 목적으로 한다. 본 발명의 다른 목적은 입자들 간의 융착성이 우수한 발포성 폴리스티렌(EPS) 비드를 제공하는 것이다. 본 발명의 또 다른 목적은 난연성이 현저하게 향상된 발포성 폴리스티렌(EPS) 비드를 제공하는 것이다. 본 발명의 또 다른 목적은 단열성과 난연성이 동시에 향상된 발포성 폴리스티렌(EPS) 비드를 제공하는 것이다. 본 발명의 또 다른 목적은 작업성이 우수하고 원가가 저렴한 단열성 및 난연성이 향상된 발포성 폴리 스티렌(EPS) 비드를 제공하는 것이다.The present invention has been made to solve the above problems, and an object of the present invention is to provide an expandable polystyrene (EPS) beads with improved insulation. Another object of the present invention is to provide expandable polystyrene (EPS) beads having excellent adhesion between particles. It is yet another object of the present invention to provide expandable polystyrene (EPS) beads with significantly improved flame retardancy. It is still another object of the present invention to provide expandable polystyrene (EPS) beads having improved thermal insulation and flame retardancy. It is still another object of the present invention to provide expandable polystyrene (EPS) beads having excellent workability and low cost insulated and flame retardant.

본 발명의 발포성 폴리스티렌 비드는 난연제로 입경 1-50μm인 금속 또는 비금속 산화물, 금속 또는 비금속 수산화물, 규산염, 붕산염, 탄산염 중 선택된 1종 또는 2종 이상의 물질을 10~60중량% 함유하는 것을 특징으로 한다.The expandable polystyrene beads of the present invention are characterized by containing 10 to 60% by weight of one or two or more materials selected from metal or nonmetal oxides, metal or nonmetal hydroxides, silicates, borates and carbonates having a particle size of 1-50 μm as a flame retardant. .

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명에서 사용가능한 금속 산화물은 산화철(FeO), 3산화2철(Fe2O3), 4산화3철(Fe3O4), 산화알루미늄, 산화아연, 산화마그네슘 등 대부분의 금속산화물이 모두 사용 가능하다. 본 발명에서 사용가능한 비금속 산화물의 예로는, 산화칼슘(CaO), 붕산(H3BO3), 규사(SiO2) 등을 들 수 있다. As the metal oxide that can be used in the present invention, most metal oxides such as iron oxide (FeO), ferric trioxide (Fe2O3), ferric tetraoxide (Fe3O4), aluminum oxide, zinc oxide, and magnesium oxide can be used. Examples of the nonmetal oxides usable in the present invention include calcium oxide (CaO), boric acid (H 3 BO 3), silica sand (SiO 2), and the like.

사용가능한 금속 수산화물의 예로는 수산화마그네슘이나 수산화알루미늄을 들 수 있으며, 비금속 수산화물의 예로는 수산화칼슘을 들 수 있다.Examples of metal hydroxides that can be used include magnesium hydroxide and aluminum hydroxide, and examples of nonmetal hydroxides include calcium hydroxide.

사용가능한 규산염의 예로는 규산나트륨 건조물, 규조토 등을 들 수 있으며, 붕산염의 예로는 붕사를 들 수 있고, 탄산염의 예로는 탄산칼슘을 들 수 있다.Examples of the silicate that can be used include sodium silicate dried product, diatomaceous earth, and the like, examples of borate include borax and examples of carbonate include calcium carbonate.

본 발명에서 사용되는 상기 물질의 분말들은 효과를 향상시키기 위해서는 미세할수록 좋으며, 입경 1-50μm인 것이 적절하다. 분말의 적절한 함량은 10~60중량%, 보다 바람직하기로는 15~50중량%이다. 이 범위 미만의 경우에는 난연성 향상효과가 부족하며, 이 범위를 초과하더라도 난연성 향상효과는 미미한 반면 경량성이 저하되며, 제품의 원가가 지나치게 상승하게 된다.The powder of the material used in the present invention is finer the better to improve the effect, it is appropriate that the particle size of 1-50μm. Suitable content of the powder is 10 to 60% by weight, more preferably 15 to 50% by weight. If it is less than this range, the effect of improving the flame retardancy is insufficient, and even if it exceeds this range, the effect of improving the flame retardancy is insignificant while the lightness is lowered, and the cost of the product is excessively increased.

난연제를 발포성 폴리스티렌 비드에 포함시키는 방법은, 발포성 폴리스티렌 비드를 제조할 시에, 중합 전 또는 후에 난연제를 비드의 내부에 포함시키거나, 통상의 발포성 폴리스티렌 비드에 바인더를 이용하여 난연제를 코팅하는 방법을 취할 수 있다. 본 발명에서 발포폴리스티렌 비드의 중합 전 이라 함은 스티렌 단량체 중합 완료가 100% 되기 전을 말하는 것이다.The method of including the flame retardant in the expandable polystyrene beads includes a method of preparing the expandable polystyrene beads, including the flame retardant in the beads before or after the polymerization, or coating the flame retardant with a binder in a conventional expandable polystyrene beads. Can be taken. In the present invention, before the polymerization of the expanded polystyrene beads refers to before the completion of the styrene monomer polymerization is 100%.

난연제를 발포성 폴리스티렌 비드에 함유시키는 구체적인 방법은 본 발명자에 의한 한국공개특허 제10-2007-0080205호에 기재된 아래와 같은 방법을 이용할 수 있다.As a specific method of containing the flame retardant in the expandable polystyrene beads, the following method described in Korean Patent Laid-Open Publication No. 10-2007-0080205 by the present inventor can be used.

즉, (1) 스티렌을 중합하는 과정에서 스티렌 단량체의 중합이 90%이상 진행되어 입자가 겔화 될 때 분말을 포함 시키는 방법 (2)스티렌 중합이 90%이상 진행된 완결 전의 발포성 폴리스티렌 비드를 다른 반응기로 이송하는 도중에 분말을 스프레이 혼합 코팅하는 방법, (3)스티렌 중합 완료된 발포성 폴리스티렌 비드에 접착성 바인더와 혼합된 난연제를 분사하고 혼합함으로써 난연제가 발포성 폴리스티렌 비드에 코팅되도록 하는 방법 등을 적용할 수 있다.That is, (1) a method of including a powder when the polymerization of the styrene monomer proceeds to 90% or more in the process of polymerizing styrene to gel the particles. (2) the expanded polystyrene beads before completion of the polymerization of the styrene to 90% to another reactor It is possible to apply a method of spray mixing coating the powder during the transfer, (3) a method in which the flame retardant is coated on the expandable polystyrene beads by spraying and mixing the flame retardant mixed with the adhesive binder on the styrene polymerized expandable polystyrene beads.

상기 (1) 및 (2)의 방법으로는 통상적으로 난연제가 5중량% 이상 함유되기가 어려우며 아무리 많아도 10중량% 이상 함유될 수가 없다. 그 이유는 이 범위 이상 함유될 경우에는 얻어진 발포성 폴리스티렌 비드의 물성이 현격하게 저하되기 때문이다.In the method of (1) and (2), it is difficult to generally contain 5% by weight or more of flame retardant, and no matter how many, it may not be contained in 10% by weight or more. The reason is that when it is contained in this range or more, the physical properties of the obtained expandable polystyrene beads are significantly reduced.

따라서 원하는 수준의 난연도를 얻기 위해서는 상기 (1) 및 (2)의 방법을 취하는 경우에는 10중량%, 바람직하기로는 5중량% 이내의 난연제가 함유되도록 한 후 부족분은 상기 (3)의 방법을 통하여 보충하여야 한다.Therefore, in order to obtain a desired level of flame retardancy, when the method of (1) and (2) is taken, the flame retardant may be contained within 10% by weight, preferably 5% by weight, and then the deficiency may be reduced to the method of (3). Must be supplemented.

상기 (3)의 방법은 상기 (1) 및 (2)의 방법을 취하지 않더라도 바로 적용할 수가 있다. 즉 난연제가 함유되지 아니한 통상의 발포성 폴리스티렌비드에 난연제를 반복적으로 코팅함으로써 원하는 수준의 난연제를 함유시킬 수가 있는 것이다.The method of (3) can be applied immediately without taking the methods of (1) and (2). In other words, by repeatedly coating the flame retardant to the ordinary expandable polystyrene beads that do not contain a flame retardant can be contained a desired level of flame retardant.

이때 적절한 접착성 바인더의 투입량은 5~20중량%가 적절하며, 난연제를 발포성 폴리스티렌 비드 표면에 강하게 결합시킬 수 있으면 공지의 실리콘, 액상 규산소다, 유성 접착제, 수성 접착제, 열경화성 접착제, 열가소성 접착제 등을 선택적으로 또는 2종 이상 적절히 혼합하여 모두 사용 할 수 있다. 그러나 발포성 폴리스티렌 입자는 1차 발포시 80배 이상 팽창하므로 열가소성 접착제의 사용이 바람직하다. 또한 사용되는 접착제는 폴리스티렌과 유사한 연화점을 가지는 것이 바람직하다. 연화점의 차이가 큰 경우에는 1차 발포 시 코팅된 피막이 박리될 수 있기 때문이다.At this time, the suitable amount of the adhesive binder is 5 to 20% by weight, and if the flame retardant can be strongly bound to the surface of the expandable polystyrene bead, known silicone, liquid sodium silicate, oily adhesive, aqueous adhesive, thermosetting adhesive, thermoplastic adhesive, etc. Both may be used selectively or in combination of two or more kinds. However, the use of thermoplastic adhesives is preferred because the expandable polystyrene particles expand more than 80 times upon primary expansion. It is also preferred that the adhesive used has a softening point similar to polystyrene. If the difference in softening point is large, the coated film may be peeled off during the first foaming.

이 외에 스티로폼(EPS)을 톨루엔, MEK, 아세톤 등과 같은 유기용제를 단독 또는 혼합한 용제에 용해시킨 바인더를 사용하여 난연제를 발포성 폴리스티렌(EPS) 비드에 코팅할 수가 있다. 이와 같은 바인더를 사용하는 경우에는 바인더의 고형분이 발포성 폴리스티렌(EPS) 비드와 동일한 성분이므로 최종 제품의 물성에 악영향을 미치지 않을 뿐만 아니라, 수용성의 다른 접착성 바인더를 사용할 때보다 코팅시간이 단축되며, 또한 폐스티로폼을 녹여서 사용할 수 있으므로 폐자재를 재활용할 수 있다는 이점이 있다.In addition, a flame retardant may be coated on the expandable polystyrene (EPS) beads using a binder in which styrofoam (EPS) is dissolved in a solvent alone or mixed with an organic solvent such as toluene, MEK, acetone, or the like. In the case of using such a binder, since the solid content of the binder is the same as that of the expanded polystyrene (EPS) beads, the binder does not adversely affect the physical properties of the final product, and the coating time is shorter than when using the water-soluble adhesive binder. In addition, since the waste styrofoam can be used by melting, there is an advantage that the waste material can be recycled.

상기와 같은 방법들을 통하여 얻어진 발포성 폴리스티렌 비드는 융착성이 극 히 우수하다. 그 이유는 정확하게 알 수 없으나 발포 성형시 난연제 입자 인접하는 발포성 폴리스티렌 비드에 침투하게 되어 비드들은 서로 더욱 강하게 결합하기 때문으로 추측된다. 융착성의 향상에 의하여 얻어진 스티로폼은 단열성도 자연스럽게 증가된다.The expandable polystyrene beads obtained through the above methods are extremely excellent in adhesion. The reason for this is not known precisely, but it is presumed that the beads penetrate into the expandable polystyrene beads adjacent to the flame retardant particles during foam molding, so that the beads bind more strongly to each other. The styrofoam obtained by the improvement of the adhesiveness naturally increases the thermal insulation.

난연성을 더욱 증가시키기 위해서는 금속 분말을 적량 첨가할 수도 있다. 아연, 알루미늄 등이 난연제의 5~20중량% 범위에서 첨가될 경우에는 난연성을 더욱 상승시킬 수 있다.In order to further increase the flame retardancy, an appropriate amount of metal powder may be added. When zinc and aluminum are added in the range of 5 to 20% by weight of the flame retardant, the flame retardancy may be further increased.

난연성을 더욱 향상시키기 위한 다른 방법으로 난연제가 함유된 비드에 액상 규산나트륨으로 코팅하는 것을 들 수 있다. 이에 의하여 난연성은 더욱 향상된다. 다만 액상 규산나트륨은 내수성이 부족하므로 한국공개특허 제10-2006-0103056호 개시된 바와 같이 칼륨 또는 칼슘을 함유시켜 내수성을 향상시킨 것을 사용하는 것이 바람직하다. 규산나트륨계 바인더 단독을 코팅하여도 난연성 향상효과는 현격하지만, 이 바인더에 상기한 난연제를 혼합하여 코팅할 수도 있다. Another method for further improving flame retardancy is to coat the flame retardant-containing beads with liquid sodium silicate. This further improves flame retardancy. However, since the liquid sodium silicate lacks water resistance, it is preferable to use a potassium or calcium-containing one to improve water resistance as disclosed in Korean Patent Laid-Open Publication No. 10-2006-0103056. Although the effect of improving flame retardancy is remarkable even when the sodium silicate-based binder is coated alone, the above flame retardant may be mixed and coated.

본 발명은 발포성 폴리스티렌 비드뿐만 아니라, 발포폴리프로필렌(EPP) 입자에도 적용할 수가 있다. 발포폴리프로필렌(EPP) 입자는 발포성 폴리스티렌 비드와는 달리 미리 발포된 입자인데 여기에 본 발명에서와 같이 난연제를 입자 표면에 코팅하여도 발포성 폴리스티렌 비드와 마찬가지로 난연성을 향상시킬 수 있다.The present invention can be applied not only to expandable polystyrene beads but also to expanded polypropylene (EPP) particles. Effervescent polypropylene (EPP) particles are pre-foamed particles, unlike expanded polystyrene beads, and, as in the present invention, even if the flame retardant is coated on the particle surface, the flame retardancy can be improved similarly to the expanded polystyrene beads.

상기와 같은 공정을 통하여 얻어지는 본 발명의 발포성 폴리스티렌 비드는 대형 코팅설비, 대형 건조설비 등과 같은 대형 설비가 추가로 요구되었던 종래의 기술들과는 달리, 통상의 스티로폼 제조설비를 그대로 활용하여 성형체를 생산할 수 있다.The expandable polystyrene beads of the present invention obtained through the process as described above can be produced by utilizing the conventional styrofoam manufacturing equipment as it is, unlike the conventional techniques in which large equipment such as large coating equipment, large drying equipment, etc. were additionally required. .

본 발명에 의하여 원가상승의 부담이 별로 없으면서 생산성과 난연성이 향상된 스티로폼을 얻을 수 있게 되었다. 이에 따라 스티로폼은 건축물 외장재로는 물론 건축물 내장재로도 사용이 가능하게 되었다.According to the present invention, it is possible to obtain styrofoam having improved productivity and flame retardancy without much burden of cost increase. As a result, Styrofoam can be used not only as a building exterior material but also as a building interior material.

또한 본 발명에 의하여 스티로폼의 난연성이 자유롭게 조절될 수 있으므로 방화문, 선박 또는 비행기의 단열재 등과 같이 고도의 난연성이 요구되는 분야에도 효과적으로 적용될 수가 있다. In addition, since the flame retardancy of the styrofoam can be freely adjusted by the present invention, it can be effectively applied to a field requiring a high flame retardancy such as a fire door, a ship or a plane insulation.

이 외에, 미세한 입자인 발포성 폴리스티렌 비드에 직접 난연제를 함유시킴으로써 1차 발포된 입자에 난연제를 코팅시키는 종래의 기술에 비하여 생산에 소요되는 설비를 현격하게 소형화 할 수 있으며, 화재 시 유독가스를 발생하는 유기 난연제를 전혀 사용하지 않고도 원하는 난연성을 얻을 수 있게 되었다.In addition, by incorporating a flame retardant directly into the expanded polystyrene beads, which are fine particles, it is possible to significantly downsize the equipment required for production compared to the conventional technique of coating the flame retardant on the primary foamed particles, and to generate toxic gas in case of fire. The desired flame retardancy can be achieved without using any organic flame retardant.

본 발명의 실시예는 아래와 같다.An embodiment of the present invention is as follows.

(비교예 1)(Comparative Example 1)

발포성 폴리스티렌 비드 100Kg과 3산화제2철 분말 5Kg을 교반기에 넣고 교반한 다음, 톨루엔에 폐스티로폼을 용해시켜 고형분 함량이 20%가 되도록 조절한 한 바인더 2Kg을 스프레이 분사하며, 30-60rpm으로 15분간 교반하면서 40℃의 열풍으로 건조시켜 3산화제2철이 코팅된 발포성 폴리스티렌 비드를 얻었다. 입자들이 서로 엉켜 붙는 것을 방지하기 위하여 교반시 교반기에 직경 50mm 전후의 엉킴 방지용 플라스틱 볼을 50개 투입하여 코팅 과정 중에 발포성 폴리스티렌 입자가 서로 엉기는 것을 방지하였다. 100Kg of expandable polystyrene beads and 5Kg of ferric trioxide powder were added to the stirrer and stirred, and then sprayed with 2Kg of a binder adjusted to dissolve waste styrofoam in toluene so that the solid content was 20%, and stirred at 30-60 rpm for 15 minutes. Drying was carried out with hot air at 40 ° C. to obtain expandable polystyrene beads coated with ferric trioxide. In order to prevent the particles from entangled with each other, 50 entangled plastic balls having a diameter of about 50 mm were added to the stirrer at the time of stirring to prevent the expanded polystyrene particles from tangling with each other during the coating process.

코팅된 발포성 폴리스티렌(EPS) 비드를 100~105℃ 온도의 스팀으로 1차 발포 후, 성형틀에 넣고 2차 발포, 성형하는 통상의 비드법으로 스티로폼을 얻었다. 얻어진 스티로폼의 색상은 옅은 적색이었으며, 각 입자들 간의 융착성이 극히 우수하였고, 불이 잘 붙지 않는 정도의 난연성이 발현되었으나 KSF ISO5660-1 연소성능시험 “건축물 내부 마감재료의 난연성능 시험방법”에서 규정하고 있는 난연 3급 재료 기준에는 부족하였다. The coated foamed polystyrene (EPS) beads were first foamed with steam at a temperature of 100 to 105 ° C., and then, styrofoam was obtained by a conventional bead method in which the foamed polystyrene (EPS) beads were placed in a molding mold and subjected to secondary foaming and molding. The color of the styrofoam obtained was pale red, and the adhesion between the particles was extremely good, and the flame retardancy of the fire was not easily observed. The fire retardant class 3 material standard is insufficient.

(실시예 1)(Example 1)

비교예1과 동일하게 시행하되 1차 코팅 후 아연분말 5Kg, 규조토분말 10Kg, 수산화마그네슘 분말 15Kg을 추가 투입하여 바인더를 스프레이 하면서 교반하여 금속, 금속산화물, 규조토가 코팅된 비드를 얻었다. 이 비드로 제조된 스티로폼의 색상은 실시예1과 유사한 옅은 적색이었으며, 역시 각 입자들 간의 융착성이 매우 우수하였다. 난연성이 향상되어 양면에 0.8mm 철판을 부착하여 시험한 결과 난연3급 재료 기준을 통과하였다.In the same manner as in Comparative Example 1, after the first coating, zinc powder 5Kg, diatomaceous earth powder 10Kg, magnesium hydroxide powder 15Kg was further added and stirred while spraying a binder to obtain beads coated with metal, metal oxide and diatomaceous earth. The color of the styrofoam prepared from the beads was pale red, similar to that of Example 1, and was also excellent in adhesion between the particles. The flame retardancy was improved, and the test was carried out by attaching 0.8 mm iron plate on both sides, and passed the flame retardant grade 3 material standard.

(실시예 2)(Example 2)

실시예1과 동일하게 시행하되, 1차 코팅 후 건조 규산소다 분말 15Kg을 투입하고 바인더를 스프레이 하면서 다시 교반하여 2차 코팅을 행하였다. 이 발포성 폴리스티렌 비드로 성형하여 얻어진 스티로폼의 색상은 실시예1과 유사한 적색이었으나, 융착성이 양호하였으며, 난연성이 우수하여 양면에 0.5mm 철판을 부착하여 난연시험을 한 결과 난연 3급 기준을 통과하였다.In the same manner as in Example 1, 15 Kg of dry sodium silicate powder was added after the primary coating, and the secondary coating was performed by stirring again while spraying a binder. The color of the styrofoam obtained by molding with the expandable polystyrene beads was red similar to that of Example 1, but the adhesion was good and the flame retardancy was excellent. .

(비교예 2)(Comparative Example 2)

비교예 1과 동일하게 시행하되 바인더를 수용성 초산비닐수지(고형분 함량 20중량%)로 대체하였다. 코팅된 입자로 성형하여 얻어진 스티로폼의 색상은 비교예1과 유사한 옅은 적색이었으며, 각 입자들 간의 융착성은 양호하였으나 실시예1보다는 다소 저하되었다. 난연성은 통상의 스티로폼보다는 증가하였으나 난연 3급 기준에는 미치지 못하였다.In the same manner as in Comparative Example 1, the binder was replaced with a water-soluble vinyl acetate resin (solid content 20% by weight). The color of the styrofoam obtained by molding into coated particles was pale red, similar to Comparative Example 1, and the adhesion between the particles was good, but was slightly lower than that of Example 1. Flame retardancy was higher than that of ordinary styrofoam, but did not meet the standard of flame retardant class 3.

(비교예 3)(Comparative Example 3)

비교예 1과 동일하게 시행하되 산화철 분말 대신에 알루미늄 분말을 사용하였다. 얻어진 입자로 제조된 스티로폼의 난연성은 통상의 스티로폼 보다는 약간 향상되었으나 비교예1에 의하여 얻어진 것보다는 부족하였다.In the same manner as in Comparative Example 1, aluminum powder was used instead of iron oxide powder. The flame retardancy of the styrofoam prepared from the obtained particles was slightly improved than that of ordinary styrofoam, but was insufficient than that obtained by Comparative Example 1.

(실시예 3)(Example 3)

실시예 1과 동일하게 시행하되, 아연 분말 대신에 장석분말(SiO2 90%이상)을 사용하였다. 2차 코팅된 입자로 제조된 스티로폼의 물성은 실시예1에 의하여 얻어진 것과 유사하였다.In the same manner as in Example 1, feldspar powder (SiO 2 90% or more) was used instead of zinc powder. The physical properties of the styrofoam prepared from the secondary coated particles were similar to those obtained in Example 1.

(비교예 4)(Comparative Example 4)

비교예 1과 동일하게 시행하되, 3산화2철 대신에 흑색의 4산화3철을 사용하였다. 얻어진 입자로 성형된 스티로폼은 입자들 간의 융착성은 비교예1보다 다소 향상되었으며, 외관이 옅은 흑색인 것을 제외하고 기타 물성은 비교예1에 의하여 얻어진 것과 유사하였다. In the same manner as in Comparative Example 1, black ferric tetraoxide was used instead of ferric trioxide. The styrofoam formed from the obtained particles had somewhat improved adhesion between the particles, and the physical properties were similar to those obtained by the comparative example 1 except that the appearance was light black.

(실시예 3)(Example 3)

실시예 2에 의하여 얻어진 입자에 붕사 5Kg을 투입하여 추가로 코팅하였다. 얻어진 입자로 성형된 스티로폼은 입자들 간의 융착성이 우수하였으며 실시예2에 의하여 얻어진 것보다 난연성이 향상 되었다. 5 Kg of borax was added to the particles obtained in Example 2 and further coated. The styrofoam formed from the obtained particles had excellent fusion between the particles and improved flame retardancy than those obtained by Example 2.

(실시예 4)(Example 4)

실시예 2에 의하여 얻어진 입자에, 고형분 함량이 35%인 액상의 칼륨계 규산소다 20Kg으로 추가 코팅을 하였다. 얻어진 입자로 성형된 스티로폼은 입자들 간의 융착성이 우수하였으며 실시예2에 의하여 얻어진 것보다 난연성이 향상되어 양면에 0.5mm 철판을 부착하여 난연시험을 한 결과 난연 2급 재료 시험 기준을 통과하였 다.The particles obtained in Example 2 were further coated with 20 Kg of liquid potassium sodium silicate having a solid content of 35%. The styrofoam formed from the obtained particles had excellent adhesion between the particles and improved flame retardancy than that obtained in Example 2, and the flame retardant test was carried out by attaching 0.5 mm iron plate on both sides, and passed the flame retardant class 2 material test standard. .

(비교예 5)(Comparative Example 5)

폴리스티렌 2.5Kg을 스티렌 17Kg 중에 용해시키고 평균입경이 10μm인 수산화마그네슘 분말 1Kg을 첨가하고 디큐밀 퍼옥사이드 60g 및 디벤조일 퍼옥사이드 20g을 첨가하여 용액 중에 균일하게 첨가하였다. 유기상을 50L 교반 용기에서 탈이온수 20L에 혼입시키고, 펜탄 200g을 현탁액으로 첨가 후 80℃로 가열하였다. 150분 후 유화제 K 30/40(바이엘 AG) 3.5g을 첨가하였다. 30분 후 펜탄 1190g을 추가로 첨가하고 135℃에서 중합을 완결하였다. 수성상을 분리하여 평균 직경 0.87mm인 비드를 얻었다.2.5 Kg of polystyrene was dissolved in 17 Kg of styrene, 1 Kg of magnesium hydroxide powder having an average particle diameter of 10 µm was added, and 60 g of dicumyl peroxide and 20 g of dibenzoyl peroxide were added uniformly in the solution. The organic phase was incorporated into 20 L deionized water in a 50 L stirred vessel and 200 g of pentane was added as a suspension and then heated to 80 ° C. After 150 minutes 3.5 g of emulsifier K 30/40 (Bayer AG) were added. After 30 minutes additional 1190 g of pentane were added and the polymerization was completed at 135 ° C. The aqueous phase was separated to give beads having an average diameter of 0.87 mm.

얻어진 비드로 성형한 스티로폼은 난연성이 통상의 스티로폼보다는 향상되었으나 난연 3급 기준에는 미치지 못하였다. 융착성도 통상의 스티로폼 보다 다소 부족하였다.Styrofoam molded from the beads obtained was improved in flame retardancy than conventional styrofoam, but did not meet the flame retardant class 3 standards. Adhesiveness was also somewhat lacking than conventional styrofoam.

(실시예 5)(Example 5)

비교예 5에 의하여 얻어진 입자에 실시예 1과 같은 공정의 코팅을 추가로 행하여 코팅된 비드를 얻었으며, 얻어진 비드로 성형한 스티로폼은 난연 3급의 기준을 통과하였다. 융착성은 비교예 2의 경우와 비슷하였다.The particles obtained in Comparative Example 5 were further subjected to the coating of the same process as in Example 1 to obtain coated beads, and the styrofoam formed from the obtained beads passed the flame retardant class 3 standard. Adhesiveness was similar to the case of the comparative example 2.

(실시예 6)(Example 6)

실시예 5와 동일하게 시행하되, 추가 코팅 공정에서 난연제를 탄산칼슘으로 대체하였다. 얻어진 입자로 성형한 스티로폼의 난연성과 융착성은 실시예 5의 경우와 비슷하였다.The same procedure as in Example 5 was carried out except that the flame retardant was replaced with calcium carbonate in a further coating process. The flame retardancy and adhesion of the styrofoam molded into the obtained particles were similar to those in Example 5.

(실시예 7)(Example 7)

실시예 5와 동일하게 시행하되, 추가 코팅 공정에서 수산화마그네슘과 규조토를 탈크로 대체하였다. 얻어진 입자로 성형한 스티로폼의 난연성과 융착성은 실시예 5의 경우와 비슷하였다.The same procedure as in Example 5 was carried out except that magnesium hydroxide and diatomaceous earth were replaced with talc in a further coating process. The flame retardancy and adhesion of the styrofoam molded into the obtained particles were similar to those in Example 5.

(실시예 8)(Example 8)

실시예 5와 동일하게 시행하되, 추가 코팅 공정에서 붕산을 추가 코팅 하였다. 얻어진 입자로 성형한 스티로폼의 난연성과 융착성은 실시예 5보다 향상 되었다. In the same manner as in Example 5, in the additional coating process was further coated with boric acid. The flame retardancy and adhesion of the styrofoam formed from the obtained particles were improved from those of Example 5.

Claims (16)

난연성 발포성 폴리스티렌 입자에 있어서, 유기용제를 포함한 바인더의 존재하에, 난연제로 입경 1~50μm인 산화철, 3산화제2철, 4산화제3철, 산화알루미늄, 산화아연 및 산화마그네슘 중에서 선택되는 금속산화물, 산화칼슘, 붕산염 및 규사 중에서 선택되는 비금속 산화물, 수산화마그네슘 및 수산화알루미늄 중에서 선택되는 금속 수산화물, 규산나트륨 건조물 및 규조토 중에서 선택된 1종 또는 2종 이상의 분말이 입자의 외부에 10~60중량% 코팅된 발포성 폴리스티렌(EPS) 비드.In the flame-retardant foamable polystyrene particles, in the presence of a binder containing an organic solvent, a metal oxide selected from iron oxide, ferric trioxide, ferric tetraoxide, aluminum oxide, zinc oxide and magnesium oxide, oxides having a particle diameter of 1 to 50 μm as a flame retardant Expandable polystyrene coated with 10 to 60% by weight of one or two or more powders selected from nonmetal oxides selected from calcium, borate and silica sand, metal hydroxides selected from magnesium hydroxide, aluminum hydroxide and dried diatomaceous earth and diatomaceous earth (EPS) Beads. 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 발포성 폴리스티렌 입자의 표면에 난연제로 입경 1~50μm인 산화철, 3산화제2철, 4산화제3철, 산화알루미늄, 산화아연 및 산화마그네슘 중에서 선택되는 금속산화물, 산화칼슘, 붕산염 및 규사 중에서 선택되는 비금속 산화물, 수산화마그네슘 및 수산화알루미늄 중에서 선택되는 금속 수산화물, 규산나트륨 건조물 및 규조토 중에서 선택된 1종 또는 2종 이상의 분말을 유기용제를 포함한 바인더의 존재하에 10~60중량% 코팅하는 것을 특징으로 하는 발포성 폴리스티렌 입자의 제조방법.Non-metal oxide selected from metal oxides selected from iron oxide, ferric trioxide, ferric tetraoxide, aluminum oxide, zinc oxide and magnesium oxide selected from the group consisting of flame retardants on the surface of the expandable polystyrene particles, calcium oxide, borate and silica Of expanded polystyrene particles, characterized in that 10 to 60% by weight of one or two or more powders selected from metal hydroxides selected from magnesium hydroxide and aluminum hydroxide, dried silicate and diatomaceous earth in the presence of a binder containing an organic solvent. Manufacturing method. 삭제delete 삭제delete 삭제delete 삭제delete 제11항에 있어서, 코팅 완료된 발포성 폴리스티렌 입자에 액상 규산소다 용액으로 추가로 코팅하는 것을 특징으로 하는 발포성 폴리스티렌 입자의 제조방법.12. The method of claim 11, wherein the coated expanded polystyrene particles are further coated with a liquid sodium silicate solution.
KR1020080036013A 2007-05-14 2008-04-18 Expandable polystyrene particles with improved thermal insulation and flame retardancy and manufacturing method KR100927667B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010510197A JP2010536941A (en) 2007-05-30 2008-05-08 Expandable polystyrene beads having excellent heat insulation and flame retardancy and method for producing the same
EP08753387A EP2158258A4 (en) 2007-05-30 2008-05-08 Expandable polystyrene bead with superior adiabatic and flameproof effect and method for producing the same
PCT/KR2008/002591 WO2008147056A1 (en) 2007-05-30 2008-05-08 Expandable polystyrene bead with superior adiabatic and flameproof effect and method for producing the same
CN200880017777A CN101796114A (en) 2007-05-30 2008-05-08 Expandable polystyrene bead with superior adiabatic and flameproof effect and method for producing the same
US12/602,364 US20100204350A1 (en) 2007-05-30 2008-05-08 Expandable polystyrene bead with superior adiabatic and flameproof effects and method of producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20070046561 2007-05-14
KR1020070046561 2007-05-14
KR20070052448 2007-05-30
KR1020070052448 2007-05-30

Publications (2)

Publication Number Publication Date
KR20080100763A KR20080100763A (en) 2008-11-19
KR100927667B1 true KR100927667B1 (en) 2009-11-20

Family

ID=40287185

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080036013A KR100927667B1 (en) 2007-05-14 2008-04-18 Expandable polystyrene particles with improved thermal insulation and flame retardancy and manufacturing method

Country Status (1)

Country Link
KR (1) KR100927667B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069845A1 (en) * 2011-11-11 2013-05-16 제일모직 주식회사 Expanded polystyrene having high thermal conductivity and workability, manufacturing method thereof, and foam formed thereby
WO2013094800A1 (en) * 2011-12-20 2013-06-27 제일모직 주식회사 Outstandingly thermally insulating and flame retardant expandable polystyrene, production method for same and expanded object formed from same
KR101300627B1 (en) * 2012-09-17 2013-08-28 김재천 Surface modification by low-temperature plasma treatment expandable polystyrene resin particle fabrication method
KR101479203B1 (en) * 2013-06-07 2015-01-05 이무진 Composition for inorganic coating and method for producing thereof
KR20160076282A (en) 2014-12-22 2016-06-30 김민규 Incombustible insulation materials using expanded polystyrene beads and manufacturing method thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101028523B1 (en) * 2009-05-19 2011-04-11 남가연 High insulation foamable polystyrene particles and method for producing same
KR101034033B1 (en) * 2011-03-04 2011-05-11 주식회사 엠씨엠그룹 Non-flammable coating composite for expanded polystyrene
KR101481861B1 (en) * 2012-06-11 2015-01-12 이철희 Method for manufacturing frame-retardant expanded poly-styrene board using the same
CN103664092B (en) * 2012-09-06 2017-05-31 上海圣奎塑业有限公司 A kind of rubber powder material, glue powder polyphenyl particle, insulation material and preparation method thereof
KR101489087B1 (en) 2013-08-27 2015-02-04 주식회사 에스에이치에너지화학 Expandable polystyrene beads having thermal insulation property and method for fabricating thereof
KR101431484B1 (en) * 2013-10-23 2014-08-21 박광식 Frame retardant coating method for polystyrene foam beads

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5110837A (en) * 1990-11-26 1992-05-05 Basf Corporation Process for making molded polymeric product with multipass expansion of polymer bead with low blowing agent content
KR100650544B1 (en) * 2006-02-09 2006-11-28 주식회사 경동세라텍 The organic foaming plastic body that has good thermal resistance and good durability

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5110837A (en) * 1990-11-26 1992-05-05 Basf Corporation Process for making molded polymeric product with multipass expansion of polymer bead with low blowing agent content
KR100650544B1 (en) * 2006-02-09 2006-11-28 주식회사 경동세라텍 The organic foaming plastic body that has good thermal resistance and good durability

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069845A1 (en) * 2011-11-11 2013-05-16 제일모직 주식회사 Expanded polystyrene having high thermal conductivity and workability, manufacturing method thereof, and foam formed thereby
WO2013094800A1 (en) * 2011-12-20 2013-06-27 제일모직 주식회사 Outstandingly thermally insulating and flame retardant expandable polystyrene, production method for same and expanded object formed from same
KR101300627B1 (en) * 2012-09-17 2013-08-28 김재천 Surface modification by low-temperature plasma treatment expandable polystyrene resin particle fabrication method
KR101479203B1 (en) * 2013-06-07 2015-01-05 이무진 Composition for inorganic coating and method for producing thereof
KR20160076282A (en) 2014-12-22 2016-06-30 김민규 Incombustible insulation materials using expanded polystyrene beads and manufacturing method thereof

Also Published As

Publication number Publication date
KR20080100763A (en) 2008-11-19

Similar Documents

Publication Publication Date Title
KR100927667B1 (en) Expandable polystyrene particles with improved thermal insulation and flame retardancy and manufacturing method
US20100204350A1 (en) Expandable polystyrene bead with superior adiabatic and flameproof effects and method of producing the same
AU2006283919B2 (en) Method for producing foamed slabs
CA2621731A1 (en) Method for producing foam plates
US20080230956A1 (en) Process for Producing Foam Boards
KR101977804B1 (en) Insulating material for outer wall and process for preparing the same
US20100032856A1 (en) Coated foam beads and process for producing halogen-free, fire-resistant bead foam moldings
KR100799282B1 (en) Manufacturing method of non flammable expanded polystyrene block molding product and shape molding product
KR101028523B1 (en) High insulation foamable polystyrene particles and method for producing same
WO2011085531A1 (en) Flame retardant polymeric foam material and manufacturing method thereof
AU2008300762A1 (en) Coating composition for foam particles, and method for the production of molded foam bodies
KR101096798B1 (en) Expandable polystyrene bead and method for preparing the same
CN101985505A (en) Inorganic powder modified expandable polystyrene particles
CN105175918B (en) A kind of polyphenylacetylene combination and its obtained heat-insulating composite panel
KR20100120088A (en) Expandable polystyrene bead with fireproofing property, the manufacturing method thereof and nonflammable styropor producing the same bead
KR101093995B1 (en) Flame-retardant expanded polystyrene bead manufacturing method
KR100878775B1 (en) Polystrene foam bead improved its incombustibility and polystyrene foam using thereof and method for producing the same
KR101584133B1 (en) Expanded articles using different types of expanded particles and process for producing the same
KR101345148B1 (en) Expandable polystyrene beads having chlorinated paraffin and the manufacturing method thereof
CN105175919A (en) Polystyrene composition, and flame retardation and heat insulation composite board produced by using composition
NL2033077B1 (en) Expanded polymer foam particle
KR20130066455A (en) High insulation flame-retardant expanded polystyrene bead manufacturing method
KR101667267B1 (en) Producing method of anticombustible adiabatic panel
US20080248198A1 (en) Method for Producing Foam Plates
KR20180041780A (en) A method for producing fire resistant foamed polyethylene block coated with aluminum film

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
AMND Amendment
N231 Notification of change of applicant
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121105

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20131028

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee