KR100917778B1 - High dense sintered body of aluminium nitride, method for preparing the same and member for manufacturing semiconductor using the sintered body - Google Patents

High dense sintered body of aluminium nitride, method for preparing the same and member for manufacturing semiconductor using the sintered body Download PDF

Info

Publication number
KR100917778B1
KR100917778B1 KR1020050033729A KR20050033729A KR100917778B1 KR 100917778 B1 KR100917778 B1 KR 100917778B1 KR 1020050033729 A KR1020050033729 A KR 1020050033729A KR 20050033729 A KR20050033729 A KR 20050033729A KR 100917778 B1 KR100917778 B1 KR 100917778B1
Authority
KR
South Korea
Prior art keywords
aluminum nitride
sintered body
nitride sintered
sintering
volume resistivity
Prior art date
Application number
KR1020050033729A
Other languages
Korean (ko)
Other versions
KR20060111279A (en
Inventor
안형석
이민우
이성민
Original Assignee
주식회사 코미코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 코미코 filed Critical 주식회사 코미코
Priority to KR1020050033729A priority Critical patent/KR100917778B1/en
Publication of KR20060111279A publication Critical patent/KR20060111279A/en
Application granted granted Critical
Publication of KR100917778B1 publication Critical patent/KR100917778B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • C04B35/505Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/0072Heat treatment

Abstract

본 발명에서는 질화알루미늄의 회절피크강도에 대한 마그네슘알루미네이트(스피넬)의 회절피크강도의 비율이 0.1~10%이며, 상온에서의 체적저항율이 1×1015 Ω·cm 이상이고 상대밀도가 99% 이상인 것을 특징으로 하는 치밀질 질화알루미늄 소결체, 그 제조 방법 및 상기 소결체를 이용한 반도체 제조용 부재를 제공한다. 또한, 본 발명에서는 소결전 질화알루미늄 소결체용 분말이 산화이트륨 0.1~15wt% 및 산화마그네슘 0.1~10wt%를 포함하며, 소결 후 상온에서의 체적저항율이 1×1015 Ω·cm 이상이고 상대밀도가 99% 이상인 것을 특징으로 하는 치밀질 질화알루미늄 소결체, 그 제조 방법 및 상기 소결체를 이용한 반도체 제조용 부재를 제공한다. 본 발명에 따른 치밀질 질화알루미늄 소결체는 우수한 누설전류 특성과 충분한 흡착력, 양호한 탈착특성을 가지며 열전도율도 우수하여 특히 쿨롱형 정전척과 같이 높은 체적저항특성이 요구되는 반도체 제조용 부재에 적용될 수 있다.In the present invention, the ratio of the diffraction peak strength of magnesium aluminate (spinel) to the diffraction peak strength of aluminum nitride is 0.1 to 10%, the volume resistivity at room temperature is 1 × 10 15 Pa · cm and the relative density is 99%. Provided are a dense aluminum nitride sintered compact, a method for manufacturing the same, and a member for manufacturing a semiconductor using the sintered compact. In addition, in the present invention, the powder for aluminum nitride sintered body before sintering contains 0.1 to 15 wt% of yttrium oxide and 0.1 to 10 wt% of magnesium oxide, and the volume resistivity at room temperature after sintering is 1 × 10 15 Pa · cm and the relative density is Provided are a dense aluminum nitride sintered body, a method of manufacturing the same, and a member for semiconductor production using the sintered body, which is 99% or more. The dense aluminum nitride sintered body according to the present invention has excellent leakage current characteristics, sufficient adsorption power, good desorption characteristics, and excellent thermal conductivity, and thus can be applied to a semiconductor manufacturing member that requires high volume resistivity, such as a coulomb type electrostatic chuck.

치밀질질화알루미늄소결체, 체적저항율, 상대밀도, 쿨롱형정전척, 스피넬 Dense aluminum nitride sintered body, volume resistivity, relative density, coulomb type electrostatic chuck, spinel

Description

치밀질 질화알루미늄 소결체, 그 제조 방법 및 상기 소결체를 이용한 반도체 제조용 부재{High dense sintered body of aluminium nitride, method for preparing the same and member for manufacturing semiconductor using the sintered body}High-density sintered body of aluminum nitride, method for preparing the same and member for manufacturing semiconductor using the sintered body

도 1은 본 실시예1 및 2에 따른 질화알루미늄 소결체의 인가전계 변화에 따른 체적저항율 변화를 보여주는 그래프이다. 1 is a graph showing the change in volume resistivity according to the applied electric field of the aluminum nitride sintered bodies according to the first and second embodiments.

도 2는 본 실시예4에 따른 질화알루미늄 소결체의 X선 회절 분석 결과를 나타내는 그래프이다. 2 is a graph showing the results of X-ray diffraction analysis of the aluminum nitride sintered body according to the fourth embodiment.

본 발명은 치밀질 질화알루미늄 소결체, 그 제조 방법 및 상기 소결체를 이용한 반도체 제조용 부재에 관한 것이다.The present invention relates to a dense aluminum nitride sintered body, a method for producing the same, and a member for manufacturing a semiconductor using the sintered body.

질화알루미늄(AlN, Aluminium Nitride)을 주재로 하는 재료는 우수한 열전도도 및 절연성을 가지므로 반도체 제조 공정 중 웨이퍼를 고정시키는 정전척이나 또는 CVD 공정 등에서 웨이퍼를 고정시키면서 동시에 가열하는 반도체 제조용 히터 등에 주로 이용된다.Materials based on aluminum nitride (AlN) have excellent thermal conductivity and insulation properties, so they are mainly used for electrostatic chucks that hold wafers during semiconductor manufacturing processes, or heaters for semiconductor manufactures that simultaneously hold wafers in CVD processes. do.

그 중 정전척은 정전기력을 이용하여 웨이퍼를 고정시키는 것으로서 흡착방법에 따라서 존슨-라벡(Johnsen-Rahbek)형 정전척 및 쿨롱(Coulomb)형 정전척으로 나누어진다.Among them, the electrostatic chuck is used to fix the wafer by using electrostatic force. The electrostatic chuck is classified into a Johnson-Rahbek type electrostatic chuck and a Coulomb type electrostatic chuck according to an adsorption method.

존슨-라벡형 정전척은 일반적으로 1×109~1×1012 Ω·cm 정도의 낮은 체적저항특성을 지니며, 낮은 체적저항특성으로 인하여 유전체의 웨이퍼 흡착면에 전하들이 충전되고 이러한 표면전하들의 정전기적 인력을 통하여 웨이퍼가 고정된다.Johnson-Lavec type electrostatic chucks generally have a low volume resistivity of 1 × 10 9 to 1 × 10 12 Ω · cm, and the low volume resistivity causes charges to be charged on the wafer adsorption surface of the dielectric and these surface charges The wafers are fixed through their electrostatic attraction.

종래의 질화알루미늄 재료는 체적저항율과 상대밀도가 낮았으므로 상기한 바와 같이 체적저항특성이 낮은 존슨-라벡형 정전척에 주로 이용될 수 밖에 없었다. Since the conventional aluminum nitride material has low volume resistivity and relative density, it has to be mainly used for Johnson-Labet type electrostatic chucks with low volume resistivity characteristics as described above.

그러나, 존슨-라벡형 정전척은 누설전류가 크며, 또한, 직류 전압의 인가를 중지한 후에도 정전척 표면에 남아있는 전하들로 인하여 웨이퍼의 탈착이 양호하지 않다는 문제점이 있다.However, the Johnson-Labeck type electrostatic chuck has a large leakage current, and there is a problem in that the detachment of the wafer is not good due to the charges remaining on the surface of the electrostatic chuck even after the application of the DC voltage is stopped.

한편, 쿨롱형 정전척은 유전체 상하면에 존재하는 서로 다른 전하를 가지는 입자들 간의 정전기적인 인력을 이용하여 웨이퍼를 고정하는 것으로서 유전체의 체적저항값이 1×1015 Ω·cm 이상이어야만 누설전류가 작고 웨이퍼 탈착 성능이 우수하다.Coulomb-type electrostatic chucks are used to fix wafers by using electrostatic attraction between particles with different charges on the upper and lower surfaces of the dielectric. The leakage current is small when the volume resistivity of the dielectric is 1 × 10 15 Ω · cm or more. Excellent wafer desorption performance.

그러므로, 존슨-라벡형 정전척 뿐만 아니라 쿨롱형 정전척과 같은 높은 체적저항특성이 요구되는 반도체 제조용 부재에도 적용될 수 있는 질화알루미늄 재료가 요구된다.Therefore, there is a need for an aluminum nitride material that can be applied not only to Johnson-Lavec type electrostatic chucks but also to semiconductor manufacturing members that require high volume resistivity, such as coulomb type electrostatic chucks.

따라서, 본 발명은 상기와 같은 문제점과 요구를 해결하기 위하여 안출된 것으로, 본 발명의 목적은, 우수한 누설전류 특성과 충분한 흡착력, 양호한 탈착특성을 가지며 열전도율도 우수하여 존슨-라벡형 정전척 뿐만 아니라 쿨롱형 정전척과 같이 높은 체적저항특성이 요구되는 반도체 제조용 부재에도 적용될 수 있는, 치밀질 질화알루미늄 소결체, 그 제조 방법 및 상기 소결체를 이용한 반도체 제조용 부재를 제공하는 것이다.Accordingly, the present invention has been made to solve the above problems and demands, and the object of the present invention is not only a Johnson-Labeck type electrostatic chuck, which has excellent leakage current characteristics, sufficient adsorption force, good desorption characteristics and excellent thermal conductivity. It is to provide a dense aluminum nitride sintered body, a manufacturing method thereof, and a semiconductor manufacturing member using the sintered body, which can be applied to a semiconductor manufacturing member such as a coulomb type electrostatic chuck which requires high volume resistivity.

상기와 같은 본 발명의 목적은, 치밀질 질화알루미늄 소결체에 있어서, 질화알루미늄의 회절피크강도에 대한 마그네슘알루미네이트(MgAl2O4)의 회절피크강도의 비율이 0.1~10%이며, 상온에서의 체적저항율이 1×1015 Ω·cm 이상이고 상대밀도가 99% 이상인 것을 특징으로 하는 치밀질 질화알루미늄 소결체에 의하여 달성된다.An object of the present invention as described above, in the dense aluminum nitride sintered body, the ratio of the diffraction peak strength of magnesium aluminate (MgAl 2 O 4 ) to the diffraction peak strength of aluminum nitride is 0.1 to 10%, at room temperature A dense aluminum nitride sintered compact characterized by having a volume resistivity of 1 × 10 15 Pa · cm or more and a relative density of 99% or more.

그리고, 상기 치밀질 질화알루미늄 소결체는 상기 질화알루미늄의 회절피크강도에 대한 마그네슘알루미네이트의 회절피크강도의 비율이 0.5~5%인 것이 바람직하다.In the dense aluminum nitride sintered compact, the diffraction peak strength of magnesium aluminate to the diffraction peak strength of the aluminum nitride is preferably 0.5 to 5%.

상기와 같은 본 발명의 목적은, 치밀질 질화알루미늄 소결체에 있어서, 소결전 질화알루미늄 소결체용 분말이 산화이트륨(Y2O3) 0.1~15wt% 및 산화마그네슘(MgO) 0.1~10wt%를 포함하며, 소결 후 상온에서의 체적저항율이 1×1015 Ω·cm 이상이고 상대밀도가 99% 이상인 것을 특징으로 하는 치밀질 질화알루미늄 소결체에 의하여 달성된다. An object of the present invention as described above, in the compact aluminum nitride sintered body, the powder for aluminum nitride sintered body before sintering contains 0.1 to 15 wt% of yttrium oxide (Y 2 O 3 ) and 0.1 to 10 wt% of magnesium oxide (MgO) And a dense aluminum nitride sintered body characterized by a volume resistivity of 1 × 10 15 Pa · cm or more and a relative density of 99% or more after sintering.

그리고, 상기 치밀질 질화알루미늄 소결체는 상기 산화이트륨이 1~9wt%인 것이 바람직하고, 상기 산화마그네슘이 0.5~5wt%인 것이 바람직하다.In the dense aluminum nitride sintered compact, the yttrium oxide is preferably 1 to 9 wt%, and the magnesium oxide is preferably 0.5 to 5 wt%.

상기와 같은 본 발명의 목적은, 반도체 제조용 부재에 있어서, 상기 치밀질 질화알루미늄 소결체로 이루어지는 것을 특징으로 하는 반도체 제조용 부재에 의하여 달성된다.The object of the present invention as described above is achieved by the semiconductor manufacturing member, which is made of the dense aluminum nitride sintered body in the semiconductor manufacturing member.

그리고, 상기 반도체 제조용 부재는 쿨롱형 정전척인 것이 바람직하다.The semiconductor manufacturing member is preferably a coulomb type electrostatic chuck.

상기와 같은 본 발명의 목적은, 치밀질 질화알루미늄 소결체의 제조 방법에 있어서, 산화이트륨 0.1~15wt% 및 산화마그네슘 0.1~10wt%를 포함하는 질화알루미늄 소결체용 분말을 제공하는 단계(S1); 및 상기 분말을 소결하고 냉각하거나 또는 소결 후 냉각 과정동안 열처리하여 상온에서의 체적저항율이 1×1015 Ω·cm 이상이고 상대밀도가 99% 이상인 질화알루미늄 소결체를 수득하는 단계(S2)를 포함하는 것을 특징으로 하는 치밀질 질화알루미늄 소결체의 제조 방법에 의하여 달성된다.An object of the present invention as described above, in the method for producing a dense aluminum nitride sintered body, providing a powder for aluminum nitride sintered body comprising 0.1 ~ 15wt% yttrium oxide and 0.1 ~ 10wt% magnesium oxide (S1); And sintering and cooling the powder or performing heat treatment during the cooling process after sintering to obtain an aluminum nitride sintered body having a volume resistivity of 1 × 10 15 Pa · cm or more and a relative density of 99% or more (S2). It is achieved by the manufacturing method of the dense aluminum nitride sintered compact characterized by the above-mentioned.

그리고, 상기 S1 단계에서 상기 산화이트륨을 1~9wt%로 포함하는 것이 바람직하고, 상기 산화마그네슘을 0.5~5wt%로 포함하는 것이 바람직하다.In addition, it is preferable to include the yttrium oxide in an amount of 1 to 9 wt% in the step S1, and preferably include 0.5 to 5 wt% of the magnesium oxide.

그리고, 상기 S2 단계에서 상기 소결시 소결온도를 1700~1850℃로 하는 것이 바람직하고, 1750~1800℃로 하는 것이 더 바람직하다.In the S2 step, the sintering temperature at the time of sintering is preferably 1700 to 1850 ° C, more preferably 1750 to 1800 ° C.

그리고, 상기 S2 단계에서 상기 소결시 소결유지시간을 1~10 시간으로 하는 것이 바람직하고, 3~5 시간으로 하는 것이 더 바람직하다.In the step S2, the sintering holding time during the sintering is preferably 1 to 10 hours, more preferably 3 to 5 hours.

그리고, 상기 S2 단계에서 상기 열처리시 열처리 온도를 1400~1650℃로 하는 것이 바람직하고, 1450~1550℃로 하는 것이 더 바람직하다.And, in the step S2, the heat treatment temperature during the heat treatment is preferably 1400 ~ 1650 ℃, more preferably 1450 ~ 1550 ℃.

그리고, 상기 S2 단계에서 상기 열처리시 열처리 시간을 1~5 시간으로 하는 것이 바람직하고, 2~3 시간으로 하는 것이 더 바람직하다. In the step S2, the heat treatment time during the heat treatment is preferably 1 to 5 hours, more preferably 2 to 3 hours.

이하, 본 발명에 따른 치밀질 질화알루미늄 소결체, 그 제조 방법 및 상기 소결체를 이용한 반도체 제조용 부재를 상술한다.Hereinafter, the dense aluminum nitride sintered compact, the manufacturing method, and the member for semiconductor manufacture using the said sintered compact which concern on this invention are explained in full detail.

본 발명에서는 반도체 제조용 부재, 특히 쿨롱형 정전척의 제조에 적용 가능한 치밀질 질화알루미늄 소결체를 제조한다. 본 발명에 의한 치밀질 질화알루미늄 소결체는 상온에서의 체적저항율이 1×1015 Ω·cm 이상이고 상대밀도가 99% 이상인 질화알루미늄 소결체로서 이트륨 알루미네이트와 스피넬인 마그네슘알루미네이트를 포함하며, 질화알루미늄의 회절피크강도에 대한 마그네슘알루미네이트의 회절피크강도의 비율이 0.1~10%, 바람직하게는 0.5~5%이다. In this invention, the dense aluminum nitride sintered compact applicable to manufacture of a member for semiconductor manufacturing, especially a coulomb type electrostatic chuck, is manufactured. The dense aluminum nitride sintered body according to the present invention is an aluminum nitride sintered body having a volume resistivity of 1 × 10 15 Pa.cm or more and a relative density of 99% or more, including yttrium aluminate and magnesium aluminate of spinel. The ratio of the diffraction peak strength of magnesium aluminate to the diffraction peak strength of is 0.1 to 10%, preferably 0.5 to 5%.

상기한 바와 같은 치밀질 질화알루미늄 소결체는 다음과 같이 제조한다.The dense aluminum nitride sintered body as described above is produced as follows.

먼저, 소결전 총 분말 중량중 산화이트륨 0.1~15wt% 및 산화알루미늄(Al2O3)과 스피넬을 형성하는 산화물인 산화마그네슘 0.1~10wt%를 포함하도록 산화이트륨 분말, 산화마그네슘 분말을 준비하고 이들을 질화알루미늄 분말과 함께 용매에 넣고 혼합한 후 건조 분쇄한다(S1).First, yttrium oxide powder and magnesium oxide powder were prepared to include 0.1-15 wt% of yttrium oxide and 0.1-10 wt% of oxide which forms spinel with aluminum oxide (Al 2 O 3 ) in the total powder weight before sintering. The mixture is put into a solvent together with the aluminum nitride powder and mixed, followed by dry grinding (S1).

상기 산화이트륨이 0.1wt% 미만으로 포함되면 질화알루미늄 소결체의 상대밀도가 떨어지고, 상기 산화이트륨이 15wt%를 초과하여 포함되면 질화알루미늄 소결 체의 열전도도가 떨어진다. When the yttrium oxide is included in less than 0.1wt%, the relative density of the aluminum nitride sintered body is lowered. When the yttrium oxide is more than 15wt%, the thermal conductivity of the aluminum nitride sintered body is lowered.

그리고, 상기 산화마그네슘이 0.1wt% 미만 또는 10wt%를 초과하여 포함되면 질화알루미늄 소결체의 체적저항율이 떨어진다.When the magnesium oxide is included in an amount of less than 0.1 wt% or more than 10 wt%, the volume resistivity of the aluminum nitride sintered body is lowered.

본 발명에 따른 상온에서의 체적저항율이 1×1015 Ω·cm 이상이고 상대밀도가 99% 이상인 질화알루미늄 소결체를 얻기 위하여, 본 발명에서는 상기 산화마그네슘 대신에 산화베릴륨(BeO), 산화칼슘(CaO), 산화스트론튬(SrO), 산화바륨(BaO), 산화코발트(CoO), 산화니켈(NiO) 등을 사용할 수도 있다.In order to obtain an aluminum nitride sintered body having a volume resistivity of 1 × 10 15 Pa · cm or more and a relative density of 99% or more according to the present invention, in the present invention, instead of the magnesium oxide, beryllium oxide (BeO) and calcium oxide (CaO) ), Strontium oxide (SrO), barium oxide (BaO), cobalt oxide (CoO), nickel oxide (NiO) and the like.

한편, 보다 높은 체적저항율과 상대밀도를 얻기 위하여 특히 상기 산화이트륨이 1~9wt%인 것이 바람직하고 상기 산화마그네슘이 0.5~5wt%인 것이 바람직하다.On the other hand, in order to obtain higher volume resistivity and relative density, it is particularly preferable that the yttrium oxide is 1 to 9 wt%, and the magnesium oxide is 0.5 to 5 wt%.

다음으로, 상기 S1 단계에서 얻어진 질화알루미늄 소결체용 분말을 소결하고 냉각하거나 또는 소결 후 냉각 과정 동안 열처리하여 본 발명에 따른 치밀질 질화알루미늄 소결체를 얻는다(S2).Next, the aluminum nitride sintered powder obtained in step S1 is sintered and cooled or heat treated during the cooling process after sintering to obtain a dense aluminum nitride sintered compact according to the present invention (S2).

소결시 상기 소결온도는 1700~1850℃로 하는 것이 바람직하고, 1750~1800℃로 하는 것이 더 바람직하며, 나아가, 상기 소결유지시간은 1~10 시간으로 하는 것이 바람직하고, 3~5 시간으로 하는 것이 더 바람직하다.The sintering temperature at the time of sintering is preferably 1700 ~ 1850 ℃, more preferably 1750 ~ 1800 ℃, furthermore, the sintering holding time is preferably 1 to 10 hours, it is 3 to 5 hours More preferred.

상기 소결온도가 1700℃ 미만인 경우에는 상대밀도가 떨어지며, 1850℃를 초과하여 소결하는 것은 경제적 손실을 초래하게 된다. 한편, 소결유지시간을 1 시간 미만으로 하는 경우 상대밀도가 떨어지며 10시간을 초과하여 소결하면 경제적 손실을 초래하게 된다.If the sintering temperature is less than 1700 ° C relative density is lowered, sintering above 1850 ° C will cause economic losses. On the other hand, if the sintering holding time is less than 1 hour, the relative density drops and sintering for more than 10 hours causes economic losses.

상기 열처리를 수행하는 경우 열처리 온도는 1400~1650℃로 하는 것이 바람직하고, 1450~1550℃로 하는 것이 더 바람직하다. 그리고, 상기 열처리 시간은 1~5 시간으로 하는 것이 바람직하고, 2~3 시간으로 하는 것이 더 바람직하다. 상기 열처리 온도 범위 및 시간 범위내에서 상대밀도가 미세하게 증가하게 된다.When performing the heat treatment, the heat treatment temperature is preferably 1400 ~ 1650 ℃, more preferably 1450 ~ 1550 ℃. The heat treatment time is preferably 1 to 5 hours, more preferably 2 to 3 hours. The relative density is finely increased within the heat treatment temperature range and time range.

그리고, 상기 열처리 시간이 1시간 미만일 경우 열처리후의 물성이 열처리 전에 비해 크게 변화가 없고, 상기 열처리 시간이 5시간을 초과하는 경우 더 이상의 열처리 효과가 없기 때문에 불필요한 비용이 소요된다.When the heat treatment time is less than 1 hour, the physical properties after heat treatment are not significantly changed compared with before heat treatment, and when the heat treatment time is more than 5 hours, there is no further heat treatment effect, thus unnecessary costs are required.

이와 같이 제조된 본 발명에 따른 치밀질 질화알루미늄 소결체는 상온에서의 체적저항율이 1×1015 Ω·cm 이상이고 상대밀도가 99% 이상인 질화알루미늄 소결체로서, 우수한 누설전류 특성과 충분한 흡착력, 양호한 탈착특성을 가지며 열전도율도 우수하여 존슨-라벡형 정전척 뿐만 아니라 쿨롱형 정전척과 같은 높은 체적저항특성을 요구하는 반도체 제조용 부재의 제조에도 이용될 수 있다.The dense aluminum nitride sintered body according to the present invention thus prepared is an aluminum nitride sintered body having a volume resistivity of 1 × 10 15 Pa · cm or more and a relative density of 99% or more at room temperature, and has excellent leakage current characteristics, sufficient adsorptivity, and good desorption. It has a characteristic and excellent thermal conductivity, and can be used for the manufacture of a member for semiconductor manufacturing that requires high volume resistivity characteristics such as a Coulomb type electrostatic chuck as well as a Johnson-Label type electrostatic chuck.

이하, 본 발명의 바람직한 실시예를 설명함으로써 본 발명을 더욱 상세하게 설명한다. 그러나 본 발명이 하기 실시예에 한정되는 것은 아니며 첨부된 특허청구범위내에서 다양한 형태의 실시예들이 구현될 수 있고, 단지 하기 실시예는 본 발명의 개시가 완전하도록 함과 동시에 당업계에서 통상의 지식을 가진 자에게 발명의 실시를 용이하게 하고자 하는 것이다.Hereinafter, the present invention will be described in more detail by explaining preferred embodiments of the present invention. However, the present invention is not limited to the following examples, and various forms of embodiments can be implemented within the scope of the appended claims, and the following examples are only common in the art while making the disclosure of the present invention complete. It is intended to facilitate the implementation of the invention to those with knowledge.

[제조 및 실험][Manufacture and Experiment]

원료분말제조Raw material powder manufacturing

질화알루미늄(AlN) 분말로서 고순도 환원질화분말을 사용하였다. 질화알루미늄 분말은 산소를 제외한 순도가 99.9% 이상이었으며 평균입자직경이 약 1.29㎛이었다. As the aluminum nitride (AlN) powder, a high purity reducing nitriding powder was used. The aluminum nitride powder had a purity of 99.9% or more excluding oxygen and an average particle diameter of about 1.29 μm.

산화이트륨(Y2O3) 분말로서는 평균입자직경이 약 0.8㎛인 것을 사용하였다. 또한, 산화마그네슘(MgO) 분말로서는 평균입자직경이 약 1.3㎛인 것을 사용하였다.As a yttrium oxide (Y 2 O 3 ) powder, an average particle diameter of about 0.8 μm was used. As the magnesium oxide (MgO) powder, an average particle diameter of about 1.3 mu m was used.

이와 같은 분말들을 하기 실시예들에 관한 표 1 및 비교예들에 관한 표 2에 기재된 바와 같은 각각의 조성으로 혼합하였다. These powders were mixed in their respective compositions as described in Table 1 for the following examples and Table 2 for the comparative examples.

무수에탄올을 용매로 나일론으로 제조된 포트 및 알루미나 볼을 이용하여 상기 조성으로 혼합된 분말을 20시간 습식 혼합하였다. 혼합 후, 슬러리를 추출하여 건조기에서 80℃로 건조한 후 알루미나 유발을 이용하여 건조체를 분쇄하였다. 분쇄가 완료된 분말을 80매쉬 체를 이용하여 체거름을 실시하여 질화알루미늄 소결체용 분말을 준비하였다.The powder mixed in the above composition was wet mixed for 20 hours using a pot made of nylon with anhydrous ethanol as a solvent and an alumina ball. After mixing, the slurry was extracted, dried at 80 ° C. in a dryer, and then the dried body was pulverized using alumina induction. The pulverized powder was sieved using an 80 mesh sieve to prepare a powder for aluminum nitride sintered bodies.

고온가압소결Hot pressing sintering

이와 같이 준비된 질화알루미늄 소결체용 분말을 직경 Φ40mm인 흑연 몰드에 장입하고 이를 고온가압소결로에서 프레스 압력 15MPa, 질소 분위기 압력 0.1MPa 하에서 하기 표 1 및 표 2에 기재된 바와 같이 각각 정해진 소결온도에서 정해진 시간 소결한 후, 냉각시키거나 냉각시 열처리를 실시하였다. 고온가압소결을 진행하면서 온도를 낮추어 상온까지 냉각하는 동안에 40cc/min의 유량으로 질소가스를 흘려주면서 고온가압소결을 수행하였다.The powder for aluminum nitride sintered body thus prepared was charged into a graphite mold having a diameter of Φ 40 mm, and then, at a high temperature pressurization sintering furnace under a press pressure of 15 MPa and a nitrogen atmosphere pressure of 0.1 MPa, respectively, for a predetermined time at a predetermined sintering temperature as shown in Tables 1 and 2 below. After sintering, cooling was performed or heat treatment was performed upon cooling. The high temperature pressurization was performed while flowing the nitrogen gas at a flow rate of 40 cc / min while the temperature was lowered while cooling to room temperature while the high temperature pressurization was performed.

체적저항율 측정Volume resistivity measurement

시험편 두께는 1mm를 기준으로 하였다. 전극 형상은 주전극 직경 26mm, 보호 전극 직경 38mm로 하였다. 실시예 1 및 2의 경우 인가전계를 기준으로 100, 250, 500, 1000V/mm가 되도록 인가전압을 설정하였고 전압인가시간은 60초를 유지한 후 얻어진 체적저항값을 기록하였다. 나머지 실시예들 및 비교예들의 경우에 체적저항율은 500V/mm에서 측정한 결과이다. 측정을 반복하여 실시하는 경우 표면의 잔류전하를 충분히 제거하기 위하여 측정후 5분간 대기중에 노출한 후 재측정을 실시하였다.The test piece thickness was based on 1 mm. The electrode shape was made into 26 mm of main electrode diameters, and 38 mm of protective electrode diameters. In Examples 1 and 2, the applied voltage was set to be 100, 250, 500, and 1000 V / mm based on the applied electric field, and the volume resistance value obtained after maintaining the voltage application time for 60 seconds was recorded. In the other examples and comparative examples, the volume resistivity is measured at 500 V / mm. In the case of repeating the measurement, in order to sufficiently remove the residual charge on the surface, the measurement was performed after exposing to the air for 5 minutes and measuring again.

결정상 측정Crystal phase measurement

X선 회절 측정 장치를 이용하였다. 측정 조건은 CuKα, 40kV, 30mA, 2θ=5°~80°이었다.An X-ray diffraction measuring apparatus was used. Measurement conditions were CuK alpha , 40 kV, 30 mA, and 2θ = 5 ° to 80 °.

상대밀도 측정Relative Density Measurement

아르키메데스법에 의하여 수중 측정한 벌크밀도를 이론밀도값으로 나눈 값으로 결정하였다.The bulk density measured in water by the Archimedes method was determined as the value divided by the theoretical density value.

[실시예]EXAMPLE

표 1은 본 실시예들의 원료 및 소결 조건, 소결체 특성을 나타내는 것이다.Table 1 shows the raw materials, sintering conditions, and sintered body properties of the present examples.

실시예Example 원료조건Raw material condition 소결조건Sintering Condition 소결체 특성Sintered Body Characteristics 질화알루미늄Aluminum nitride 산화 이트륨yttrium oxide 산화마그네슘Magnesium oxide 소결 온도Sintering temperature 유지 시간Retention time 열처리온도Heat treatment temperature 유지 시간Retention time 상대 밀도Relative density 체적 저항율Volume resistivity wt%wt% wt%wt% wt%wt% 시간time 시간time %% Ω·cmCmcm 1One 9696 33 1One 17201720 33 -- -- 99.199.1 2×1015 2 × 10 15 22 94.594.5 55 0.50.5 17001700 1010 -- -- 99.199.1 1×1015 1 × 10 15 33 8989 99 22 17001700 1010 -- -- 99.399.3 3×1015 3 × 10 15 44 9494 55 1One 17501750 33 -- -- 99.699.6 1×1015 1 × 10 15 55 9595 33 22 18001800 33 14501450 55 99.799.7 2×1015 2 × 10 15 66 94.594.5 55 0.50.5 17501750 33 15501550 33 99.699.6 1×1015 1 × 10 15 77 90.590.5 99 0.50.5 17001700 1010 16001600 22 99.999.9 1×1015 1 × 10 15

실시예1 내지 7은 질화알루미늄에 소정량의 산화이트륨 및 산화마그네슘을 혼합하여 소결하고 냉각하거나 또는 소결 후 냉각과정중에서 열처리한 것이다. Examples 1 to 7 are sintered and cooled by mixing a predetermined amount of yttrium oxide and magnesium oxide in aluminum nitride, or heat-treated during the cooling process after sintering.

표 1로부터 알 수 있듯이, 본 실시예들에 따른 질화알루미늄 소결체는 상대 밀도가 99% 이상이고 또한 체적저항율이 1×1015 Ω·cm 이상이다.As can be seen from Table 1, the aluminum nitride sintered body according to the present embodiments has a relative density of 99% or more and a volume resistivity of 1 × 10 15 Pa · cm or more.

도 1은 본 실시예 1 및 2에 따른 질화알루미늄 소결체의 인가전계 변화에 따른 체적저항율 변화를 보여주는 그래프이다. 도 1에 도시된 바와 같이, 본 실시예들의 질화알루미늄 소결체는 인가전계(E)의 크기가 증가하더라도 안정적인 체적저항율(ρ)을 보여주었다.1 is a graph showing the change in volume resistivity according to the applied electric field of the aluminum nitride sintered bodies according to the first and second embodiments. As shown in FIG. 1, the aluminum nitride sintered bodies of the present examples showed stable volume resistivity ρ even when the magnitude of the applied electric field E was increased.

한편, X선 회절 분석을 이용하여 결정상을 확인하였다. 도 2는 본 실시예4에 따른 질화알루미늄 소결체의 X선 회절 분석 결과를 나타내는 그래프이다. 도 2에 도시된 바와 같이, 본 실시예의 소결체는 주결정상인 질화알루미늄 이외에 이트륨 알루미네이트, 스피넬인 마그네슘알루미네이트를 포함하는 것으로, 질화알루미늄의 회절피크[AlN(100) 피크]강도에 대한 마그네슘알루미네이트의 회절피크[MgAl2O4(311)피크]강도의 비율은 0.1~10% 범위에서 존재한다.On the other hand, the crystal phase was confirmed using X-ray diffraction analysis. 2 is a graph showing the results of X-ray diffraction analysis of the aluminum nitride sintered body according to the fourth embodiment. As shown in FIG. 2, the sintered compact of this embodiment includes yttrium aluminate and spinel magnesium aluminate in addition to aluminum nitride as the main crystal phase, and magnesium alumina with respect to diffraction peak [AlN (100) peak] intensity of aluminum nitride. Nate's diffraction peak [MgAl 2 O 4 (311) peak] intensity ratio is in the range of 0.1-10%.

[비교예][Comparative Example]

표 2는 비교예들의 원료 및 소결 조건, 소결체 특성을 나타내는 것이다.Table 2 shows the raw materials, sintering conditions, and sintered body properties of the comparative examples.

비교예Comparative example 원료조건Raw material condition 소결조건Sintering Condition 소결체 특성Sintered Body Characteristics 질화알 루미늄Aluminum Nitride 산화 이트륨yttrium oxide 산화마그네슘Magnesium oxide 소결 온도Sintering temperature 유지 시간Retention time 열처리온도Heat treatment temperature 유지 시간Retention time 상대 밀도Relative density 체적 저항율Volume resistivity wt%wt% wt%wt% wt%wt% 시간time 시간time %% Ω·cmCmcm 1One 9595 55 00 16501650 66 -- -- 9999 5×1014 5 × 10 14 22 9797 33 00 17201720 66 -- -- 99.899.8 7×1010 7 × 10 10 33 99.599.5 00 0.50.5 18001800 33 -- -- 100100 4×1013 4 × 10 13 44 9898 00 22 17201720 33 -- -- 98.398.3 3×1015 3 × 10 15 55 9191 99 00 17501750 33 15001500 33 99.999.9 1×1014 1 × 10 14 66 99.599.5 00 0.50.5 17201720 55 14501450 1One 98.698.6 6×1014 6 × 10 14

비교예1 내지 6은 상기 실시예들과 달리 질화알루미늄과 혼합되는 산화이트륨 및 산화마그네슘의 양을 각각 달리하였고 소결조건도 다르게 하였다.In Comparative Examples 1 to 6, the amounts of yttrium oxide and magnesium oxide mixed with aluminum nitride were different from each other, and the sintering conditions were different.

그 결과, 표 2로부터 알 수 있듯이, 비교예들에 따른 질화알루미늄 소결체는 체적저항율이 1×1015 Ω·cm 미만이거나 상대밀도가 99% 미만으로 나타났다. 이와 같이 체적저항율이 1×1015 Ω·cm 미만이거나 상대밀도가 99% 미만인 질화알루미늄 소결체의 경우 쿨롱형 정전척에 적용하는 것은 적합하지 않다.As a result, as can be seen from Table 2, the aluminum nitride sintered compact according to the comparative examples showed that the volume resistivity was less than 1 × 10 15 Pa · cm or the relative density was less than 99%. As described above, the aluminum nitride sintered body having a volume resistivity of less than 1 × 10 15 Pa · cm or a relative density of less than 99% is not suitable for use in a coulombic electrostatic chuck.

한편, 상기 비교예3에서 산화이트륨이 0wt%이지만 소결온도를 1800℃ 까지 높인 결과 상대밀도는 증가시킬 수 있었다. 그러나, 비교예3의 경우 요구되는 체적저항율의 목표치(1×1015 Ω·cm)를 달성할 수 없었는데, 이는 비교예3이 비록 산화마그네슘 양이 0.5wt% 이지만 체적저항율에 또한 영향을 주는 산화이트륨을 결여하였기 때문이다.On the other hand, yttrium oxide is 0wt% in Comparative Example 3, but the relative density was increased as a result of increasing the sintering temperature to 1800 ℃. However, in the case of Comparative Example 3, the required volume resistivity target value (1 × 10 15 Pa · cm) could not be achieved, which means that in Comparative Example 3, even though the amount of magnesium oxide was 0.5wt%, oxidation also affected volumetric resistivity. It lacks yttrium.

그리고, 상기 비교예1은 산화이트륨의 영향(5wt%)에 의하여 99%의 상대밀도를 나타내었지만 산화마그네슘의 영향(0wt%)과 낮은 소결온도(1650℃)로 인하여 5×1014 Ω·cm의 체적저항율 값을 보여주었다.In addition, Comparative Example 1 exhibited a relative density of 99% under the influence of yttrium oxide (5 wt%), but was 5 × 10 14 Pa · cm due to the influence of magnesium oxide (0 wt%) and low sintering temperature (1650 ° C.). The volume resistivity value of is shown.

이상에서 설명한 바와 같이, 본 발명에 따른 치밀질 질화알루미늄 소결체는 우수한 누설전류 특성과 충분한 흡착력, 양호한 탈착특성을 가지며 열전도율도 우수하여 특히 쿨롱형 정전척과 같이 높은 체적저항특성이 요구되는 반도체 제조용 부재에 적용될 수 있다.As described above, the dense aluminum nitride sintered body according to the present invention has excellent leakage current characteristics, sufficient adsorption force, good desorption characteristics, and excellent thermal conductivity, and therefore, particularly for semiconductor manufacturing members requiring high volume resistivity, such as a coulombic electrostatic chuck. Can be applied.

비록 본 발명이 상기 언급된 바람직한 실시예와 관련하여 설명되어졌지만, 발명의 요지와 범위로부터 벗어남이 없이 다양한 수정이나 변형을 하는 것이 가능하다. 따라서 첨부된 특허청구의 범위는 본 발명의 요지에서 속하는 이러한 수정이나 변형을 포함할 것이다. Although the present invention has been described in connection with the above-mentioned preferred embodiments, it is possible to make various modifications or variations without departing from the spirit and scope of the invention. Accordingly, the appended claims will cover such modifications and variations as fall within the spirit of the invention.

Claims (9)

치밀질 질화알루미늄 소결체에 있어서, In the dense aluminum nitride sintered body, 소결전 질화알루미늄 소결체용 분말이 산화이트륨(Y2O3) 0.1~15wt%, 산화마그네슘(MgO) 0.1~10wt% 및 나머지 질화 알루미늄으로 이루어지고,Powder for aluminum nitride sintered body before sintering is composed of 0.1 to 15 wt% of yttrium oxide (Y 2 O 3 ), 0.1 to 10 wt% of magnesium oxide (MgO), and the remaining aluminum nitride, 질화알루미늄의 회절피크강도에 대한 마그네슘알루미네이트(MgAl2O4)의 회절피크강도의 비율이 0.1~10%이며, 상온에서의 체적저항율이 1×1015 Ω·cm 이상이고 상대밀도가 99% 이상인 것을 특징으로 하는 치밀질 질화알루미늄 소결체.The ratio of the diffraction peak strength of magnesium aluminate (MgAl 2 O 4 ) to the diffraction peak strength of aluminum nitride is 0.1 to 10%, the volume resistivity at room temperature is 1 × 10 15 Pa · cm and the relative density is 99%. The dense aluminum nitride sintered compact characterized by the above. 치밀질 질화알루미늄 소결체에 있어서, In the dense aluminum nitride sintered body, 소결전 질화알루미늄 소결체용 분말이 산화이트륨(Y2O3) 0.1~15wt% 및 산화마그네슘(MgO) 0.1~10wt% 및 나머지 질화알루미늄으로 이루어지고, The powder for aluminum nitride sintered body before sintering is composed of 0.1 to 15 wt% of yttrium oxide (Y 2 O 3 ), 0.1 to 10 wt% of magnesium oxide (MgO), and the remaining aluminum nitride, 소결 후 상온에서의 체적저항율이 1×1015 Ω·cm 이상이고 상대밀도가 99% 이상인 것을 특징으로 하는 치밀질 질화알루미늄 소결체.A dense aluminum nitride sintered body, wherein the volume resistivity at room temperature after sintering is 1 × 10 15 Pa · cm or more and the relative density is 99% or more. 반도체 제조용 부재에 있어서, In a member for semiconductor manufacturing, 제 1 항 또는 제 2 항에 의한 치밀질 질화알루미늄 소결체로 이루어지는 것을 특징으로 하는 반도체 제조용 부재.A member for manufacturing a semiconductor, comprising the dense aluminum nitride sintered body according to claim 1. 제 3 항에 있어서, The method of claim 3, wherein 상기 반도체 제조용 부재는 쿨롱형 정전척인 것을 특징으로 하는 반도체 제조용 부재.The semiconductor manufacturing member is a coulomb type electrostatic chuck. 치밀질 질화알루미늄 소결체의 제조 방법에 있어서, In the manufacturing method of the dense aluminum nitride sintered compact, 산화이트륨 0.1~15wt% 및 산화마그네슘 0.1~10wt% 및 나머지 질화 알루미늄으로 이루어지는 질화알루미늄 소결체용 분말을 제공하는 단계(S1); 및 Providing a powder for aluminum nitride sintered body composed of 0.1-15 wt% of yttrium oxide, 0.1-10 wt% of magnesium oxide and the remaining aluminum nitride (S1); And 상기 분말을 소결하고 냉각하거나 또는 소결 후 냉각 과정동안 열처리하여 상온에서의 체적저항율이 1×1015 Ω·cm 이상이고 상대밀도가 99% 이상인 질화알루미늄 소결체를 수득하는 단계(S2)를 포함하는 것을 특징으로 하는 치밀질 질화알루미늄 소결체의 제조 방법.Sintering and cooling the powder or performing heat treatment during the cooling process after sintering to obtain an aluminum nitride sintered body having a volume resistivity of 1 × 10 15 Pa · cm or more and a relative density of 99% or more (S2). The manufacturing method of the dense aluminum nitride sintered compact characterized by the above-mentioned. 제 5 항에 있어서, The method of claim 5, wherein 상기 S2 단계에서 상기 소결시 소결온도를 1700~1850℃로 하는 것을 특징으로 하는 치밀질 질화알루미늄 소결체의 제조 방법.Method for producing a dense aluminum nitride sintered body characterized in that the sintering temperature at the sintering step in the step S2 to 1700 ~ 1850 ℃. 제 6 항에 있어서, The method of claim 6, 상기 소결시 소결유지시간을 1~10 시간으로 하는 것을 특징으로 하는 치밀질 질화알루미늄 소결체의 제조 방법.A method for producing a dense aluminum nitride sintered compact, characterized in that the sintering holding time during the sintering is 1 to 10 hours. 제 5 항 내지 제 7 항 중 어느 한 항에 있어서,The method according to any one of claims 5 to 7, 상기 S2 단계에서 상기 열처리시 열처리 온도를 1400~1650℃로 하는 것을 특징으로 하는 치밀질 질화알루미늄 소결체의 제조 방법.Method of producing a dense aluminum nitride sintered compact characterized in that the heat treatment temperature during the heat treatment in the step S2 to 1400 ~ 1650 ℃. 제 8 항에 있어서, The method of claim 8, 상기 열처리시 열처리 시간을 1~5 시간으로 하는 것을 특징으로 하는 치밀질 질화알루미늄 소결체의 제조 방법.A method for producing a dense aluminum nitride sintered compact, characterized in that the heat treatment time during the heat treatment is 1 to 5 hours.
KR1020050033729A 2005-04-22 2005-04-22 High dense sintered body of aluminium nitride, method for preparing the same and member for manufacturing semiconductor using the sintered body KR100917778B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050033729A KR100917778B1 (en) 2005-04-22 2005-04-22 High dense sintered body of aluminium nitride, method for preparing the same and member for manufacturing semiconductor using the sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050033729A KR100917778B1 (en) 2005-04-22 2005-04-22 High dense sintered body of aluminium nitride, method for preparing the same and member for manufacturing semiconductor using the sintered body

Publications (2)

Publication Number Publication Date
KR20060111279A KR20060111279A (en) 2006-10-27
KR100917778B1 true KR100917778B1 (en) 2009-09-21

Family

ID=37620106

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050033729A KR100917778B1 (en) 2005-04-22 2005-04-22 High dense sintered body of aluminium nitride, method for preparing the same and member for manufacturing semiconductor using the sintered body

Country Status (1)

Country Link
KR (1) KR100917778B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170352569A1 (en) * 2016-06-06 2017-12-07 Applied Materials, Inc. Electrostatic chuck having properties for optimal thin film deposition or etch processes
KR20230002057A (en) 2021-06-25 2023-01-05 주식회사 템네스트 high precision sintered body built-in electrode pattern and manufacturing method thereof
KR102535856B1 (en) 2021-11-19 2023-05-26 주식회사 케이에스엠컴포넌트 Ceramic heater for semiconductor manufacturing apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09315867A (en) * 1996-03-29 1997-12-09 Ngk Insulators Ltd Aluminum nitride sintered compact, metal embedded article, electronic functional material and electrostatic chuck
JPH1067560A (en) * 1996-03-18 1998-03-10 Fuji Electric Co Ltd High thermal conductivity ceramic and its production
JP3419495B2 (en) * 1993-05-11 2003-06-23 日立金属株式会社 Composite ceramics
WO2004026790A1 (en) 2002-09-20 2004-04-01 Tokuyama Corporation Aluminum nitride sintered compact

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3419495B2 (en) * 1993-05-11 2003-06-23 日立金属株式会社 Composite ceramics
JPH1067560A (en) * 1996-03-18 1998-03-10 Fuji Electric Co Ltd High thermal conductivity ceramic and its production
JPH09315867A (en) * 1996-03-29 1997-12-09 Ngk Insulators Ltd Aluminum nitride sintered compact, metal embedded article, electronic functional material and electrostatic chuck
WO2004026790A1 (en) 2002-09-20 2004-04-01 Tokuyama Corporation Aluminum nitride sintered compact

Also Published As

Publication number Publication date
KR20060111279A (en) 2006-10-27

Similar Documents

Publication Publication Date Title
KR100918190B1 (en) High dense sintered body of aluminium nitride, method for preparing the same and member for manufacturing semiconductor using the sintered body
JP6960636B2 (en) Silicon carbide member for plasma processing equipment and its manufacturing method
KR20170141340A (en) Sintered ceramics for electrostatic chuck and manufacturing method of the same
US11251061B2 (en) Electrostatic chuck and manufacturing method therefor
KR100917778B1 (en) High dense sintered body of aluminium nitride, method for preparing the same and member for manufacturing semiconductor using the sintered body
US8231964B2 (en) Aluminum oxide sintered body, method for producing the same and member for semiconductor producing apparatus
EP2189431A2 (en) Aluminum nitride sintered product, method for producing the same and electrostatic chuck including the same
CN110892520B (en) Electrostatic chuck
KR100940019B1 (en) High dense sintered body of aluminium nitride, method for preparing the same and member for manufacturing semiconductor using the sintered body
JP4939379B2 (en) Aluminum nitride sintered body for electrostatic chuck
KR101475860B1 (en) Ceramic electrostatic chuck for applications of co-fired by direct bonding and method for manufacturing the same
JP6015012B2 (en) Electrostatic chuck member
JP4043219B2 (en) Electrostatic chuck
JP2003313078A (en) Aluminum nitride sintered compact and electrostatic chuck using the same
KR100940456B1 (en) Aluminum nitride sintered compact and members for semiconductor producing apparatus having the same
US6631062B1 (en) Electrically conductive ceramic material, a process of producing same, and an electrostatic chuck
JP2021072350A (en) Composite sintered body and manufacturing method thereof
JP4585129B2 (en) Electrostatic chuck
JP2002319614A (en) Electrostatic chuck
KR101217253B1 (en) Dielectric materials with black color for electrostatic chuck and manufacturing method of the same
KR101661025B1 (en) Maunfacturing method of semiconducting ceramics compositions and ceramics substrate thereof
JP2022052090A (en) Aluminum nitride sintered body, and electrostatic chuck
JP2002321967A (en) Low thermal expansion ceramic

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130607

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140605

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150604

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20160608

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20170619

Year of fee payment: 9