KR100889286B1 - Polyethylene Shielding Material Containing Boron And Lead And Method For Preparing The Same - Google Patents

Polyethylene Shielding Material Containing Boron And Lead And Method For Preparing The Same Download PDF

Info

Publication number
KR100889286B1
KR100889286B1 KR1020050016096A KR20050016096A KR100889286B1 KR 100889286 B1 KR100889286 B1 KR 100889286B1 KR 1020050016096 A KR1020050016096 A KR 1020050016096A KR 20050016096 A KR20050016096 A KR 20050016096A KR 100889286 B1 KR100889286 B1 KR 100889286B1
Authority
KR
South Korea
Prior art keywords
lead
polyethylene
boron
compound
shielding material
Prior art date
Application number
KR1020050016096A
Other languages
Korean (ko)
Other versions
KR20060094712A (en
Inventor
오화숙
이창희
최병훈
김영진
Original Assignee
한국원자력연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국원자력연구원 filed Critical 한국원자력연구원
Priority to KR1020050016096A priority Critical patent/KR100889286B1/en
Publication of KR20060094712A publication Critical patent/KR20060094712A/en
Application granted granted Critical
Publication of KR100889286B1 publication Critical patent/KR100889286B1/en

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/02Selection of uniform shielding materials
    • G21F1/08Metals; Alloys; Cermets, i.e. sintered mixtures of ceramics and metals
    • G21F1/085Heavy metals or alloys
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/02Selection of uniform shielding materials
    • G21F1/10Organic substances; Dispersions in organic carriers

Abstract

본 발명에 따라서 전체 부피를 기준으로 폴리에틸렌이 80~90부피%이고, 보론 화합물과 납 화합물의 합이 10~20부피%이되, 상기 납 화합물이 1 내지 10부피%인 보론 및 납이 함유된 폴리에틸렌 방사선 차폐재가 제공되며, 이는 보론 화합물 및 납 화합물을 각각 파우더링하는 단계; 상기 분쇄된 보론 화합물과 납 화합물을 폴리에틸렌과 혼합하여 혼합물을 형성하고 승온시키는 단계; 상기 혼합물을 소형 칩으로 제조하는 단계; 및 상기 제조된 소형 칩을 압출 성형하는 단계에 의해 제조된다. 이에 따라 제공되는 차폐재는 중성자와 감마선을 동시에 차폐하는 효과가 있다. According to the present invention, polyethylene based on total volume is 80 to 90% by volume, and the sum of boron compound and lead compound is 10 to 20% by volume, and the lead compound is 1 to 10% by volume of polyethylene containing boron and lead. Provided is a radiation shield, which comprises powdering a boron compound and a lead compound, respectively; Mixing the ground boron compound and the lead compound with polyethylene to form a mixture and raising the temperature; Preparing the mixture into small chips; And extrusion molding the prepared small chip. The shielding material thus provided has the effect of simultaneously shielding neutrons and gamma rays.

보론, 납, 폴리에틸렌, 방사선 차폐재 Boron, lead, polyethylene, radiation shielding material

Description

보론 및 납이 함유된 폴리에틸렌 방사선 차폐재 및 그 제조방법 {Polyethylene Shielding Material Containing Boron And Lead And Method For Preparing The Same} Polyethylene Radiation Shielding Material Containing Boron and Lead and Manufacturing Method Thereof {Polyethylene Shielding Material Containing Boron And Lead And Method For Preparing The Same}

도 1은 실시예와 비교예에 따른 차폐재의 차폐능 비교 그래프이다. 1 is a graph comparing the shielding ability of shielding materials according to Examples and Comparative Examples.

도 2는 본 발명에 따른 보락스-Pb-PE와 순수한 폴리에틸렌의 차폐능 비교 그래프이다. 2 is a graph comparing the shielding ability of borax-Pb-PE and pure polyethylene according to the present invention.

도 3은 본 발명에 따른 중성자의 차폐 시험 장치의 개략도이다. 3 is a schematic diagram of a shield test apparatus for neutrons according to the present invention.

본 발명은 보론 및 납이 함유된 폴리에틸렌 방사선 차폐재 및 그 제조 방법에 관한 것이며, 보다 상세하게는 중성자와 감마선을 동시에 차폐할 수 있는 보론 및 납화합물이 함유된 폴리에틸렌 방사선 차폐재 및 그 제조방법에 관한 것이다. The present invention relates to a polyethylene radiation shielding material containing boron and lead and a method for manufacturing the same, and more particularly, to a polyethylene radiation shielding material containing boron and lead compounds capable of simultaneously shielding neutrons and gamma rays, and a method for producing the same. .

최근 원자로나 고속증식로 등의 원자력 시설, 핵융합시설이나 환부 의료용으 로서 사용되는 중성자선 치료시설등의 원자력 사업의 발전과 함께, 이들 각 시설로부터 발생하는 인체에 유해한 중성자선의 차폐보호가 가능한 재료의 개발이 요구되고 있다. 이러한 시설에서 발생하는 방사선은 중성자와 감마선이 있다. 더욱이 이들 2차 방사선도 대상이 되기 때문에 차폐재에는 이들을 차폐하는 능력이 요구되어진다. 중성자와 감마선은 각각 물질에 의해 감쇠 특성이 다르기 때문에 여러 물질의 조합이 차폐재로 생각되고 있다. 일반적으로 중성자와 감마선 어느것에나 유효한 차폐재로는 시멘트가 이용되고 있다. 이러한 시멘트를 이용한 구조물이나 차폐 재료들의 조합으로 필요한 차폐효과를 얻을 수 있기는 하나, 사용장소 및 용도에 따라 필요한 형태로 가공이 용이하지 않은 경우가 있다. 따라서 다양한 형태로 가공이 필요한 경우에는 폴리에틸렌과 같은 차폐재를 사용하는 것이 일반적이다. 종래기술에서는 폴리에틸렌에 보론 화합물이 함유된 보레이트 폴리에틸렌 재료 등이 중성자 차폐재로서 사용되어 왔으나, 이는 전량 수입에 의존하고 있어 가격면에서 비합리적이며, 감마선의 차폐에는 무리가 있다. 따라서, 중성자 및 감마선의 차폐능이 우수하며 새로운 차폐재의 개발이 요구되는 실정이다. Recently, with the development of nuclear business, such as nuclear facilities such as nuclear reactors, rapid growth reactors, fusion facilities or neutron treatment facilities used for disease treatment, the materials that can be shielded and protected from harmful neutrons generated from these facilities Development is required. Radiation from these facilities is neutrons and gamma rays. Furthermore, since these secondary radiations are also targeted, the shielding material requires the ability to shield them. Since neutrons and gamma rays each have different attenuation characteristics, the combination of various materials is considered to be a shielding material. In general, cement is used as an effective shielding material for both neutrons and gamma rays. Although the necessary shielding effect can be obtained by the combination of such a structure or shielding material using cement, it may not be easy to process the required shape depending on the use place and use. Therefore, when processing is required in various forms, it is common to use a shielding material such as polyethylene. In the prior art, a borate polyethylene material containing a boron compound in polyethylene has been used as a neutron shielding material, but this is unreasonable in terms of cost because it depends entirely on imports, and it is unreasonable to shield gamma rays. Therefore, the shielding ability of neutrons and gamma rays is excellent and the development of a new shielding material is required.

이에 따라 본 발명의 목적은 방사선 발생장치에서 방출되는 방사선을 차폐하거나 또는 외부 방사선으로부터 보호할 수 있는 다양한 차폐 재료 중 하나인 폴리에틸렌에 또 다른 방사선 흡수 물질인 보론과 납 화합물이 함유된 방사선 차폐재 및 그의 제조방법을 제공하는 것이다. Accordingly, an object of the present invention is to provide a radiation shielding material containing boron and lead compounds, which are another radiation absorbing material, in polyethylene, which is one of various heat shielding materials capable of shielding radiation from external radiation or shielding radiation emitted from a radiation generator. It is to provide a manufacturing method.

본 발명에 따라서, According to the invention,

전체 부피를 기준으로, 폴리에틸렌이 80~90부피%이고, 보론 화합물과 납 화합물의 합이 10~20부피%이되, 상기 납 화합물이 1~10부피%인 보론 및 납이 함유된 폴리에틸렌 방사선 차폐재가 제공된다.Polyethylene radiation shielding material containing boron and lead containing 80 to 90% by volume of polyethylene, 10 to 20% by volume of boron compound and lead compound, and 1 to 10% by volume of lead compound, Is provided.

또한, 본 발명에 따라서, In addition, according to the present invention,

보론 화합물 및 납 화합물을 각각 파우더링 하는 단계;Powdering the boron compound and the lead compound, respectively;

상기 보론 화합물에 납화합물을 폴리에틸렌에 혼합하여 혼합물을 형성하고 승온시키는 단계; Mixing lead compounds with polyethylene in the boron compound to form a mixture and raising the temperature;

상기 혼합물을 소형 칩으로 제조하는 단계; 및Preparing the mixture into small chips; And

상기 제조된 소형 칩을 압출 성형하는 단계;Extruding the manufactured small chip;

를 포함하는 보론 및 납이 함유된 폴리에틸렌 방사선 차폐재의 제조방법을 제공한다.It provides a method for producing a boron and lead containing polyethylene radiation shielding material.

이하 본 발명을 상세히 설명하고자 한다. Hereinafter, the present invention will be described in detail.

본 발명에 따라 제조되는 방사선 차폐재는 높은 수소 밀도에 의한 중성자 감속효과를 갖는 고밀도 폴리에틸렌(HDPE)에 보론 및 납 화합물을 함유시켜 중성자와 감마선을 동시에 차폐할 수 있는 잇점이 있다. The radiation shielding material produced according to the present invention has the advantage of simultaneously shielding neutrons and gamma rays by containing boron and lead compounds in high density polyethylene (HDPE) having a neutron deceleration effect due to high hydrogen density.

본 발명의 구현에 있어서, 전체 부피를 기준으로 폴리에틸렌이 80~90부피%이고, 보론 화합물과 납 화합물의 합이 10~20부피%이되, 상기 납 화합물이 1~10부피%로 이루어지는 폴리에틸렌 방사선 차폐재가 제공된다. In an embodiment of the present invention, the polyethylene radiation shielding material comprises 80 to 90% by volume of polyethylene, 10 to 20% by volume of boron compound and lead compound, and 1 to 10% by volume of lead compound. Is provided.

각각의 성분 제한에 있어서, 차폐 성분으로서 폴리에틸렌은 전체 부피를 기준으로 80~90부피%가 바람직하며, 80부피% 이하인 경우에는, 압출 성형 후에 원하는 폴리에틸렌의 물리적 특성 특히, 강도 및 가공성이 감소되며, 90부피% 이상인 경우에는 차폐효과가 감소된다.
상기 보론 화합물 및 납 화합물의 양은 전체 부피를 기준으로 10 내지 20부피%가 되도록 배합되는 것이 바람직하다. 보론 화합물 및 납 화합물이 10부피% 이하이면 차폐 효과가 감소하며, 20부피% 이상으로 첨가되면 압출 성형 가공 후 원하는 폴리에틸렌의 물리적 특성, 특히 강도 및 가공성을 제공하지 못하게 된다.
차폐재 중 다른 성분으로서 보론 화합물의 양은 전체 부피를 기준으로 10~19부피%로 함유되는 것이 바람직하며, 그 양이 10부피% 이하인 경우에는 중성자 및 감마선의 차폐효과가 감소되며, 19부피% 이상인 경우에는 폴리에틸렌의 강도 및 가공성이 감소된다. 또 다른 차폐 성분으로서 납화합물은 전체 부피를 기준으로 1-10부피%로 함유되는 것이 바람직하며, 10부피% 이상인 경우에는 다른 성분으로 인한 차폐효과를 감소시키며 억제하고, 중량이 커져서 차폐재로 적용하기 어렵다.
In each component limitation, the polyethylene as the shielding component is preferably 80 to 90% by volume based on the total volume, and when it is 80% or less, the physical properties of the desired polyethylene, particularly strength and processability, after extrusion are reduced, Above 90% by volume, the shielding effect is reduced.
The amount of the boron compound and the lead compound is preferably blended to 10 to 20% by volume based on the total volume. If the boron compound and the lead compound are 10% by volume or less, the shielding effect is reduced, and when added to 20% by volume or more, it does not provide the physical properties of the polyethylene, particularly strength and processability, desired after the extrusion process.
As other components of the shielding material, the amount of the boron compound is preferably contained in 10 to 19% by volume based on the total volume. When the amount is less than 10% by volume, the shielding effect of neutrons and gamma rays is reduced, and when the amount is more than 19% by volume. This reduces the strength and processability of the polyethylene. As another shielding component, the lead compound is preferably contained in 1-10% by volume based on the total volume, and in the case of more than 10% by volume, the shielding effect due to other ingredients is reduced and suppressed, and the weight is increased to apply the shielding material. it's difficult.

본 발명의 바람직한 구현에 있어서, 상기 폴리에틸렌에 함유되는 보론 화합물은 무수 보락스(Borax/Na2B4O7), 삼산화보론(B2O3), 붕산(H3BO4)으로 구성되는 그룹으로부터 바람직하게 선택되며, 납 화합물은 사산화납과 같은 납산화물이 바람직하다. 또한 본 발명에 사용되는 폴리에틸렌은 고밀도 폴리에텔렌(HDPE)으로 이 기술분야에 알려져 있으며, 상업적으로 이용가능하다. In a preferred embodiment of the present invention, the boron compound contained in the polyethylene is a group consisting of anhydrous borax (Borax / Na 2 B 4 O 7 ), boron trioxide (B 2 O 3 ), boric acid (H 3 BO 4 ) Preferably, the lead compound is preferably a lead oxide such as lead tetraoxide. Polyethylene used in the present invention is also known in the art as high density polyethylene (HDPE) and is commercially available.

본 발명의 보론 및 납 성분이 함유된 폴리에틸렌 차폐재의 제조방법은 크게 크게 파우더링(powdering), 컴파운딩(compounding) 및 압출성형 단계를 거쳐 제조된다. Boron and lead-containing polyethylene shielding method of the present invention is largely produced through the powdering (compounding) compounding (compounding) and extrusion step.

먼저, 보론 및 납 화합물의 입자가 마이크로 수준으로 미세화되도록 파우더링한다. 파우더링에 의해 보론 및 납화합물을 미세한 분말로 분쇄하여 폴리에틸렌에 고르게 분산시킬 수 있으며, 이와 같이 미세하게 분쇄된 보론 및 납 화합물애 의해 방사선 차폐효과가 최대화되며 또한 폴리에틸렌의 가공성 및 강도와 같은 물성에도 영향을 미치게 된다. 파우더링은 볼밀(ball-mill)을 사용하며, 이 방법으로 보론 및 납 화합물을 12 마이크로 이하의 입자크기로 분쇄하는 것이 바람직하다. 입자크기가 12마이크로 이상인 경우에는 폴리에틸렌에 고루 분산되지 않기 때문에 차폐효과가 떨어지게 된다. First, the particles of boron and lead compounds are powdered to micronize to micro level. By powdering, boron and lead compounds can be pulverized into fine powders and evenly dispersed in polyethylene.The finely pulverized boron and lead compounds maximize radiation shielding effect and also improve the physical properties such as processability and strength of polyethylene. Will be affected. Powdering uses a ball mill, which is preferably used to grind boron and lead compounds to a particle size of 12 microns or less. If the particle size is more than 12 microns, the shielding effect is reduced because it is not evenly dispersed in polyethylene.

이와 같이 분쇄된 보론 화합물, 납 화합물 및 폴리에틸렌을 적합한 비율로 혼합하여 소형칩 형태로 압출성형하는데 이 과정을 컴파운딩이라 한다. 컴파운딩 단계에서는 미세하게 분쇄된 파우더 형태의 보론 및 납 화합물을 분말형태의 폴리에틸렌과 독립적으로 혼합한 후 폴리에틸렌이 유동성을 갖는 온도 즉, 190~210℃까지 올려 용융된 혼합물을 길고 가는 막대형으로 뽑은 다음 냉각, 절단 과정을 거쳐 폴리에틸렌, 보론-폴리에틸렌, 및 납-폴리에틸렌과 같은 소형칩 형태로 제조한다. The pulverized boron compound, lead compound and polyethylene are mixed in an appropriate ratio and extruded into small chips. This process is called compounding. In the compounding step, finely pulverized powdered boron and lead compounds are mixed with the polyethylene in the form of powder independently, and then the molten mixture is pulled up to a temperature of fluidity, that is, 190 to 210 ° C. in a long thin rod form. It is then cooled and cut to form small chips such as polyethylene, boron-polyethylene, and lead-polyethylene.

상기 보론 및 납화합물과 폴리에틸렌을 비율로 배합함에 있어서, 보론 화합물과 납 화합물의 총부피가 폴리에틸렌의 20부피% 이하가 되도록 배합되는 것이 바람직하다. 보론 및 납화합물이 20부피% 이상으로 첨가되면 압출성형 가공 후 원하는 폴리에틸렌의 물리적 특성 특히 강도 및 가공성을 제공하지 못하게 된다. In blending the boron, lead compound and polyethylene in a ratio, it is preferable that the total volume of the boron compound and the lead compound is blended to be 20% by volume or less of polyethylene. If boron and lead compounds are added in excess of 20% by volume, they will not provide the desired polyethylene physical properties, in particular strength and processability, after extrusion molding.

그 후, 상기와 같이 소형칩을 압출 성형하여 완성품으로 제조한다. 이때 압출 성형작업의 온도는 190℃~210℃이며 압출속도는 1분당 6mm~10mm로 수행하는 것이 바람직하다. 최종적으로 제조된 차폐재에는, 보론 원소 함량이 4~10wt% 그리고 납 원소 함량이 0~30중량%로 함유된다. Thereafter, the compact chip is extruded as described above to produce a finished product. At this time, the temperature of the extrusion molding operation is 190 ℃ ~ 210 ℃ and the extrusion speed is preferably carried out to 6mm ~ 10mm per minute. The finally prepared shielding material contains boron element content of 4-10 wt% and lead element content of 0-30 wt%.

상기한 바와 같이, 본 발명의 방법에 따라 제조된 방사선 차폐재는 보론 및 납 성분이 폴리에틸렌에 고루 분산되어 차폐성능이 최대화되었으며, 압출 성형단계를 거침으로써 요구되는 가공 용이성 및 물성을 얻을 수 있었다. 본 발명에 따라 제조된 방사선 차폐재는 여러가지 방사선 장치로부터 발생하는 방사선을 차폐하거나 또는 외부로부터 침투하는 방사선을 방지할 수 있는 다양한 구조물에 사용될 수 있으며, 특히, 종래에 방사선 차폐를 위해 사용된 시멘트와 비교하여 차폐효과가 높고, 상대적으로 적은 부피를 차지하며, 선반, 밀링 등의 작업이 가능한 강도를 가지며, 이는 제작 및 형태 변경의 편리성을 제공한다.As described above, the radiation shielding material prepared according to the method of the present invention is the boron and lead components are evenly dispersed in polyethylene to maximize the shielding performance, it was possible to obtain the required processability and physical properties by the extrusion molding step. The radiation shielding material produced according to the invention can be used in a variety of structures that can shield radiation from various radiation devices or prevent radiation from penetrating from the outside, in particular, compared with cements conventionally used for radiation shielding. Therefore, the shielding effect is high, occupies a relatively small volume, and has a strength capable of lathe, milling, etc., which provides convenience of manufacturing and shape change.

이하 실시예를 통하여 본 발명을 상세하게 설명하고자 하며, 이로써 본 발명을 제한하는 것은 아니다. Hereinafter, the present invention will be described in detail with reference to the following examples, which do not limit the present invention.

실시예 Example

실시예 1. 보락스-폴리에틸렌(Borax-PE) 제조방법Example 1 Borax-Polyethylene (Borax-PE)

보락스(borax, Na2B4O7)를 12마이크로 이하로 분쇄하였다. 분쇄된 보락스 파우더 10.2 Kg(12부피%, 25.2무게%)과 폴리에틸렌 파우더30.4Kg(88부피%, 74.8무게%)를 혼합하여 가느다란 막대모양으로 압출 성형하여 냉각한 후 소형칩 형태로 잘라 보락스-폴리에틸렌 칩을 제조하였다. 상기 보락스-폴리에틸렌 칩을 온도 190℃~210℃, 압출속도 분당 6mm~10mm에서 600mm(가로)×1200mm(세로)× 50mm(높이)의 판재로 압출성형하였다. 이에 따라 최종 보론 원소함량이 5.4wt%인 보락스-폴리에틸렌 차폐재를 얻었으며, 그 함량을 다음 표 1a에 나타내었다. Borax (Na 2 B 4 O 7 ) was ground to 12 microns or less. 10.2 Kg (12% by volume, 25.2% by weight) of pulverized borax powder and 30.4Kg (88% by volume, 74.8% by weight) of polyethylene powder are mixed, extruded into thin rods, cooled, and cut into small chips. Lax-polyethylene chips were prepared. The borax-polyethylene chip was extruded into a sheet of 600 mm (width) × 1200 mm (length) × 50 mm (height) at a temperature of 190 ° C. to 210 ° C. and an extrusion rate of 6 mm to 10 mm per minute. As a result, a borax-polyethylene shield having a final boron element content of 5.4 wt% was obtained, and the content thereof is shown in Table 1a.

[표1a] Table 1a

보락스-PE의 각 성분함량(차폐재 100ml기준)  Content of each component of Borax-PE (Based on 100ml of shielding material)

부피 %volume % 중량 (g)Weight (g) 중량(B,H) (g)Weight (B, H) (g) 중량 % (B,H)Weight% (B, H) 보락스Borax 1212 28.428.4 6.1 (B)6.1 (B) 5.4 (B)5.4 (B) HDPEHDPE 8888 84.584.5 12.1 (H)12.1 (H) 10.7 (H)10.7 (H)

실시예 2. B2O3-PE의 제조방법Example 2. Preparation of B 2 O 3 -PE

삼산화붕소(B2O3)를 12마이크로 이하로 분쇄하였다. 분쇄된 삼산화붕소 파우더 10.2 Kg(12부피%, 25.2무게%)과 폴리에틸렌 파우더30.4Kg(88부피%, 74.8무게%) 를 혼합하여 가느다란 막대모양으로 압출 성형하고 냉각한 다음 소형칩 형태로 잘라 보락스-폴리에틸렌을 칩을 제조하였다. 상기 B2O3-폴리에틸렌 칩을 온도 190℃~210℃, 압출속도 분당 6mm~10mm에서 600mm(가로) × 1200mm(세로) × 50mm(높이) 의 판재로 압출성형하였다. 이에 따라 보론 원소함량이 6.9wt%인 B2O3-폴리에틸렌를 얻었으며, 그 함량을 다음 표 1b에 나타내었다. Boron trioxide (B 2 O 3 ) was ground to 12 microns or less. 10.2 Kg (12% by volume, 25.2% by weight) of pulverized boron trioxide powder and 30.4Kg (88% by volume, 74.8% by weight) of polyethylene powder are extruded into thin rods, cooled, and cut into small chips. Lax-polyethylene was prepared for the chip. The B 2 O 3 -polyethylene chip was extruded into a sheet of 600 mm (width) × 1200 mm (length) × 50 mm (height) at a temperature of 190 ° C. to 210 ° C. and an extrusion rate of 6 mm to 10 mm per minute. This resulted in B 2 O 3 -polyethylene having a boron element content of 6.9wt%, the content is shown in the following Table 1b.

[표 1b]TABLE 1b

B2O3-PE의 각 성분함량 (차폐재 100ml 기준)Content of each component of B 2 O 3 -PE (Based on 100ml of shielding material)

부피 %volume % 중량 (g)Weight (g) 중량(B,H)(g)Weight (B, H) (g) 중량 % (B,H)Weight% (B, H) B2O3 B 2 O 3 1212 29.429.4 9.2 (B)9.2 (B) 8.1 (B)8.1 (B) HDPEHDPE 8888 84.584.5 12.1 (H)12.1 (H) 110.6 (H)110.6 (H)

실시예 3. 보락스-사산화납-폴리에틸렌(Borax-Pb3O4-PE 20%) 제조방법Example 3 Borax-Lead Tetraoxide-Polyethylene (Borax-Pb 3 O 4 -PE 20%)

보락스(borax, Na2B4O7) 및 사산화납을 12마이크로 이하로 분쇄하였다. 분쇄된 보락스 파우더 10.2Kg(12부피%, 23.5무게%), 폴리에틸렌 파우더30.0Kg(87부피%, 69무게%) 및 사산화납 3.3Kg(1부피%, 7.5무게%)을 혼합하고 가느다란 막대모양으로 압출 성형하고 냉각한 다음 소형칩 형태로 잘라 보락스-사산화납-폴리에틸렌을 칩을 제조하였다. 그 다음 보락스-사산화납-폴리에틸렌 칩을 온도 190℃~210℃, 압출속도 분당 6mm~10mm에서 600mm(가로)×1200mm(세로)×50mm(높이) 의 판재로 압출성형한다. 이에 따라 보론 원소함량이 4.8wt%이며 납 원소함량이 26.1wt%인 보락스-Pb3O4-폴리에틸렌 차폐재를 얻었으며, 그 함량을 다음 표 1c에 나타내었다. Borax (Na 2 B 4 O 7 ) and lead tetraoxide were ground to 12 microns or less. 10.2Kg (12% by volume, 23.5% by weight) of pulverized borax powder, 30.0Kg (87% by volume, 69% by weight) polyethylene powder and 3.3Kg (1% by volume, 7.5% by weight) of lead tetraoxide Extruded in the shape of a rod, cooled and cut into small chips to form a borax-tetraoxide-polyethylene chip. The borax-lead tetraoxide-polyethylene chips are then extruded into sheets of 600 mm (width) × 1200 mm (length) × 50 mm (height) at a temperature of 190 ° C. to 210 ° C. and an extrusion rate of 6 mm to 10 mm per minute. As a result, borax-Pb 3 O 4 -polyethylene shielding material having a boron element content of 4.8 wt% and a lead element content of 26.1wt% was obtained, and the contents thereof are shown in Table 1c.

[표 1c]TABLE 1c

보락스-Pb3O4-PE 20%의 각 성분 함량 (차폐재 100ml 기준)Each component content of Borax-Pb 3 O 4 -PE 20% (Based on 100ml of shielding material)

부피 %volume % 중량(g)Weight (g) 중량(B,Pb,H)(g)Weight (B, Pb, H) (g) 중량 %(B,Pb,H)Weight% (B, Pb, H) 보락스Borax 1212 28.428.4 6.16.1 5.85.8 Pb3O4Pb3O4 1One 9.19.1 8.38.3 6.86.8 HDPEHDPE 8787 83.583.5 11.911.9 9.99.9

실시예 4. Example 4.

사산화납을 2.5kg 사용한 것을 제외하고 실시예 3에 따라 수행하여 보락스-Pb3O4-PE 15%를 얻었다. Except that 2.5 kg of lead tetraoxide was carried out according to Example 3 to obtain 15% of borax-Pb 3 O 4 -PE.

비교예 1: 순수한 폴리에틸렌 차폐재를 제조하였다. Comparative Example 1: Pure polyethylene shielding material was prepared.

비교예 2: 최종 보론 원소 함량이 15중량%인 폴리에틸렌 차폐재와 비교하였다.Comparative Example 2: Compared with a polyethylene shield having a final boron element content of 15% by weight.

비교예 3: 최종 보론 원소 함량이 20중량%인 폴리에틸렌 차폐재와 비교하였다. Comparative Example 3: Compared to a polyethylene shield having a final boron element content of 20% by weight.

중성자 차폐능 평가Neutron shielding ability evaluation

본 발명에 따라 제조된 차폐재료로 행한 차폐능 시험 결과이다. 일정 크기의 중성자빔 출구를 만들고 중성자의 세기를 측정할 수 있는 검출기를 출구와 일정한 거리(5cm)에 배치하고 차폐재를 투과하는 중성자의 세기를 측정하였다. 이 때 차폐재의 두께를 2mm에서 최대 40mm까지 변화시키면서 검출기로 측정하였다. 측정된 세기를 중성자 흡수 단면적 계수로 계산하였다. It is the result of the shielding test performed with the shielding material manufactured by this invention. A neutron beam outlet of a certain size was made, and a detector capable of measuring the intensity of the neutron was placed at a certain distance (5 cm) from the outlet, and the intensity of the neutron penetrating the shielding material was measured. At this time, the thickness of the shield was measured by a detector while changing the thickness from 2 mm up to 40 mm. The measured intensity was calculated as the neutron absorption cross-sectional area factor.

중성자 흡수 단면적 계수의 계산 방법은 다음과 같다.The method of calculating the neutron absorption cross section coefficient is as follows.

Figure 112005010311892-pat00001
또는
Figure 112005010311892-pat00002
Figure 112005010311892-pat00001
or
Figure 112005010311892-pat00002

(I0:입사빔, I:투과빔, x:투과두께, μ:흡수단면적계수)(I 0 : incident beam, I: transmission beam, x: transmission thickness, μ: suction area coefficient)

시험결과Test result

다음 표 2a 및 2b는 실시예 1 내지 3 및 비교예 1 내지 3에 따른 차폐재를 상기와 같은 시험에 따라 얻어진 데이타이며 이의 차폐능 시험 그래프를 도 1에 나타내었다. Tables 2a and 2b are data obtained according to the test of the shielding material according to Examples 1 to 3 and Comparative Examples 1 to 3 according to the above test and its shielding capacity test graph is shown in FIG. 1.

[표2a] Table 2a

비교예 1      Comparative Example 1 비교예 2Comparative Example 2 비교예 3Comparative Example 3 두께 (cm)Thickness (cm) 카운트count μ (cm-1)μ (cm-1) 두께 (cm)Thickness (cm) 카운트count μ (cm-1)μ (cm-1) 두께 (cm)Thickness (cm) 카운트count μ (cm-1)μ (cm-1) 00 212,854212,854   00 212,854212,854   00 213,323 213,323   0.170.17 111,431 111,431 3.807 3.807 0.22 0.22 59,129 59,129 5.876 5.876 0.21 0.21 75,232 75,232 4.963 4.963 0.270.27 80,433 80,433 3.604 3.604 0.32 0.32 34,084 34,084 5.724 5.724 0.28 0.28 51,869 51,869 5.050 5.050 0.4070.407 55,292 55,292 3.312 3.312 0.42 0.42 20,057 20,057 5.624 5.624 0.43 0.43 25,526 25,526 4.937 4.937 0.5070.507 43,161 43,161 3.147 3.147 0.53 0.53 11,560 11,560 5.476 5.476 0.55 0.55 15,281 15,281 4.793 4.793             1.021.02 1,918 1,918 4.619 4.619             1.561.56 756 756 3.617 3.617             2.022.02 680 680 2.846 2.846

[표 2b]TABLE 2b

실시예 1 보락스-PE) Example 1 Borax-PE) 실시예 2 B2O3-PE Example 2 B2O3-PE 두께 (cm)Thickness (cm) 카운트count μ (cm-1)μ (cm-1) 두께 (cm)Thickness (cm) 카운트count μ(cm-1)μ (cm-1)  00 213,323  213,323    00 221,504 221,504   0.205 0.205 62,662 62,662 5.965 5.965 0.173 0.173 74,746 74,746 6.279 6.279 0.318 0.318 33,245 33,245 5.839 5.839 0.220 0.220 58,125 58,125 6.081 6.081 0.405 0.405 20,341 20,341 5.797 5.797 0.330 0.330 30,149 30,149 6.043 6.043 0.505 0.505 12,245 12,245 5.654 5.654 0.450 0.450 16,347 16,347 5.792 5.792 0.550.55 9,033 9,033 5.817 5.817 0.750.75 3,356 3,356 5.586 5.586 0.940.94 1,561 1,561 5.271 5.271 1.441.44 615 615 4.088 4.088 1.961.96 471 471 3.139 3.139 2.52.5 395 395 2.532 2.532

다음 표 3은 실시예 3에 따른 차폐재의 시험 결과 데이타이며, 이의 차폐능 시험 그래프를 도 2에 나타내었다. Table 3 is a test result data of the shielding material according to Example 3, the shielding performance test graph is shown in FIG.

[표 3]TABLE 3

실시예 3 보락스-Pb3O4-PE 20%Example 3 Borax-Pb 3 O 4 -PE 20% 두께 (cm)Thickness (cm) 카운트count μ (cm-1)μ (cm -1 ) 00 208040208040 5.0985.098 0.1870.187 8019480194 5.1485.148 0.3270.327 3864838648 5.0965.096 0.4190.419 2459024590 5.0735.073 0.5240.524 1457514575 4.9954.995 0.5790.579 1153811538 4.9514.951 0.6930.693 67296729 4.8764.876 0.7960.796 42904290 4.7454.745 0.8810.881 31813181 4.7244.724 0.9620.962 22112211 1.4491.449 738738 1.961.96 565565 2.52.5 405405

상기 표 2 및 3과 도 1 및 2에 나타낸 바와 같이, 본 발명에 따른 보론 및 납 화합물이 함유된 폴리에틸렌 차폐재는 순수한 PE나 종래의 차폐재와 비교하여, 매우 우수한 차폐능을 나타냄(즉, 카운트수의 감소)을 알 수 있다. As shown in Tables 2 and 3 and FIGS. 1 and 2, the polyethylene shielding material containing boron and lead compounds according to the present invention shows a very good shielding performance compared to pure PE or a conventional shielding material (that is, the count number Decreases).

본 발명의 방법에 따라 폴리에틸렌에 보론 및 납이 함유된 차폐재를 사용하여 중성자와 감마선을 동시에 차폐시킬 수 있다. According to the method of the present invention, a shielding material containing boron and lead in polyethylene can be used to simultaneously shield neutrons and gamma rays.

Claims (8)

삭제delete 삭제delete 삭제delete 보론 화합물 및 납 화합물을 각각 파우더링하는 단계;Powdering the boron compound and the lead compound, respectively; 상기 보론화합물과 납 화합물의 분말을 폴리에틸렌 분말에 혼합하여 혼합물을 형성하고 승온시키는 단계;Mixing the boron compound and the powder of lead compound with polyethylene powder to form a mixture and raising the temperature; 상기 혼합물을 소형 칩으로 제조하는 단계; 및Preparing the mixture into small chips; And 상기 제조된 소형 칩을 압출 성형하는 단계;Extruding the manufactured small chip; 를 포함하는 보론 및 납이 함유된 폴리에틸렌 방사선 차폐재의 제조방법. Boron and lead-containing polyethylene radiation shielding method comprising a. 제 4항에 있어서, 상기 보론 화합물은 무수 보락스(Borax/Na2B4O7), 삼산화보론(B2O3), 붕산(H3BO4)로 구성되는 그룹으로부터 선택됨을 특징으로 하는 보론 및 납이 함유된 폴리에틸렌 방사선 차폐재의 제조방법.5. The boron compound of claim 4, wherein the boron compound is selected from the group consisting of anhydrous borax (Borax / Na 2 B 4 O 7 ), boron trioxide (B 2 O 3 ), and boric acid (H 3 BO 4 ). Method for producing polyethylene radiation shielding material containing boron and lead. 제 4항에 있어서, 상기 납 화합물은 사산화납임을 특징으로 하는 보론 및 납이 함유된 폴리에틸렌 방사선 차폐재의 제조방법.5. The method of claim 4, wherein the lead compound is lead tetraoxide. 제 4항에 있어서, 상기 파우더링 단계에서 보론화합물 및 납 화합물은 12마이크로 이하로 분쇄됨을 특징으로 하는 보론 및 납이 함유된 폴리에틸렌 방사선 차폐재의 제조방법.The method of claim 4, wherein in the powdering step, the boron compound and the lead compound are pulverized to 12 microns or less. 제 4항에 있어서, 상기 소형 칩은 190~200℃의 온도범위에서 6mm~10mm/분의 속도로 압출성형됨을 특징으로 하는 보론 및 납이 함유된 폴리에틸렌 방사선 차폐재의 제조방법.The method of claim 4, wherein the small chip is extrusion molded at a rate of 6mm ~ 10mm / min in the temperature range of 190 ~ 200 ℃ Boron and lead-containing polyethylene radiation shielding method.
KR1020050016096A 2005-02-25 2005-02-25 Polyethylene Shielding Material Containing Boron And Lead And Method For Preparing The Same KR100889286B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050016096A KR100889286B1 (en) 2005-02-25 2005-02-25 Polyethylene Shielding Material Containing Boron And Lead And Method For Preparing The Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050016096A KR100889286B1 (en) 2005-02-25 2005-02-25 Polyethylene Shielding Material Containing Boron And Lead And Method For Preparing The Same

Publications (2)

Publication Number Publication Date
KR20060094712A KR20060094712A (en) 2006-08-30
KR100889286B1 true KR100889286B1 (en) 2009-03-19

Family

ID=37602449

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050016096A KR100889286B1 (en) 2005-02-25 2005-02-25 Polyethylene Shielding Material Containing Boron And Lead And Method For Preparing The Same

Country Status (1)

Country Link
KR (1) KR100889286B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240000224A (en) 2022-06-23 2024-01-02 오영훈 Full body radiation shield and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100047510A (en) 2008-10-29 2010-05-10 한국원자력연구원 Radiation shielding members including nano-particles as a radiation shielding materials and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05142392A (en) * 1991-11-15 1993-06-08 Ishikawajima Harima Heavy Ind Co Ltd Radiation shielding member
KR20000022324A (en) * 1996-06-28 2000-04-25 데이비드 더블유 더글라스 High density composite material
JP2004028987A (en) 2002-03-01 2004-01-29 Mitsubishi Heavy Ind Ltd Cask, composition for neutron shield, and production method for neutron shield
KR20050010029A (en) * 2003-03-03 2005-01-26 미츠비시 쥬고교 가부시키가이샤 Cask, composition for neutron shielding body, and method of manufacturing the neutron shielding body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05142392A (en) * 1991-11-15 1993-06-08 Ishikawajima Harima Heavy Ind Co Ltd Radiation shielding member
KR20000022324A (en) * 1996-06-28 2000-04-25 데이비드 더블유 더글라스 High density composite material
JP2004028987A (en) 2002-03-01 2004-01-29 Mitsubishi Heavy Ind Ltd Cask, composition for neutron shield, and production method for neutron shield
KR20050010029A (en) * 2003-03-03 2005-01-26 미츠비시 쥬고교 가부시키가이샤 Cask, composition for neutron shielding body, and method of manufacturing the neutron shielding body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240000224A (en) 2022-06-23 2024-01-02 오영훈 Full body radiation shield and manufacturing method thereof

Also Published As

Publication number Publication date
KR20060094712A (en) 2006-08-30

Similar Documents

Publication Publication Date Title
El-Rehim et al. Radiation, crystallization, and physical properties of cadmium borate glasses
DE102009000553B4 (en) Active optoceramics with cubic crystal structure, their production and uses
DE102009000552B4 (en) Active optoceramics with cubic crystal structure, their production and uses
Hannachi et al. Structure, optical properties, and ionizing radiation shielding performance using Monte Carlo simulation for lead-free BTO perovskite ceramics doped with ZnO, SiO2, and WO3 oxides
Ilik et al. Cerium (IV) oxide reinforced Lithium-Borotellurite glasses: A characterization study through physical, optical, structural and radiation shielding properties
KR20100047510A (en) Radiation shielding members including nano-particles as a radiation shielding materials and preparation method thereof
KR101952817B1 (en) Concrete composite for improving neutron shielding ability
JPH10226533A (en) Radiation shielding glass
CN113201180B (en) Neutron and gamma ray composite shielding material and preparation method thereof
El-Khayatt et al. Preparation and characterization of zinc, lanthanum white sand glass for use in nuclear applications
CN110105743A (en) A kind of unleaded X, gamma ray shielding material and preparation method thereof
KR100889286B1 (en) Polyethylene Shielding Material Containing Boron And Lead And Method For Preparing The Same
Obeid et al. Attenuation parameters of HDPE filled with different nano-size and bulk WO3 for X-ray shielding applications
WO2017038378A1 (en) Glass composition, neutron-absorbing material comprising same, method for managing molten fuel, method for taking out molten fuel, and method for stopping nuclear reactor
Sallam et al. Impact of Nd3+ additive on the radiation shielding competence of borosilicate glasses fabricated from agro-waste materials
Rahmat et al. Improvement X-ray radiation shield characteristics of composite cement/Titanium dioxide (TiO2)/Barium carbonate (BaCO3): Stability crystal structure and chemical bonding
KR101890267B1 (en) Method for preparing lead-free radiation sheilding sheet
EP1803691A1 (en) Glass
Basha et al. Synthesis of Bi2O3 doping powder from CRT-screen waste glass: Physical, structural, and radiation attenuation properties
JP2014182055A (en) Organic inorganic composite
KR102484194B1 (en) Radiation shielding fabric, its manufacturing method and radiation shielding articles using the same
Uosif et al. Effects of Nd2O3 substitution on the mechanical and radiation shielding properties of alumino-borobismuthate glasses
CN101636440B (en) Optically transparent, xray-opaque composition, methods of manufacture thereof and articles comprising the same
US3635876A (en) Thermoplastic material compositions
Thabit et al. Optical, thermal and gamma ray attenuation characteristics of tungsten oxide modified: B2O3–SrCO3–TeO2–ZnO glass series

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130111

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20131227

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20141230

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20160310

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20171208

Year of fee payment: 9

R401 Registration of restoration
FPAY Annual fee payment

Payment date: 20181206

Year of fee payment: 10

R401 Registration of restoration
FPAY Annual fee payment

Payment date: 20190312

Year of fee payment: 11