KR100865345B1 - Surface characteristics of ha coatings on dental implants - Google Patents

Surface characteristics of ha coatings on dental implants Download PDF

Info

Publication number
KR100865345B1
KR100865345B1 KR1020070061993A KR20070061993A KR100865345B1 KR 100865345 B1 KR100865345 B1 KR 100865345B1 KR 1020070061993 A KR1020070061993 A KR 1020070061993A KR 20070061993 A KR20070061993 A KR 20070061993A KR 100865345 B1 KR100865345 B1 KR 100865345B1
Authority
KR
South Korea
Prior art keywords
dental implant
nanotubes
coating
dental
tooth
Prior art date
Application number
KR1020070061993A
Other languages
Korean (ko)
Inventor
최한철
Original Assignee
주식회사덴트퀸스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사덴트퀸스 filed Critical 주식회사덴트퀸스
Priority to KR1020070061993A priority Critical patent/KR100865345B1/en
Application granted granted Critical
Publication of KR100865345B1 publication Critical patent/KR100865345B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0012Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy
    • A61C8/0013Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy with a surface layer, coating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/0003Making bridge-work, inlays, implants or the like
    • A61C13/0006Production methods
    • A61C13/0007Production methods using sand blasting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/01Palates or other bases or supports for the artificial teeth; Making same
    • A61C13/02Palates or other bases or supports for the artificial teeth; Making same made by galvanoplastic methods or by plating; Surface treatment; Enamelling; Perfuming; Making antiseptic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • A61L27/32Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0018Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the shape
    • A61C8/0037Details of the shape
    • A61C2008/0046Textured surface, e.g. roughness, microstructure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/12Nanosized materials, e.g. nanofibres, nanoparticles, nanowires, nanotubes; Nanostructured surfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/18Modification of implant surfaces in order to improve biocompatibility, cell growth, fixation of biomolecules, e.g. plasma treatment

Abstract

A manufacturing method of a dental implant coated with toothash using nano-tubes is provided to improve the biocompatibility and osseointegration of a dental implant and to be permanently implanted on a user's mouth. A manufacturing method of a dental implant coated with toothash using nano-tubes includes the steps of: forming nano-tubes on the surface of a dental implant; and coating toothash or artificial HA on the surface of the nano-tubes. The method of forming nano-tubes on the surface of the dental implant uses an anodization method, and the method of coating toothash or artificial HA uses a physical vapor deposition. A pulse laser deposition method is used as the physical vapor deposition, and the basic pressure is 9.9x10-6Torr, the temperature is 500deg.C and the time is 20 minutes.

Description

나노튜브에 의해 치아회분말이 코팅되도록 한 치과용 임플란트 제조방법{SURFACE CHARACTERISTICS OF HA COATINGS ON DENTAL IMPLANTS}Dental implant manufacturing method by which tooth ash powder is coated by nanotubes {SURFACE CHARACTERISTICS OF HA COATINGS ON DENTAL IMPLANTS}

도 1 - 본 발명에 의해 나노튜브가 형성된 치과용 임플란트 표면을 촬영한 사진도.       1-Photograph taken of the surface of the dental implant formed nanotubes by the present invention.

도 2 - 본 발명에 있어서 나노튜브가 형성된 치과용 임플란트 표면에 스퍼터링 증착법에 의해 치아회분말이 코팅된 상태를 보이기 위한 사진도.      FIG. 2 is a photograph for showing a tooth powder coated on a surface of a dental implant in which nanotubes are formed by sputtering deposition.

도 3 - 본 발명에 있어서 나노튜브가 형성된 치과용 임플란트 표면에 펄스 레이저 증착법에 의해 치아회분말이 성공적으로 코팅된 상태를 보이기 위한 사진도.Figure 3 is a photograph for showing the dental powder is successfully coated on the surface of the dental implant formed nanotubes by the pulse laser deposition method in the present invention.

도 4 - 본 발명에 있어서 나노튜브가 형성된 치과용 임플란트 표면에 치아회분말을 펄스 레이저 증착법에 의해 코팅함에 있어 조건이 맞지 않아 실패한 상태를 보이기 위한 사진도.Figure 4 is a photographic view showing a failed state because the conditions are not suitable for coating the dental ash powder on the dental implant surface formed nanotubes by the pulse laser deposition method in the present invention.

본 발명은 치과용 임플란트 제조방법에 관한 것으로, 보다 상세하게는 치아회분말을 나노튜브가 형성된 치과용 임플란트의 표면에 코팅함으로써 치과용 임플란트의 생체적합성과 골융합성을 향상시켜 치과 시술시간을 단축하고 구강 내에 영구히 매식할 수 있도록 하기 위한 나노튜브에 의해 치아회분말이 코팅되도록 한 치과용 임플란트 제조방법에 관한 것이다.The present invention relates to a dental implant manufacturing method, more specifically, by coating the dental ash powder on the surface of the dental implant formed nanotubes to improve the biocompatibility and bone fusion of the dental implant to shorten the dental procedure time The present invention relates to a dental implant manufacturing method for coating tooth powder by nanotubes for permanently buried in the oral cavity.

치과용 임플란트는 인체에 거부반응이 없는 재료로 만든 인공치근을 의미하는 것으로, 이가 빠져나간 치조골에 상기 인공치근을 심어서 유착시킨 뒤 인공치근에 인공치아를 고정시켜 치아의 원래 기능을 회복할 수 있도록 하는 도구이다.Dental implant means an artificial tooth made of a material that does not have a rejection reaction to the human body, and implants the artificial tooth in the alveolar bone where the tooth is drained and adheres it to fix the artificial tooth in the artificial tooth to restore the original function of the tooth. It is a tool to help.

또한 치과용 임플란트는 개발이 시작된 이래 주로 인공치근을 이루는 재료의 소재와 상기 인공치근과 골(骨) 사이의 생체적합성에 연구가 집중되어져 왔으며, 특히 구강 내에서 화학적으로 안정적이고 내마모성을 가져야 하는 치과용 임플란트의 특성상 내식성과 내마모성을 모두 만족할 수 있는 소재의 개발이 무엇보다 중요하다고 할 것이다.In addition, since the development of dental implants, research has been focused on the material of the material of the artificial tooth and the biocompatibility between the artificial tooth and the bone, especially in the oral cavity, which has to be chemically stable and wear-resistant. It is important to develop a material that can satisfy both corrosion resistance and abrasion resistance.

따라서 상기와 같은 조건을 만족하는 생체 친화적인 물질을 개발하기 위하여 지금까지 표면 물성을 증진시키기 위하여 임플란트 표면에 TiN, ZrN등과 같은 생체불활성 질화물이나 에폭시를 코팅하거나, 뼈성분을 갖는 치아회분말(하이드록시 에퍼타이트,hydroxy apatite(HA))를 코팅하는 등 다양한 시도를 하였으나 임플란트 기지의 조직변화와 함께 생체적합성과 골융합성을 동시에 만족시킬 수 있는 마땅한 방법은 찾지 못하고 있는 실정이다.Therefore, in order to develop a bio-friendly material that satisfies the conditions described above, in order to improve the surface properties, a tooth powder having a bioinert nitride or epoxy such as TiN, ZrN or the like is coated on the implant surface or having a bone component. Although various attempts have been made, such as coating hydroxy apatite (HA), there is no suitable way to satisfy both biocompatibility and bone fusion as well as tissue change of implant base.

현재 임플란트 시술시 가장 대두 되는 문제는 골과의 결합시간을 단축하고 그 계면에서 밀착하기 위한 강도를 필요로 하고 있다. 이를 위하여 HA를 열적 분사법으로 표면에 분사하여 코팅처리 하는 방법이 사용되고 있으나, 상기 열적 분사법은 마이크로크랙(microcrack), 코팅층과 임플란트 표면의 낮은 결합력, 높은 온도에서 노출에 의한 상변화, 불균일한 코팅 밀도 그리고 불규칙적인 미세구조 제어 등의 단점 등에 의해 계면에서 박리현상이 발생하고 이로 인해 임플란트 시술의 실패원인이 되고 있는 실정이다. At present, the most prominent problem at the time of implantation is the need for strength to shorten the bonding time with the bone and to adhere to the interface. To this end, HA is sprayed onto the surface by thermal spraying, but the thermal spraying method is used for microcrack, low bonding force between the coating layer and the implant surface, phase change by exposure at high temperature, and unevenness. Peeling phenomenon occurs at the interface due to the disadvantages of coating density and irregular microstructure control, which causes the failure of implant procedures.

즉 치과용 임플란트의 생체적합성을 개선하기 위해서는 두 종류의 표면 거칠기가 요구되는데, 첫째는 매크로(macro) 거칠기이고 둘째가 마이크로(micro) 거칠기이다. 첫번째는 샌드 블라스팅으로 약 500 마이크로 크기의 표면 거칠기를 부여해야 하고, 두번째는 50마이크로 이하의 표면 거칠기를 부여해야 골과 결합을 증가 시킬 수 있는 것이다. In other words, two kinds of surface roughness are required to improve the biocompatibility of dental implants. First, macro roughness and second, micro roughness. The first is sandblasting to give a surface roughness of about 500 microns, and the second is to give a surface roughness of less than 50 microns to increase bone and bond.

상기 두번째와 같은 마이크로(micro) 거칠기를 부여하기 위해서 지금까지는 산세(acidic etching)를 하고 있는 실정이나, 이는 주로 치과용 임플란트의 재질로 사용되는 Ti의 산세는 주로 황산과 염산에서 이루어지는 것이어서, 상기 산이 산세 후에도 염산이온과 황산이온상태로 임플란트의 표면에 남아있게 되어 인체 구강 내 골에 매우 좋지 못한 영향을 미치게 되는 것이다.To give a micro roughness as described above, so far, acidic etching has been performed. However, the pickling of Ti, which is mainly used as a material for dental implants, is mainly made of sulfuric acid and hydrochloric acid, Even after pickling, hydrochloric and sulfate ions remain on the surface of the implant, which is very bad for the bones in the human oral cavity.

따라서 본 발명은 상기와 같이 마이크로(micro) 거칠기를 부여하기 위해서 실시하던 산세를 대신하기 위한 것으로, 본 발명은 치과용 임플란트의 표면에 나노튜브를 형성하고 상기 나노튜브 표면에 치아회분말이나 인공 HA가 코팅되도록 함으로써 인체에 유해한 산을 배제할 수 있도록 하였고, 또 치과용 임플란트의 생체적합성과 골 융합을 한층 증가시킴으로써 치과 시술 시간을 단축할 수 있을 뿐만 아니라 구강 내에 영구히 매식가능하게 한 치과용 임플란트를 제공할 수 있는 것이다. Therefore, the present invention is to replace the pickling was carried out in order to give a micro-roughness as described above, the present invention is to form a nanotube on the surface of the dental implant and tooth ash powder or artificial HA on the surface of the nanotube The coating allows the removal of acids harmful to the human body, and further increases the biocompatibility and bone fusion of the dental implants, thereby shortening the dental procedure time and allowing the dental implants to be permanently buried in the oral cavity. It can be provided.

상기한 바와 같은 목적을 달성하기 위한 다음과 같다.In order to achieve the object as described above is as follows.

즉 본 발명은 Ti를 재질로 하는 치과용 임플란트의 표면에 나노튜브를 형성하는 단계와, 상기 나노튜브 표면에 치아회분말 또는 인공 HA가 코팅하는 단계로 이루어진다.That is, the present invention comprises the steps of forming a nanotube on the surface of the dental implant made of Ti, and coating the tooth ash powder or artificial HA on the surface of the nanotube.

이때 치과용 임플란트의 표면에 나노튜브를 형성하는 방법으로는 다양한 방법을 구사할 수 있으나, 가장 바람직한 방법으로 처리조에 수용한 전해액 중에서 피처리 부재를 양극으로서 전해하고, 상기 피처리 부재의 표면에 산화피막을 생성하기 위한 양극 산화방법을 사용하였으며, 상기 나노튜브 표면에 치아회분말 또는 인공 HA를 코팅하는 방법으로는 물리적 기상 성장법((Physical Vapor Deposition,PVD)을 사용하였다.In this case, various methods can be used to form nanotubes on the surface of the dental implant, but the most preferable method is to electrolyze a member as an anode in an electrolyte solution contained in a treatment tank, and an oxide film is formed on the surface of the member. Anodization method was used to generate the powder, and the physical vapor growth method (Physical Vapor Deposition, PVD) was used as a method of coating the tooth powder or artificial HA on the surface of the nanotubes.

상기 물리적 기상 성장법은 이온 플레이팅, DC- 및 RF-마그네트론 스퍼터링, 아크 방전 증발, 이온 빔 보조 증착(IBAD), 활성 반응성 증발(Activated Reactive Evaporation;ARE) 등 다양한 방법이 있으나, 본 발명에서는 스퍼터링 증착법과 펄스 레이저 증착법(Pulsed laser deposition,PLD)을 사용하였다.The physical vapor deposition method has various methods such as ion plating, DC- and RF-magnetron sputtering, arc discharge evaporation, ion beam assisted deposition (IBAD), activated reactive evaporation (ARE), but in the present invention, sputtering Deposition and pulsed laser deposition (PLD) were used.

상기 스퍼터링 증착법은 스퍼터 타겟 표면에 높은 에너지(플라즈마)의 입자로 충돌시켜 그 충격으로 타겟의 원자를 스퍼터(sputter)시키는 방법이고, 펄스 레이저 증착법(PLD)은 높은 에너지를 갖는 KrF 레이저빔(λ=248 nm)을 성장시키고자 하는 타켓 표면에 조사하면, 레이저빔과 타켓의 상호작용으로 인하여 타켓 조성의 열적, 비열적인 분해 현상이 발생하게 되고, 이로 인해 타켓 조성이 기판 위로 이동하여 증착함으로써 박막이 형성되는 방법으로, 상기한 방법들은 형성하고자 하는 박막의 재질에 따라 증착온도 및 증착압력, 증착시간 등이 달라지게 되고 상기 조건들의 미세한 차이에 의해서 박막의 형성 성공 여부가 달라지게 된다.The sputtering deposition method is a method of sputtering atoms of a target by the impact of high energy (plasma) particles on the surface of the sputter target, and the pulse laser deposition method (PLD) is a KrF laser beam having a high energy (λ = 248 nm) is irradiated to the target surface to grow, thermal and non-thermal decomposition of the target composition occurs due to the laser beam and the target interaction, which causes the thin film to be deposited by moving the target composition onto the substrate In the forming method, the deposition method, deposition pressure, deposition time, etc. are changed according to the material of the thin film to be formed, and the success or failure of the thin film is changed by the minute difference of the above conditions.

이를 실시예에 의해 보다 상세하게 설명하기로 한다.This will be described in more detail by examples.

[제 1 실시예][First Embodiment]

본 실험에서는 치과용 임플란트로 Ti합금을 시편으로 사용하였으며, 상기 시편에 거칠기를 부여하기 위해 샌드 블래스팅(sand blasting)방법을 사용하였으며, #600에서 #2000의 SCI 연마지로 순차적 연마하였다.In this experiment, Ti alloy was used as a specimen as a dental implant, sand blasting was used to give the specimen a roughness, and it was sequentially polished with SCI abrasive paper of # 600 to # 2000.

다음 상기 시편을 증류수, 알콜, 아세톤 순으로 5분간 초음파 세척 후 건조하였다. 이때 자연적으로 생성된 산화피막을 제거하기 위해 질산과 불화수소 혼합 용액에서 5분간 전처리하였다.The specimen was then ultrasonically washed for 5 minutes in distilled water, alcohol, acetone and then dried. At this time, pretreatment was performed for 5 minutes in a mixed solution of nitric acid and hydrogen fluoride to remove the naturally produced oxide film.

이처럼 전처리된 시편의 표면에 나노튜브를 형성하기 위하여 양극산화방법을 사용하였다. 이때 전해액은 1M H3PO4 과 0.15M NaF 혼합용액을 사용하였으며 DC Power supply(KDP-1500)의 양극과 음극에 각각 준비한 시편과 백금판을 결선한 다음, 상기 전해액에서 10mA/cm2의 정전류 모드를 유지하여 20V까지 상승시킨 후, 20V에 도달하면 정전압 모드로 변환하여 1시간 30분 동안 유지하였다. 이때 시간은 각각 다르게 형성할 수도 있다. Anodizing was used to form nanotubes on the surface of the pretreated specimen. In this case, 1M H 3 PO 4 and 0.15M NaF mixed solution were used, and the prepared specimen and platinum plate were connected to the anode and cathode of DC power supply (KDP-1500), respectively. After maintaining and raising to 20V, when reached to 20V it was converted to the constant voltage mode and maintained for 1 hour 30 minutes. At this time, the time may be formed differently.

상기 양극 산화방법에 의해 피처리 부재, 즉 시편에는 TIO2 산화피막이 형성되면서 이로 인해 나노튜브가 시편의 표면에 형성되어 지는 것이다.By the anodizing method, the TIO 2 oxide film is formed on the member, that is, the specimen, and thus, the nanotube is formed on the surface of the specimen.

상기 나노튜브가 형성된 시편의 표면에 치아회분말을 스퍼터링 증착방법에 의해 코팅하되 시편의 표면에 수 KV의 에너지로, 전류세기를 80mA ~ 100mA, 5×10-6 torr의 진공하에서 증착시켰다.The tooth ash powder was coated on the surface of the specimen on which the nanotubes were formed by sputtering deposition, and the surface of the specimen was deposited at a voltage of several KV with a current strength of 80 mA to 100 mA and vacuum of 5 × 10 −6 torr.

상기 치아회분말의 제조는 치과병원에서 환자들로 부터 발거된 치아 중 우식정도가 1도(C1) 이하인 치아를 수집하여 1000℃, 1200℃ 및 1400℃ 등 각각 다른 온도에서 각각 20분, 40분 및 60분동안 탈 회화(calcination)하고 이를 미세분쇄기로 분쇄하여 200mesh(75㎛) 이하의 치아회분을 제작하였다. 이때 아르곤(Ar)가스 분위기에서 1350℃에서 3시간 소성하고 미세분쇄기를 이용하여 분말의 입도를 조정하였다.The preparation of the ash powder is collected 20 minutes, 40 minutes at different temperatures, such as 1000 ℃, 1200 ℃ and 1400 ℃ by collecting the tooth of less than 1 degree (C1) caries among the teeth extracted from patients in the dental hospital And decalcification (calcination) for 60 minutes and it was ground by a fine mill to produce a tooth ash of 200mesh (75㎛) or less. At this time, the mixture was calcined at 1350 ° C. for 3 hours in an argon (Ar) gas atmosphere, and the particle size of the powder was adjusted using a fine grinding machine.

본 실험에서 증착에 사용된 장비는 미국 텔레마크(Telemark)사의 TT-3 전자 총이 장착된 진공 코팅기를 사용하였으며, 기판의 위치에 따른 두께오차를 최소화하여 작업하며 코팅조건은 텅스텐 필라멘트에서 방출된 열전자를 4.0KV의 전압으로 가속하고 방사전류는 100mA로하여 수랭식 구리도가니에 장입된 증발원에 집속하여 증발시킨다. The equipment used for the deposition in this experiment was a vacuum coating machine equipped with a TT-3 electron gun manufactured by Telemark, USA. The work was performed to minimize the thickness error according to the position of the substrate. The hot electrons are accelerated to a voltage of 4.0KV and the radiated current is 100mA to focus on the evaporation source charged in the water-cooled copper crucible and evaporate.

증착작업전에 시편은 아르곤가스(Ar gas)를 40sccm을 유입하여 10-6mTorr의 분압에서 -600V, 100mA로 20분 동안 프리스퍼터링(pre-sputtering)을 한다. 기판의 온도는 약 25℃가 유지되도록 하며 진공챔버내의 최종 압력은 10-3mTorr의 질소(N2)분위기 하에서 20분 동안 코팅을 각각 행하였다. Before deposition, the specimen was pre-sputtered with ar gas at 40 sccm for 20 minutes at -600 V and 100 mA at a partial pressure of 10 -6 mTorr. The temperature of the substrate was maintained at about 25 ° C and the final pressure in the vacuum chamber was each coated for 20 minutes under a nitrogen (N 2 ) atmosphere of 10 -3 mTorr.

[제 2 실시예]Second Embodiment

본 실험에서는 치과용 임플란트로 Ti합금을 시편으로 사용하였으며, 상기 시편에 거칠기를 부여하기 위해 샌드 블래스팅(sand blasting)방법을 사용하였으며, #600에서 #2000의 SCI 연마지로 순차적 연마하였다.In this experiment, Ti alloy was used as a specimen as a dental implant, sand blasting was used to give the specimen a roughness, and it was sequentially polished with SCI abrasive paper of # 600 to # 2000.

다음 상기 시편을 증류수, 알콜, 아세톤 순으로 5분간 초음파 세척 후 건조하였다. 이때 자연적으로 생성된 산화피막을 제거하기 위해 질산과 불화수소 혼합용액에서 5분간 전처리하였다.The specimen was then ultrasonically washed for 5 minutes in distilled water, alcohol, acetone and then dried. At this time, pretreatment was performed for 5 minutes in a mixed solution of nitric acid and hydrogen fluoride to remove the naturally produced oxide film.

이처럼 전처리된 시편의 표면에 나노튜브를 형성하기 위하여 양극산화방법을 사용하였다. 이때 전해액은 1M H3PO4 과 0.15M NaF 혼합용액을 사용하였으며 DC Power supply(KDP-1500)의 양극과 음극에 각각 준비한 시편과 백금판을 결선한 다음, 상기 전해액에서 10mA/cm2의 정전류 모드를 유지하여 20V까지 상승시킨 후, 20V에 도달하면 정전압 모드로 변환하여 1시간 30분 동안 유지하였다. 이때 시간은 각각 다르게 형성할 수도 있다. Anodizing was used to form nanotubes on the surface of the pretreated specimen. In this case, 1M H 3 PO 4 and 0.15M NaF mixed solution were used, and the prepared specimen and platinum plate were connected to the anode and cathode of DC power supply (KDP-1500), respectively. After maintaining and raising to 20V, when reached to 20V it was converted to the constant voltage mode and maintained for 1 hour 30 minutes. At this time, the time may be formed differently.

상기 양극 산화방법에 의해 피처리 부재, 즉 시편에는 TIO2 산화피막이 형성되면서 이로 인해 나노튜브가 시편의 표면에 형성되어 지는 것이다.By the anodizing method, the TIO 2 oxide film is formed on the member, that is, the specimen, and thus, the nanotube is formed on the surface of the specimen.

상기 나노튜브가 형성된 시편의 표면에 치아회분말을 펄스 레이저 증착법에 의해 코팅하도록 하였다. The tooth powder was coated on the surface of the specimen on which the nanotubes were formed by pulse laser deposition.

이를 위해 먼저, 엑시머 레이저 장치에서 자외선 빔을 발생시켜 반응관 입구에서 렌즈에 의해 집광된 후 반응관 내부로 입사되도록 빔의 경로를 설정하고, 사기 빔이 30~60°의 기울기로 타켓(치아회분말)에 충돌하도록 함으로써 치아회분말이 나노튜브가 형성된 치아용 임플란트 표면에 증착되게 된다.To this end, first, the excimer laser device generates an ultraviolet beam, is focused by the lens at the entrance of the reaction tube, and then sets the path of the beam to be incident inside the reaction tube, and the target beam is tilted at a slope of 30 to 60 °. Powder) is deposited on the surface of the dental implant where the nanotubes are formed.

상기 레이저 발생원으로서는 5 Hz의 펄스를 갖는 KrF 엑시머 레이저(248 nm, 30 나노초 지속)를 사용하였으며, 5×10-3Torr과 500~600℃온도에서 20~60분 동안 증착되도록 하였으며, 이때 기본 압력은 9.9×10-6Torr이다.As the laser source, a KrF excimer laser (248 nm, 30 nanoseconds duration) having a pulse of 5 Hz was used, and was deposited for 20 to 60 minutes at a temperature of 5 × 10 -3 Torr and 500 to 600 ° C. Is 9.9 × 10 -6 Torr.

결과적으로 치아용 임플란트 표면에 직경 100nm의 크기와 두께 400nm정도의 크기로 나노튜브가 형성되었다. As a result, nanotubes were formed on the dental implant surface with a diameter of 100 nm and a thickness of about 400 nm.

[제 3 실시예]Third Embodiment

[실시예 1]과 [실시예 2]에 의해 제조된 시편의 표면과 층을 분석하기 위해 주사전자현미경을 사용하여 관찰하고 각 표면에서의 성분은 EDX와 XRD를 사용하여 증착표면과 층을 분석하였다.In order to analyze the surfaces and layers of the specimens prepared in [Example 1] and [Example 2], observation was carried out using a scanning electron microscope, and the components on each surface were analyzed on the deposition surface and layers using EDX and XRD. It was.

표면의 거칠기는 생체적합성에 크게 영향을 미치기 때문에 각각의 도금하기전과 도금후의 시편의 표면거칠기를 측정하기 위하여 표면조도측정기(Surfcorder SE 1700, Kosaka lab. Ltd., Tokyo, Japan)를 사용하여 표면의 거칠기를 조사하여 생체적합도와의 관계를 조사하고 표면조도측정기의 스틸러스(stylus)는 시편 표면의 중앙을 가로질러 일직선으로 이동하게 하며 표면조도의 평균값(Ra), 곡선의 정상에서 밑부분까지의 평균 높이(average peak-to valley height, Rz) 및 곡선의 정상에서 밑 부분까지의 최대 높이(maximum 피크(peak)-to valley height, Rmax)를 주어진 곡선상에 10 곳에서 측정한다. Surface roughness greatly affects biocompatibility, so surface roughness measuring instrument (Surfcorder SE 1700, Kosaka lab. Ltd., Tokyo, Japan) is used to measure the surface roughness of specimens before and after plating. Investigate the roughness and examine the relationship between biocompatibility and the stylus of the surface roughness tester to move in a straight line across the center of the specimen surface.The average value of surface roughness (Ra) and the average from the top to the bottom of the curve The average peak-to valley height (Rz) and the maximum peak-to valley height (Rmax) from the top to the bottom of the curve are measured at ten locations on a given curve.

구강 내에서 사용되는 합금의 부식실험은 필수적이며 도금막의 박리정도등의 평가에 응용될 수 있어 다음과 같은 시험을 행하였다. 시편은 10×10mm2 크기로 준비하였다.Corrosion test of the alloy used in the oral cavity is essential and can be applied to the evaluation of the degree of peeling of the plating film, and the following tests were conducted. Specimens were prepared in 10 × 10 mm 2 size.

또한 시편의 표면을 거칠기에 따른 양극거동을 조사하기 위하여 시험을 행하기전에 아르곤가스(Ar gas)를 용액에 충분히 흘려보내 용존산소를 제거하고 표 1과 같이 0.9% NaCl을 포함한 인공타액, 1% lactic acid 및 0.05% HCl용액에서 100mV/min의 주사속도로 분극시험을 하였다.In addition, in order to investigate the anodic behavior according to the surface roughness of the specimen, argon gas (Ar gas) was sufficiently flowed into the solution before the test to remove dissolved oxygen, and artificial saliva containing 0.9% NaCl as shown in Table 1, 1%. Polarization test was performed at lactic acid and 0.05% HCl solution at 100mV / min scanning speed.

[표 1]TABLE 1

CodeCode Electrolytic solutions       Electrolytic solutions pHpH 1 2 3 4   1 2 3 4 0.9% NaCl 1% lactic acid 0.05% HCl modified Fusayama,s artificial saliva0.9% NaCl 1% lactic acid 0.05% HCl modified Fusayama, s artificial saliva 5.34 2.36 2.01 5.165.34 2.36 2.01 5.16

전기화학적 부식반응으로 인하여 용출된 원소량을 측정하기 위하여 유도결합 플라즈마 방출 분광기(Inductively coupled plasma emission spectroscopy, ICP, Model: 38 plus, Jobin Yvon Co., Paris, France)를 사용하여 각각의 용액을 600ml로 하여 부식시험한 후 일정량을 측정하여 용출될 수 있는 각각의 원소를 분석하고 Ti, Al, V, Ca, P등을 정량분석을 하였다.600 ml of each solution was measured using an inductively coupled plasma emission spectroscopy (ICP, Model: 38 plus, Jobin Yvon Co., Paris, France) to measure the amount of eluted element due to the electrochemical corrosion reaction. After the corrosion test, each element that could be eluted by measuring a certain amount was analyzed and Ti, Al, V, Ca, P, etc. were quantitatively analyzed.

각각의 시편을 4종의 전해액에서 부식을 시킨 후에 부식으로 인한 금속조직의 변화를 조사하기 위하여 주사전자현미경과 금속현미경(metallurgical microscope, Olympus, Tokyo, Japan)을 사용하여 관찰하였다.Each specimen was corroded in four electrolytes and then examined using a scanning electron microscope and a metallurgical microscope (Olympus, Tokyo, Japan) to investigate the change in metal structure due to corrosion.

도 1은 본 발명에 의해 나노튜브가 형성된 치과용 임플란트 표면을 촬영한 사진도이며, 도 2는 본 발명에 있어서 나노튜브 형성된 치과용 임프란트 표면에 치아회분말이 성공적으로 코팅된 것을 보이기 위한 사진도이며, 도 3은 코팅이 실패한 것을 보이기 위한 사진도 이다. 이처럼 나노튜브 형성된 치과용 임프란트 표면이라 할지라도 치아회분말을 코팅하기 위한 조건이 제대로 형성되지 않을 경우 나노튜브 표면에 치아 회분말이 잘 코팅되지 않을 수도 있음을 알 수 있는 것이다1 is a photograph showing a surface of a dental implant in which nanotubes are formed by the present invention, and FIG. 2 is a photograph showing a dental ash powder successfully coated on a nanotube formed dental implant in the present invention. 3 is a photograph for showing that the coating failed. Even in the case of the nanotube-formed dental implant surface, if the conditions for coating the tooth powder are not properly formed, it can be seen that the tooth powder may not be well coated on the nanotube surface.

이처럼 본 발명은 미세조직과 부식실험을 행하여 임플란트재료의 부식거동을 조사하였으며 특히 나노튜브가 형성된 치과용 임플란트 표면에 치아회분말이 코팅 되도록 함으로써 접착도와 부식에 미치는 영향을 고찰해 본 결과 나노튜브가 치과용 임플란트 표면에서 미세한 거칠기를 부여하고 엄청난 정도의 표면적을 제공함으로써 치아회분말의 코팅이 쉽게 이루어지고 계면에서 박리현상이 발생하지 않음으로 인해 거의 완벽한 결합이 이루어짐을 알 수 있었다.As described above, the present invention investigated the corrosion behavior of the implant material by performing a microstructure and corrosion test, and in particular, the effect of the nanotube on the dental surface was examined by examining the effect of the tooth powder on the surface of the dental implant where the nanotube was formed. By providing fine roughness on the surface of the implant and providing a great amount of surface area, it was found that the coating of the tooth powder was easy and almost perfect bonding was achieved due to no peeling phenomenon at the interface.

이상과 같이 본 발명의 실시예에 대하여 상세히 설명하였으나, 본 발명의 권리범위는 이에 한정되지 않으며, 본 발명의 일실시예와 실질적으로 균등의 범위에 있는 것까지 본 발명의 권리범위가 미치는 것은 당연하다 할 것이다.Although the embodiments of the present invention have been described in detail as described above, the scope of the present invention is not limited thereto, and it is natural that the scope of the present invention extends to one that is substantially equivalent to one embodiment of the present invention. Will do.

본 발명은 치과용 임플란트의 표면에 나노튜브를 형성하고 상기 나노튜브 표면에 치아 회분말이나 인공 HA가 코팅되도록 함으로써 인체에 유해한 산을 배제할 수 있도록 하였고, 또 치과용 임플란트의 생체적합성과 골 융합을 한층 증가시킴으로써 치과 시술 시간을 단축할 수 있을 뿐만 아니라 구강 내에 영구히 매식가능한 매우 유용한 발명인 것이다. The present invention is to form a nanotube on the surface of the dental implant and to be coated with the tooth ash powder or artificial HA on the surface of the nanotube to exclude acids harmful to the human body, and also biocompatibility and bone fusion of the dental implant In addition to shortening the dental procedure time by further increasing it is a very useful invention that can be permanently embedded in the oral cavity.

Claims (3)

치아 회분말이 코팅되도록 한 치과용 임플란트 제조방법에 있어서,In the dental implant manufacturing method for coating the tooth powder, 상기 치과용 임플란트의 표면에 나노튜브를 형성하는 단계와, 상기 나노튜브 표면에 치아 회분말 또는 인공 HA가 코팅하는 단계로 이루어짐을 특징으로 하는 나 노튜브에 의해 치아회분말이 코팅되도록 한 치과용 임플란트 제조방법.Formation of the nanotubes on the surface of the dental implant, and the preparation of dental implants to be coated by the nanotubes, characterized in that the tooth powder or artificial HA is coated on the surface of the nanotubes Way. 제1항에 있어서, 상기 치과용 임플란트의 표면에 나노튜브를 형성하는 방법은 양극 산화방법을 사용하고, 치아회분말 또는 인공 HA을 코팅하는 방법으로는 물리적 기상 성장법을 사용함을 특징으로 하는 나노튜브에 의해 치아회분말이 코팅되도록 한 치과용 임플란트 제조방법.The method of claim 1, wherein the method for forming nanotubes on the surface of the dental implant uses anodization, and the method for coating tooth powder or artificial HA uses physical vapor growth. Dental implant manufacturing method for coating the tooth ash powder by the tube. 제2항에 있어서, 상기 물리적 기상 성장법으로는 펄스 레이저 증착법을 사용하되 상기 펄스 레이저 증착법에 의해 나노튜브가 형성된 치과용 임플란트 표면에 치아회분말 또는 인공 HA을 코팅하기 위한 기본 압력은 9.9×10-6Torr이고, 온도는 500℃이며, 시간은 20분으로 이루어짐을 특징으로 하는 나노튜브에 의해 치아회분말이 코팅되도록 한 치과용 임플란트 제조방법.The method of claim 2, wherein the physical vapor deposition method uses pulse laser deposition, but the basic pressure for coating dental powder or artificial HA on the surface of the dental implant where the nanotubes are formed by the pulse laser deposition is 9.9 × 10. -6 Torr, the temperature is 500 ℃, the time is 20 minutes dental implant manufacturing method for coating the tooth powder by the nanotubes, characterized in that consisting of.
KR1020070061993A 2007-06-25 2007-06-25 Surface characteristics of ha coatings on dental implants KR100865345B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070061993A KR100865345B1 (en) 2007-06-25 2007-06-25 Surface characteristics of ha coatings on dental implants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070061993A KR100865345B1 (en) 2007-06-25 2007-06-25 Surface characteristics of ha coatings on dental implants

Publications (1)

Publication Number Publication Date
KR100865345B1 true KR100865345B1 (en) 2008-10-24

Family

ID=40177580

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070061993A KR100865345B1 (en) 2007-06-25 2007-06-25 Surface characteristics of ha coatings on dental implants

Country Status (1)

Country Link
KR (1) KR100865345B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101042405B1 (en) * 2009-05-13 2011-06-17 최한철 HA coating methods after two-step surface modification of dental implant for bioactivity
KR101283780B1 (en) * 2011-11-16 2013-07-15 전북대학교산학협력단 Titanium implant and preparation method thereof
WO2015167044A1 (en) * 2014-04-30 2015-11-05 이정태 Surface-modified hybrid surface implant and method for manufacturing same
KR20160001390A (en) * 2014-06-27 2016-01-06 주식회사 비에스코렘 Implant surface- modified by bioactive material and method for preparing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003253424A (en) 2002-03-01 2003-09-10 Shigeki Mototsu Hydroxyapatite film coating material and manufacturing method thereof
WO2006104644A2 (en) 2005-03-29 2006-10-05 Warsaw Orthopedic, Inc. Implants incorporating nanotubes and methods for producing the same
JP2006282489A (en) 2005-04-05 2006-10-19 Tohoku Univ Composite material composed of carbon nanotube and hydroxyapatite, and method for producing the same
KR20070029912A (en) * 2005-09-12 2007-03-15 학교법인조선대학교 Menufacturing method of sputtering target using tooth ash powder and surface reform method of dental implant using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003253424A (en) 2002-03-01 2003-09-10 Shigeki Mototsu Hydroxyapatite film coating material and manufacturing method thereof
WO2006104644A2 (en) 2005-03-29 2006-10-05 Warsaw Orthopedic, Inc. Implants incorporating nanotubes and methods for producing the same
JP2006282489A (en) 2005-04-05 2006-10-19 Tohoku Univ Composite material composed of carbon nanotube and hydroxyapatite, and method for producing the same
KR20070029912A (en) * 2005-09-12 2007-03-15 학교법인조선대학교 Menufacturing method of sputtering target using tooth ash powder and surface reform method of dental implant using the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
논문1:Journal of Materials Science
논문2:연세대학교 석사학위

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101042405B1 (en) * 2009-05-13 2011-06-17 최한철 HA coating methods after two-step surface modification of dental implant for bioactivity
KR101283780B1 (en) * 2011-11-16 2013-07-15 전북대학교산학협력단 Titanium implant and preparation method thereof
WO2015167044A1 (en) * 2014-04-30 2015-11-05 이정태 Surface-modified hybrid surface implant and method for manufacturing same
KR20160001390A (en) * 2014-06-27 2016-01-06 주식회사 비에스코렘 Implant surface- modified by bioactive material and method for preparing the same
KR101666972B1 (en) 2014-06-27 2016-10-17 주식회사 비에스코렘 Implant surface- modified by bioactive material and method for preparing the same

Similar Documents

Publication Publication Date Title
US8920869B2 (en) Osseoinductive metal implants for a living body and producing method thereof
Kung et al. Bioactivity and corrosion properties of novel coatings containing strontium by micro-arc oxidation
Songur et al. The plasma electrolytic oxidation (PEO) coatings to enhance in-vitro corrosion resistance of Ti–29Nb–13Ta–4.6 Zr alloys: The combined effect of duty cycle and the deposition frequency
KR20100057796A (en) A bone tissue implant comprising strontium ions
US20100136506A1 (en) Method of fabricating implant with improved surface properties and implant fabricated by the same method
KR20100055408A (en) A bone tissue implant comprising lithium ions
Banakh et al. Synthesis by anodic-spark deposition of Ca-and P-containing films on pure titanium and their biological response
KR100865345B1 (en) Surface characteristics of ha coatings on dental implants
KR20200066867A (en) Coating method of bioactive elements of nano-mesh type titanium-based alloy using a plasma electrolytic oxidation method
Lee et al. Effects of polydopamine coating on the bioactivity of titanium for dental implants
KR20070063114A (en) Metal implants and manufacturing method thereof
KR100922686B1 (en) Bio materials structure and fabricating method thereof
Bansal et al. Plasma-sprayed hydroxyapatite-strontium coating for improved corrosion resistance and surface properties of biodegradable AZ31 Mg alloy for biomedical applications
KR20120105280A (en) A surface coating method of titanium by ha blasting, tio2 anodizing and gf magnetron sputtering
KR101015462B1 (en) Titanium dioxide ceramics for implant and fabricating method thereof
Park et al. Effects of anodizing voltage on the anodized and hydrothermally treated titanium surface
KR101101837B1 (en) Menufacturing method of sputtering target using tooth ash powder and surface reform method of dental implant using the same
CN109485459B (en) Zirconium dioxide nanotube film coating plated on surface of zirconium oxide ceramic, and preparation method and application thereof
KR20090060833A (en) Implant material by micro arc oxidation and method of manufacturing thereof
KR100453289B1 (en) Electrolyte solution for implant surface treatment and method of implant surface treatment using the same
Ahmed et al. Surface modifications of endosseous dental implants by incorporation of roughness and hydroxyapatite coatings
CN112654374A (en) Dental article having a coating comprising nanostructures made of yttria-stabilized zirconia
KR102442704B1 (en) Method of producing a biocompatible titanium base alloy increased by using a titanium-based alloy
KR100717127B1 (en) Method for modifying surfaces of dental implants using Tooth ash powder
Neupane et al. Effect of electrolyte pH on the structure and in vitro osteoblasts response to anodic titanium oxide

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121017

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20131018

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20141020

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20160112

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee