KR100860538B1 - Copper-iron oxide catalyst and decomposition of sulfuric acid using same - Google Patents

Copper-iron oxide catalyst and decomposition of sulfuric acid using same Download PDF

Info

Publication number
KR100860538B1
KR100860538B1 KR1020070033156A KR20070033156A KR100860538B1 KR 100860538 B1 KR100860538 B1 KR 100860538B1 KR 1020070033156 A KR1020070033156 A KR 1020070033156A KR 20070033156 A KR20070033156 A KR 20070033156A KR 100860538 B1 KR100860538 B1 KR 100860538B1
Authority
KR
South Korea
Prior art keywords
copper
iron
sulfuric acid
oxide
catalyst
Prior art date
Application number
KR1020070033156A
Other languages
Korean (ko)
Inventor
유계상
김창수
공경택
김홍곤
정광덕
안병성
이병권
주오심
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020070033156A priority Critical patent/KR100860538B1/en
Application granted granted Critical
Publication of KR100860538B1 publication Critical patent/KR100860538B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron

Abstract

An economical sulfuric acid decomposition catalyst capable of maintaining excellent reaction activity and stability at high temperatures and high pressures is provided, and a method for decomposing sulfuric acid using the catalyst is provided. A copper-iron binary oxide catalyst comprises a copper oxide and an iron oxide at a copper to iron molar ratio of 1:0.5 to 2.0. The copper oxide and the iron oxide are supported on a support. The copper-iron binary oxide catalyst comprises the support and the copper and iron oxides at a molar ratio of 1:0.1 to 1.0. The support is selected from the group consisting of silica, alumina, zirconia, titania, and mixtures thereof. A method for decomposing sulfuric acid comprises decomposing sulfuric acid in the presence of a copper-iron binary oxide catalyst comprising a copper oxide and an iron oxide at a copper to iron molar ratio of 1:0.5 to 2.0. The decomposition process is conducted at a temperature of 500 to 1200 deg.C and a pressure of 0.1 to 40 atmospheric pressures.

Description

구리-철 산화물 촉매 및 이를 이용한 황산 분해방법 {COPPER-IRON OXIDE CATALYST AND DECOMPOSITION OF SULFURIC ACID USING SAME}Copper-iron oxide catalyst and sulfuric acid decomposition method using the same {COPPER-IRON OXIDE CATALYST AND DECOMPOSITION OF SULFURIC ACID USING SAME}

본 발명은 황산(H2SO4)의 분해에 유용한, 구리와 철의 이성분계 산화물 촉매 및 이를 이용한 황산 분해방법에 관한 것이다.The present invention relates to a bicomponent oxide catalyst of copper and iron and sulfuric acid decomposition method using the same, useful for the decomposition of sulfuric acid (H 2 SO 4 ).

요오드-황(Iodine-sulfur, IS) 싸이클 공정은 (1) 황산 분해반응, (2) 분센(Bunsen) 반응 및 (3) 요오드산 분해반응의 3가지 반응으로 이루어지며(미국특허 제4,089,940호 참조), 하기와 같은 반응식에 의해 구체적으로 설명된다:The iodine-sulfur (IS) cycle process consists of three reactions: (1) sulfuric acid decomposition, (2) Bunsen reaction, and (3) iodic acid decomposition (see US Pat. No. 4,089,940). ), Specifically illustrated by the following scheme:

(1) H2SO4 → SO2 + H2O + 1/2O2 (1) H 2 SO 4 → SO 2 + H 2 O + 1 / 2O 2

(2) SO2 + I2 + 2H2O → 2HI + H2SO4 (2) SO 2 + I 2 + 2H 2 O → 2HI + H 2 SO 4

(3) 2HI → I2 + H2 (3) 2HI → I 2 + H 2

상기 반응식에서 보는 바와 같이, 우선 황산 분해반응(1)은 이산화황 및 산소를 발생시키는 반응으로 약 700℃에서 수행되며, 여기서 생성된 이산화황은 요오드와 반응하여 분센 반응(2)에 의해 요오드산과 황산으로 전환되고, 여기서 생성된 황산은 다시 황산 분해반응(1)으로 순환된다. 분센 반응(2)에서 생성 및 분리된 요오드산은 요오드산 분해반응(3)을 통해 수소와 요오드로 나뉘고, 생성된 요오드는 다시 분센 반응(2)으로 순환된다. 결국, 전체적으로, IS 싸이클 공정은 물을 분해해서 수소와 산소를 제조하는 폐싸이클을 구성한다.As shown in the above reaction scheme, first, sulfuric acid decomposition reaction (1) is performed at about 700 ° C. to generate sulfur dioxide and oxygen, and the produced sulfur dioxide is reacted with iodine to iodic acid and sulfuric acid by Bunsen reaction (2). Converted, and the produced sulfuric acid is circulated back to sulfuric acid decomposition reaction (1). The iodic acid produced and separated in the Bunsen reaction (2) is divided into hydrogen and iodine through the iodic acid decomposition reaction (3), and the generated iodine is circulated back to the Bunsen reaction (2). Eventually, the IS cycle process as a whole constitutes a waste cycle that breaks down water to produce hydrogen and oxygen.

상기 반응과 관련하여, 미국특허 제3,888,750호는 황산이 촉매반응에 의해 400∼950℃에서 분해되고, 황산 분해반응에 사용되는 담지된 백금 촉매가 750℃의 온도에서 사용될 수 있다고 개시하고 있다.In connection with this reaction, US Pat. No. 3,888,750 discloses that sulfuric acid is decomposed at 400 to 950 ° C. by catalysis, and that the supported platinum catalyst used for the sulfuric acid decomposition reaction can be used at a temperature of 750 ° C.

이후, 황산 분해 촉매에 대한 연구가 다양한 금속 산화물을 대상으로 하여 수행된 결과, 타가와/엔도(문헌[Int. J. Hydrogen Energy, 14(1) (1989) 11] 참고)는 Pt

Figure 112007026053243-pat00001
Cr2O3>Fe2O3>CuO>CeO2>NiO>Al2O3의 순으로, 도키야(문헌[Bull . of The Chemical Society of Japan, 50(10) (1977) 1657] 참고)등은 Fe2O3>Cr2O3>CuO>CeO2>NiO>Al2O3의 순으로 황산 분해활성을 기술한 바 있다.Subsequently, studies on sulfuric acid decomposition catalysts were carried out on various metal oxides, and as a result, Tagawa / endo (see Int. J. Hydrogen Energy , 14 (1) (1989) 11) was found to be Pt.
Figure 112007026053243-pat00001
In order of Cr 2 O 3 > Fe 2 O 3 >CuO> CeO 2 >NiO> Al 2 O 3 , Tokiya ( Bull . Of The Chemical Society of Japan , 50 (10) (1977) 1657] described sulfuric acid decomposition activity in the order of Fe 2 O 3 > Cr 2 O 3 >CuO> CeO 2 >NiO> Al 2 O 3 .

보다 구체적으로, 상기 황산 분해반응(1)은 열적으로 진행되는 H2SO4 분해(H2SO4 → SO3 + H2O)와 촉매에 의해 진행되는 SO3의 분해(SO3 → SO2 + 1/2O2)로 구성된다. SO3 평형 분해율은 같은 온도일지라도 압력이 높을수록 낮아지므로, 실제 공정에서는 분해율을 높이기 위해 온도를 올려주어야 한다. 그러나, 단일 금속의 산화물 촉매는 고온에서 소결 현상을 일으키는 등 고온 안정성이 낮다는 단점을 갖는다. 또한, 백금 촉매는 값비싼 귀금속 촉매일 뿐만 아니라 석출(leaching out)되기 쉽다는 단점을 갖는다.More specifically, the sulfuric acid decomposition reaction (1) of the H 2 SO 4 which proceeds thermally Consists of the decomposition (H 2 SO 4 → SO 3 + H 2 O) and degradation (SO 3 → SO 2 + 1 / 2O 2) the SO 3 is processed by the catalyst. Since the SO 3 equilibrium decomposition rate is lower at higher pressures even at the same temperature, the actual process requires raising the temperature to increase the decomposition rate. However, an oxide catalyst of a single metal has a disadvantage of low temperature stability such as causing sintering at a high temperature. In addition, platinum catalysts are not only expensive noble metal catalysts but also have the disadvantage of being easily leached out.

따라서, 본 발명의 목적은 고온 고압에서 우수한 반응활성과 안정성을 유지할 수 있는 경제적인 황산 분해 촉매를 제공하는 것이다.Accordingly, it is an object of the present invention to provide an economical sulfuric acid decomposition catalyst capable of maintaining excellent reaction activity and stability at high temperature and high pressure.

상기 기술적 과제를 달성하기 위하여, 본 발명은,In order to achieve the above technical problem, the present invention,

구리 및 철을 1 : 0.5∼2.0의 몰비로 포함하는, 구리-철 산화물 촉매를 제공한다.Provided are a copper-iron oxide catalyst comprising copper and iron in a molar ratio of 1: 0.5 to 2.0.

이하 본 발명에 대하여 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명에 따른 구리-철 산화물 촉매는 구리 및 철을 1 : 0.5∼2.0의 몰비로 포함하는데, 이는 통상적인 고상법, 공침법, 스프레이법, 졸겔법, 마이크로웨이브법 등 다양한 방법으로 제조가 가능하며, 반응활성 및 안정성 측면에서 단일 금속의 산화물인 구리 산화물이나 철 산화물 촉매보다 월등히 우수하다. 예를 들어, 공침법을 사용하는 경우, 구리 및 철 함유 전구체(예: 질산제2구리(CuN2O6·2.5H2O), 질산제3철(FeN3O9·9H2O)) 각각을 증류수에 용해시킨 다음 용액의 pH를 8 내지 10의 범위로 조절하고, 생성된 침전물을 여과하여 분리한 후, 분리된 침전물 을 건조 및 소성시킴으로써 구리-철 산화물 촉매를 얻을 수 있다.The copper-iron oxide catalyst according to the present invention contains copper and iron in a molar ratio of 1: 0.5 to 2.0, which can be prepared by various methods such as a conventional solid phase method, coprecipitation method, spray method, sol gel method, microwave method, and the like. It is superior to copper oxide or iron oxide catalyst, which is an oxide of a single metal, in terms of reaction activity and stability. For example, when coprecipitation is used, copper and iron-containing precursors such as cupric nitrate (CuN 2 O 6 2.5H 2 O) and ferric nitrate (FeN 3 O 9 9H 2 O) The copper-iron oxide catalyst can be obtained by dissolving each in distilled water, adjusting the pH of the solution in the range of 8 to 10, separating the resulting precipitate by filtration, and drying and calcining the separated precipitate.

본 발명에 따른 촉매는 담지체에 담지시킨 형태로 사용할 수도 있고, 담지시키지 않고 직접 펠렛(pellet) 형태로 성형하여 사용할 수도 있다. 담지체에 담지시키는 경우에도 통상적인 고상법, 공침법, 스프레이법, 졸겔법 또는 마이크로웨이브법을 이용할 수 있다. 본 발명에서는 담지체로서 실리카, 알루미나, 지르코니아, 티타니아 또는 이들의 혼합물이 바람직하며, 안정성 측면에서 알루미나 또는 티타니아가 더욱 바람직하다. 이때, 담지체 및 활성금속(구리와 철)의 몰비가 1 : 0.1∼1.0의 범위인 것이 바람직하다.The catalyst according to the present invention may be used in the form of being supported on a support, or may be directly molded into pellets without being supported. In the case of being supported on a carrier, a conventional solid phase method, coprecipitation method, spray method, sol-gel method or microwave method can be used. In the present invention, silica, alumina, zirconia, titania, or a mixture thereof is preferable as the carrier, and alumina or titania is more preferable in terms of stability. At this time, it is preferable that the molar ratio of the support and the active metal (copper and iron) is in the range of 1: 0.1 to 1.0.

본 발명에 따른 촉매는 고온 고압에서 우수하고 안정한 황산 분해능을 가지므로, 본 발명에 따른 구리-철 산화물 촉매를 사용하여 IS 싸이클 공정, 특히 IS 싸이클 공정 중의 황산 분해반응을 효율적으로 수행할 수 있다.Since the catalyst according to the present invention has excellent and stable sulfuric acid decomposition ability at high temperature and high pressure, the sulfuric acid decomposition reaction in the IS cycle process, in particular the IS cycle process, can be efficiently performed using the copper-iron oxide catalyst according to the present invention.

본 발명에서는, 상기 본 발명의 촉매 존재 하에 500-1200℃, 바람직하게는 700-1000℃의 온도 및 0.1-40 기압, 바람직하게는 1-25 기압의 조건에서 황산을 분해할 수 있다. 이때, 황산 분해반응에 공급되는 반응물, 즉 황산의 공간속도는 100-500,000 ml/g촉매·hr, 바람직하게는 500-100,000 ml/g촉매·hr가 적합하다. 본 발명에 따른 황산 분해반응은 바람직하게는 N2와 같은 불활성 기체 분위기에서 수행할 수 있다.In the present invention, sulfuric acid can be decomposed in the presence of the catalyst of the present invention at a temperature of 500-1200 ° C, preferably 700-1000 ° C and 0.1-40 atmospheres, preferably 1-25 atmospheres. At this time, the space velocity of the reactant, that is, sulfuric acid, supplied to the sulfuric acid decomposition reaction is preferably 100-500,000 ml / g catalyst · hr, preferably 500-100,000 ml / g catalyst · hr. The sulfuric acid decomposition reaction according to the present invention may be preferably performed in an inert gas atmosphere such as N 2 .

기존에 알려진 대부분의 금속 산화물 촉매는 고온에서 소결 현상을 일으켜 활성을 유지하기가 어려우나, 본 발명의 구리-철 산화물 촉매는 활성이 우수한 구 리 산화물 상과 안정성이 우수한 철 산화물 상을 균일하게 포함하고 있어 고온에서 장시간 운전하는 경우에도 활성을 높게 유지할 수 있다. 또한, 본 발명의 구리-철 산화물 촉매는 귀금속인 백금 촉매 보다 훨씬 저렴하고, 구리 산화물 촉매에 비해서도 상대적으로 고가인 구리의 함유량이 적어 경제적이라는 잇점을 갖는다.Most known metal oxide catalysts are sintered at high temperature, making it difficult to maintain activity. However, the copper-iron oxide catalyst of the present invention comprises a copper oxide phase having excellent activity and an iron oxide phase having excellent stability. It is possible to maintain high activity even when operating at high temperature for a long time. In addition, the copper-iron oxide catalyst of the present invention has the advantage of being much cheaper than the platinum catalyst which is a noble metal and having a relatively low content of copper which is relatively expensive compared to the copper oxide catalyst.

이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 이에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail by way of examples. However, the following examples are merely illustrative of the present invention, but the content of the present invention is not limited thereto.

실시예 1-3 및 비교예 1-6 : 촉매의 제조Example 1-3 and Comparative Example 1-6: Preparation of Catalyst

단일 금속의 산화물 촉매는 통상적인 침전법(precipitation)에 의해, 이성분계 금속 산화물 촉매는 통상적인 공침법(co-precipitation)에 의해 제조하였다. 시약으로서 질산제3철(FeN3O9·9H2O), 질산제2구리(CuN2O6·2.5H2O), 질산알루미늄(AlN3O9·9H2O) 및 질산티타늄(TiN3O9·9H2O) (아크로스(ACROS)사제)을 각각 사용하였다. 이때, 질산알루미늄과 질산티타늄은 담지체 전구체이며, 담지체에 담지된 형태의 촉매를 제조하는 경우에도 통상적인 공침법을 이용하였다.The oxide catalyst of a single metal was prepared by conventional precipitation, and the binary metal oxide catalyst was prepared by conventional co-precipitation. Ferric nitrate (FeN 3 O 9 · 9H 2 O), cupric nitrate (CuN 2 O 6 · 2.5H 2 O), aluminum nitrate (AlN 3 O 9 · 9H 2 O) and titanium nitrate (TiN) 3 O 9 · 9H 2 O) ( Acros (ACROS) Co., Ltd.) was used, respectively. At this time, aluminum nitrate and titanium nitrate are carrier precursors, and a conventional coprecipitation method was also used to prepare a catalyst having a supported form on the carrier.

우선, 해당 금속 질화물 시약을 목적하는 몰비에 따라 75℃의 증류수에 넣고 2시간 동안 교반하였다. 수성 Na2CO3를 사용하여 반응용액의 pH를 9.0으로 조절한 후, 생성된 침전물을 여과하여 분리한 다음 105∼110℃에서 건조시켰다. 건조된 생성물을 석영(quartz) 반응기에 넣고 공기를 흘려주면서 300℃에서 2시간, 500℃에서 2시간, 800℃에서 2시간 연속해서 소성(calcination)시켜, 하기 표 1에 나타 낸 바와 같은 다양한 금속 산화물 촉매를 얻었다. 얻어진 촉매의 비표면적을 액체질소 흡착-탈착법으로 측정하여 표 1에 함께 나타내었다.First, the metal nitride reagent was added to distilled water at 75 ° C. according to the desired molar ratio and stirred for 2 hours. The pH of the reaction solution was adjusted to 9.0 using aqueous Na 2 CO 3 , and the resulting precipitate was separated by filtration and dried at 105 to 110 ° C. The dried product was put in a quartz reactor and continuously flowed for 2 hours at 300 ° C, 2 hours at 500 ° C, and 2 hours at 800 ° C while flowing air, various metals as shown in Table 1 below. An oxide catalyst was obtained. The specific surface area of the catalyst thus obtained was measured by liquid nitrogen adsorption-desorption method and shown in Table 1 together.

시험예 1 : 황산 분해 반응활성의 측정Test Example 1 Measurement of Sulfuric Acid Reactivity

예열부와 반응부로 떨어져 있지 않고 단일체로 이루어진 U자 형태의 석영 반응기(키스텍(Kistec) 제조)의 중간 부분에, 상기 실시예 1-2 및 비교예 1-6 각각에서 얻은 촉매 0.3g을 충진하였다. 이어, 상기 반응기에 펌프를 이용하여 불활성 기체 N2와 함께 액상 H2SO4(95 중량%)를 공급하였다. H2SO4의 공간속도는 72,000 ml/g촉매·hr로 조절하고, 반응은 대기압에서 진행하였다. H2SO4가 촉매의 작용에 의해 SO2와 O2로 분해되어 나오면, 먼저 입자 트랩(particle trap)을 거쳐 분해되지 않은 H2SO4를 걸러내고, 순수한 SO2와 O2만 I2 용액 트랩에 들어가게 하였으며, SO3와 SO2가 반응을 하지 않고 나올 것을 대비하여 H2SO4 트랩을 설치하였다. 이 모든 트랩을 거쳐 순수한 O2만 GC(가스 크로마토그래피)로 들어가게 하였다. 이때, 황산 분해반응의 온도를 750℃, 800℃, 850℃, 900℃ 및 950℃로 변화시켰다. 각 반응온도 별로 황산의 O2 전환율(%)을 측정하여 하기 표 1에 나타내었다.0.3 g of the catalyst obtained in each of Examples 1-2 and Comparative Examples 1-6 was filled in the middle of a U-shaped quartz reactor (manufactured by Kistec), which was formed as a single unit without being separated from the preheating unit and the reaction unit. It was. Subsequently, the reactor was supplied with liquid H 2 SO 4 (95 wt%) together with an inert gas N 2 using a pump. The space velocity of H 2 SO 4 was adjusted to 72,000 ml / g catalyst and hr, and the reaction proceeded at atmospheric pressure. When H 2 SO 4 is decomposed into SO 2 and O 2 by the action of a catalyst, it first filters out the undecomposed H 2 SO 4 through a particle trap, and only pure SO 2 and O 2 are I 2 solutions. The trap was placed, and a H 2 SO 4 trap was installed in preparation for SO 3 and SO 2 to be released without reacting. All these traps allowed only pure O 2 to enter GC (gas chromatography). At this time, the temperature of sulfuric acid decomposition reaction was changed to 750 degreeC, 800 degreeC, 850 degreeC, 900 degreeC, and 950 degreeC. It was shown in Table 1 by measuring the O 2 conversion (%) of sulfuric acid for each reaction temperature.

Figure 112007026053243-pat00002
Figure 112007026053243-pat00002

상기 표 1의 결과로부터, 본 발명에 따른 실시예 1-5의 담지되거나 담지되지 않은 구리-철 산화물 촉매가, 비교예 1-4의 알루미나에 담지되거나 담지되지 않은 단일 금속 산화물 촉매, 즉 구리 산화물 및 철 산화물 촉매뿐 아니라, 구리와 철의 몰비가 본 발명 범주에서 벗어나는 비교예 5-6의 구리-철 산화물 촉매에 비해, 동등하거나 우수한 황산 분해 반응활성을 나타냄을 알 수 있다. 본 발명의 촉매와 비교적 동등한 활성을 나타내는 비교예 1 및 3의 구리 산화물 촉매는 고가인 구리를 다량 함유하고 있어 비경제적이라는 단점을 갖는다.From the results of Table 1 above, the supported or unsupported copper-iron oxide catalyst of Example 1-5 according to the present invention is a single metal oxide catalyst, ie copper oxide, supported or unsupported on the alumina of Comparative Example 1-4 And not only the iron oxide catalyst, it can be seen that the molar ratio of copper and iron exhibits the same or better sulfuric acid decomposition reaction activity than the copper-iron oxide catalyst of Comparative Example 5-6, which is outside the scope of the present invention. The copper oxide catalysts of Comparative Examples 1 and 3, which exhibit relatively similar activity to the catalyst of the present invention, contain a large amount of expensive copper and have disadvantages of being uneconomical.

시험예 2 : 황산 분해 반응안정성의 측정Test Example 2 Measurement of Reaction Stability of Sulfuric Acid Decomposition

상기 실시예 2 및 5, 및 비교예 3-4 각각에서 얻은 촉매, 및 상용촉매인 크롬산구리(2CuOCr2O3)를 사용하되, 반응온도를 850℃로 고정하여 8일 동안 반응을 수행한 것을 제외하고는, 상기 시험예 1과 동일하게 황산 분해반응을 수행하였다. 각 반응시간 별로 황산의 O2 전환율(%)을 측정하여 하기 표 2에 나타내었다.Using the catalyst obtained in each of Examples 2 and 5, and Comparative Examples 3-4, and a commercial catalyst copper chromate (2CuOCr 2 O 3 ), the reaction was carried out for 8 days at a fixed reaction temperature of 850 ℃ Except that, the sulfuric acid decomposition reaction was carried out in the same manner as in Test Example 1. It was shown in Table 2 by measuring the O 2 conversion (%) of sulfuric acid for each reaction time.

Figure 112007026053243-pat00003
Figure 112007026053243-pat00003

상기 표 2의 결과로부터, 본 발명에 따른 실시예 2 및 5의 구리-철 산화물 촉매가, 비교예 3-4의 알루미나에 담지된 구리 산화물 및 철 산화물 촉매뿐 아니라 상용촉매인 크롬산구리 촉매에 비해, 오랜 기간동안 현저히 우수한 황산 분해 반응활성을 유지함을 알 수 있다.From the results in Table 2 above, the copper-iron oxide catalysts of Examples 2 and 5 according to the present invention were compared with the copper oxide and iron oxide catalysts supported on the alumina of Comparative Example 3-4, as well as the copper chromite catalyst which is a commercial catalyst. In addition, it can be seen that the sulfuric acid decomposition activity is maintained remarkably excellent for a long time.

상기한 바와 같이, 본 발명의 구리-철 산화물 촉매는 경제적이면서도 고온 고압에서 우수한 황산 분해 반응활성과 안정성을 유지할 수 있어, 물분해 IS 싸이클 공정 중 황산 분해반응에 유용하게 이용될 수 있다.As described above, the copper-iron oxide catalyst of the present invention can maintain excellent sulfuric acid decomposition activity and stability at economical and high temperature and high pressure, and thus can be usefully used for sulfuric acid decomposition in the water decomposition IS cycle process.

Claims (8)

구리 산화물 및 철 산화물을 1 : 0.5∼2.0의 구리 대 철 몰비로 포함하는, 구리-철 이성분계 산화물 촉매.A copper-iron bicomponent oxide catalyst comprising copper oxide and iron oxide in a copper to iron molar ratio of 1: 0.5 to 2.0. 제 1 항에 있어서, The method of claim 1, 상기 구리 산화물 및 철 산화물이 담지체에 담지된 것임을 특징으로 하는, 구리-철 이성분계 산화물 촉매.The copper-iron two-component oxide catalyst, characterized in that the copper oxide and iron oxide supported on the support. 제 2 항에 있어서,The method of claim 2, 상기 담지체 대 구리 및 철 산화물이 1 : 0.1∼1.0의 몰비로 존재하는 것을 특징으로 하는, 구리-철 이성분계 산화물 촉매.A copper-iron bicomponent oxide catalyst, characterized in that the carrier is present in a molar ratio of 1: 0.1 to 1.0. 제 2 항에 있어서,The method of claim 2, 상기 담지체가 실리카, 알루미나, 지르코니아, 티타니아 및 이들의 혼합물로 이루어진 군으로부터 선택된 것임을 특징으로 하는, 구리-철 이성분계 산화물 촉매.Copper-iron bicomponent oxide catalyst, characterized in that the support is selected from the group consisting of silica, alumina, zirconia, titania and mixtures thereof. 제 1 항 내지 제 4 항 중 어느 한 항의 구리-철 이성분계 산화물 촉매의 존재 하에 황산을 분해하는 방법.A process for decomposing sulfuric acid in the presence of the copper-iron bicomponent oxide catalyst of claim 1. 제 5 항에 있어서,The method of claim 5, wherein 상기 방법이 500 내지 1200℃의 온도 및 0.1 내지 40 기압 하에서 수행됨을 특징으 로 하는, 황산 분해방법.The method is characterized in that the method is carried out under a temperature of 500 to 1200 ℃ and 0.1 to 40 atm, sulfuric acid decomposition method. 제 6 항에 있어서,The method of claim 6, 상기 방법이 700 내지 1000℃의 온도 및 1 내지 25 기압 하에서 수행됨을 특징으로 하는, 황산 분해방법.The process of sulfuric acid decomposition, characterized in that the process is carried out at a temperature of 700 to 1000 ℃ and 1 to 25 atm. 제 5 항에 있어서,The method of claim 5, wherein 상기 방법이 요오드-황(IS) 싸이클 공정에 이용되는 것을 특징으로 하는, 황산 분해방법.A process for the decomposition of sulfuric acid, characterized in that the method is used in an iodine-sulfur (IS) cycle process.
KR1020070033156A 2007-04-04 2007-04-04 Copper-iron oxide catalyst and decomposition of sulfuric acid using same KR100860538B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070033156A KR100860538B1 (en) 2007-04-04 2007-04-04 Copper-iron oxide catalyst and decomposition of sulfuric acid using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070033156A KR100860538B1 (en) 2007-04-04 2007-04-04 Copper-iron oxide catalyst and decomposition of sulfuric acid using same

Publications (1)

Publication Number Publication Date
KR100860538B1 true KR100860538B1 (en) 2008-09-26

Family

ID=40023762

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070033156A KR100860538B1 (en) 2007-04-04 2007-04-04 Copper-iron oxide catalyst and decomposition of sulfuric acid using same

Country Status (1)

Country Link
KR (1) KR100860538B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101308968B1 (en) 2011-05-19 2013-09-17 한국과학기술연구원 Integral vertical silicon carbide reactor for decomposing sulfuric acid and Pressurized decomposition method of sulfuric acid using the same
KR20190035611A (en) * 2016-04-28 2019-04-03 인디안 인스터튜트 오브 테크놀로지, 델리 Methods for conversion of sulfur trioxide and hydrogen production

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5399097A (en) 1977-02-10 1978-08-30 Agency Of Ind Science & Technol Catalytically and thermally decompositing method for sulfuric acid
US4314982A (en) * 1979-06-21 1982-02-09 General Atomic Company Catalytic decomposition of H2 SO4

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5399097A (en) 1977-02-10 1978-08-30 Agency Of Ind Science & Technol Catalytically and thermally decompositing method for sulfuric acid
US4314982A (en) * 1979-06-21 1982-02-09 General Atomic Company Catalytic decomposition of H2 SO4

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Reduction of sulfuric acid by hydrogen on various metal-carbon catalysts" - Bulletin of the Chemical Society of Japan, 54(1), p.5-7,1981

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101308968B1 (en) 2011-05-19 2013-09-17 한국과학기술연구원 Integral vertical silicon carbide reactor for decomposing sulfuric acid and Pressurized decomposition method of sulfuric acid using the same
KR20190035611A (en) * 2016-04-28 2019-04-03 인디안 인스터튜트 오브 테크놀로지, 델리 Methods for conversion of sulfur trioxide and hydrogen production
JP2019518706A (en) * 2016-04-28 2019-07-04 インディアン・インスティテゥート・オブ・テクノロジー Method for converting sulfur trioxide and method for producing hydrogen
JP7084378B2 (en) 2016-04-28 2022-06-14 インディアン・インスティテゥート・オブ・テクノロジー Sulfur trioxide conversion method and hydrogen generation method
US11390522B2 (en) 2016-04-28 2022-07-19 Indian Institute Of Technology, Delhi Process for conversion of sulfur trioxide and hydrogen production
KR102448519B1 (en) * 2016-04-28 2022-09-28 인디안 인스터튜트 오브 테크놀로지, 델리 Method of conversion of sulfur trioxide and hydrogen production

Similar Documents

Publication Publication Date Title
US6693060B2 (en) Modified θ-Al2O3-supported nickel reforming catalyst and its use for producing synthesis gas from natural gas
US6342538B1 (en) Catalyst for the synthesis of methanol and a method for the synthesis of methanol
KR20110008591A (en) The method for preparing of fe based catalyst used in fischer-tropsch systhesis reaction and that of liquid hydrocarbon using fe based catalyst
JP5553484B2 (en) Ammonia decomposition catalyst and ammonia decomposition method
JP3005647B2 (en) Photocatalyst, method for producing the same, and method for producing hydrogen using the same
KR20130074843A (en) Catalyst for reforming of methane with the enhanced stability for sulfur components, preparing method thereof and methane reforming method using the catalyst
JP2021030117A (en) Agent for improving activity of catalyst for methanol synthesis
KR100860538B1 (en) Copper-iron oxide catalyst and decomposition of sulfuric acid using same
KR100685658B1 (en) Copper ferrite catalyst and decomposition of sulfur trioxide using the same
JP7418849B2 (en) Oxynitrogen hydride, metal support containing oxynitrogen hydride, and catalyst for ammonia synthesis
WO2021172107A1 (en) Metal-loaded article containing typical element oxide, catalyst for ammonia synthesis and method for synthesizing ammonia
JP3837520B2 (en) Catalyst for CO shift reaction
JPH05221602A (en) Production of synthesis gas
CA3190829A1 (en) Method for producing methanol
CN116323529A (en) Method for producing methanol
JP3834776B2 (en) Catalyst for photo-water splitting containing germanium nitride structure
KR101655092B1 (en) Manufacturing method of methane using methanation catalyst derived from hydrotalcite-type compound, methanation catalyst, and preparation mehtod of the same
KR100244661B1 (en) Copper/zinc oxide/alumina catalyst and methanol preparation thereby
JP2012223768A (en) Catalyst and method for decomposing ammonia
JP2003010684A (en) Catalyst for manufacturing hydrogen and hydrogen manufacturing method
JPH04363141A (en) Catalyst for catalytic reduction of carbon dioxide and production of methanol using the same
JPH0371174B2 (en)
KR100280261B1 (en) Method for preparing methanol from carbon dioxide using palladium / zinc oxide catalyst
KR20240056410A (en) Catalyst for reforming of methane, method for manufacturing thereof and method for reforming of methane
EP1113985B1 (en) Production of nitrous oxide

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120910

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20130830

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20141219

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee