KR100851474B1 - Method for detecting incorrect reducing agent for urea-scr system - Google Patents

Method for detecting incorrect reducing agent for urea-scr system Download PDF

Info

Publication number
KR100851474B1
KR100851474B1 KR1020070086004A KR20070086004A KR100851474B1 KR 100851474 B1 KR100851474 B1 KR 100851474B1 KR 1020070086004 A KR1020070086004 A KR 1020070086004A KR 20070086004 A KR20070086004 A KR 20070086004A KR 100851474 B1 KR100851474 B1 KR 100851474B1
Authority
KR
South Korea
Prior art keywords
urea
scr
efficiency
catalyst
scr catalyst
Prior art date
Application number
KR1020070086004A
Other languages
Korean (ko)
Inventor
정재윤
Original Assignee
현대자동차주식회사
기아자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사, 기아자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020070086004A priority Critical patent/KR100851474B1/en
Application granted granted Critical
Publication of KR100851474B1 publication Critical patent/KR100851474B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/14Exhaust systems with means for detecting or measuring exhaust gas components or characteristics having more than one sensor of one kind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0416Methods of control or diagnosing using the state of a sensor, e.g. of an exhaust gas sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

A method for detecting improper injection of UREA in an SCR system is provided to prevent vehicle cost from increasing and improve the technology competitiveness by determining the propriety of UREA injected into SCR(Selective Catalyst Reduction) catalyst. A method for detecting improper injection of UREA in an SCR system comprises the steps of calculating a ratio of NO and NO2 of NOx of exhaust gas introduced into SCR catalyst(S101), calculating the model efficiency of the SCR catalyst using the calculated ratio and temperature of the SCR catalyst(S102), and calculating the substantial efficiency of the SCR catalyst by monitoring signals of an NOx sensor(S103). The efficiency calculated in the step(S102) is compared with the efficiency calculated in the step(S103)(S104). A UREA recharge driver inducement is performed or not according to the comparison result in the step(S104)(S105,S106).

Description

SCR 시스템의 부적절한 유레아 주입 감지방법{Method for detecting incorrect reducing agent for UREA-SCR system}Method for detecting incorrect reducing agent for UREA-SCR system

본 발명은 SCR 시스템에 주입되는 유레아(UREA)의 적정성을 감지할 수 있는 SCR 시스템의 부적절한 유레아 주입 감지방법에 관한 것이다.The present invention relates to a method for detecting an inappropriate urea injection of an SCR system capable of detecting adequacy of urea injected into an SCR system.

최근 환경오염의 문제로 배기가스 내의 질소산화물(NOx)을 저감시키고자 하는 연구 개발이 활발히 진행되고 있으며, 이와 같은 질소산화물 저감(De-NOx)을 위한 후처리 기술은 크게 두 가지로 분류할 수 있다.Recently, research and development to reduce nitrogen oxides (NOx) in exhaust gas are actively progressed due to the problem of environmental pollution, and such post-treatment techniques for nitrogen oxide reduction (De-NOx) can be classified into two types. have.

첫 째는 질소산화물 흡장 물질을 적용한 질소산화물 흡장촉매(Lean NOx Trap : LNT)이다. 그러나 LNT 촉매를 이용하기 위해서는 디젤엔진에서 이론공연비(14.7) 이하의 운전 영역 구현이 가능하여야만 한다.The first is a nitrogen oxide storage catalyst (Lean NOx Trap: LNT) using a nitrogen oxide storage material. However, in order to use the LNT catalyst, the operating area of the theoretical performance ratio (14.7) or less must be possible in the diesel engine.

또한, 이론공연비 이하의 영역(Rich Spike)을 만들기 위해 엔진 후분사 기술을 이용해야할 뿐만 아니라 배기관 내에 연료를 2차 분사해야하므로, 연비의 손실이 크다는 단점이 있다.In addition, since the engine after injection technology must be used in order to make the region less than the theoretical fuel consumption ratio, and fuel must be injected secondly into the exhaust pipe, the fuel consumption is large.

질소산화물을 저감시키기 위한 두 번째 방법은 유레아(UREA:요소) 수용액을 배기관에 분사하여 배기가스 중의 질소산화물을 저감시키는 '요소를 이용한 선택적 촉매 환원'(UREA-Selective Catalyst Reduction : 이하 UREA-SCR이라 약칭함)시스템을 사용하는 방법으로, DOC(Diesel Oxidation Catalyst)와, CPF(Catalyzed Particulate Filter)와 함께 사용되며, 배기관 내로 분사된 유레아 수용액(UREA Solution)은 배기관 내의 열에 의해 열분해(분해온도 : 156도)되거나 촉매와 접촉하여 접촉 분해 됨으로써, 아래 [식 1]과 같이 한 분자의 요소가 두 분자의 암모니아로 전환된다. The second method for reducing nitrogen oxides is called 'urea-selective catalyst reduction' (UREA-SCR), which injects a solution of urea (urea) into the exhaust pipe to reduce nitrogen oxides in the exhaust gas. Abbreviated) system, used together with DOC (Diesel Oxidation Catalyst) and CPF (Catalyzed Particulate Filter), urea solution (UREA Solution) injected into the exhaust pipe is pyrolyzed by heat in the exhaust pipe (decomposition temperature: 156 By contact or catalytic cracking in contact with the catalyst, one element of the element is converted into two molecules of ammonia, as shown in Equation 1 below.

[식 1][Equation 1]

(NH2)2C0 + H2O → 2NH3 + CO2 (NH 2 ) 2 C0 + H 2 O → 2NH 3 + CO 2

이렇게 전환된 암모니아는 아래 [식 2]와 같이 배기가스 중의 질소산화물과 SCR(Selective Catalyst Reduction : 선택적 촉매 환원)반응되어, 차량 외부로는 질소와 물이 배출된다.The ammonia thus converted is reacted with nitrogen oxide in the exhaust gas and SCR (Selective Catalyst Reduction) as shown in [Equation 2], and nitrogen and water are discharged to the outside of the vehicle.

[식 2][Equation 2]

4NH3 + 4NO +O2 → 4N2 + 6H2O4NH 3 + 4NO + O 2 → 4N 2 + 6H 2 O

4NH3 + 2NO2 +O2 → 3N2 + 6H2O4NH 3 + 2NO 2 + O 2 → 3N 2 + 6H 2 O

8NH3 + 6NO2 → 7N2 + 12H2O8NH 3 + 6NO 2 → 7N 2 + 12H 2 O

2NH3 + NO + NO2 → 2N2 + 3H2O2NH 3 + NO + NO 2 → 2N 2 + 3H 2 O

이와 같이 암모니아를 이용하여 질소산화물을 제거하는 기술은 약 20년 전에 개발되어 상용화되어 있는바, 암모니아와 질소산화물 간의 반응에 대한 상세한 설명은 생략한다.As described above, a technology for removing nitrogen oxides using ammonia has been developed and commercialized about 20 years ago, and thus a detailed description of the reaction between ammonia and nitrogen oxides is omitted.

한편, 유레아를 이용한 선택적 촉매 환원(UREA-SCR)이 적용되는 차량에 대한 법규 확정안이 EPA(environmntal protection agency)에서 배포됨에 따라 각 차량 제작사별로 상기 방안에 따른 최적의 구현방안에 대한 제어시스템이 필요한 상황이다.On the other hand, as the law-definition proposal for vehicles to which urea-selective catalytic reduction (UREA-SCR) is applied is distributed in the environmental protection agency (EPA), each vehicle manufacturer needs a control system for optimal implementation of the above method. Situation.

이때, 상기 법규항목 중 '부적절한 유레아 주입 감지 및 대응방안(vehicle compliance의 incorrect reducing agent)'이 미국 환경 보호국의 법규 항목으로 명시되어 있다.At this time, the 'incorrect reducing agent of the urea injection detection and response (vehicle compliance)' of the regulation items are specified as the regulations of the US Environmental Protection Agency.

여기서, 부적절한 유레아 주입 감지 및 대응방안이란, 규정된 32.5%보다 묽게 희석된 유레아나 유레아 이외의 액체를 주입하여 차량을 운전하는 경우 NOx 정화율이 악화되는 UREA SCR시스템의 특성을 고려하여 저장탱크 내의 유레아가 SCR촉매 효율을 저해하지 않는 적정한 물성치를 가지고 있는 것을 감지하고, 부적절한 유레아가 감지되는 경우 일정 시간 동안 차량 경고 시스템이 작동하며, 그 후에는 운전자 유도방안의 단계로 진행하게 하는 것을 의미한다.In this case, improper urea injection detection and countermeasures are based on the characteristics of the UREA SCR system that deteriorates the NOx purification rate when driving a vehicle by injecting liquids other than urea or urea diluted thinner than the specified 32.5%. This means that the urea has adequate physical properties that do not compromise the SCR catalyst efficiency, and if an inappropriate urea is detected, the vehicle warning system is activated for a certain period of time, after which it proceeds to the driver's guidance.

운전자 유도방안(driver inducement)은 저장탱크 내의 레벨이 일정 수준 이하(약 2리터)로 떨어지는 시점부터 운전자가 유레아를 주입하지 않고서는 차량 운행을 계속하지 못하도록 하기 위한 강제적 방안으로 시동불능과, 연료차단 및, 성능저하 등의 방법이 있다.Driver inducement is a mandatory way to prevent the driver from continuing to operate the vehicle without injecting urea when the level in the storage tank falls below a certain level (about 2 liters). And performance degradation.

이와 같은 부적절한 유레아 또는 과다 희석된 유레아는 유레아 퀄리티 센서(UREA Quality Sensor)의 적용에 의해 정확한 감지는 가능하지만, 유레아 퀄리티 센서의 추가에 따른 원가의 상승이 예고되기 때문에 차량의 가격이 상승하게 된다는 문제점이 있게 된다.Such an inappropriate urea or excessively diluted urea can be accurately detected by the application of the urea quality sensor, but the price of the vehicle increases due to the cost increase due to the addition of the urea quality sensor. This will be.

따라서, 여러 가지 조건을 고려하여 유레아 소진시 운전자에게 적절한 유레아의 주입을 권장할 수 있도록 차량의 엔진을 제어하는 방법이 요구되고 있는 실정이다.Accordingly, there is a demand for a method of controlling the engine of the vehicle to recommend the proper urea injection to the driver when the urea is exhausted in consideration of various conditions.

본 발명은 전술한 바와 같은 종래의 제반 문제점을 해결하기 위하여 안출된 것으로, 이러한 본 발명의 목적은 별도의 센서 추가 없이 차량에 구비된 각종 센서의 신호를 이용하여 SCR에 주입되는 유레아의 적정성을 감지할 수 있는 SCR 시스템의 부적절한 유레아 주입 감지방법을 제공함에 있다.The present invention has been made to solve the conventional problems as described above, the object of the present invention is to detect the appropriateness of the urea injected into the SCR using the signals of the various sensors provided in the vehicle without the addition of a separate sensor The present invention provides a method for detecting inappropriate urea injection of an SCR system.

본 발명은 SCR촉매로 유입되는 배기가스의 NOx 성분 중 NO와 NO2 의 비율을 산출하는 제 1단계; 산출된 NO와 NO2 비율과 SCR촉매의 온도를 이용하여 모델 SCR촉매 효율을 계산하는 제 2단계; SCR 전/후단의 NOx센서 신호를 모니터링하여 실제 SCR촉매 효율을 계산하는 제 3단계; 상기 제 2단계와 제 3단계의 효율 차이를 비교 하는 4단계; 및 상기 제 2단계의 효율과 제 3단계의 효율 차이에 따라 유레아 재충전 유도방안을 작동시키거나, 해제시키는 단계를 포함하여 구성되는 것을 특징으로 한다.The present invention comprises a first step of calculating the ratio of NO and NO 2 in the NOx component of the exhaust gas flowing into the SCR catalyst; Calculated NO and NO 2 Calculating a model SCR catalyst efficiency using the ratio and the temperature of the SCR catalyst; A third step of calculating the actual SCR catalyst efficiency by monitoring the NOx sensor signals before and after the SCR; A four step of comparing the difference in efficiency between the second step and the third step; And activating or releasing the urea recharging induction scheme according to the difference between the efficiency of the second step and the efficiency of the third step.

상술한 바와 같이 본 발명에 따른 SCR 시스템의 유레아 주입 감지방법에 의하면, 별도의 센서 추가 없이 SCR에 주입되는 유레아의 적정성을 감지할 수 있기 때문에 차량의 가격 상승을 방지할 수 있음은 물론, 기술 경쟁력이 향상되는 등의 장점이 있다.As described above, according to the urea injection detection method of the SCR system according to the present invention, it is possible to detect the adequacy of the urea injected into the SCR without adding a separate sensor, thereby preventing the price increase of the vehicle, as well as technical competitiveness. There are advantages such as being improved.

또한, 유레아 레벨이 일정 수준 이상 상승해도 주입 유도방안을 해제시키지 않고, 유레아의 적정성 감지를 수행한 뒤 유레아가 정상 수준으로 판정되는 경우에만 주입 유도방안을 해제하여 시동불가, 연료 재주입 불가, 출력제한 등을 해제시킴으로써, 운전자가 유레아 대신 유사 유레아를 주입하여 유레아 레벨만 올리는 경우 주입 유도방안을 회피할 수 있다는 헛점을 보완할 수 있게 되는 등의 장점을 제공한다.In addition, even if the urea level rises above a certain level, the injection induction plan is not released when the urea is determined to be normal after the proper detection of urea is performed without releasing the injection induction plan. By releasing the restriction, it is possible to compensate for the disadvantage that the driver can avoid the injection induction scheme if the driver injects similar urea instead of urea to raise the urea level only.

이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진자가 본 발명을 용이하게 실시할 수 있을 정도로 본 발명의 바람직한 실시 예를 첨부된 도면을 참조하여 상세하게 설명하면 다음과 같다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings such that those skilled in the art may easily implement the present invention.

도 1은 본 발명에 따른 SCR 시스템의 부적절한 유레아 주입 감지방법에 대한 원리를 개략적으로 나타낸 블럭도이다.1 is a block diagram schematically illustrating the principle of an inappropriate urea injection detection method of an SCR system according to the present invention.

본 발명은 SCR 시스템에 추가적으로 장착되는 별도의 유레아 퀄리티 센서를 사용하지 아니하고, 차량에 구비된 각종 센서(크랭크회전수 센서, 연료분사량, DOC온도, CPF온도 및 차압, SCR전단 온도, SCR전/후단 NOx센서)에서 출력되는 신호를 이용하여 유레아의 적정성을 감지토록 하는 것이다.The present invention does not use a separate urea quality sensor that is additionally mounted to the SCR system, and various sensors (crank rotation speed sensor, fuel injection amount, DOC temperature, CPF temperature and differential pressure, SCR shear temperature, SCR front / rear end) provided in the vehicle NOx sensor) to detect the adequacy of urea using the signal output.

즉, 도 1의 도시와 같이 각종 센서에서 출력되는 신호를 이용하여 SCR촉매 효율 모델링 값과 실제 SCR촉매 효율 값을 계산하고, 이 계산값을 ECU가 비교 및 판단하여 부적절한 유레아 주입을 감지할 수 있으며, 이에 따라 부적절한 유레아 주입이 감지되면 SCR효율 저하시로 판단하여 재충전 유도방안(시동불가, 연료 재주입 불가, 출력제한)이 작동되도록 하는 것이다.That is, as shown in FIG. 1, the SCR catalyst efficiency modeling value and the actual SCR catalyst efficiency value may be calculated using signals output from various sensors, and the ECU may compare and determine the calculated value to detect inappropriate urea injection. Therefore, if improper urea injection is detected, it is determined that the SCR efficiency is lowered so that recharging induction measures (non-startup, fuel re-injection, output limitation) are operated.

상기와 같은 개념을 현실화하기 위하여 본 발명인 SCR 시스템의 부적절한 유레아 주입 감지방법은 도 2 및 도 3의 도시와 같은 제어로직이 마련된다.In order to realize the above concept, an inappropriate urea injection detection method of the SCR system of the present invention is provided with a control logic as shown in FIGS. 2 and 3.

도 2는 본 발명에 따른 SCR 시스템의 부적절한 유레아 주입 감지방법에 대한 제어로직을 나타낸 순서도이고, 도 3은 SCR촉매 효율 모델링을 위한 NO:NO2의 보정치에 대한 제어로직을 나타낸 순서도이며, 도 4는 SCR 시스템이 장착된 배기장치의 일부를 개략적으로 나타낸 개략도이다.2 is a flow chart showing a control logic for the inappropriate urea injection detection method of the SCR system according to the present invention, Figure 3 is a flow chart showing the control logic for the correction value of NO: NO2 for modeling the SCR catalyst efficiency, Figure 4 A schematic diagram showing a part of an exhaust system equipped with an SCR system.

본 발명인 SCR 유레아 주입 감지시스템은 SCR촉매로 유입되는 배기가스 중 NO와 NO2배기가스에서 모니터링된 NOx 중 NO와 NO2의 비율을 산출하는 제 1 단계(S101)와, 산출된 NO와 NO2 비율과 SCR촉매의 온도를 이용하여 모델 SCR촉매 효율을 계산하는 제 2단계(102)와, SCR 전/후단의 NOx센서 신호를 모니터링하여 실제 SCR촉매 효율을 계산하는 제 3단계(103)와, 상기 제 2단계(102)와 제 3단계(103)의 효율을 비교하는 4단계(104)와, 상기 두 효율의 차이에 따라 유레아 재충전 유도방안을 작동(105)시키거나, 해제(106)시키는 단계를 포함하여 구성된다.SCR urea injection detection system of the present invention is the first step (S101) for calculating the ratio of NO and NO 2 of the NOx monitored in the NO and NO2 exhaust gas of the exhaust gas flowing into the SCR catalyst, and the calculated NO and NO 2 A second step 102 of calculating the model SCR catalyst efficiency using the ratio and the temperature of the SCR catalyst, a third step 103 of monitoring the NOx sensor signals before and after the SCR and calculating the actual SCR catalyst efficiency; Fourth step 104 comparing the efficiency of the second step 102 and the third step 103 and actuating or releasing 106 the urea recharge induction scheme according to the difference of the two efficiencies. It consists of steps.

모델 SCR촉매 효율을 계산하는 제 2단계(102)에서 모델 SCR촉매 효율은 배기가스 중의 NO(일산화질소):NO2(이산화질소)의 비율과 SCR촉매 전단의 온도에 의한 함수로 작용하기 때문에 상기 NO:NO2의 비율과 SCR촉매 전단의 온도 값에 따라 모델 SCR촉매 효율을 적절하게 계산할 수 있으며, 이때 상기 초기 값은 도 3에 도시된 제어로직에 의해 최종 값으로 보정된다.In the second step 102 of calculating the model SCR catalyst efficiency, the model SCR catalyst efficiency acts as a function of the ratio of NO (nitrogen monoxide): NO 2 (nitrogen dioxide) in the exhaust gas and the temperature of the SCR catalyst front end. The model SCR catalyst efficiency can be properly calculated according to the ratio of: NO 2 and the temperature value of the front end of the SCR catalyst, wherein the initial value is corrected to the final value by the control logic shown in FIG. 3.

즉, 상기 최종 값은 도 3의 도시와 같이 엔진회전수와 연료량 별로 엔진에서 실측한 raw NOx량 중 NO:NO2의 초기 값을 선정하는 단계(S201)와, DOC촉매 온도를 모니터링하여 NO가 NO2로 산화되는 양을 상기 초기 값에 보정하는 단계(S202)와, CPF촉매의 온도와 차압신호를 모니터링하여 CPF에서 CRT(Continuous Regenerating Trap)효과에 의한 NO2 감소량을 상기 초기 값에 보정하는 단계(S204)에 의해 상기 보정 값들이 최종 값으로 연산(S205)되어 SCR촉매로 유입되는 배기가스 내의 NO : NO2 비율이 연산된다.That is, the final value is a step (S201) of selecting the initial value of the NO: NO2 of the raw NOx amount actually measured in the engine for each engine speed and fuel amount as shown in Figure 3, the NOC NO2 by monitoring the DOC catalyst temperature Correcting the amount of oxidation to the initial value (S202), and monitoring the temperature and the differential pressure signal of the CPF catalyst to correct the NO2 reduction amount due to the continuous regenerating trap (CRT) effect in the CPF to the initial value (S204). The calculated values are calculated as final values (S205), and the NO: NO 2 ratio in the exhaust gas flowing into the SCR catalyst is calculated.

이때, CPF촉매에서 NO2의 감소량 보정단계(204)는 차압신호가 일정 값 이상이거나, 배출온도가 CRT조건 이상인 경우(S203)에 한하여만 보정되는 것이 바람직 하다.At this time, the step of correcting the amount of NO2 reduction 204 in the CPF catalyst is preferably corrected only when the differential pressure signal is above a predetermined value or the discharge temperature is above the CRT condition (S203).

따라서, 상기 DOC촉매에서 NO가 NO2로 산화되는 양을 보정하는 단계(S203)와, CPF촉매에서 NO2의 감소량을 보정하는 단계(S204)에 의해 SCR에 도달하는 NO : NO2의 최종 비율을 알 수 있기 때문에 이 값과 SCR촉매 전단의 배기가스 온도센서에 의한 값을 이용하여 최종적으로 모델 SCR촉매 효율 산출이 가능하게 된다.Therefore, the final ratio of NO: NO 2 reaching SCR by correcting the amount of NO oxidized to NO 2 in the DOC catalyst (S203) and correcting the amount of NO 2 reduced in the CPF catalyst (S204). Since this value and the value obtained by the exhaust gas temperature sensor at the front end of the SCR catalyst can be finally calculated, the model SCR catalyst efficiency can be calculated.

한편, 실제 SCR촉매 효율을 계산하는 단계(S103)는 SCR 시스템에 구비되는 NOx센서에 의해 계산 가능하다.On the other hand, the step of calculating the actual SCR catalyst efficiency (S103) can be calculated by the NOx sensor provided in the SCR system.

즉, SCR 시스템에는 도 4의 도시와 같이 SCR촉매의 열화(劣化)를 모니터링하기 위하여 2개의 NOx센서(10)(20)와, 1개의 온도센서(30)가 구비된다.That is, the SCR system is provided with two NOx sensors 10 and 20 and one temperature sensor 30 to monitor deterioration of the SCR catalyst as shown in FIG. 4.

상기 2개의 NOx센서(10)(20)는 각각 SCR 시스템(9)의 입구와 출구의 NOx량을 모니터링하고, 온도센서(30)는 SCR촉매 입구의 배기가스 온도를 모니터링 하기 위하여 구비되는 센서이다.The two NOx sensors 10 and 20 monitor the amount of NOx at the inlet and the outlet of the SCR system 9, respectively, and the temperature sensor 30 is a sensor provided to monitor the exhaust gas temperature at the SCR catalyst inlet. .

이로써, 상기 2개의 NOx센서(10)(20) 들에 의해 SCR 시스템의 입구와 출구의 NOx량이 각각 모니터링 가능하기 때문에 다음과 같은 식에 의해 실제 SCR촉매 효율의 계산이 가능하게 된다.Thus, since the NOx amount of the inlet and the outlet of the SCR system can be monitored by the two NOx sensors 10 and 20, the actual SCR catalyst efficiency can be calculated by the following equation.

Figure 112007062031441-pat00001
Figure 112007062031441-pat00001

따라서, 위와 같은 계산식에 의해 계산되는 실제 SCR촉매 효율과, 앞서 언급한 모델 SCR촉매 효율을 비교 및 판단하여 효율 차이가 설정치 이하인 경우 적절한 유레아 주입으로 판단하여 정상적인 주행을 가능하게 하고, 효율 차이가 설정치 이상인 경우 부적절한 유레아 주입에 의해 SCR촉매 효율이 저하된 것으로 판단하여 운전자가 적절한 유레아로 재충전할 수 있도록 유도하게 되는 것이다.Therefore, if the efficiency difference is less than the set value by comparing and determining the actual SCR catalyst efficiency calculated by the above formula and the above-mentioned model SCR catalyst efficiency, it is judged as appropriate urea injection to enable normal driving and the efficiency difference is the set value. In this case, it is determined that the SCR catalyst efficiency is degraded by improper urea injection, thereby inducing the driver to recharge the proper urea.

예를 들어 실제 SCR촉매 효율이 모델 SCR촉매 효율보다 적은 경우에는 무조건 유레아 재충전을 유도하도록 하고, 실제 SCR촉매 효율과 모델 SCR촉매 효율 간의 차이가 실제 SCR촉매 절대값의 30%를 초과하는 경우에만 유레아 재충전을 유도하도록 할 수 있음은 물론, 상기 설정치는 상기 SCR의 다양한 조건에 따라 변경될 수 있다.For example, if the actual SCR catalyst efficiency is less than the model SCR catalyst efficiency, unconditionally induce urea recharge, and only if the difference between the actual SCR catalyst efficiency and the model SCR catalyst efficiency exceeds 30% of the absolute value of the actual SCR catalyst. In addition, the setpoint may be changed according to various conditions of the SCR.

한편, 본 발명에 따른 SCR 시스템의 유레아 주입 감지방법은 현재 디젤 차량에 적용되는 '운전자 유도방안'에 접목하여 유레아 주입 유도방안의 작동시 발생되는 헛점을 보완할 수 있다.On the other hand, the urea injection detection method of the SCR system according to the present invention can be supplemented by the 'operation guidance scheme' applied to the current diesel vehicle to compensate for the defects generated during the operation of the urea injection guidance scheme.

'운전자 유도방안'은 유레아 저장탱크 내의 레벨이 일정 수준 이하(약 2리터)로 떨어지는 시점부터 운전자가 유레아를 주입하지 않고서는 차량 주행을 계속하지 못하도록 하는 강제적 유도방안이다.'Driver guidance' is a mandatory guideline that prevents the driver from continuing the vehicle without injecting urea when the level in the urea storage tank falls below a certain level (about 2 liters).

이 역시 미국 환경보호국의 법규 항목으로 명시되어 있으며, 시동불가, 연료 재주입 불가, 출력 제한 등이 있다.This is also defined by the US Environmental Protection Agency, which includes no starting, no refueling, and limited output.

본원 출원인은 본 출원에 앞서 10-2007-55567호(요소를 이용한 선택적 촉매 환원 차량의 엔진 제어방법)를 선 출원한 바 있으며, 상기 출원 발명의 문제점으로 야기될 수 있는 부분을 보완할 수 있게 되는 것이다.The applicant of the present application has previously applied for 10-2007-55567 (engine control method of a selective catalytic reduction vehicle using urea) prior to the present application, and can supplement the parts that may be caused by the problems of the present invention. will be.

즉, 상기 10-2007-55567호에서 유레아 주입 유도방안이 작동되어 출력이 제 한되는 경우, 운전자가 유레아 대신 물이나 액체를 대신 주입하여 유레아 레벨만 올려 유레아 주입 방안을 회피할 수 있지만, 본 발명에서는 유레아 주입 유도방안이 작동된 후에 유레아 레벨이 일정 수준 이상 상승해도 주입 유도방안을 바로 해제하지 않고, 유레아의 적정성 감지를 수행한 후, 유레아가 정상수준으로 판정되는 경우에만 유레아 주입 유도방안을 해제시키기 때문에 상기 출원 발명에서의 문제점을 해소할 수 있게 된다.That is, in the case of the urea injection induction scheme is operated in the 10-2007-55567 the output is limited, the driver can inject water or liquid instead of urea to increase only the urea level to avoid the urea injection method, but the present invention In the case of urea injection guidance, the urea injection guidance is not released immediately after the urea level rises above a certain level. It is possible to solve the problem in the invention of the application.

본 발명을 바람직한 실시예를 이용하여 상세히 설명하였으나, 본 발명의 범위는 특정 실시예에 한정되는 것은 아니며, 첨부된 특허청구범위에 의하여 해석되어야 할 것이다. 또한, 이 기술분야에서 통상의 지식을 습득한 자라면, 본 발명의 범위에서 벗어나지 아니하면서도 많은 수정과 변형이 가능함을 이해하여야 할 것이다.Although the present invention has been described in detail using the preferred embodiments, the scope of the present invention is not limited to the specific embodiments, it should be interpreted by the appended claims. In addition, those of ordinary skill in the art should understand that many modifications and variations are possible without departing from the scope of the present invention.

도 1은 본 발명에 따른 SCR 시스템의 부적절한 유레아 주입 감지방법에 대한 원리를 개략적으로 나타낸 블럭도이다.1 is a block diagram schematically illustrating the principle of an inappropriate urea injection detection method of an SCR system according to the present invention.

도 2는 본 발명에 따른 SCR 시스템의 부적절한 유레아 주입 감지방법에 대한 제어로직을 나타낸 순서도이다.2 is a flowchart illustrating a control logic for an inappropriate urea injection detection method of an SCR system according to the present invention.

도 3은 SCR촉매 효율 모델링을 위한 NO:NO2의 보정치에 대한 제어로직을 나타낸 순서도이다.3 is a flowchart illustrating control logic for a correction value of NO: NO 2 for modeling SCR catalyst efficiency.

도 4는 SCR 시스템이 장착된 배기장치의 일부를 개략적으로 나타낸 개략도이다.4 is a schematic diagram schematically showing a part of an exhaust apparatus equipped with an SCR system.

*도면 중 주요부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

9 : SCR 시스템 10,20 - NOx센서9: SCR system 10,20-NOx sensor

Claims (4)

SCR촉매로 유입되는 배기가스의 NOx 성분 중 NO와 NO2 의 비율을 산출하는 제 1단계(S101);A first step (S101) of calculating a ratio of NO and NO 2 among the NOx components of the exhaust gas flowing into the SCR catalyst; 산출된 NO와 NO2 비율과 SCR촉매의 온도를 이용하여 모델 SCR촉매 효율을 계산하는 제 2단계(102);Calculated NO and NO 2 A second step 102 of calculating the model SCR catalyst efficiency using the ratio and the temperature of the SCR catalyst; SCR 전/후단의 NOx센서 신호를 모니터링하여 실제 SCR촉매 효율을 계산하는 제 3단계(103);A third step (103) of calculating the actual SCR catalyst efficiency by monitoring the NOx sensor signals before and after the SCR; 상기 제 2단계(102)와 제 3단계(103)의 효율 차이를 비교하는 4단계(104); 및Four steps (104) of comparing the difference in efficiency between the second step (102) and the third step (103); And 상기 제 2단계(102)의 효율과 제 3단계(103)의 효율 차이에 따라 유레아 재충전 유도방안을 작동(105)시키거나, 해제(106)시키는 단계를 포함하여 구성되는 것을 특징으로 하는 SCR 시스템의 부적절한 유레아 주입 감지방법.SCR system comprising the step of activating 105 or releasing 106 of the urea recharge induction scheme according to the difference in the efficiency of the second step 102 and the efficiency of the third step (103). Improper urea injection detection 제 1 항에 있어서,The method of claim 1, 상기 4단계(104)에서,In step 4 104, 상기 효율 차이가 설정치 이하인 경우 적절한 유레아 주입으로 판단하여 정상적인 주행을 가능하게 하고, When the difference in efficiency is less than the set value, judging by proper urea injection to enable normal running, 상기 효율 차이가 설정치 이상인 경우 부적절한 유레아 주입에 의해 SCR촉매 효율이 저하된 것으로 판단하도록 구성되는 것을 특징으로 하는 SCR 시스템의 부적절한 유레아 주입 감지방법.Incorrect urea injection detection method of the SCR system, characterized in that it is configured to determine that the SCR catalyst efficiency is lowered by the inappropriate urea injection when the efficiency difference is more than the set value. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2, 상기 제 1단계(102)에서 산출된 NO와 NO2의 비율은,The ratio of NO and NO 2 calculated in the first step 102 is 엔진에서 실측한 NOx량 중 NO:NO2의 초기 값을 선정하는 단계(S201)와,Selecting an initial value of NO: NO 2 from the amount of NOx measured by the engine (S201); DOC촉매 온도를 모니터링하여 NO가 NO2로 산화되는 양을 상기 초기 값에 보정하는 단계(S202)와, Monitoring the DOC catalyst temperature and correcting the amount of NO oxidation to NO 2 at the initial value (S202); CPF촉매의 온도와 차압신호를 모니터링하여 CPF에서 CRT효과에 의한 NO2 감소량을 상기 초기 값에 보정하는 단계(S204)를 포함하여 구성되는 것을 특징으로 하는 SCR 시스템의 부적절한 유레아 주입 감지방법.And monitoring the temperature of the CPF catalyst and the differential pressure signal, and correcting the amount of NO 2 reduction due to the CRT effect in the CPF to the initial value (S204). 제 3 항에 있어서,The method of claim 3, wherein 상기 CPF촉매의 온도와 차압신호를 모니터링하여 NO2 감소량을 보정하는 단계(S204)는,Monitoring the temperature of the CPF catalyst and the differential pressure signal to correct the NO 2 reduction amount (S204), 차압신호가 설정치 이상이거나, 배기온도가 CRT조건 이상인 경우(S203)에 한하여만 보정되도록 구성되는 것을 특징으로 하는 SCR 시스템의 부적절한 유레아 주입 감지방법.Improper urea injection detection method of the SCR system, characterized in that it is configured to be corrected only when the differential pressure signal is above the set value or the exhaust temperature is above the CRT condition (S203).
KR1020070086004A 2007-08-27 2007-08-27 Method for detecting incorrect reducing agent for urea-scr system KR100851474B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070086004A KR100851474B1 (en) 2007-08-27 2007-08-27 Method for detecting incorrect reducing agent for urea-scr system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070086004A KR100851474B1 (en) 2007-08-27 2007-08-27 Method for detecting incorrect reducing agent for urea-scr system

Publications (1)

Publication Number Publication Date
KR100851474B1 true KR100851474B1 (en) 2008-08-08

Family

ID=39881521

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070086004A KR100851474B1 (en) 2007-08-27 2007-08-27 Method for detecting incorrect reducing agent for urea-scr system

Country Status (1)

Country Link
KR (1) KR100851474B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101040347B1 (en) 2008-12-05 2011-06-10 현대자동차주식회사 System for calculation efficiency conversion of selective catalytic reduction in diesel vehicle and method thereof
CN102230413A (en) * 2011-05-20 2011-11-02 潍柴动力股份有限公司 SCR (Selective Catalytic Reduction) control device, system and method thereof
RU2487253C2 (en) * 2008-12-08 2013-07-10 Мицубиси Хеви Индастриз, Лтд. Apparatus for cleaning exhaust gas
WO2013111989A1 (en) * 2012-01-27 2013-08-01 두산인프라코어 주식회사 Post-processing system apparatus and control method
KR20190063903A (en) * 2017-11-30 2019-06-10 현대자동차주식회사 Method for predicting of nitrogen dioxide emission in diesel engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003314258A (en) 2002-04-23 2003-11-06 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device for internal combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003314258A (en) 2002-04-23 2003-11-06 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device for internal combustion engine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101040347B1 (en) 2008-12-05 2011-06-10 현대자동차주식회사 System for calculation efficiency conversion of selective catalytic reduction in diesel vehicle and method thereof
RU2487253C2 (en) * 2008-12-08 2013-07-10 Мицубиси Хеви Индастриз, Лтд. Apparatus for cleaning exhaust gas
US8607547B2 (en) 2008-12-08 2013-12-17 Mitsubishi Heavy Industries, Ltd. Flue gas purifying device
CN102230413A (en) * 2011-05-20 2011-11-02 潍柴动力股份有限公司 SCR (Selective Catalytic Reduction) control device, system and method thereof
WO2013111989A1 (en) * 2012-01-27 2013-08-01 두산인프라코어 주식회사 Post-processing system apparatus and control method
US9597637B2 (en) 2012-01-27 2017-03-21 Doosan Infracore Co., Ltd. Exhaust gas post-processing apparatus and control method thereof
KR20190063903A (en) * 2017-11-30 2019-06-10 현대자동차주식회사 Method for predicting of nitrogen dioxide emission in diesel engine
KR102394626B1 (en) * 2017-11-30 2022-05-09 현대자동차주식회사 Method for predicting of nitrogen dioxide emission in diesel engine

Similar Documents

Publication Publication Date Title
JP4726926B2 (en) Exhaust gas purification device for internal combustion engine
KR100907363B1 (en) Method for controlling urea-scr system
JP6257941B2 (en) Method for reducing nitrogen oxides in diesel engine exhaust gas
JP4215808B2 (en) Control device and control method for exhaust gas purification device, and exhaust gas purification device for internal combustion engine
US8201397B2 (en) Exhaust gas purification device of internal combustion engine
JP4666018B2 (en) Exhaust gas purification device for internal combustion engine
US20100122520A1 (en) System for Controlling Urea Injection Quantity of Vehicle and Method Thereof
WO2014073408A1 (en) Exhaust gas purification device for internal-combustion engine
JP4737312B2 (en) Exhaust purification system abnormality diagnosis device and exhaust purification system
JP5759476B2 (en) Method for controlling reducing agent storage and level in an exhaust gas aftertreatment device
JP6130619B2 (en) Control device for NOx purification device
KR101316856B1 (en) System for control urea injection quantity of vehicle and method thereof
KR100851474B1 (en) Method for detecting incorrect reducing agent for urea-scr system
KR100992816B1 (en) System for correction a stored ammonia quantity of emission reduce line on diesel vehicle and method thereof
JP6344259B2 (en) Urea addition control device, learning device
CN109154223B (en) Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine
US20220162977A1 (en) Method for adjusting the loading of a particulate filter
JP2012082703A (en) DEVICE AND METHOD FOR DETECTING DEGRADATION OF SELECTIVE REDUCTION TYPE NOx CATALYST
JP4261393B2 (en) Exhaust purification device control method
US11105246B2 (en) Degradation diagnosis device for exhaust purification system
JP5762832B2 (en) Degradation diagnosis device and exhaust purification device of selective reduction catalyst
JP7140046B2 (en) Exhaust gas purification device
JP2015135117A (en) Method for controlling reductant agent storage level in exhaust gas post-treatment device
JP2018112089A (en) Abnormality diagnosis device of reductant addition valve
JP2013181427A (en) Failure detecting device of exhaust emission control system and method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120731

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20130731

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150731

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160729

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20180730

Year of fee payment: 11