KR100836510B1 - Nickel-zirconium-titanium complex metal oxides catalyst, preparation method thereof, and method for producing hydrogen by autothermal reforming of ethanol using the same - Google Patents

Nickel-zirconium-titanium complex metal oxides catalyst, preparation method thereof, and method for producing hydrogen by autothermal reforming of ethanol using the same Download PDF

Info

Publication number
KR100836510B1
KR100836510B1 KR1020070022752A KR20070022752A KR100836510B1 KR 100836510 B1 KR100836510 B1 KR 100836510B1 KR 1020070022752 A KR1020070022752 A KR 1020070022752A KR 20070022752 A KR20070022752 A KR 20070022752A KR 100836510 B1 KR100836510 B1 KR 100836510B1
Authority
KR
South Korea
Prior art keywords
zirconium
nickel
metal oxide
titanium
composite metal
Prior art date
Application number
KR1020070022752A
Other languages
Korean (ko)
Inventor
송인규
윤민혜
서정길
Original Assignee
재단법인서울대학교산학협력재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인서울대학교산학협력재단 filed Critical 재단법인서울대학교산학협력재단
Priority to KR1020070022752A priority Critical patent/KR100836510B1/en
Application granted granted Critical
Publication of KR100836510B1 publication Critical patent/KR100836510B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • C01B3/26Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

A catalyst used in autothermal reforming of ethanol, which has a high selectivity by reducing side reactions, and of which durability and activity are less deteriorated even during the long term use of the catalyst, is provided, a method for preparing a Ni-Zr-Ti-O composite metal oxide catalyst more simply by an one-step sol-gel process is provided, and a method for producing hydrogen gas with a high concentration by applying the Ni-Zr-Ti-O composite metal oxide catalyst to autothermal reforming of ethanol is provided. In a catalyst used in the production of hydrogen by autothermal steam reforming of ethanol, a Ni-Zr-Ti-O composite metal oxide catalyst is prepared by hydrating and condensing at least two metal precursors essentially comprising the Ni precursor selected from the group consisting of Ti, Zr and Ni precursors, and is represented by the formula Ni5ZrxTi5-xO, where x ranges from 0 to 5. The Ni-Zr-Ti-O composite metal oxide catalyst has a Zr/Ti mole ratio of x/5-x, where x ranges from 0 to 5, and a Ni/(Zr+Ti) mole ratio of 0.1 to 5. A preparation method of a Ni-Zr-Ti-O composite metal oxide catalyst represented by the formula Ni5ZrxTi5-xO, where x ranges from 0 to 5, comprises the steps of: (i) dissolving at least two metal precursors essentially comprising the Ni precursor selected from the group consisting of Ti, Zr and Ni precursors into a hydrophilic solvent to prepare a metal precursor solution; (ii) simultaneously hydrating and condensing the metal precursor solution to gelate the Ni-Zr-Ti-O composite metal oxide catalyst; and (iii) drying and firing the gelated Ni-Zr-Ti-O composite metal oxide catalyst.

Description

니켈-지르코늄-티타늄 복합금속산화물 촉매, 그 제조방법 및 상기 촉매를 이용한 에탄올의 자열개질반응에 의한 수소 제조방법{Nickel-zirconium-titanium complex metal oxides catalyst, preparation method thereof, and method for producing hydrogen by autothermal reforming of ethanol using the same}Nickel-zirconium-titanium complex metal oxides catalyst, preparation method about, and method for producing hydrogen by autothermal reforming of ethanol using the same}

도 1은 (제조)비교예 1 및 2에서 제조한 상용 지르코니아와 티타니아에 담지된 니켈촉매(Ni/ZrO2와 Ni/TiO2) 및 본 발명의 (제조)실시예 6 및 10에서 제조한 니켈-지르코늄-티타늄 복합금속산화물 촉매(Ni5Zr5O 및 Ni5Ti5O)의 에탄올 자열개질 반응 특성을 나타낸 그래프 1 is a nickel catalyst (Ni / ZrO 2 and Ni / TiO 2 ) supported on commercial zirconia and titania prepared in Comparative Examples 1 and 2 and nickel prepared in Examples 6 and 10 of the present invention. Graph showing ethanol autothermal reforming reaction of zirconium-titanium composite metal oxide catalysts (Ni 5 Zr 5 O and Ni 5 Ti 5 O)

도 2는 본 발명의 (제조)실시예 6 내지 10에서 제조한 Ni5ZrxTi5 - xO (x=0, 1, 2.5, 4, 5) 복합금속산화물 촉매에 의한 에탄올 자열개질반응 반응특성을 나타낸 그래프2 is an ethanol autothermal reforming reaction using Ni 5 Zr x Ti 5 - x O (x = 0, 1, 2.5, 4, 5) composite metal oxide catalyst prepared in (Preparation) Examples 6 to 10 of the present invention. Graph showing characteristics

도 3은 (제조)실시예 1 내지 5에서 제조한 촉매를 600oC에서 5시간 동안 열처리한 후의 XRD 결과Figure 3 (Manufacture) XRD results after the heat treatment of the catalyst prepared in Examples 1 to 5 at 600 o C for 5 hours

도 4는 (제조)실시예 1 내지 5에서 열처리한 촉매를 600oC에서 수소(10 ml/min)와 질소(30 ml/min)로 이루어진 혼합가스를 흘려주면서 3시간 동안 환원시 킨 후의 XRD 결과Figure 4 (Manufacture) XRD after reducing the catalyst heat-treated in Examples 1 to 5 for 3 hours while flowing a mixed gas consisting of hydrogen (10 ml / min) and nitrogen (30 ml / min) at 600 ° C. result

본 발명은 니켈-지르코늄-티타늄 복합금속산화물(Ni-Zr-Ti-O) 촉매, 그 제조방법 및 상기 촉매를 이용한 에탄올의 자열개질반응(Autothermal Reforming)에 의한 수소 제조방법에 관한 것으로, 보다 상세하게는 본 발명은 에탄올의 수증기 자열개질반응에 의해 수소를 제조하는데 사용되는 촉매에 있어서, 상기 촉매는 티타늄, 지르코늄 및 니켈의 금속전구체로 구성된 군으로부터 니켈 금속전구체를 필수적으로 포함하여 선택된 적어도 2종 이상을 동시에 수화 및 축합하여 제조되며 Ni5ZrxTi5-xO(0≤X≤5)의 화학식으로 표현되는 것을 특징으로 하는 니켈-지르코늄-티타늄(Ni-Zr-Ti-O) 복합금속산화물 촉매, 그 제조방법 및 상기 촉매를 이용한 에탄올의 자열개질반응(Autothermal Reforming)에 의한 수소 제조방법에 관한 것이다. The present invention relates to a nickel-zirconium-titanium composite metal oxide (Ni-Zr-Ti-O) catalyst, a method for preparing the same, and a method for producing hydrogen by autothermal reforming of ethanol using the catalyst. Preferably the present invention is a catalyst used to produce hydrogen by steam autothermal reforming of ethanol, the catalyst is at least two selected from the group consisting essentially of a metal precursor of titanium, zirconium and nickel, including at least two metal precursors Simultaneous hydration and condensation of the above is a nickel-zirconium-titanium (Ni-Zr-Ti-O) composite metal, characterized in that represented by the chemical formula of Ni 5 Zr x Ti 5-x O (0≤X≤5) The present invention relates to an oxide catalyst, a method for producing the same, and a method for producing hydrogen by autothermal reforming of ethanol using the catalyst.

에탄올은 바이오메스를 통하여 생산되는 청정연료로서 발효공정에서 제조된 에탄올은 물을 다량 함유하고 있다. 이렇게 물과 혼합물 상태인 에탄올을 연료로 하여 수소를 생산하는 공정은 그 연료의 청정성과 무해성, 수송 및 저장의 용이성이라는 장점을 가지고 있다. 일반적으로 에탄올의 수증기 개질반응을 통한 수소제조 반응은 다음과 같은 반응식으로 표현될 수 있다. Ethanol is a clean fuel produced through biomass. Ethanol produced in the fermentation process contains a large amount of water. The process of producing hydrogen using ethanol in a mixture with water as a fuel has the advantages of cleanliness and harmlessness of the fuel, and ease of transportation and storage. In general, the hydrogen production reaction through the steam reforming reaction of ethanol can be represented by the following scheme.

CH3CH2OH(l) + 3H2O(l) → 2CO2(g) + 6H2(g) ΔHo 298 = +347.4 kJ/mole CH 3 CH 2 OH (l) + 3H 2 O (l) → 2CO 2 (g) + 6H 2 (g) ΔH o 298 = +347.4 kJ / mole

이러한 수증기 개질반응은 수소 생산성 측면에서 매우 유리한 반응으로 알려져 있으나[미국특허 2006/0057058 A1, 2006년; 미국특허 2004/0137288 A1, 2004년; 일본특허 0082996A, 2006년], 강한 흡열반응으로 인해 열교환이 원활하게 진행될 수 있는 부수적인 시스템이 별도로 구축되어야 한다. 또한 수증기 개질 반응에서 여러 성분의 금속 촉매가 사용될 경우 코크 생성으로 인한 촉매의 비활성화가 나타난다고 보고 되고 있다 [J. Comas, F. Marino, M. Laborde, N. Amadeo, Chem. Eng. J., 98권, 61-68쪽, 2004년/ D. Wang, D. Montane, E. Chornet, Appl. Catal. A, 143권, 245-270쪽, 1996년]. 이러한 수증기 개질반응의 단점을 극복하고자 소량의 산소를 주입하면 다음의 식에 나타낸 바와 같이 열적으로 안정한 상태를 반응이 진행된다. This steam reforming reaction is known to be very advantageous in terms of hydrogen productivity [US Patent 2006/0057058 A1, 2006; US Patent 2004/0137288 A1, 2004; Japanese Patent 0082996A, 2006], an additional system in which heat exchange can proceed smoothly due to strong endothermic reaction should be separately constructed. In addition, it has been reported that the deactivation of the catalyst due to coke formation occurs when the metal catalyst of various components is used in the steam reforming reaction [J. Comas, F. Marino, M. Laborde, N. Amadeo, Chem. Eng. J., vol. 98, pp. 61-68, 2004 / D. Wang, D. Montane, E. Chornet, Appl. Catal. A, Vol. 143, pp. 245-270, 1996]. When a small amount of oxygen is injected to overcome the disadvantages of the steam reforming reaction, the reaction proceeds in a thermally stable state as shown in the following equation.

CH3CH2OH(l)+ 2H2O(l)+1/2 O2 → 2CO2(g)+5H2(g) ΔHo 298 = -50.3 kJ/mole CH 3 CH 2 OH (l) + 2H 2 O (l) +1/2 O 2 → 2CO 2 (g) + 5H 2 (g) ΔH o 298 = -50.3 kJ / mole

상기의 식으로 표현되는 수소제조 반응을 에탄올 자열개질반응(Autothermal Reforming) 또는 에탄올 부분산화 수증기 개질반응(Oxidative Steam Reforming)이라고 하는데, 최근 들어 이에 관한 연구가 많이 진행되고 있다 [S. Velu, K. Suzuki, M. Vijayaraj, S. Barman, C.S. Gopinath, Appl. Catal. B, 55권, 287-299쪽, 2005년/ S. Cavallaro, V. Chiodo, A. Vita, S. Freni, J. Power Sources, 123권, 10-16쪽, 2003년]. 이러한 자열개질반응은 수증기 개질반응에 비해 개질기 출구에서의 일산화탄소 농도를 감소시킬 수 있고, 개질기 내 열적 부하가 적기 때문에 소형의 경제적인 개질기 구동이 가능하며, 촉매의 비활성화 방지에도 효과가 있는 것으로 보고되고 있지만, 산소가 개입되기 때문에 반응 메카니즘이 매우 복잡하고 다양한 경로의 부반응이 나타난다는 단점이 있다. 따라서 에탄올 자열개질반응을 통한 수소제조공정의 핵심적인 기술은 부반응의 효율적인 제어를 통하여 수소의 선택도를 높이고, 일산화탄소와 다른 부반응 생성물의 선택도를 최소화하는데 있다. The hydrogen production reaction represented by the above formula is called ethanol autothermal reforming or ethanol partial steam reforming. Recently, many studies have been conducted on this. Velu, K. Suzuki, M. Vijayaraj, S. Barman, C.S. Gopinath, Appl. Catal. B, vol. 55, pp. 287-299, 2005 / S. Cavallaro, V. Chiodo, A. Vita, S. Freni, J. Power Sources, 123, pp. 10-16, 2003]. This autothermal reforming reaction can reduce the carbon monoxide concentration at the reformer outlet as compared to the steam reforming reaction, and because of the low thermal load in the reformer, it is possible to operate a compact and economical reformer, and it is reported that it is effective in preventing catalyst deactivation. However, there are disadvantages in that the reaction mechanism is very complicated because of the involvement of oxygen, and side reactions of various pathways occur. Therefore, the core technology of the hydrogen production process through the ethanol autothermal reforming reaction is to increase the selectivity of hydrogen and to minimize the selectivity of carbon monoxide and other side reaction products through efficient control of side reactions.

자열개질반응에 사용되는 촉매로는, 귀금속 담지촉매인 Rh/Al2O3 [E. Vesselli, G. Comelli, R. Rosei, S. Freni, F. Frusteri, S. Cavallaro, Appl. Catal. A, 281권, 139-147쪽, 2005년], Pt/Al2O3 [R.M. Navarro, M.C. Alvarez-Galvan, M.C. Sanchez-Sanchez, F. Rasa, J.L.G. Fierro, Appl. Catal. B, 55권, 229-241쪽, 2005년], 일반 전이금속 담지촉매인 Ni/Al2O3 [V. Fierro, O. Akdim, H. Provendier, C. Mirodatos, J. Power Sources, 145권, 659-666쪽, 2005년], CeO2에 담지된 Ni-Rh Bimetallic 촉매 [J. Kugai, V. Subramani, C. Song, M.H. Engelhard, Y.-H. Chin, J. Catal., 238권, 430-440쪽, 2006년], CuNiZnAl 복합금속산화물 촉매 [S. Velu, N. Satoh, C.S. Gopinath, K. Suzuki, Catal. Lett., 82권, 145-152쪽, 2002년] 등이 보고 되고 있다. The catalyst used in the autothermal reforming reaction is Rh / Al 2 O 3 [E. Vesselli, G. Comelli, R. Rosei, S. Freni, F. Frusteri, S. Cavallaro, Appl. Catal. A, Vol. 281, pp. 139-147, 2005], Pt / Al 2 O 3 [RM Navarro, MC Alvarez-Galvan, MC Sanchez-Sanchez, F. Rasa, JLG Fierro, Appl. Catal. B, Vol. 55, pp. 229-241, 2005], Ni / Al 2 O 3 , a supported catalyst for general transition metals [V. Fierro, O. Akdim, H. Provendier, C. Mirodatos, J. Power Sources, Vol. 145, pp. 659-666, 2005], Ni-Rh Bimetallic catalysts supported on CeO 2 [J. Kugai, V. Subramani, C. Song, MH Engelhard, Y.-H. Chin, J. Catal., Vol. 238, pp. 430-440, 2006], CuNiZnAl Multimetal Oxide Catalysts [S. Velu, N. Satoh, CS Gopinath, K. Suzuki, Catal. Lett., Vol. 82, pp. 145-152, 2002].

그러나, 상기 문헌에 개시된 경우를 포함한 종래의 촉매시스템은 고온, 고압 의 반응조건하에서 장시간 사용할 경우 촉매의 활성 및 내구성이 시간의 경과에 따라 저하되는 경향이 있으며, 촉매의 제조시 여러 단계의 복잡한 제조공정을 요하기 때문에 상당히 생산성이 떨어지는 문제점을 안고 있었다. However, the conventional catalyst system including the case disclosed in the above document tends to decrease the activity and durability of the catalyst over time when it is used for a long time under high temperature and high pressure reaction conditions. Due to the process, there was a problem that the productivity is quite low.

따라서, 본 발명이 이루고자 하는 기술적 과제는 에탄올 자열개질반응에 사용되는 촉매에 있어서 부반응을 줄여 선택성이 높으면서도 장시간 사용시에도 내구성과 활성의 저하가 적은 촉매를 제공하고, 여러 단계를 거치는 기존의 복합금속산화물 제조법과는 달리 1단계(One-Step) 졸-겔(Sol-Gel) 법을 사용하여 보다 간편하게 니켈-지르코늄-티타늄 복합금속산화물(Ni-Zr-Ti-O) 촉매를 제조하는 방법을 제공하는데 있다.Therefore, the technical problem to be achieved by the present invention is to reduce side reactions in the catalyst used in the ethanol autothermal reforming reaction to provide a catalyst having high selectivity and low durability and low activity even in long-term use, and provides a multi-step existing composite metal Unlike an oxide manufacturing method, a method of preparing a nickel-zirconium-titanium composite metal oxide (Ni-Zr-Ti-O) catalyst is more easily prepared using a one-step sol-gel method. It is.

또한, 본 발명의 또 다른 기술적 과제는 상기 니켈-지르코늄-티타늄 복합금속산화물(Ni-Zr-Ti-O) 촉매를 이용하여 에탄올 자열개질반응에 적용하여 고농도의 수소가스를 제조하는 방법을 제공하는데 있다.In addition, another technical problem of the present invention is to provide a method for producing a high concentration hydrogen gas by applying to the ethanol autothermal reforming reaction using the nickel-zirconium-titanium composite metal oxide (Ni-Zr-Ti-O) catalyst. have.

상기 기술적 과제를 달성하기위하여, 본 발명은 에탄올의 수증기 자열개질반응에 의해 수소를 제조하는데 사용되는 촉매에 있어서, 상기 촉매는 티타늄, 지르코늄 및 니켈의 금속전구체로 구성된 군으로부터 니켈 금속전구체를 필수적으로 포함하여 선택된 적어도 2종 이상을 동시에 수화 및 축합하여 제조되며 Ni5ZrxTi5-xO(0≤X≤5)의 화학식으로 표현되는 것을 특징으로 하는 니켈-지르코늄-티타늄(Ni-Zr- Ti-O) 복합금속산화물 촉매를 제공한다. In order to achieve the above technical problem, the present invention is a catalyst used to produce hydrogen by steam autothermal reforming of ethanol, the catalyst is essentially a nickel metal precursor from the group consisting of metal precursors of titanium, zirconium and nickel Nickel-zirconium-titanium (Ni-Zr-), which is prepared by hydrating and condensing at least two or more selected at the same time and is represented by the chemical formula of Ni 5 Zr x Ti 5-x O (0≤X≤5). Ti-O) provides a composite metal oxide catalyst.

또한, 본 발명은 상기 니켈-지르코늄-티타늄 (Ni-Zr-Ti-O) 복합금속산화물의 Zr/Ti의 몰비가 x/5-x (0≤X≤5)의 범위이고 Ni/(Zr+Ti) 몰비가 0.1 내지 5 범위인 것을 특징으로 하는 니켈-지르코늄-티타늄(Ni-Zr-Ti-O) 복합금속산화물 촉매를 제공한다.In addition, in the present invention, the molar ratio of Zr / Ti of the nickel-zirconium-titanium (Ni-Zr-Ti-O) composite metal oxide is in the range of x / 5-x (0≤X≤5) and Ni / (Zr + Ti) provides a nickel-zirconium-titanium (Ni-Zr-Ti-O) composite metal oxide catalyst characterized in that the molar ratio is in the range of 0.1 to 5.

또한, 본 발명의 또 다른 측면은 ⅰ)티타늄, 지르코늄 및 니켈의 금속전구체로 구성된 군으로부터 니켈 금속전구체를 필수적으로 포함하여 선택된 적어도 2종 이상을 각각 친수성 용매에 용해하여 금속 전구체 용액을 제조하는 단계; ⅱ)상기 금속 전구체 용액을 동시에 또는 순차적으로 수화 및 축합시켜 겔화시키는 단계 및; ⅲ)상기 겔화된 니켈-지르코늄-티타늄(Ni-Zr-Ti-O) 복합금속산화물을 건조 및 소성하는 단계를 포함하며 Ni5ZrxTi5-xO(0≤X≤5)의 화학식으로 표현되는 니켈-지르코늄-티타늄(Ni-Zr-Ti-O) 복합금속산화물 촉매 제조 방법을 제공한다.In addition, another aspect of the present invention is a step of preparing a metal precursor solution by dissolving at least two or more selected from the group consisting of metal precursors of titanium, zirconium and nickel in a hydrophilic solvent, each of which is essentially selected ; Ii) hydrating and condensing the metal precursor solution simultaneously or sequentially to gel; Iii) drying and calcining the gelled nickel-zirconium-titanium (Ni-Zr-Ti-O) composite metal oxide, and formulating Ni 5 Zr x Ti 5-x O (0 ≦ X5 ). Provided is a method for preparing a nickel-zirconium-titanium (Ni-Zr-Ti-O) composite metal oxide catalyst.

또한, 본 발명은 상기 금속 전구체 용액의 제조 단계에서 상기 지르코늄 및 티타늄 전구체는 각각 지르코늄 알콕사이드 및 티타늄 알콕사이드이고 상기 니켈 전구체를 니켈 나이트레이트 또는 니켈 아세테이트를 사용하는 것을 특징으로 하는 니켈-지르코늄-티타늄(Ni-Zr-Ti-O) 복합금속산화물 촉매 제조 방법을 제공한다.In the present invention, the zirconium and titanium precursors are zirconium alkoxide and titanium alkoxide, respectively, in the preparation of the metal precursor solution, and the nickel precursor is nickel-zirconium-titanium (Ni). Provided is a method for preparing a -Zr-Ti-O) composite metal oxide catalyst.

또한, 본 발명은 상기 겔화 단계가 pH 3 내지 10 범위에서 수행되는 것을 특징으로 하는 니켈-지르코늄-티타늄(Ni-Zr-Ti-O) 복합금속산화물 촉매 제조 방법을 제공한다.In addition, the present invention provides a method for preparing a nickel-zirconium-titanium (Ni-Zr-Ti-O) composite metal oxide catalyst, wherein the gelling step is performed at a pH of 3 to 10.

또한, 본 발명은 상기 니켈-지르코늄-티타늄(Ni-Zr-Ti-O) 복합금속산화물 중 상기 Zr/Ti의 몰비가 x/5-x (0≤X≤5)의 범위이고 Ni/(Zr+Ti) 몰비는 0.1 내지 5 범위인 것을 특징으로 하는 니켈-지르코늄-티타늄(Ni-Zr-Ti-O) 복합금속산화물 촉매 제조 방법을 제공한다.In addition, in the present invention, the molar ratio of Zr / Ti in the nickel-zirconium-titanium (Ni-Zr-Ti-O) composite metal oxide is in the range of x / 5-x (0 ≦ X ≦ 5) and Ni / (Zr + Ti) molar ratio provides a method for preparing a nickel-zirconium-titanium (Ni-Zr-Ti-O) composite metal oxide catalyst, characterized in that in the range of 0.1 to 5.

본 발명의 또 다른 기술적 과제를 달성하기 위하여, 본 발명의 또 다른 측면은 상기 니켈-지르코늄-티타늄(Ni-Zr-Ti-O) 복합금속산화물 촉매 존재 하에 반응온도 200-800oC, 공간속도 1000-50000h-1, 반응물인 물/에탄올의 몰비 1-5, 산소/에탄올의 몰비 0.1-2의 조건하에서 이루어지는 에탄올 자열개질반응에 의한 수소제조 방법을 제공한다.In order to achieve another technical problem of the present invention, another aspect of the present invention is the reaction temperature 200-800 o C, space velocity in the presence of the nickel-zirconium-titanium (Ni-Zr-Ti-O) composite metal oxide catalyst Provided is a method for producing hydrogen by an ethanol autothermal reforming reaction performed under conditions of 1000-50000 h −1 , a water / ethanol molar ratio of 1-5 and a molar ratio of oxygen / ethanol of 0.1-2.

이하에서 본 발명을 보다 상세히 설명한다. Hereinafter, the present invention will be described in more detail.

본 발명의 복합금속산화물 촉매는 에탄올의 수증기 자열개질반응에 의해 수소를 제조하는데 사용되며, 니켈-지르코늄-티타늄(Ni-Zr-Ti-O)의 2성분계 또는 3성분계 촉매이며, Ni5ZrxTi5-xO(0≤X≤5)의 화학식으로 표현된다. The composite metal oxide catalyst of the present invention is used to produce hydrogen by steam autothermal reforming reaction of ethanol, is a two- or three-component catalyst of nickel-zirconium-titanium (Ni-Zr-Ti-O), Ni 5 Zr x It is represented by the chemical formula of Ti 5-x O (0 ≦ X5 ).

본 발명의 니켈-지르코늄-티타늄(Ni-Zr-Ti-O) 복합금속산화물 촉매는 티타늄, 지르코늄 및 니켈의 금속전구체로 구성된 군으로부터 니켈 금속전구체를 필수적으로 포함하여 선택된 적어도 2종 이상을 동시에 수화 및 축합하여 제조된다. 상기 지르코늄과 티타늄 전구체는 특별히 제한되지는 않으며, 그 바람직한 예로는 각 금속의 알콕사이드가 바람직하다. 한편, 니켈 전구체 역시 특별히 제한되는 것은 아니나, 바람직하게는 아세테이트 또는 나이트레이트 염이 바람직하다. The nickel-zirconium-titanium (Ni-Zr-Ti-O) composite metal oxide catalyst of the present invention simultaneously hydrates at least two or more selected from the group consisting of titanium, zirconium, and nickel metal precursors, essentially including a nickel metal precursor. And condensation. The zirconium and titanium precursors are not particularly limited, and preferred examples thereof include an alkoxide of each metal. On the other hand, the nickel precursor is also not particularly limited, but is preferably an acetate or nitrate salt.

또한, 본 발명의 복합금속산화물 촉매에 있어서, 3성분계 촉매의 경우 각각의 지르코늄 및 티타늄 성분의 몰비, 즉 Zr/Ti의 몰비가 x/5-x (0≤X≤5)의 범위가 되도록 하는 것이 바람직하다. 또한, 니켈 성분의 경우 Ni/(Zr+Ti)의 몰비가 0.1 내지 5가 되도록 하는 것이 바람직하다. 상기 성분의 비는 금속전구체 용액 제조시 각 성분의 비를 미리 맞추는 것이 바람직하다. In the composite metal oxide catalyst of the present invention, in the case of a three-component catalyst, the molar ratio of each zirconium and titanium component, that is, the molar ratio of Zr / Ti, is within the range of x / 5-x (0 ≦ X ≦ 5). It is preferable. In the case of the nickel component, the molar ratio of Ni / (Zr + Ti) is preferably 0.1 to 5. It is preferable that the ratio of the above components is matched to the ratio of each component in the preparation of the metal precursor solution.

본 발명의 복합금속산화물 촉매는 ⅰ)티타늄, 지르코늄 및 니켈의 금속전구체로 구성된 군으로부터 니켈 금속전구체를 필수적으로 포함하여 선택된 적어도 2종 이상을 각각 친수성 용매에 용해하여 금속 전구체 용액을 제조하는 단계; ⅱ)상기 금속 전구체 용액을 동시에 수화 및 축합시켜 겔화시키는 단계 및; ⅲ)상기 겔화된 니켈-지르코늄-티타늄(Ni-Zr-Ti-O) 복합금속산화물을 건조 및 소성하는 단계를 포함하는 방법으로 제조된다. The composite metal oxide catalyst of the present invention comprises the steps of: (i) dissolving at least two or more selected from the group consisting of metal precursors of titanium, zirconium and nickel in a hydrophilic solvent to prepare a metal precursor solution; Ii) simultaneously hydrating and condensing the metal precursor solution to gelate; (Iii) drying and calcining the gelled nickel-zirconium-titanium (Ni-Zr-Ti-O) composite metal oxide.

상기 금속전구체로서 금속 알콕사이드 전구체를 사용할 때에는 각 전구체의 수화속도가 다르기 때문에 수화속도가 빠른 지르코늄 알콕사이드를 친수성 용매인 알콜, 예를 들면 2-프로판올 및/또는 2-부탄올을 사용하여 녹인 후 아크릴아세톤과 같이 친수성이 강한 용매를 소량 첨가하여 수화속도를 조절한다. 이후 니켈 전구체 용액을 상기의 지르코늄 및 티타늄 알콕사이드 전구체 혼합용액에 빠른 교반과 함께 천천히 혼합한다. 이렇게 형성된 혼합용액을 충분한 혼합을 위해 10분 내지 24시간 동안 교반한 후, 상온에서 암모니아 수용액과 같은 염기성 수용액을 이용하여 혼합용액의 pH가 3-10이 되도록 한 상태에서 혼합용액을 수화 및 축합시키는 것이 바람직하다. 이때 교반을 매우 빠르게 진행하여 갑작스러운 겔화를 방지한다. When the metal alkoxide precursor is used as the metal precursor, since the hydration rate of each precursor is different, the fast hydration rate of zirconium alkoxide is dissolved by using a hydrophilic solvent, for example, 2-propanol and / or 2-butanol, and then acrylacetone and Likewise, a small amount of hydrophilic solvent is added to control the hydration rate. The nickel precursor solution is then slowly mixed with the zirconium and titanium alkoxide precursor mixed solution with rapid stirring. The mixed solution thus formed is stirred for 10 minutes to 24 hours for sufficient mixing, followed by hydration and condensation of the mixed solution in a state in which the pH of the mixed solution is 3-10 using a basic aqueous solution such as an aqueous ammonia solution at room temperature. It is preferable. At this time, the stirring proceeds very quickly to prevent sudden gelation.

이렇게 수화 및 축합된 혼합물을 30-100oC에서 10분 내지 48시간 동안 교반하여 겔화시킨 후, 80-150oC의 공기 분위기 하에서 5-24시간 건조하고, 다시 400-800oC의 공기분위기 하에서 5~15시간 동안 소성한다. 이렇게 제조된 촉매를 400-800oC에서 2-5시간 동안 수소와 질소로 이루어진 혼합가스(수소/질소의 몰비=1/3)를 흘려주면서 환원시킴으로써 자열개질반응을 위한 촉매가 준비된다. The hydrated and condensed mixture was gelled by stirring at 30-100 o C for 10 minutes to 48 hours, and then dried for 5 to 24 hours in an air atmosphere of 80-150 o C, followed by an air atmosphere of 400-800 o C. Fire for 5 to 15 hours. The catalyst thus prepared is reduced by flowing a mixed gas (hydrogen / nitrogen molar ratio = 1/3) consisting of hydrogen and nitrogen for 2-5 hours at 400-800 ° C. for the autothermal reforming reaction.

본 발명에서는 상기와 같이 제조된 니켈-지르코늄-티타늄 복합금속산화물 촉매를 수소 제조를 위한 에탄올 자열개질반응에 적용하였다. 에탄올 자열개질반응을 위해, 고체상의 복합금속산화물 촉매를 연속 흐름식 반응기에 장착한 후, 반응온도를 200~800oC, 공간속도를 1000~50000h-1, 반응물인 물/에탄올의 몰비를 1-5, 산소/에탄올의 몰비를 0.1-2로 유지하였으며, 질소를 운반기체로 사용하여 예열된 반응혼합물을 반응기에 도입함으로써 반응을 수행하는 것이 바람직하다. In the present invention, the nickel-zirconium-titanium composite metal oxide catalyst prepared as described above was applied to an ethanol autothermal reforming reaction for hydrogen production. For the ethanol autothermal reforming reaction, a solid metal oxide catalyst was installed in a continuous flow reactor, and then the reaction temperature was 200-800 o C, the space velocity was 1000-50000h -1 , and the reactant water / ethanol molar ratio was 1. -5, the molar ratio of oxygen / ethanol was maintained at 0.1-2, and it is preferable to carry out the reaction by introducing a preheated reaction mixture into the reactor using nitrogen as the carrier gas.

이하, 실시예를 통하여 본 발명의 실시 형태를 더욱 구체적으로 설명한다. 이하의 실시 예들은 본 발명을 예증하기 위한 것으로서 본 발명의 범위를 국한시키는 것으로 이해되어서는 안 될 것이다. Hereinafter, embodiments of the present invention will be described in more detail with reference to Examples. The following examples are intended to illustrate the invention and should not be understood as limiting the scope of the invention.

(제조)비교예 1 및 2. 상용 지르코니아 및 티타니아에 담지된 니켈촉매의 제조 Comparative Example 1 and 2. Preparation of Nickel Catalyst Supported in Commercial Zirconia and Titania

본 발명에 따른 니켈-지르코늄-티타늄 복합금속산화물(Ni-Zr-Ti-O) 촉매와의 활성 비교를 위해 각각 상용 지르코니아 및 티타니아에 담지된 니켈촉매를 제조하 였다. 이를 위해 상용 금속산화물 담체인 지르코니아(ZrO2) 및 티타니아(TiO2) 각각에 니켈 전구체인 니켈나이트레이트(Ni(NO3)2·6H2O)를 증류수에 녹인 용액을 한 방울씩 떨어뜨리면서 반응성이 없는 막대를 이용하여 섞어주었다. 이때 첨가되는 니켈 전구체의 양은 니켈 금속 양으로 환산하였을 때 금속산화물 양에 대해 20 중량%의 니켈 금속이 담지되도록 조절하였다. 금속산화물 파우더가 완전히 적셔지지 않도록 물의 함량을 조절하여 니켈입자가 골고루 분산되도록 담지한 후, 이를 105oC로 유지된 건조기에서 8시간 동안 건조시켰다. 건조된 시료를 막자사발을 이용하여 곱게 분쇄한 후 이를 도가니에 넣고 5oC/min의 속도로 600oC까지 승온시킨 후 5시간동안 열처리한 다음 천천히 냉각시켰다. 이렇게 제조된 담지촉매에서 구성 금속성분의 성분비를 알아보기 위해 SEM-EDX 분석을 수행한 결과는 표 1과 같다. In order to compare the activity with the nickel-zirconium-titanium composite metal oxide (Ni-Zr-Ti-O) catalyst according to the present invention, nickel catalysts supported on commercial zirconia and titania were prepared, respectively. To this end, a solution of nickel nitrate (Ni (NO 3 ) 2 · 6H 2 O), a nickel precursor, is dissolved in distilled water in each of zirconia (ZrO 2 ) and titania (TiO 2 ), which are commercial metal oxide carriers. Mix with a rod without this. At this time, the amount of the nickel precursor added was adjusted to carry 20% by weight of nickel metal relative to the amount of metal oxide when converted to the amount of nickel metal. The content of water was adjusted to evenly wet the metal oxide powder so that the nickel particles were evenly dispersed, and then dried for 8 hours in a drier maintained at 105 ° C. The dried sample was finely ground using a mortar and pestle, and then placed in a crucible. The temperature was raised to 600 o C at a rate of 5 o C / min, heat treated for 5 hours, and then slowly cooled. The results of the SEM-EDX analysis to find the component ratio of the constituent metal components in the prepared catalyst are shown in Table 1.

Figure 112007018923307-pat00001
Figure 112007018923307-pat00001

(제조)(Produce) 실시예Example 1-5.  1-5. pHpH 변화에 따른 니켈-지르코늄 복합금속산화물 촉매의 제조Preparation of Nickel-Zirconium Composite Metal Oxide Catalysts with Changes

지르코늄 전구체로서 지르코늄 부톡사이드(Zr[O(CH2)3CH3]4)를 사용하고, 니켈 전구체로 니켈나이트레이트(Ni(NO3)2·6H2O)를 사용하여, 니켈-지르코늄 복합금속산화물 촉매인 Ni5Zr5를 pH를 변화시켜가며 각각 제조하였다. 이를 위해 우선 일정량의 지르코늄 부톡사이드(Zr[O(CH2)3CH3]4)과 니켈나이트레이트(Ni(NO3)2·6H2O)를 2-프로판올(CH3CHOHCH3)에 각각 용해시키고 이를 교반하여, 균일한 지르코늄 전구체-니켈 전구체 혼합용액을 얻었다. 혼합용액이 충분히 섞일 때까지 상온에서 1시간 동안 교반한 후, 35% 암모니아(NH4OH) 수용액을 천천히 떨어뜨려 pH를 각각 3, 5, 7, 9, 11이 되도록 조절하였다. 이때 수화 및 축합이 순간적으로 진행되지 않도록 격렬한 교반이 필요하다. 이렇게 제조된 혼합용액을 70oC로 유지한 채 12시간동안 교반하여 충분히 겔화시킨 후, 105oC의 건조기에서 공기를 흘려주면서 12시간동안 건조시켰다. 건조된 시료를 막자사발을 이용하여 곱게 분쇄하여 도가니에 넣고, 5oC/min의 속도로 600oC까지 승온시킨 후 5시간 동안 열처리한 다음 고체 사료를 천천히 냉각시킴으로써, 여러 가지 pH 조건에서 니켈-지르코늄 복합금속산화물 촉매를 제조하였다. 이렇게 제조된 니켈-지르코늄복합금속산화물 촉매의 결정구조를 알아보기 XRD 분석을 수행하였고 그 결과는 도 3 및 도 4와 같다. 도 3은 촉매를 600oC에서 5시간 동안 열처리한 후의 XRD 결과이고 도 4는 열처리한 촉매를 600oC에서 수소(10 ml/min)와 질소(30 ml/min)로 이루어진 혼합가스를 흘려주면서 3시간 동안 환원시킨 후의 XRD 결과이다. 도 3 및 도 4에 나타낸 바와 같이, 여러 가지 pH조건에서 제조한 (제조)실시예 1 내지 5의 Ni5Zr5O 복합금속산화물 촉매는 pH에 무관하게 동일한 결정구조가 형성됨을 알 수 있었다. Nickel-zirconium complex using zirconium butoxide (Zr [O (CH 2 ) 3 CH 3 ] 4 ) as a zirconium precursor and nickel nitrate (Ni (NO 3 ) 2 .6H 2 O) as a nickel precursor Ni 5 Zr 5 , a metal oxide catalyst, was prepared with varying pH. To this end, first, a certain amount of zirconium butoxide (Zr [O (CH 2 ) 3 CH 3 ] 4 ) and nickel nitrate (Ni (NO 3 ) 2 .6H 2 O) are added to 2-propanol (CH 3 CHOHCH 3 ), respectively. It dissolved and stirred, and obtained the uniform zirconium precursor-nickel precursor mixed solution. After stirring for 1 hour at room temperature until the mixed solution is sufficiently mixed, the pH was adjusted to 3, 5, 7, 9, 11 by slowly dropping 35% aqueous ammonia (NH 4 OH). At this time, vigorous stirring is required so that hydration and condensation do not proceed instantaneously. The mixed solution thus prepared was sufficiently gelled by stirring for 12 hours while maintaining the temperature at 70 ° C., and then dried for 12 hours while flowing air in a dryer at 105 ° C. The dried sample was ground finely using a mortar and pestle, placed in a crucible, heated to 600 o C at a rate of 5 o C / min, heat-treated for 5 hours, and then slowly cooled to a solid feed to obtain nickel at various pH conditions. A zirconium composite metal oxide catalyst was prepared. The XRD analysis was performed to determine the crystal structure of the nickel-zirconium compound metal oxide catalyst thus prepared, and the results are shown in FIGS. 3 and 4. 3 shows the XRD result after heat treatment of the catalyst at 600 ° C. for 5 hours, and FIG. 4 shows a mixed gas consisting of hydrogen (10 ml / min) and nitrogen (30 ml / min) at 600 ° C. XRD results after reduction for 3 hours while giving. As shown in FIGS. 3 and 4, the Ni 5 Zr 5 O composite metal oxide catalysts prepared in (Preparation) Examples 1 to 5 at various pH conditions were found to have the same crystal structure regardless of pH.

(제조)실시예 6-10. 니켈-지르코늄-티타늄 복합금속산화물 촉매의 제조(Manufacture) Example 6-10. Preparation of Nickel-Zirconium-Titanium Composite Metal Oxide Catalysts

지르코늄과 티타늄 전구체로서 지르코늄 부톡사이드(Zr[O(CH2)3CH3]4)와 티타늄 부톡사이드(Ti[O(CH2)3CH3]4)를 각각 사용하고, 니켈 전구체로 니켈나이트레이트(Ni(NO3)2·6H2O)를 사용하여, 니켈-지르코늄-티타늄 복합금속산화물 촉매인 Ni5ZrxTi5-xO (x=0, 1, 2.5, 4, 5)를 각각 제조하였다. 이를 위해 우선 일정량의 지르코늄 부톡사이드(Zr[O(CH2)3CH3]4)와 티타늄 부톡사이드(Ti[O(CH2)3CH3]4)를 100 ml의 2-프로판올(CH3CHOHCH3)에 각각 용해시켰다. 이때 지르코늄 부톡사이드의 수화속도가 티타늄 부톡사이드의 수화속도보다 빠르기 때문에, 친수성 용매인 아크릴아세톤(C5H8O2)을 사용된 지르코늄 몰수의 1/2배가 되도록 지르코늄 전구체 용액에 먼저 섞어준 후, 이렇게 제조된 지르코늄 전구체 용액과 앞서 제조된 티타늄 전구체 용액을 혼합하였다. 또한 일정량의 니켈나이트레이트(Ni(NO3)2·6H2O)를 50ml의 2-프로판올(CH3CHOHCH3)에 녹인 용액을 제조하되, 목표로 하는 복합금속산화물인 Ni5ZrxTi5-xO 촉매에서 니켈 금속의 양론수가 5가 되도록 니켈 전구체 용액을 제조하였다. 이후 니켈 전구체 용액을 앞서 준비된 지르코늄 전구체-티타늄 전구체 혼합 용액에 천천히 떨어뜨리면서 교반하여, 균일한 지르코늄 전구체-티타늄 전구체-니켈 전구체 혼합용액을 얻었다. 혼합용액이 충분히 섞일 때까지 상온에서 1시간 동안 교반한 후, 35% 암모니아(NH4OH) 수용액을 천천히 떨어뜨려 pH를 8.8이 되도록 조절하였다. 이때 수화 및 축합이 순간적으로 진행되지 않도록 격렬한 교반이 필요하다. 이렇게 제조된 혼합용액을 70oC로 유지한 채 12시간동안 교반하여 충분히 겔화시킨 후, 105oC의 건조기에서 공기를 흘려주면서 12시간동안 건조시켰다. 건조된 시료를 막자사발을 이용하여 곱게 분쇄하여 도가니에 넣고, 5oC/min의 속도로 600oC까지 승온시킨 후 5시간 동안 열처리한 다음 고체 사료를 천천히 냉각시킴으로써, 본 발명에서 목표로 하는 Ni5ZrxTi5-xO 복합금속산화물 촉매를 제조하였다. 이렇게 제조된 니켈-지르코늄-티타늄 복합금속산화물 촉매에서 구성 금속성분의 성분비를 알아보기 위해 SEM-EDX 분석을 수행한 결과는 표 2와 같다. Zirconium butoxide (Zr [O (CH 2 ) 3 CH 3 ] 4 ) and titanium butoxide (Ti [O (CH 2 ) 3 CH 3 ] 4 ) are used as the zirconium and titanium precursors, respectively. Ni 5 Zr x Ti 5-x O (x = 0, 1, 2.5, 4, 5), a nickel-zirconium-titanium composite metal oxide catalyst, was prepared using the rate (Ni (NO 3 ) 2 .6H 2 O). Each was prepared. To this end, first, a certain amount of zirconium butoxide (Zr [O (CH 2 ) 3 CH 3 ] 4 ) and titanium butoxide (Ti [O (CH 2 ) 3 CH 3 ] 4 ) are added to 100 ml of 2-propanol (CH 3). CHOHCH 3 ), respectively. At this time, since the hydration rate of zirconium butoxide is faster than that of titanium butoxide, the hydrophilic solvent acrylacetone (C 5 H 8 O 2 ) is first mixed in the zirconium precursor solution to be 1/2 times the number of moles of zirconium used. The zirconium precursor solution thus prepared was mixed with the titanium precursor solution prepared above. In addition, a solution in which a predetermined amount of nickel nitrate (Ni (NO 3 ) 2 .6H 2 O) was dissolved in 50 ml of 2-propanol (CH 3 CHOHCH 3 ) was prepared, but the target composite metal oxide Ni 5 Zr x Ti 5 was prepared. A nickel precursor solution was prepared such that the stoichiometric number of nickel metal in the -x O catalyst was five. Thereafter, the nickel precursor solution was slowly dropped while dropping the prepared zirconium precursor-titanium precursor mixed solution, thereby obtaining a uniform zirconium precursor-titanium precursor-nickel precursor mixed solution. After stirring for 1 hour at room temperature until the mixed solution is sufficiently mixed, the pH was adjusted to 8.8 by slowly dropping 35% aqueous ammonia (NH 4 OH). At this time, vigorous stirring is required so that hydration and condensation do not proceed instantaneously. The mixed solution thus prepared was sufficiently gelled by stirring for 12 hours while maintaining the temperature at 70 ° C., and then dried for 12 hours while flowing air in a dryer at 105 ° C. The dried sample was finely ground using a mortar and pestle, placed in a crucible, heated to 600 o C at a rate of 5 o C / min, heat treated for 5 hours, and then slowly cooled to solid feed. Ni 5 Zr x Ti 5-x O composite metal oxide catalyst was prepared. The results of the SEM-EDX analysis to find the component ratio of the constituent metal components in the nickel-zirconium-titanium composite metal oxide catalyst thus prepared are shown in Table 2.

Figure 112007018923307-pat00002
Figure 112007018923307-pat00002

(사용)실시예 1-5. Ni(Use) Example 1-5. Ni 55 ZrZr xx TiTi 5-x5-x O (x=0, 1, 2.5, 4, 5) 복합금속산화물 촉매에 의한 에탄올 자열개질반응 반응특성Reaction Characteristics of Ethanol Autothermal Reforming Reaction by O (x = 0, 1, 2.5, 4, 5) Composite Metal Oxide Catalyst

상기의 (제조)실시예 6-10에 따라 제조된 Ni5ZrxTi5 - xO (x=0, 1, 2.5, 4, 5) 복합금속산화물 촉매를 이용하여 에탄올 자열개질반응 반응에 의해 수소 제조 반응을 수행한 결과는 도 2와 같다. 반응을 위해 각각의 촉매 0.05그램을 고정층 반응기에 충천한 다음, 600oC에서 수소(10 ml/min)와 질소(30 ml/min)로 이루어진 혼합가스를 흘려주면서 3시간 동안 촉매를 환원시켰다. 이후 반응기의 온도를 반응온도인 500oC로 유지하면서 반응물을 반응기에 주입하였다. 이를 위해, 실린지 펌프를 이용하여 물과 에탄올 혼합물(물/에탄올 몰비=3)을 1.6 ml/min의 속도로 주입시키되, 원활한 반응물 공급을 위하여 운반기체인 질소를 30 ml/min의 속도로 함께 흘려주었으며, 물, 에탄올, 질소 혼합물이 반응기에 도달하기 전에 170oC로 유지되는 예열기를 통과하면서 충분히 기화된 상태에서 반응기에 유입되도록 하였다. 또 다른 반응물인 산소는 물/산소의 몰비가 0.6이 되도록 질량유속조절기를 통하여 주입하였으며, 생성물의 분석은 열전도도 검출기가 장착된 가스크로마토그래피를 이용하여 온라인으로 이루어졌다. 도 2는 본 발명의 실시예 1 내지 5에서 제조한 Ni5ZrxTi5-xO (x=0, 1, 2.5, 4, 5) 복합금속산화물 촉매에 의한 에탄올 자열개질반응 반응특성을 나타낸 그래프이다. 도 2에 나타낸 바와 같이, 제조된 니켈-지르코늄-티타늄 복합금속산화물 촉매 중에서 지르코늄과 티타늄의 비율이 4:1인 Ni5Zr4Ti1O 촉매가 가장 우수한 촉매활성(수소 선택도)을 보였으며, 본 발명의 Ni5ZrxTi5-xO (x=0, 1, 2.5, 4, 5) 복합금속산화물 촉매는 이성분계 산화물 촉매인 Ni/ZrO2 및 Ni/TiO2보다 우수한 촉매활성(수소 선택도)을 보였다. By ethanol autothermal reforming reaction using Ni 5 Zr x Ti 5 - x O (x = 0, 1, 2.5, 4, 5) composite metal oxide catalyst prepared according to Example 6-10. The result of performing the hydrogen production reaction is shown in FIG. For the reaction, 0.05 grams of each catalyst was charged in a fixed bed reactor, and the catalyst was reduced for 3 hours while flowing a mixed gas composed of hydrogen (10 ml / min) and nitrogen (30 ml / min) at 600 ° C. Thereafter, the reactant was injected into the reactor while maintaining the temperature of the reactor at 500 ° C. To this end, a syringe pump is used to inject a mixture of water and ethanol (water / ethanol molar ratio = 3) at a rate of 1.6 ml / min, while flowing nitrogen at a rate of 30 ml / min for a smooth reaction supply. The mixture of water, ethanol and nitrogen was allowed to enter the reactor in a sufficiently vaporized state through a preheater maintained at 170 ° C. before reaching the reactor. Another reactant, oxygen, was injected through a mass flow controller with a water / oxygen molar ratio of 0.6. Analysis of the product was carried out online using gas chromatography equipped with a thermal conductivity detector. Figure 2 shows the reaction characteristics of the ethanol autothermal reforming reaction by Ni 5 Zr x Ti 5-x O (x = 0, 1, 2.5, 4, 5) composite metal oxide catalyst prepared in Examples 1 to 5 of the present invention It is a graph. As shown in FIG. 2, among the prepared nickel-zirconium-titanium composite metal oxide catalysts, the Ni 5 Zr 4 Ti 1 O catalyst having a ratio of 4: 1 of zirconium and titanium showed the best catalytic activity (hydrogen selectivity). In the present invention, the Ni 5 Zr x Ti 5-x O (x = 0, 1, 2.5, 4, 5) composite metal oxide catalyst has better catalytic activity than Ni / ZrO 2 and Ni / TiO 2 which are two- component oxide catalysts. Hydrogen selectivity).

(사용)비교예 1-2. 상용 지르코니아와 티타니아에 담지된 니켈촉매 및 니켈-지르코늄-티타늄 복합금속산화물 촉매의 에탄올 자열개질 반응 특성(Use) Comparative Example 1-2. Ethanol Autothermal Reforming Characteristics of Commercial Nickel Catalysts and Nickel-Zirconium-Titanium Composite Metal Oxide Catalysts Supported in Commercial Zirconia and Titania

(제조)비교예 1 및 2에서 제조된 Ni/ZrO2와 Ni/TiO2 담지촉매 및 (제조)실시예 5 및 1에서 각각 제조된 Ni5Zr5O와 Ni5Ti5O 복합금속산화물 촉매를 이용하여 에탄올 자열개질반응에 의해 수소 제조 반응을 수행한 결과는 도 1과 같다. 반응을 위해 각각의 촉매 0.05그램을 고정층 반응기에 충천한 다음, 600oC에서 수소(10 ml/min)와 질소(30 ml/min)로 이루어진 혼합가스를 흘려주면서 3시간 동안 촉매를 환원시켰다. 이후 반응기의 온도를 반응온도인 500oC로 유지하면서 반응물을 반응기에 주입하였다. 이를 위해, 실린지 펌프를 이용하여 물과 에탄올 혼합물(물/에탄올 몰비=3)을 1.6 ml/min의 속도로 주입시키되, 원활한 반응물 공급을 위하여 운반기체인 질소를 30 ml/min의 속도로 함께 흘려주었으며, 물, 에탄올, 질소 혼합물이 반응기에 도달하기 전에 170oC로 유지되는 예열기를 통과하면서 충분히 기화된 상태에서 반응기에 유입되도록 하였다. 또 다른 반응물인 산소는 물/산소의 몰비가 0.6이 되도록 질량유속조절기를 통하여 주입하였으며, 생성물의 분석은 열전도도 검출기가 장착된 가스크로마토그래피를 이용하여 온라인으로 이루어졌다. 도 1은 (제조)비교예 1 및 2에서 제조한 상용 지르코니아와 티타니아에 담지된 니켈촉매(Ni/ZrO2와 Ni/TiO2) 및 본 발명의 (제조)실시예 6 및 10에서 제조한 니켈-지르코늄-티타늄 복합금속산화물 촉매(Ni5Zr5O 및 Ni5Ti5O)의 에탄올 자열개질 반응 특성을 나타낸 그래프이다. 도 1에 나타낸 바와 같이, 본 발명에 따라 제조한 (제조)실시예 6 및 10의 Ni5Zr5O 및 Ni5Ti5O 복합금속산화물 촉매는 상용담체에 담지된 Ni/ZrO2 및 Ni/TiO2 촉매에 비해, 반응개시 5시간 이후에는 우수한 수소 선택도를 나타내었으며 촉매 비활성화도 매우 느리게 진행됨을 알 수 있다. (Preparation) Ni / ZrO 2 and Ni / TiO 2 supported catalysts prepared in Comparative Examples 1 and 2 and Ni 5 Zr 5 O and Ni 5 Ti 5 O composite metal oxide catalysts prepared in Examples 5 and 1, respectively. As a result of performing the hydrogen production reaction by the ethanol autothermal reforming reaction using the same as FIG. For the reaction, 0.05 grams of each catalyst was charged in a fixed bed reactor, and the catalyst was reduced for 3 hours while flowing a mixed gas composed of hydrogen (10 ml / min) and nitrogen (30 ml / min) at 600 ° C. Thereafter, the reactant was injected into the reactor while maintaining the temperature of the reactor at 500 ° C. To this end, a syringe pump is used to inject a mixture of water and ethanol (water / ethanol molar ratio = 3) at a rate of 1.6 ml / min, while flowing nitrogen at a rate of 30 ml / min for a smooth reaction supply. The mixture of water, ethanol and nitrogen was allowed to enter the reactor in a sufficiently vaporized state through a preheater maintained at 170 ° C. before reaching the reactor. Another reactant, oxygen, was injected through a mass flow controller with a water / oxygen molar ratio of 0.6. Analysis of the product was carried out online using gas chromatography equipped with a thermal conductivity detector. 1 is a nickel catalyst (Ni / ZrO 2 and Ni / TiO 2 ) supported on commercial zirconia and titania prepared in Comparative Examples 1 and 2 and nickel prepared in Examples 6 and 10 of the present invention. -Zirconium-titanium composite metal oxide catalysts (Ni 5 Zr 5 O and Ni 5 Ti 5 O) is a graph showing the ethanol autothermal reforming reaction characteristics. As shown in FIG. 1, the Ni 5 Zr 5 O and Ni 5 Ti 5 O composite metal oxide catalysts prepared according to the present invention (Preparation) Examples 6 and 10 may be Ni / ZrO 2 supported on a commercial carrier. Compared with the Ni / TiO 2 catalyst, 5 hours after the start of the reaction, excellent hydrogen selectivity was observed and the catalyst deactivation was also observed to proceed very slowly.

상기한 바와 같이, 본 발명은 종래의 에탄올 자열개질반응에 사용되는 촉매에 비해 경제성이 우수하고 촉매 특성이 우수한 니켈-지르코늄-티타늄 복합금속산화물(Ni-Zr-Ti-O) 촉매를 제공하며, 그 제조 또한 1단계(One-Step) 졸-겔(Sol-Gel) 반응에 의해 이루어지게 하여 간단한 제조방법을 제공하였다. 또한, 상기 촉매를 이용하여 에탄올 자열개질반응(Autothermal Reforming)에 의한 수소제조 반응을 수행한 결과, 상용 담체에 담지된 촉매보다 매우 우수한 촉매활성(수소 선택도)을 보였으며, 장시간의 반응에도 매우 안정적인 촉매활성을 나타내었다. As described above, the present invention provides a nickel-zirconium-titanium composite metal oxide (Ni-Zr-Ti-O) catalyst having excellent economical properties and excellent catalytic properties compared to a catalyst used in a conventional ethanol autothermal reforming reaction. The preparation was also made by a one-step Sol-Gel reaction to provide a simple preparation method. In addition, as a result of performing a hydrogen production reaction by ethanol autothermal reforming using the catalyst, the catalyst showed much better catalytic activity (hydrogen selectivity) than a catalyst supported on a commercial carrier, and even after a long time reaction. It showed stable catalytic activity.

앞에서 설명된 본 발명의 일실시예는 본 발명의 기술적 사상을 한정하는 것으로 해석되어서는 안 된다. 본 발명의 보호범위는 청구범위에 기재된 사항에 의 하여만 제한되고, 본 발명의 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상을 다양한 형태로 개량 변경하는 것이 가능하다. 따라서 이러한 개량 및 변경은 통상의 지식을 가진 자에게 자명한 것인 한 본 발명의 보호범위에 속하게 될 것이다.One embodiment of the present invention described above should not be construed as limiting the technical spirit of the present invention. The protection scope of the present invention is limited only by the matters described in the claims, and those skilled in the art can change and change the technical idea of the present invention in various forms. Therefore, such improvements and modifications will fall within the protection scope of the present invention, as will be apparent to those skilled in the art.

Claims (7)

에탄올의 수증기 자열개질반응에 의해 수소를 제조하는데 사용되는 촉매에 있어서,In the catalyst used to produce hydrogen by steam autothermal reforming of ethanol, 상기 촉매는 티타늄, 지르코늄 및 니켈의 금속전구체로 구성된 군으로부터 니켈 금속전구체를 필수적으로 포함하여 선택된 적어도 2종 이상을 동시에 수화 및 축합하여 제조되며 Ni5ZrxTi5-xO(0≤X≤5)의 화학식으로 표현되는 것을 특징으로 하는 니켈-지르코늄-티타늄(Ni-Zr-Ti-O) 복합금속산화물 촉매. The catalyst is prepared by simultaneously hydrating and condensing at least two or more selected from the group consisting of metal precursors of titanium, zirconium and nickel at least two selected from the group consisting of Ni 5 Zr x Ti 5-x O (0 ≦ X ≦ Nickel-zirconium-titanium (Ni-Zr-Ti-O) composite metal oxide catalyst, characterized by the formula of 5). 제1항에 있어서, The method of claim 1, 상기 니켈-지르코늄-티타늄 (Ni-Zr-Ti-O) 복합금속산화물의 Zr/Ti의 몰비가 x/5-x (0≤X≤5)의 범위이고 Ni/(Zr+Ti) 몰비가 0.1 내지 5 범위인 것을 특징으로 하는 니켈-지르코늄-티타늄(Ni-Zr-Ti-O) 복합금속산화물 촉매. The molar ratio of Zr / Ti of the nickel-zirconium-titanium (Ni-Zr-Ti-O) composite metal oxide is in the range of x / 5-x (0≤X≤5) and the Ni / (Zr + Ti) molar ratio is 0.1. Nickel-zirconium-titanium (Ni-Zr-Ti-O) composite metal oxide catalyst, characterized in that in the range from 5 to 5. ⅰ)티타늄, 지르코늄 및 니켈의 금속전구체로 구성된 군으로부터 니켈 금속전구체를 필수적으로 포함하여 선택된 적어도 2종 이상을 각각 친수성 용매에 용해하여 금속 전구체 용액을 제조하는 단계;Iii) dissolving at least two or more selected essentially from a group consisting of metal precursors of titanium, zirconium and nickel in a hydrophilic solvent to prepare a metal precursor solution; ⅱ)상기 금속 전구체 용액을 동시에 수화 및 축합시켜 겔화시키는 단계 및;Ii) simultaneously hydrating and condensing the metal precursor solution to gelate; ⅲ)상기 겔화된 니켈-지르코늄-티타늄(Ni-Zr-Ti-O) 복합금속산화물을 건조 및 소성하는 단계를 포함하며 Ni5ZrxTi5-xO(0≤X≤5)의 화학식으로 표현되는 니켈-지르코늄-티타늄(Ni-Zr-Ti-O) 복합금속산화물 촉매 제조 방법.Iii) drying and calcining the gelled nickel-zirconium-titanium (Ni-Zr-Ti-O) composite metal oxide, and formulating Ni 5 Zr x Ti 5-x O (0 ≦ X5 ). Expressed nickel-zirconium-titanium (Ni-Zr-Ti-O) composite metal oxide catalyst production method. 제3항에 있어서,The method of claim 3, 상기 금속 전구체 용액의 제조 단계에서 상기 지르코늄 및 티타늄 전구체는 각각 지르코늄 알콕사이드 및 티타늄 알콕사이드이고 상기 니켈 전구체를 니켈 나이트레이트 또는 니켈 아세테이트를 사용하는 것을 특징으로 하는 니켈-지르코늄-티타늄(Ni-Zr-Ti-O) 복합금속산화물 촉매 제조 방법.In the preparation step of the metal precursor solution, the zirconium and titanium precursors are zirconium alkoxide and titanium alkoxide, respectively, and the nickel precursor is nickel-zirconium-titanium (Ni-Zr-Ti-). O) Method for producing a composite metal oxide catalyst. 제3항에 있어서,The method of claim 3, 상기 겔화는 pH 3 내지 10 범위에서 수행되는 것을 특징으로 하는 니켈-지르코늄-티타늄(Ni-Zr-Ti-O) 복합금속산화물 촉매 제조 방법.The gelation is a method of producing a nickel-zirconium-titanium (Ni-Zr-Ti-O) composite metal oxide catalyst, characterized in that carried out in the pH 3 to 10 range. 제3항에 있어서,The method of claim 3, 상기 니켈-지르코늄-티타늄(Ni-Zr-Ti-O) 복합금속산화물 중 Zr/Ti의 몰비가 x/5-x (0≤X≤5)의 범위이고 Ni/(Zr+Ti) 몰비는 0.1 내지 5 범위인 것을 특징으로 하는 니켈-지르코늄-티타늄(Ni-Zr-Ti-O) 복합금속산화물 촉매 제조 방법.The molar ratio of Zr / Ti in the nickel-zirconium-titanium (Ni-Zr-Ti-O) composite metal oxide is in the range of x / 5-x (0≤X≤5) and the molar ratio of Ni / (Zr + Ti) is 0.1. Nickel-zirconium-titanium (Ni-Zr-Ti-O) composite metal oxide catalyst production method characterized in that the range. 제1항 또는 제2항의 니켈-지르코늄-티타늄(Ni-Zr-Ti-O) 복합금속산화물 촉매 존재 하에 반응온도 200-800oC, 공간속도 1000-50000h-1, 반응물인 물/에탄올의 몰비 1-5, 산소/에탄올의 몰비 0.1-2의 조건하에서 이루어지는 에탄올 자열개질반응에 의한 수소제조 방법.In the presence of the nickel-zirconium-titanium (Ni-Zr-Ti-O) composite metal oxide catalyst of claim 1 or 2, the reaction temperature 200-800 o C, space velocity 1000-50000h -1 , the reactant water / ethanol molar ratio A method for producing hydrogen by ethanol autothermal reforming reaction performed under conditions of 1-5 and a molar ratio of oxygen / ethanol of 0.1-2.
KR1020070022752A 2007-03-08 2007-03-08 Nickel-zirconium-titanium complex metal oxides catalyst, preparation method thereof, and method for producing hydrogen by autothermal reforming of ethanol using the same KR100836510B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070022752A KR100836510B1 (en) 2007-03-08 2007-03-08 Nickel-zirconium-titanium complex metal oxides catalyst, preparation method thereof, and method for producing hydrogen by autothermal reforming of ethanol using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070022752A KR100836510B1 (en) 2007-03-08 2007-03-08 Nickel-zirconium-titanium complex metal oxides catalyst, preparation method thereof, and method for producing hydrogen by autothermal reforming of ethanol using the same

Publications (1)

Publication Number Publication Date
KR100836510B1 true KR100836510B1 (en) 2008-06-09

Family

ID=39770641

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070022752A KR100836510B1 (en) 2007-03-08 2007-03-08 Nickel-zirconium-titanium complex metal oxides catalyst, preparation method thereof, and method for producing hydrogen by autothermal reforming of ethanol using the same

Country Status (1)

Country Link
KR (1) KR100836510B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116237030A (en) * 2022-12-26 2023-06-09 安徽理工大学 Nickel-ruthenium-zirconium/attapulgite-based molecular sieve catalyst and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60202738A (en) 1984-03-26 1985-10-14 Res Assoc Petroleum Alternat Dev<Rapad> Catalyst for denitrifying hydrocarbonic oil by hydrogenation
US4749671A (en) 1985-07-02 1988-06-07 Nippon Shokubai Kagaku Kogyo Co., Ltd. Exhaust gas cleaning catalyst and process for production thereof
JPH026A (en) * 1987-11-23 1990-01-05 Polaroid Corp Common driver for shutter blade and objective lens assembly

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60202738A (en) 1984-03-26 1985-10-14 Res Assoc Petroleum Alternat Dev<Rapad> Catalyst for denitrifying hydrocarbonic oil by hydrogenation
US4749671A (en) 1985-07-02 1988-06-07 Nippon Shokubai Kagaku Kogyo Co., Ltd. Exhaust gas cleaning catalyst and process for production thereof
JPH026A (en) * 1987-11-23 1990-01-05 Polaroid Corp Common driver for shutter blade and objective lens assembly

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
논문 2006

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116237030A (en) * 2022-12-26 2023-06-09 安徽理工大学 Nickel-ruthenium-zirconium/attapulgite-based molecular sieve catalyst and application thereof

Similar Documents

Publication Publication Date Title
JP3345784B2 (en) Production method of synthesis gas by auto thermal reforming method
JP5285776B2 (en) Catalyst for producing synthesis gas from natural gas and carbon dioxide and method for producing the same
CN111111674B (en) Ni/La for autothermal reforming of acetic acid to produce hydrogen2X2O7Catalyst and process for preparing same
EP3685916A1 (en) Perovskite metal oxide catalyst, in which metal ion is substituted, for reducing carbon deposition, preparation method therefor, and methane reforming reaction method using same
JP5972678B2 (en) Synthesis gas production catalyst and synthesis gas production method
DK1406725T3 (en) Perovskites comprising noble metals and their use as catalysts
US20020177628A1 (en) Nickel-rhodium based catalysts for synthesis gas production
CA2763124C (en) Methanol steam reforming catalysts
KR101359990B1 (en) Catalyst for Reforming of Methane with the Enhanced Stability for Sulfur components, Preparing Method Thereof and Methane Reforming Method Using The Catalyst
US20030096880A1 (en) Combustion deposited metal-metal oxide catalysts and process for producing synthesis gas
US20030045423A1 (en) Supported rhodium-lanthanide based catalysts and process for producing synthesis gas
JP2013522005A (en) Embedding Ni nanodomains in refractory metal oxide support by sol-gel encapsulation method-An effective solution for coke formation in partial oxidation of natural gas
CN104955570B (en) Catalyst and the method using its production synthesis gas for producing synthesis gas by vapor CO 2 reformation
KR101091803B1 (en) Nickel catalyst supported on porous zirconia containing metal oxide stabilizer, preparation method thereof and method for producing hydrogen by autothermal reforming of ethanol using said catalyst
KR100980590B1 (en) Nickel catalyst supported on porous yttria stabilized zirconia, preparation method thereof and method for producing hydrogen by autothermal reforming of ethanol using said catalyst
KR100836510B1 (en) Nickel-zirconium-titanium complex metal oxides catalyst, preparation method thereof, and method for producing hydrogen by autothermal reforming of ethanol using the same
KR100711509B1 (en) Hybrid metal catalyst supported on alumina for hydrogen production from the mixture of water and ethanol, production method thereof and the production method of hydrogen by auto-thermal reforming using said catalyst
KR100916129B1 (en) Nickel catalyst supported on zirconia-titania complex metal oxides, preparation method thereof and the production method of hydrogen by autothermal reforming of ethanol using said catalyst
KR20190067146A (en) Preparation Method of Reduced Carbon Poisoning Perovskite Catalyst Impregnated with Metal Ion, and Methane Reforming Method Threrewith
JP2559715B2 (en) Heat resistant catalyst for catalytic combustion reaction and method for producing the same
JP2000342968A (en) Catalyst and producing method
KR101570943B1 (en) A perovskite-like catalyst supported on alumina having a bimodal pore structure for combined steam and co_2 reforming reaction with methane and a preparation method thereof
KR101426528B1 (en) Modified Perovskite Catalyst for Aqueous phase reforming of glycerol and the Preparation Method
KR101400889B1 (en) Carbonhydrate reforming catalyst and the method of preparation thereof
WO2009027882A2 (en) Hydrocarbon decomposition catalyst, process for obtaining said catalyst, and a process for obtaining hydrogen and syngas employing said catalyst

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130529

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140602

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150601

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee