KR100834453B1 - Method for forming high dielectric thin layer and high dielectric thin layer - Google Patents

Method for forming high dielectric thin layer and high dielectric thin layer Download PDF

Info

Publication number
KR100834453B1
KR100834453B1 KR1020070010401A KR20070010401A KR100834453B1 KR 100834453 B1 KR100834453 B1 KR 100834453B1 KR 1020070010401 A KR1020070010401 A KR 1020070010401A KR 20070010401 A KR20070010401 A KR 20070010401A KR 100834453 B1 KR100834453 B1 KR 100834453B1
Authority
KR
South Korea
Prior art keywords
thin film
dopant
high dielectric
metal
deposition
Prior art date
Application number
KR1020070010401A
Other languages
Korean (ko)
Inventor
김형준
맹완주
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Priority to KR1020070010401A priority Critical patent/KR100834453B1/en
Application granted granted Critical
Publication of KR100834453B1 publication Critical patent/KR100834453B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02181Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing hafnium, e.g. HfO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

A high dielectric thin film and a method of forming the same are provided to increase the reliability of a thin film by adjusting the position of dopants. A method of forming a high dielectric thin film on a substrate through a deposition process includes: implanting a metal precursor and material oxidizing metal to form a thin film; implanting the material oxidizing metal to form a thin film including the metal precursor and the dopant. A position or thickness profile of the thin film including dopants are adjusted to change characteristics of a device. Metal included in the metal precursor is at least one selected from the group consisting of hafnium(Hf), zirconium(Zr), aluminum(Al), tantalum(Ta), titanium(Ti), strontium(Sr), lanthanium(La), barium(Ba), lead(Pb), chronium(Cr), molybdenum(Mo), tungsten(W), yttrium(Y), and manganese(Mn).

Description

고유전율 박막 형성방법 및 고유전율 박막 {METHOD FOR FORMING HIGH DIELECTRIC THIN LAYER AND HIGH DIELECTRIC THIN LAYER}High dielectric constant thin film formation method and high dielectric constant thin film {METHOD FOR FORMING HIGH DIELECTRIC THIN LAYER AND HIGH DIELECTRIC THIN LAYER}

도 1a 내지 1d는 산소와 질소-산소 혼합가스 플라즈마를 이용하여 원자층 증착법으로 HfO2와 HfOxNy의 증착을 두께별로 조절한 시편의 모식도이다.1A to 1D are schematic diagrams of specimens in which deposition of HfO 2 and HfO x N y is controlled for each thickness by atomic layer deposition using an oxygen and nitrogen-oxygen mixed gas plasma.

도 2는 도 1과 같이 형성된 박막에 대해 누설전류를 측정한 결과를 나타내는 그래프이다.FIG. 2 is a graph illustrating a result of measuring a leakage current of the thin film formed as shown in FIG. 1.

도 3은 도 1과 같이 형성된 박막에 대해 전기용량(capacitance)-전압(voltage)을 측정한 결과를 나타내는 그래프이다.FIG. 3 is a graph illustrating a result of measuring capacitance-voltage of a thin film formed as shown in FIG. 1.

도 4는 도 1과 같이 형성된 박막에 대해 파괴전압(breakdown voltage)을 측정한 결과를 나타내는 그래프이다.4 is a graph illustrating a result of measuring a breakdown voltage of a thin film formed as shown in FIG. 1.

고유전율 박막은 금속 산화물 반도체 전계효과 트랜지스터(MOSFET)의 게이트 산화물이나 커패시터의 유전체에서 SiO2를 대체할 수 있는 물질로 많이 연구되고 있다.High dielectric constant thin films are being studied as a material that can replace SiO 2 in the gate oxide of a metal oxide semiconductor field effect transistor (MOSFET) or the dielectric of a capacitor.

게이트 산화물로 고유전율 박막을 사용할 경우 등가산화물막두께(equivalent oxide thickness)를 줄이면서도 누설전류도 감소시킬 수 있기 때문에, 소자의 집적도를 높이기 위해서 반드시 적용할 필요가 있는 것으로 고려되고 있다.In the case of using a high dielectric constant thin film as the gate oxide, the leakage current can be reduced while reducing the equivalent oxide thickness. Therefore, it is considered to be necessary to apply the device to increase the device integration.

또한 커패시터 유전체도 점차 작은 크기로 많은 전하량을 저장할 필요가 있기 때문에, 같은 크기에서 전기용량을 늘릴 수 있는 고유전율 박막의 증착이 필수적이라 할 수 있다.In addition, since the capacitor dielectric needs to store a large amount of charge in an increasingly small size, it is essential to deposit a high-k dielectric film that can increase capacitance at the same size.

최근에는 이러한 고유전율 박막의 증착용으로 HfO2나 ZrO2, Ta2O5, Al2O3, TiO2나 이들의 화합물, 또는 이들의 나노 적층구조 등이 많이 연구되고 있다.Recently, HfO 2 , ZrO 2 , Ta 2 O 5 , Al 2 O 3 , TiO 2 , compounds thereof, or nano-laminated structures thereof have been studied for the deposition of such high dielectric constant thin films.

상기 산화물들의 증착 방법으로는 원자층 증착법이 많이 사용되고 있지만, 신뢰성이나 누설전류(leakage currents)의 증가, 많은 계면 상태 등이 문제점으로 지적되고 있다. Atomic layer deposition is widely used as the deposition method of the oxides, but reliability, increase of leakage currents, and many interface states have been pointed out as problems.

한편 산화물에 질소나 불소를 집어넣음으로써 상기 문제점을 줄여나갈 수 있음이 알려져 있는데, 이는 질소나 불소와 같은 물질들이 결함(defect)의 발생을 줄여 산화물의 신뢰성을 높이고 누설전류를 줄일 수 있기 때문이다. On the other hand, it is known that the problem can be reduced by injecting nitrogen or fluorine into the oxide, because materials such as nitrogen and fluorine can reduce the occurrence of defects, thereby increasing the reliability of the oxide and reducing leakage current. .

그리고 질소나 불소를 도핑(doping)시키는 방법으로는, 종래 박막을 형성한 후 어닐링(annealing)을 수행하는 방법이 알려져 있는데, 이와 같이 박막을 형성한 후에 어닐링을 실시하는 2단계의 공정으로 진행할 경우, 제조원가나 효율의 측면에서 불리하다.As a method of doping nitrogen or fluorine, a method of performing annealing after forming a thin film is known in the related art. In the case of proceeding to a two-step process of performing annealing after forming the thin film as described above, It is disadvantageous in terms of manufacturing cost and efficiency.

또한, 실제 고유전율 박막을 게이트 산화물로 사용할 경우, 도펀트(dopant) 인 질소는 기판과의 계면(interface)부분에서는 결함을 막아줄 정도의 적은 양이 들어가야 하는 반면, 게이트 쪽은 폴리 실리콘(poly Si)의 도펀트 확산(dopant diffusion)을 막아 줄 수 있도록 많은 양이 들어가야 한다. 즉, 도펀트의 두께별 도핑 프로파일(doping profile)이 정확하게 조절될 필요가 있으나, 상기 어닐링 방법을 통해서는 도핑 프로파일의 조절이 불가능하다.In addition, when a high dielectric constant thin film is used as a gate oxide, nitrogen, a dopant, should be small enough to prevent defects at the interface with the substrate, while the gate side is polysilicon. A large amount should be added to prevent dopant diffusion of That is, the doping profile for each thickness of the dopant needs to be precisely adjusted, but the doping profile cannot be adjusted through the annealing method.

본 발명은 전술한 종래기술의 문제점을 해결하기 위해 창안된 것으로, 도펀트를 박막의 증착과 동시에 형성시킬 수 있으며, 도펀트의 도핑(doping) 프로파일을 박막의 두께별로 정확히 조절할 수 있어, 박막의 특성을 향상시킬 수 있는 고유전율 박막의 형성방법을 제공하는데 그 목적이 있다.The present invention has been made to solve the above-mentioned problems of the prior art, it is possible to form a dopant at the same time as the deposition of the thin film, the doping (dope) profile of the dopant can be precisely adjusted for each thickness of the thin film, thereby controlling It is an object of the present invention to provide a method of forming a high dielectric constant thin film that can be improved.

또한, 본 발명의 다른 목적은 박막의 소자 특성이 현저하게 향상된 고유전율 박막을 제공하는 것이다.In addition, another object of the present invention is to provide a high-k dielectric thin film significantly improved device properties of the thin film.

상기 목적을 달성하기 위한 본 발명에 따른 방법은, 증착법을 통해 기판상에 고유전율 박막을 형성하는 방법으로, (a) 금속 전구체와 상기 금속을 산화시킬 수 있는 물질을 주입하여 박막을 형성하는 단계와, (b) 금속 전구체, 상기 금속을 산화시킬 수 있는 물질 및 도펀트(dopant)를 포함하는 물질을 주입하여 도펀트(dopant)가 포함된 박막을 형성하는 단계를 포함하며, 상기 (b) 단계를 상기 (a)단계의 전, 후 또는 중간에 실시하여, 형성된 박막 상에 도펀트(dopant) 층의 위치 또는 두께 프로파일을 조절함으로써, 소자의 특성을 변화시킬 수 있는데 특징이 있 다.The method according to the present invention for achieving the above object is a method of forming a high dielectric constant thin film on a substrate by a vapor deposition method, (a) forming a thin film by injecting a metal precursor and a material capable of oxidizing the metal And (b) injecting a metal precursor, a material capable of oxidizing the metal, and a material including a dopant to form a thin film including a dopant, the step (b) The characteristics of the device may be changed by adjusting the position or thickness profile of the dopant layer on the formed thin film by performing before, after, or in the middle of the step (a).

본 발명에 있어서, "도펀트(dopant)"란 유전율 박막의 특성을 변화시키기 위해 의도적으로 넣어주는 원소를 의미하며, "도핑(doping)"이란 박막의 질화처리 또는 불화처리와 같이 필요한 원소를 박막 중에 화합물 상태로 첨가하는 것을 의미한다.In the present invention, "dopant" means an element that is intentionally put in order to change the properties of the dielectric film, "doping" means a necessary element such as nitriding or fluorination treatment of the thin film It means adding in a compound state.

상기 본 발명에 따른 제조방법에서는, 금속 전구체, 금속을 산화시킬 수 있는 물질 및 도펀트를 포함하는 물질을 주입하여 박막을 형성하는 단계를 선택적으로 실시함으로써, 도펀트를 박막의 원하는 위치에 원하는 두께로 주입할 수 있어, 박막의 특성을 다양하게 변화시킬 수 있게 된다.In the manufacturing method according to the present invention, by injecting a metal precursor, a material capable of oxidizing a metal and a material containing a dopant to selectively form a thin film, the dopant is injected to a desired position of the thin film in a desired thickness It is possible to change the characteristics of the thin film in various ways.

또한, 도펀트는 박막의 형성시에 함께 주입되기 때문에, 종래의 어닐링과 같은 후속 공정이 필요하지 않게 되어, 공정수가 줄어들고, 제조온도도 낮아지게 되므로, 제조원가가 절감되며 생산성이 향상되게 된다.In addition, since the dopant is implanted together at the time of forming the thin film, subsequent processes such as conventional annealing are unnecessary, so that the number of processes is reduced and the manufacturing temperature is lowered, thereby reducing manufacturing costs and improving productivity.

상기 금속 전구체의 금속은 하프늄(Hf), 지르코늄(Zr), 알루미늄(Al), 탄탈룸(Ta), 티타늄(Ti), 스트론튬(Sr), 란타늄(La), 바륨(Ba), 납(Pb), 크롬(Cr), 몰리브덴(Mo), 텅스텐(W), 이트륨(Y) 및 망간(Mn)으로 이루어진 군에서 선택된 1종 이상일 수 있으나, 이에 제한되지 않는다.The metal of the metal precursor is hafnium (Hf), zirconium (Zr), aluminum (Al), tantalum (Ta), titanium (Ti), strontium (Sr), lanthanum (La), barium (Ba), lead (Pb) , Chromium (Cr), molybdenum (Mo), tungsten (W), yttrium (Y) and manganese (Mn) may be one or more selected from the group consisting of, but is not limited thereto.

또한, 상기 도펀트(dopant)는 별도의 물질을 통해 투입될 수도 있으나, 암모니아수(NH4OH)와 같이 금속을 산화시킬 수 있는 물질에 포함되어 있을 수도 있다. 또한, 상기 도펀트(dopant)로는 유전체의 특성을 변화시킬 수 있는 것이면 어느 것 이나 적용될 수 있으며, 바람직하게는 질소(N) 또는 불소(F)를 사용한다.In addition, the dopant may be added through a separate material, or may be included in a material capable of oxidizing a metal such as ammonia water (NH 4 OH). In addition, the dopant may be applied as long as it can change the characteristics of the dielectric, preferably nitrogen (N) or fluorine (F) is used.

또한, 상기 금속 전구체의 금속을 산화시킬 수 있는 물질로는 산소, 아산화질소, 암모니아수 및 물로 이루어진 군에서 선택된 1종 이상을 사용하나, 이에 제한되지 않는다.In addition, as a material capable of oxidizing the metal of the metal precursor, one or more selected from the group consisting of oxygen, nitrous oxide, ammonia water and water is used, but is not limited thereto.

또한, 상기 증착법은 본 발명의 기술적 사상이 적용될 수 있는 것이면 어느 것이나 사용될 수 있으며, 바람직하게는 원자층 증착법(ALD) 또는 화학적 기상 증착법(CVD)을 사용한다.In addition, the deposition method may be used as long as the technical spirit of the present invention can be applied, preferably using atomic layer deposition (ALD) or chemical vapor deposition (CVD).

또한, 상기 본 발명의 다른 목적을 제공하기 위한 본 발명에 따른 고유전율 박막은, 기판상에 형성된 고유전율 박막으로서, 도펀트가 함유되지 않은 박막층의 사이에 도펀트가 함유된 박막층이 형성되어 있는데 특징이 있다. 이와 같이 도펀트가 함유된 박막층이 도펀트가 함유되어 있지 않는 박막층의 사이에 위치함으로써, 유전상수가 커지고 절연파괴 특성이 개선된다.In addition, the high dielectric constant thin film according to the present invention for providing another object of the present invention is a high dielectric constant thin film formed on the substrate, a thin film layer containing a dopant is formed between the thin film layer containing no dopant have. As such, the thin film layer containing the dopant is positioned between the thin film layers not containing the dopant, thereby increasing the dielectric constant and improving the dielectric breakdown characteristic.

이하, 본 발명의 실시예를 기초로 하여 본 발명을 보다 상세히 설명한다. 그러나 하기 실시예는 단지 예시적인 것으로 본 발명을 한정하는 것이 아니다.Hereinafter, the present invention will be described in more detail based on the embodiments of the present invention. However, the following examples are merely illustrative and do not limit the invention.

[시편 1][Psalm 1]

본 발명의 실시예에서는 원자층 증착(ALD) 장비를 사용하여 증착을 수행하였으며, 금속 전구체로는 Tetrakis(dimethylamino)Hafnium(Hf(NMe2)4)을 사용하였다.In an embodiment of the present invention, deposition was performed using atomic layer deposition (ALD) equipment, and Tetrakis (dimethylamino) Hafnium (Hf (NMe 2 ) 4 ) was used as the metal precursor.

전구체의 캐리어(carrier) 가스로는 아르곤(Ar)을 사용하였고 퍼징 가 스(purging gas)도 동일하게 아르곤을 사용하였다.Argon (Ar) was used as a carrier gas of the precursor, and argon was also used for the purging gas.

베이스 압력은 터보 분자 펌프를 이용, 5×10-7 Torr가 되도록 하였으며 가스의 유량은 MFC로 조절하였다. The base pressure was 5 × 10 −7 Torr using a turbo molecular pump and the flow rate of gas was controlled by MFC.

사용한 원자층 증착 공정의 레시피는 온도 250℃에서 전구체 0.2초, 퍼징 4초, 반응물 4초, 퍼징 4초로 하였다.The recipe of the used atomic layer deposition process was made into the precursor 0.2 second, the purging 4 second, the reactant 4 second, and the purging 4 second at the temperature of 250 degreeC.

먼저, p-type Si 웨이퍼를 RCA세척(H2O, NH4OH, H2O2 의 5:1:1 혼합물) 한 후, 산소 플라즈마만을 이용해 30회 증착하여, 도 1a와 같은 단면을 갖는 HfO2로 이루어진 박막을 형성하였다. 이때 증착 비율은 약 1.3Å/cycle로 전형적인 원자층 증착 특성을 보여주었다. 산화물 박막의 두께는 약 4nm 정도였다.First, the p-type Si wafer is RCA washed (5: 1: 1 mixture of H 2 O, NH 4 OH, and H 2 O 2 ), and then deposited 30 times using only oxygen plasma to have a cross section as shown in FIG. A thin film made of HfO 2 was formed. At this time, the deposition rate was about 1.3 mA / cycle, which showed typical atomic layer deposition characteristics. The thickness of the oxide thin film was about 4 nm.

증착 후 어닐링(post deposition annealing)으로 산소 분위기 상압 400℃에서 10분간 급속열처리(rapid thermal processing)를 행한 후, 게이트 전극으로 백금을 스퍼터링으로 하드 마스크(hard mask)를 이용해서 증착하고, 열증착으로 증착한 금을 백 콘택트(back contact)로 사용하였다. 그리고 형성가스(H2 5% + N2 95%) 어닐링을 400℃에서 30분간 행하였다.After 10 minutes of rapid thermal processing at 400 ° C in an oxygen atmosphere by post deposition annealing, platinum was deposited using a hard mask by sputtering the gate electrode, followed by thermal deposition. The deposited gold was used as a back contact. Forming gas (H 2 5% + N 2 95%) annealing was performed at 400 ° C. for 30 minutes.

[시편 2][Psalm 2]

질소-산소 혼합가스 플라즈마를 이용해서 우선 10회 증착하여 HfOxNy 막을 형성한 후, 이어서 산소 플라즈마만을 이용해서 20회 증착하여 HfO2 막을 형성하여, 도 1b와 같은 단면을 갖는 박막을 형성하였으며, 기타의 공정은 시편 1과 동일하게 하였다. The HfO x N y film was first formed by 10 times deposition using a nitrogen-oxygen mixed gas plasma, followed by 20 times deposition using only oxygen plasma to form an HfO 2 film, thereby forming a thin film having a cross section as shown in FIG. 1B. And other processes were the same as in specimen 1.

[시편 3][Psalm 3]

산소 플라즈마만을 이용해서 10회 증착하여 HfO2 막을 형성한 후, 질소-산소 혼합가스 플라즈마를 이용해 10회 증착하여 HfOxNy 막을 형성하고, 다시 산소 플라즈마를 이용해서 10회 증착하여 HfO2 막을 형성하여, 도 1c와 같은 단면을 갖는 박막을 형성하였으며, 기타의 공정은 시편 1과 동일하게 하였다. After depositing 10 times using only oxygen plasma to form HfO 2 film, it is deposited 10 times using nitrogen-oxygen mixed gas plasma to form HfO x N y film, and then 10 times using oxygen plasma to form HfO 2 film. Thus, a thin film having a cross section as shown in FIG. 1C was formed, and other processes were the same as those in Specimen 1.

[시편 4][Psalm 4]

산소 플라즈마만을 이용해서 20회 증착하여 HfO2 막을 형성한 후, 질소-산소 혼합가스 플라즈마를 이용해 10회 증착하여 HfOxNy 막을 형성하여, 도 1d와 같은 단면을 갖는 박막을 형성하였으며, 기타의 공정은 시편 1과 동일하게 하였다.After depositing 20 times using only oxygen plasma to form an HfO 2 film, and then depositing 10 times using a nitrogen-oxygen mixed gas plasma to form an HfO x N y film, a thin film having a cross section as shown in FIG. 1D was formed. The process was the same as that in Specimen 1.

이상과 같이 형성된 고유전율 박막에 대해 전기적 특성을 측정하였는데, 누설전류(leakage currents)는 케이슬리(Keithely) 4200 반도체 분석기로 측정하였으며, 전기용량-전압은 HP4284로 측정하였다.The electrical characteristics of the high-k dielectric thin film formed as described above were measured. Leakage currents were measured by a Keisly 4200 semiconductor analyzer, and the capacitance-voltage was measured by HP4284.

도 2에 나타난 바와 같이, 증착한 HfO2-HfOxNy박막의 누설전류를 보여준다. HfOxNy층이 포함된 MOS소자의 누설전류가 그렇지 않은 순수한 HfO2박막으로 이루어진 경우보다 1MV/cm에서 10배 가까이 줄어듦을 확인할 수 있다.As shown in Figure 2, it shows the leakage current of the deposited HfO 2 -HfO x N y thin film. It can be seen that the leakage current of the MOS device including the HfO x N y layer is reduced by 10 times at 1 MV / cm than the case of the pure HfO 2 thin film.

도 3에 나타난 바와 같이, HfOxNy층이 포함된 MOS소자의 경우, 유전상수가 순수한 HfO2박막의 경우보다 증가함을 알 수 있으며, 특히 HfOxNy층이 가운데 증착된 박막인 시편 3의 경우, 계산된 유전상수가 24.8 (EOT=0.63nm)로 아래와 위에 증착한 시편 2 및 시편 3 박막의 22.1과 21.3보다 상당히 증가함을 알 수 있다. 이는 도펀트인 질소를 포함시키는 막의 위치 및 두께를 조절함으로써 등가산화물막두께(equivalent oxide thickness)를 줄일 수 있음을 보여준다. 즉, 본 발명에 따른 방법에 의하면 소자의 집적도를 높일 수 있게 된다.As shown in Figure 3, in the case of HfO x N y layer of a MOS device comprising a, it can be seen that the dielectric constant increases than in the case of pure HfO 2 thin film, in particular HfO x N y layer is a thin film of sample deposition of In the case of 3, the calculated dielectric constant is 24.8 (EOT = 0.63nm), which is considerably increased from 22.1 and 21.3 of the specimen 2 and specimen 3 thin films deposited below and above. This shows that the equivalent oxide thickness can be reduced by adjusting the position and thickness of the film containing nitrogen as the dopant. In other words, the method according to the invention makes it possible to increase the degree of integration of the device.

도 4는 시편 1, 2, 3 및 4에서 각각 10개의 MOS소자의 유전층 절연파괴전압(dielectric breakdown voltage)를 측정한 결과이다. 도 4에 나타난 바와 같이, HfOxNy층이 포함된 MOS소자의 경우 절연파괴가 전체적으로 더 높은 전기장에서 발생하였으며, 특히 HfOxNy층이 가운데 증착된 박막인 시편 3의 경우 50% 파괴가 13MV/cm에서 발생하였고 파괴 분포(failure의 distribution) 역시 가장 샤프한 모습을 보여주었다.FIG. 4 shows the results of measuring dielectric breakdown voltages of 10 MOS devices in specimens 1, 2, 3, and 4, respectively. As shown in FIG. 4, in the case of the MOS device including the HfO x N y layer, the dielectric breakdown occurred at a higher electric field as a whole, and in particular, 50% of the fracture of the specimen 3, the thin film in which the HfO x N y layer was deposited It occurred at 13 MV / cm and the failure distribution was also the sharpest.

상술한 바와 같이, 본 발명은 원자층 박막 증착법을 이용해서 고유전율 박막 증착시에 도펀트(dopant)의 위치를 조절함으로써 박막의 신뢰성을 높이고 또한 등가산화물막두께(EOT)를 낮추어 소자의 집적도를 향상시킬 수 있다.As described above, the present invention improves the reliability of the thin film by lowering the equivalent oxide film thickness (EOT) by adjusting the position of the dopant during the deposition of the high dielectric constant thin film by using the atomic layer thin film deposition method to improve the device integration. You can.

또한, 본 발명에 따른 제조방법은, 종래의 산화물 증착 후 아산화질소(N2O)나 암모니아(NH3)를 이용한 열 어닐링(thermal annealing) 처리의 2단계로 진행된 공정이 아니라, 박막 증착시에 도펀트가 함께 들어가는 1단계로 제조되기 때문에, 공정수가 줄어들고 공정온도를 낮출 수 있어, 제조원가가 절감되고 생산성이 향상된다.In addition, the manufacturing method according to the present invention is not a process proceeded in two steps of the thermal annealing treatment using nitrous oxide (N 2 O) or ammonia (NH 3 ) after the conventional oxide deposition, at the time of thin film deposition Since the dopant is manufactured in one step that enters together, the number of processes can be reduced and the process temperature can be lowered, thereby reducing manufacturing costs and improving productivity.

또한, 본 발명에 의하면, 필요로 하는 소자의 특성을 고려하여, 질소나 불소 같은 도펀트가 포함되는 위치와 두께 프로파일을 정확하게 조절할 수 있기 때문에, 소자 설계시 하나의 자유도(degree of freedom)를 부여할 수 있게 된다.In addition, according to the present invention, since the position and thickness profile in which dopants such as nitrogen and fluorine are contained can be precisely adjusted in consideration of the required characteristics of the device, a degree of freedom is given when designing the device. You can do it.

Claims (8)

증착법을 통해 기판상에 고유전율 박막을 형성하는 방법으로, In the method of forming a high dielectric constant thin film on the substrate through the deposition method, (a) 금속 전구체와 상기 금속을 산화시킬 수 있는 물질을 주입하여 박막을 형성하는 단계와,(a) injecting a metal precursor and a material capable of oxidizing the metal to form a thin film; (b) 금속 전구체와, 도펀트(dopant)를 포함하며 상기 금속을 산화시킬 수 있는 물질을 주입하여, 도펀트(dopant)가 포함된 박막을 형성하는 단계를 포함하고,(b) injecting a metal precursor and a dopant and a material capable of oxidizing the metal to form a thin film containing a dopant; 상기 (b) 단계를 상기 (a)단계의 실시 전, 후 또는 중간에 실시하여, 형성된 박막에서 도펀트(dopant)가 포함된 박막의 위치 또는 두께 프로파일 조절함으로써 소자의 특성을 변화시키는 고유전율 박막 형성 방법.Step (b) is performed before, after, or in the middle of step (a) to form a high-k dielectric film that changes the characteristics of the device by adjusting the position or thickness profile of the thin film containing the dopant in the formed thin film. Way. 제 1 항에 있어서, 상기 금속 전구체가 포함하는 금속은 하프늄(Hf), 지르코늄(Zr), 알루미늄(Al), 탄탈룸(Ta), 티타늄(Ti), 스트론튬(Sr), 란타늄(La), 바륨(Ba), 납(Pb), 크롬(Cr), 몰리브덴(Mo), 텅스텐(W), 이트륨(Y) 및 망간(Mn)으로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는 고유전율 박막 형성 방법.The metal of the metal precursor is hafnium (Hf), zirconium (Zr), aluminum (Al), tantalum (Ta), titanium (Ti), strontium (Sr), lanthanum (La), barium (Ba), lead (Pb), chromium (Cr), molybdenum (Mo), tungsten (W), yttrium (Y) and manganese (Mn) is at least one selected from the group consisting of high dielectric constant thin film formation method. . 삭제delete 제 1 항에 있어서, 상기 도펀트(dopant)는 질소(N) 또는 불소(F)인 것을 특징으로 하는 고유전율 박막 형성 방법.The method of claim 1, wherein the dopant is nitrogen (N) or fluorine (F). 제 1 항 또는 제 2 항에 있어서, 상기 금속을 산화시킬 수 있는 물질은 산소, 아산화질소, 암모니아수 및 물로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는 고유전율 박막 형성 방법.The method of claim 1 or 2, wherein the material capable of oxidizing the metal is at least one selected from the group consisting of oxygen, nitrous oxide, ammonia water and water. 제 1 항 또는 제 2 항에 있어서, 상기 증착법은 원자층 박막 증착법(ALD) 또는 화학적 기상 증착법(CVD)인 것을 특징으로 하는 고유전율 박막 형성 방법.The method of claim 1 or 2, wherein the deposition method is atomic layer thin film deposition (ALD) or chemical vapor deposition (CVD). 기판상에 형성된 고유전율 박막으로서, 도펀트가 함유되지 않은 박막층의 사이에 도펀트가 함유된 박막층이 형성되어 있으며, 상기 도펀트가 함유되지 않은 박막층은 HfO2층이고, 상기 도펀트를 함유한 박막층은 HfOxNy층인 것을 특징으로 하는 고유전율 박막.A high dielectric constant thin film formed on a substrate, wherein a thin film layer containing a dopant is formed between thin film layers containing no dopant, wherein the thin film layer containing no dopant is an HfO 2 layer, and the thin film layer containing the dopant is HfO x. A high dielectric constant thin film, characterized in that the N y layer. 삭제delete
KR1020070010401A 2007-02-01 2007-02-01 Method for forming high dielectric thin layer and high dielectric thin layer KR100834453B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070010401A KR100834453B1 (en) 2007-02-01 2007-02-01 Method for forming high dielectric thin layer and high dielectric thin layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070010401A KR100834453B1 (en) 2007-02-01 2007-02-01 Method for forming high dielectric thin layer and high dielectric thin layer

Publications (1)

Publication Number Publication Date
KR100834453B1 true KR100834453B1 (en) 2008-06-05

Family

ID=39769788

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070010401A KR100834453B1 (en) 2007-02-01 2007-02-01 Method for forming high dielectric thin layer and high dielectric thin layer

Country Status (1)

Country Link
KR (1) KR100834453B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010060567A (en) * 1999-12-27 2001-07-07 박종섭 Method of forming a gate dielectric film in a semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010060567A (en) * 1999-12-27 2001-07-07 박종섭 Method of forming a gate dielectric film in a semiconductor device

Similar Documents

Publication Publication Date Title
KR100640638B1 (en) Method for forming high dielectric film by atomic layer deposition and method of fabricating semiconductor device having high dielectric film
US7875912B2 (en) Zrx Hfy Sn1-x-y O2 films as high k gate dielectrics
US7183186B2 (en) Atomic layer deposited ZrTiO4 films
US7511326B2 (en) ALD of amorphous lanthanide doped TiOx films
US7396719B2 (en) Method of forming high dielectric film using atomic layer deposition and method of manufacturing capacitor having the high dielectric film
US8772050B2 (en) Zr-substituted BaTiO3 films
US7411237B2 (en) Lanthanum hafnium oxide dielectrics
US7563729B2 (en) Method of forming a dielectric film
US7662729B2 (en) Atomic layer deposition of a ruthenium layer to a lanthanide oxide dielectric layer
JP3773448B2 (en) Semiconductor device
US7544596B2 (en) Atomic layer deposition of GdScO3 films as gate dielectrics
Ahn ALD of Amorphous Lanthanide Doped Tiox Films
KR100834453B1 (en) Method for forming high dielectric thin layer and high dielectric thin layer
KR100754012B1 (en) Method for forming high dielectric thin layer
US20030207097A1 (en) Multilayer structure used especially as a material of high relative permittivity
KR100950811B1 (en) High-k dielectric films having good reliability and methods of manufacturing the same
KR20100007469A (en) Method for forming high dielectric thin layer
KR100382247B1 (en) method of fabricating tantalum oxide layer for a semiconductor device
KR20050092368A (en) Dielectric film forming method
KR20040058751A (en) Capacitor with improved dielectric layer and oxidation resistant layer in semiconductor device and the method for fabricating thereof
KR20050061077A (en) Method for forming dielectric layer in semiconductor device
Nieh An evaluation of the electrical, material, and reliability characteristics and process viability of ZrO₂ and ZrOxNy for future generation MOS gate dielectric
Ahn et al. Zr x Hf y Sn 1-xy O 2 films as high k gate dielectrics
Ahn et al. Zr-substituted BaTiO 3 films
Nieh An evaluation of the electrical, material, and reliability characteristics and process viability of zirconium oxide and nitrogen-incorporated zirconium oxide for future generation MOS gate dielectric

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110411

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20120511

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee