KR100833407B1 - Low temperature Cu wafer bonding method using high pressure hydrogen anneal - Google Patents

Low temperature Cu wafer bonding method using high pressure hydrogen anneal Download PDF

Info

Publication number
KR100833407B1
KR100833407B1 KR1020060071405A KR20060071405A KR100833407B1 KR 100833407 B1 KR100833407 B1 KR 100833407B1 KR 1020060071405 A KR1020060071405 A KR 1020060071405A KR 20060071405 A KR20060071405 A KR 20060071405A KR 100833407 B1 KR100833407 B1 KR 100833407B1
Authority
KR
South Korea
Prior art keywords
high pressure
heat treatment
wafer
bonding
hydrogen
Prior art date
Application number
KR1020060071405A
Other languages
Korean (ko)
Other versions
KR20080010831A (en
Inventor
황현상
조민석
장만
Original Assignee
주식회사 풍산마이크로텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 풍산마이크로텍 filed Critical 주식회사 풍산마이크로텍
Priority to KR1020060071405A priority Critical patent/KR100833407B1/en
Publication of KR20080010831A publication Critical patent/KR20080010831A/en
Application granted granted Critical
Publication of KR100833407B1 publication Critical patent/KR100833407B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/185Joining of semiconductor bodies for junction formation

Abstract

본 발명은 웨이퍼 본딩 방법에 관한 것으로써, 특히 고압 수소 열처리를 이용한 저온 구리 웨이퍼 본딩방법에 관한 것이다. 본 발명은, 기존 공정 대비, 상대적으로 저온(<400C)에서, 단시간(<30min)에 고압 수소 열처리를 적용함으로써, 효과적인 구리 웨이퍼의 본딩이 가능하다. 수소의 환원 반응을 이용하여, Cu 표면의 CuOx를 효과적으로 제거하여, Cu-Cu의 금속 본딩을 용이하게 형성하고, 또한 인가된 수소의 압력 효과로 인하여 외부에서 추가적인 기계적인 압력을 인가하지 않고도, 대면적에서 균일한 본딩의 형성이 가능하다.The present invention relates to a wafer bonding method, and more particularly, to a low temperature copper wafer bonding method using high pressure hydrogen heat treatment. The present invention enables effective bonding of copper wafers by applying high pressure hydrogen heat treatment in a short time (<30 min) at a relatively low temperature (<400C), compared to the existing process. By using a reduction reaction of hydrogen, CuO x on the Cu surface is effectively removed, thereby easily forming a metal bonding of Cu-Cu, and also without applying additional mechanical pressure from the outside due to the pressure effect of applied hydrogen, It is possible to form a uniform bonding in a large area.

구리, 웨이퍼, 본딩, 수소, 고압, 저온 Copper, Wafer, Bonding, Hydrogen, High Pressure, Low Temperature

Description

고압 수소 열처리를 이용한 저온 구리 웨이퍼 본딩 방법{Low temperature Cu wafer bonding method using high pressure hydrogen anneal}Low temperature Cu wafer bonding method using high pressure hydrogen anneal

도 1은 본 발명의 일 실시예에 따른 고압 수소 열처리 장비 구조의 단면도이다.1 is a cross-sectional view of a high pressure hydrogen heat treatment equipment structure according to an embodiment of the present invention.

도 2a 내지 도 2c는 본 발명의 일 실시예에 따른 공정 조건에 따른 Cu-Cu 본딩의 결과도이다.2a to 2c is a result of the Cu-Cu bonding according to the process conditions according to an embodiment of the present invention.

도 3은 열처리 조건에 따른 X-ray 회절 패턴을 나타낸 것이다.Figure 3 shows the X-ray diffraction pattern according to the heat treatment conditions.

도 4는 본 발명의 일 실시예에 따른 열처리 조건에 따른 금속저항을 나타낸 것이다.Figure 4 shows the metal resistance according to the heat treatment conditions according to an embodiment of the present invention.

본 발명은 웨이퍼 본딩 방법에 관한 것으로써, 특히 고압 수소 열처리를 이용한 저온 구리 웨이퍼 본딩방법에 관한 것이다.The present invention relates to a wafer bonding method, and more particularly, to a low temperature copper wafer bonding method using high pressure hydrogen heat treatment.

실리콘 반도체 소자는 현재까지 2차원적인 스케일링을 통해 집적도를 개선하 여 왔으나, 기술적인 한계로 인해, 앞으로는 3차원 집적화가 필수적이다. 그러나 제작된 반도체 소자의 열적인 안정성 문제로 인해, 고온 공정을 적용하기가 어렵다.Silicon semiconductor devices have been improving integration through two-dimensional scaling, but due to technical limitations, three-dimensional integration is essential in the future. However, due to the thermal stability of the fabricated semiconductor device, it is difficult to apply a high temperature process.

기존 2차원 집적화의 한계를 극복하기 위해, 3차원 IC의 개발이 필요한데, 이때 가장 시급한 공정이 Cu-Cu 본딩을 저온에서 단시간에 형성하는 것이다. 저온이 필요한 것은 고집적소자에서 사용되는 실리사이드, 층간 절연막 등이 온도에 매우 취약하여, 고온 (>450C) 열처리가 적용되면, MOSFET 소자 특성의 현저한 열화를 가져온다. In order to overcome the limitations of the existing two-dimensional integration, the development of a three-dimensional IC is required, the most urgent process is to form Cu-Cu bonding in a short time at low temperatures. The low temperature required is that the silicides, interlayer insulating films, and the like used in the high integration device are very vulnerable to temperature, and when a high temperature (> 450C) heat treatment is applied, the MOSFET device characteristics are markedly deteriorated.

Electrochemical and Solid State Letter, p. 534, 1999 논문에 의하면, 기계적인 힘과 고온(>450-600C) 에서 장시간(>60분)의 열처리를 통해 구리 웨이퍼 본딩을 실시한다. 그러나 12인치 이상의 웨이퍼에 균일한 힘을 인가하는 것은 기술적인 어려움이 있으며, 차세대 소자에 적용될 Low-k 박막의 경우, 450C 이상에서 열처리를 적용할 경우 심각한 소자 특성의 열화를 가져온다. Electrochemical and Solid State Letter, p. 534, 1999 According to the paper, copper wafer bonding is performed through mechanical forces and heat treatment for a long time (> 60 minutes) at high temperature (> 450-600C). However, applying uniform force to wafers larger than 12 inches has technical difficulties, and in the case of low-k thin films to be applied to next-generation devices, heat treatment at 450C or higher causes severe deterioration of device characteristics.

본 발명은 상기와 같은 문제점을 해결하고자 안출된 것으로써, 그 목적은 상대적으로 저온에서 단시간에 고압 수소 열처리를 적용하는 웨이퍼 본딩방법을 제공하는 데 있다.The present invention has been made to solve the above problems, an object of the present invention is to provide a wafer bonding method applying a high pressure hydrogen heat treatment in a relatively short time at a low temperature.

상기와 같은 목적을 달성하고자 본 발명의 고압 수소 열처리를 이용한 저온 구리 웨이퍼 본딩방법은 고압의 기체 분위기에서 열처리하는 것을 특징으로 한다.Low temperature copper wafer bonding method using a high pressure hydrogen heat treatment of the present invention to achieve the above object is characterized in that the heat treatment in a high-pressure gas atmosphere.

본 발명의 다른 웨이퍼 본딩 방법은 구리 접합 패드가 증착된 웨이퍼를 고압 장비에 넣고 정렬하는 단계; 및 고압, 고농도의 기체 분위기에서 저온 열처리를 실시하는 단계를 포함한다.Another wafer bonding method of the present invention comprises the steps of placing and aligning a wafer on which copper bond pads are deposited into a high pressure device; And performing a low temperature heat treatment in a high pressure, high concentration gas atmosphere.

본 발명에서 본딩 힘을 개선하기 위하여 소정의 하중을 인가하는 것이 바람직하다.In the present invention, it is preferable to apply a predetermined load in order to improve the bonding force.

본 발명에서 상기 열처리에 사용된 기체는 100% 수소 또는 중수소인 것이 바람직하다.In the present invention, the gas used for the heat treatment is preferably 100% hydrogen or deuterium.

본 발명에서 상기 열처리시 압력은 3~100기압이고, 상기 열처리시 온도는 450℃ 이하인 것이 바람직하다.In the present invention, the pressure during the heat treatment is 3 to 100 atm, the temperature during the heat treatment is preferably 450 ℃ or less.

본 발명은, 기존 공정 대비, 상대적으로 저온 (<400C)에서, 단시간 (<30min)에 고압 수소 열처리를 적용함으로써, 효과적인 구리 웨이퍼의 본딩이 가능하다. 수소의 환원 반응을 이용하여, Cu 표면의 CuOx를 효과적으로 제거하여, Cu-Cu의 금속 본딩을 용이하게 형성하고, 또한 인가된 수소의 압력 효과로 인하여 외부에서 추가적인 기계적인 압력을 인가하지 않고도, 대면적에서 균일한 본딩의 형성이 가능하다.The present invention enables effective bonding of copper wafers by applying high pressure hydrogen heat treatment in a short time (<30 min) at relatively low temperatures (<400 C), compared to conventional processes. By using a reduction reaction of hydrogen, CuO x on the Cu surface is effectively removed, thereby easily forming a metal bonding of Cu-Cu, and also without applying additional mechanical pressure from the outside due to the pressure effect of applied hydrogen, It is possible to form a uniform bonding in a large area.

이하, 본 발명의 바람직한 실시예를 첨부한 도면을 참조하여 설명하기로 한다. 하기의 각 도면의 구성 요소들에 참조 부호를 부가함에 있어서, 동일한 구성 요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하며, 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 공지 기능 및 구성에 대한 상세한 설명은 생략한다.Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. In adding reference numerals to components of the following drawings, it is determined that the same components have the same reference numerals as much as possible even if displayed on different drawings, and it is determined that they may unnecessarily obscure the subject matter of the present invention. Detailed descriptions of well-known functions and configurations will be omitted.

<실시예 1><Example 1>

아래와 같은 공정 순서를 이용하여 구리 웨이퍼 본딩 공정을 적용한다. The copper wafer bonding process is applied using the following process sequence.

1) 구리 접합 패드가 증착된 웨이퍼를 고압 장비에 넣고, 정렬한다. 1) Place the wafer on which the copper bond pads are deposited into the high pressure equipment and align it.

2) 고압 (>5atm), 고농도 (100%) 수소/중수소 분위기에서 저온 (<450C) 열처리를 실시한다. 2) Low temperature (<450C) heat treatment under high pressure (> 5atm), high concentration (100%) hydrogen / deuterium atmosphere.

<실시예 2><Example 2>

아래와 같은 공정 순서를 이용하여 웨이퍼 본딩 공정을 적용한다. The wafer bonding process is applied using the following process sequence.

1) 구리 접합 패드가 증착된 웨이퍼를 고압 장비에 넣고, 정렬한다. 1) Place the wafer on which the copper bond pads are deposited into the high pressure equipment and align it.

2) 고압 (>5atm) 고농도 (100%) 수소 분위기에서 저온 (<450C)에서 열처리한다. 이때 본딩력을 개선하기 위해 적정 수준의 하중을 인가한다. 2) Heat treatment at low temperature (<450C) in high pressure (> 5atm) high concentration (100%) hydrogen atmosphere. At this time, an appropriate level of load is applied to improve the bonding force.

도 1은 본 발명의 일 실시예에 따른 고압 수소 열처리 장비 구조의 단면도이다.1 is a cross-sectional view of a high pressure hydrogen heat treatment equipment structure according to an embodiment of the present invention.

도 1을 참조하면, 상기 고압 수소 열처리 장비 내에는 구리 레이어를 포함하는 실리콘 웨이퍼가 접촉을 형성하며, 상기 접촉된 구리 레이어를 포함하는 실리콘 웨이퍼 상부에는 본딩력을 증가시키기 위하여 약 150g의 접촉력을 형성한다. 상기 고압 수소 열처리 장비 내에는 질소 또는 수소가 약 10기압으로 형성되고, 약 400℃의 고압이 형성됨을 알 수 있다.Referring to FIG. 1, a silicon wafer including a copper layer forms a contact in the high pressure hydrogen heat treatment equipment, and a contact force of about 150 g is formed on the silicon wafer including the contacted copper layer to increase bonding force. do. Nitrogen or hydrogen is formed at about 10 atm, and a high pressure of about 400 ° C. is formed in the high-pressure hydrogen heat treatment equipment.

도 2a 내지 도 2c는 본 발명의 일 실시예에 따른 공정 조건에 따른 Cu-Cu 본딩의 결과도이다.2a to 2c is a result of the Cu-Cu bonding according to the process conditions according to an embodiment of the present invention.

도 2a는 400℃, 약 10기압의 질소분위기를 60분간 유지하고, 접촉력으로써 100~250g을 유지한 결과이다. 그러나 이 경우 도 2a를 참조하면, 구리 레이어 사이에는 소정의 갭이 생성되고 접합이 형성되지 않음을 알 수 있다.2A is a result of maintaining a nitrogen atmosphere at 400 ° C. and about 10 atmospheres for 60 minutes and maintaining 100 to 250 g as a contact force. However, in this case, referring to FIG. 2A, it can be seen that a predetermined gap is generated between the copper layers and no junction is formed.

도 2b는 400℃, 약 1기압의 질소의 질소분위기를 10분간 유지하고, 실온에서 60분간 질소분위기를 더 유지하며, 접촉력으로써 200kg을 유지한 결과이다. 도 2b를 참조하면, 접합은 형성되었으나, 구리 레이어 사이에 경계면이 존재함을 알 수 있다.2b is a result of maintaining a nitrogen atmosphere of nitrogen at 400 ° C. and about 1 atmosphere for 10 minutes, further maintaining the nitrogen atmosphere at room temperature for 60 minutes, and maintaining 200 kg as the contact force. Referring to FIG. 2B, although the junction is formed, it can be seen that an interface exists between the copper layers.

도 2c는 400℃, 약 10기압의 수소분위기를 60분간 유지하고, 접촉력으로써 100~250g을 유지한 결과이다. 도 2c를 참조하면, 접합이 형성되고 경계면은 존재하지 않음을 알 수 있다. 2C is a result of maintaining a hydrogen atmosphere at 400 ° C. and about 10 atmospheres for 60 minutes and maintaining 100 to 250 g as a contact force. Referring to FIG. 2C, it can be seen that a junction is formed and no interface exists.

도 3은 열처리 조건에 따른 X-ray 회절 패턴을 나타낸 것이다. 도 3을 참조하면, 수소 열처리 후 본딩 형성으로 인해 재결정화가 발생함을 알 수 있다.Figure 3 shows the X-ray diffraction pattern according to the heat treatment conditions. Referring to FIG. 3, it can be seen that recrystallization occurs due to bonding formation after hydrogen heat treatment.

도 4는 본 발명의 일 실시예에 따른 열처리 조건에 따른 금속저항을 나타낸 것이다. 도 4를 참조하면, 수소 열처리 후 우수한 본딩으로 인해 저항값이 낮아짐을 알 수 있다.Figure 4 shows the metal resistance according to the heat treatment conditions according to an embodiment of the present invention. Referring to FIG. 4, it can be seen that the resistance value is lowered due to excellent bonding after hydrogen heat treatment.

상기와 같이, 본 발명의 바람직한 실시예를 참조하여 설명하였지만 해당 기술 분야의 숙련된 당업자라면 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.As described above, it has been described with reference to the preferred embodiment of the present invention, but those skilled in the art various modifications and changes of the present invention without departing from the spirit and scope of the present invention described in the claims below I can understand that you can.

상술한 바와 같이 본 발명에 따르면, 고압 수소 열처리를 적용함으로써, 상대적으로 저온 (<400C)에서, 단시간 (<30min)에 효과적인 구리 웨이퍼의 본딩이 가능하다. According to the present invention as described above, by applying a high pressure hydrogen heat treatment, bonding of a copper wafer effective at a relatively low temperature (<400C) for a short time (<30min) is possible.

본 발명은, 수소의 환원 반응을 이용하여, Cu 표면의 CuOx를 효과적으로 제거하여, Cu-Cu의 금속 본딩을 용이하게 형성하고, 또한 인가된 수소의 압력 효과로 인하여 외부에서 추가적인 기계적인 압력을 인가하지 않고도, 대면적에서 균일한 본딩의 형성이 가능하다. The present invention utilizes a reduction reaction of hydrogen to effectively remove CuO x from the surface of Cu, thereby easily forming metal bonding of Cu-Cu, and also to provide additional mechanical pressure from the outside due to the pressure effect of applied hydrogen. It is possible to form a uniform bonding in a large area without applying.

또한, 고농도 수소/중수소 열처리를 적용함으로써, 게이트 산화막 계면의 결함 패시베이션(defect passivation)도 가능하여, 소자의 전기적, 신뢰성 특성을 동시에 개선할 수 있는 장점이 있다. In addition, by applying a high concentration hydrogen / deuterium heat treatment, defect passivation of the gate oxide film interface is also possible, which simultaneously improves the electrical and reliability characteristics of the device.

Claims (8)

구리가 증착된 웨이퍼를 상호 결합하는 방법에 있어서,In a method of mutually bonding a wafer on which copper is deposited, 구리가 증착된 웨이퍼를 100% 농도의 수소 기체 또는 100% 농도의 중수소 기체 분위기에서 3기압 이상 100기압 미만의 압력으로 열처리하는 것을 특징으로 하는 웨이퍼 본딩방법.Wafer bonding method characterized in that the heat-treated copper wafer at a pressure of less than 3 atmospheres or less than 100 atmospheres in a hydrogen gas or 100% concentration of deuterium gas atmosphere. 구리 접합 패드가 증착된 웨이퍼를 압력 장비에 넣고 정렬하는 단계; 및Placing and depositing a wafer on which copper bond pads are deposited in a pressure device; And 100% 농도의 수소 기체 또는 100% 농도의 중수소 기체 분위기에서 3기압 이상 100기압 미만의 압력으로 열처리하는 단계를 포함하는 웨이퍼 본딩 방법.Wafer bonding method comprising the step of heat treatment at a pressure of less than 3 atm or less than 100 atm in a hydrogen gas of 100% concentration or a deuterium gas atmosphere of 100% concentration. 제 2항에 있어서,The method of claim 2, 본딩 힘을 개선하기 위하여 소정의 하중을 인가하는 것을 특징으로 하는 웨이퍼 본딩 방법.Wafer bonding method characterized by applying a predetermined load in order to improve the bonding force. 삭제delete 삭제delete 삭제delete 제 1항 또는 제 2항에 있어서, The method according to claim 1 or 2, 상기 열처리시 온도는 450℃ 이하인 것을 특징으로 하는 웨이퍼 본딩 방법.Wafer bonding method characterized in that the temperature during the heat treatment is 450 ℃ or less. 삭제delete
KR1020060071405A 2006-07-28 2006-07-28 Low temperature Cu wafer bonding method using high pressure hydrogen anneal KR100833407B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060071405A KR100833407B1 (en) 2006-07-28 2006-07-28 Low temperature Cu wafer bonding method using high pressure hydrogen anneal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060071405A KR100833407B1 (en) 2006-07-28 2006-07-28 Low temperature Cu wafer bonding method using high pressure hydrogen anneal

Publications (2)

Publication Number Publication Date
KR20080010831A KR20080010831A (en) 2008-01-31
KR100833407B1 true KR100833407B1 (en) 2008-05-28

Family

ID=39222765

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060071405A KR100833407B1 (en) 2006-07-28 2006-07-28 Low temperature Cu wafer bonding method using high pressure hydrogen anneal

Country Status (1)

Country Link
KR (1) KR100833407B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106298452A (en) * 2016-08-29 2017-01-04 中国科学院微电子研究所 A kind of wafer bonding method pressed based on array

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625562A (en) * 1991-08-23 1994-02-01 Matsushita Electric Ind Co Ltd Thick film conductor paste composition and production of multi-layer interconnection board
KR20010077990A (en) * 2000-01-27 2001-08-20 간지 오쯔까 Wiring substrate and method of manufacturing the same
US6995040B2 (en) 2000-12-07 2006-02-07 Reflectivity, Inc Methods for depositing, releasing and packaging micro-electromechanical devices on wafer substrates
US7064055B2 (en) * 2002-12-31 2006-06-20 Massachusetts Institute Of Technology Method of forming a multi-layer semiconductor structure having a seamless bonding interface
KR20060079316A (en) * 2004-12-30 2006-07-06 매그나칩 반도체 유한회사 Method for three dimensional integration of wafers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625562A (en) * 1991-08-23 1994-02-01 Matsushita Electric Ind Co Ltd Thick film conductor paste composition and production of multi-layer interconnection board
KR20010077990A (en) * 2000-01-27 2001-08-20 간지 오쯔까 Wiring substrate and method of manufacturing the same
US6995040B2 (en) 2000-12-07 2006-02-07 Reflectivity, Inc Methods for depositing, releasing and packaging micro-electromechanical devices on wafer substrates
US7064055B2 (en) * 2002-12-31 2006-06-20 Massachusetts Institute Of Technology Method of forming a multi-layer semiconductor structure having a seamless bonding interface
KR20060079316A (en) * 2004-12-30 2006-07-06 매그나칩 반도체 유한회사 Method for three dimensional integration of wafers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106298452A (en) * 2016-08-29 2017-01-04 中国科学院微电子研究所 A kind of wafer bonding method pressed based on array
CN106298452B (en) * 2016-08-29 2019-05-17 中国科学院微电子研究所 A kind of wafer bonding method pressed based on array

Also Published As

Publication number Publication date
KR20080010831A (en) 2008-01-31

Similar Documents

Publication Publication Date Title
CN102339768A (en) Methods of forming bonded semiconductor structures, and semiconductor structures formed by such methods
US9013002B1 (en) Iridium interfacial stack (IRIS)
JP2007184602A (en) Metal wiring forming method of image sensor
JP3625652B2 (en) Manufacturing method of semiconductor device
JP2006173386A (en) Semiconductor device, semiconductor module provided therewith, and method for manufacturing semiconductor device
CN111354717A (en) Monolithic three-dimensional integrated circuit including a heat shield stack and method of manufacturing the same
KR100833407B1 (en) Low temperature Cu wafer bonding method using high pressure hydrogen anneal
JP2976931B2 (en) Method for manufacturing semiconductor device
US8623759B2 (en) Method for manufacturing semiconductor device
CN101640179B (en) Method for manufacturing weld pad structure
US6723628B2 (en) Method for forming bonding pad structures in semiconductor devices
JP5978589B2 (en) Method for manufacturing power semiconductor device
KR100732288B1 (en) Method for manufacturing semiconductor device
CN1131560C (en) Improved nitride etch stop layer
US6989608B2 (en) Method and apparatus to eliminate galvanic corrosion on copper doped aluminum bond pads on integrated circuits
KR20100026399A (en) Metal wiring of semiconductor device and method for forming the same
KR100443363B1 (en) Method of forming metal interconnection in semiconductor device
JPH05102148A (en) Semiconductor device
KR100283480B1 (en) Metal wiring for semiconductor devices and its manufacturing method
KR100342827B1 (en) Method for forming barrier metal layer of semiconductor device
TWI313036B (en) Multi-anneal process
KR19990039343A (en) Metal wiring formation method of semiconductor device
KR100290469B1 (en) Method of forming a passivation layer in a semiconductor device
KR101029106B1 (en) Metal wiring of semiconductor device and method for forming the same
KR101005740B1 (en) Method of forming copper wiring in semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130507

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140522

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150520

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160513

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170523

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180521

Year of fee payment: 11