KR100818914B1 - A method for low-cost preparation of 1bit or 2bit RF tag using printing process - Google Patents

A method for low-cost preparation of 1bit or 2bit RF tag using printing process Download PDF

Info

Publication number
KR100818914B1
KR100818914B1 KR1020060076601A KR20060076601A KR100818914B1 KR 100818914 B1 KR100818914 B1 KR 100818914B1 KR 1020060076601 A KR1020060076601 A KR 1020060076601A KR 20060076601 A KR20060076601 A KR 20060076601A KR 100818914 B1 KR100818914 B1 KR 100818914B1
Authority
KR
South Korea
Prior art keywords
tag
conductive
printing
resonant
ink
Prior art date
Application number
KR1020060076601A
Other languages
Korean (ko)
Other versions
KR20080015198A (en
Inventor
조규진
이복임
임남수
이나영
임채민
Original Assignee
(주) 파루
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 파루 filed Critical (주) 파루
Priority to KR1020060076601A priority Critical patent/KR100818914B1/en
Publication of KR20080015198A publication Critical patent/KR20080015198A/en
Application granted granted Critical
Publication of KR100818914B1 publication Critical patent/KR100818914B1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/0672Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with resonating marks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/07773Antenna details
    • G06K19/07777Antenna details the antenna being of the inductive type
    • G06K19/07779Antenna details the antenna being of the inductive type the inductive antenna being a coil
    • G06K19/07781Antenna details the antenna being of the inductive type the inductive antenna being a coil the coil being fabricated in a winding process
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1216Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by screen printing or stencil printing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1241Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by ink-jet printing or drawing by dispensing
    • H05K3/125Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by ink-jet printing or drawing by dispensing by ink-jet printing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1275Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by other printing techniques, e.g. letterpress printing, intaglio printing, lithographic printing, offset printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Abstract

본 발명은 높은 전기전도도를 지닌 전자잉크를 인쇄방법으로 LC 공진회로를 플라스틱 필름 위에 인쇄하여 공진 주파수를 손쉽게 제어하여 다양한 주파수영역(6㎒ - 25㎒)의 1~2 비트 RF 태그를 제조할 수 있는 발명에 관한 것이다.According to the present invention, the LC resonant circuit can be printed on a plastic film using a method of printing an electronic ink having a high electrical conductivity to easily control the resonant frequency to produce 1 to 2 bit RF tags in various frequency ranges (6 MHz to 25 MHz). The present invention relates to.

LC 칩, 인쇄 전자, 공진칩, 도둑방지용 태그, RF태그 LC chip, printed electronics, resonant chip, anti-theft tag, RF tag

Description

인쇄공정을 이용한 초저가의 1비트 또는 2비트 RF 태그 제조방법{A method for low-cost preparation of 1bit or 2bit RF tag using printing process}A method for low-cost preparation of 1bit or 2bit RF tag using printing process}

도 1은 본 발명에서 사용한 1bit LC 회로를 나타낸 것이다.1 shows a 1-bit LC circuit used in the present invention.

도 2는 본 발명에서 사용한 2bit 용 LC 회로를 나타낸 것이다.Figure 2 shows a 2bit LC circuit used in the present invention.

도 3은 기존의 그라비아 잉크 SEM 사진이다.3 is a conventional gravure ink SEM photograph.

도 4는 은나노와이어 입자의 SEM사진이다.4 is a SEM photograph of silver nanowire particles.

도 5는 은나노입자의 TEM사진이다.5 is a TEM photograph of silver nanoparticles.

도 6은 RF 태그 인쇄 공정을 나타낸 개요도이다.6 is a schematic diagram illustrating an RF tag printing process.

도 7은 인쇄된 1bit RF 태그를 나타낸 것이다.Figure 7 shows a printed 1-bit RF tag.

도 8은 인쇄된 1bit RF 태그 측정그래프이다.8 is a printed 1-bit RF tag measurement graph.

도 9는 인쇄된 2bit RF 태그를 나타낸 것이다.9 shows a printed 2-bit RF tag.

도 10은 인쇄된 2bit RF 태그 측정 그래프이다.10 is a printed 2 bit RF tag measurement graph.

도 11은 은나노입자와 은나노와이어를 1:2중량비로 혼합한 잉크를 이용하여 인쇄한 회로의 조직사진이다.Fig. 11 is a structure photograph of a circuit printed using ink in which silver nanoparticles and silver nanowires are mixed in a 1: 2 weight ratio.

도 12는 전자물품 관리 RF 태그 작동원리를 도시한 것이다.12 illustrates the operation principle of the electronic article management RF tag.

RF 태그 제조 기술은 평평한 박막 유전체의 양면에 원하는 공진주파수를 형성시킬 수 있는 인덕터와 캐패시터를 일정한 양식으로 패터닝하는 기술을 중심으로, 공진주파수 태그를 제조하는 일반적인 방법은 금속성포일(foil)을 에칭하여 인덕터를 패터닝 하는 방법이다. 즉, 평평한 박막 절연층의 양면에 도전성 금속 포일을 입히고 에칭 저항 잉크를 원하는 패턴부분에 프린팅하여 금속 패턴을 보호하고 보호되지 않은 부분은 화학처리에 의해 제거되고 남아있는 패턴에 의해서 동작하는 LC 공진칩을 이용하여 1bit RF 태그를 제조 하였다. 도전성 물질로는 알루미늄(Al)이 양호하나, 다른 도전성 물질(이를테면, 금, 니켈, 구리, 청동인, 놋쇠, 땜납, 고밀도 흑연, 도전성 에폭시로 채워진 알루미늄 또는 도전성 에폭시로 채워진 은)도 공진회로의 특성 또는 그 동작을 변화시키지 않으면서 알루미늄 대신 사용하여 왔다. RF tag manufacturing technology focuses on the technology of patterning inductors and capacitors in a certain form that can form a desired resonant frequency on both sides of a flat thin film dielectric, and a general method of manufacturing a resonant frequency tag is by etching a metallic foil. This is how to pattern the inductor. That is, LC resonant chip which protects the metal pattern by coating conductive metal foil on both sides of the flat thin film insulating layer and printing the etching resistance ink on the desired pattern part, and the unprotected part is removed by chemical treatment and operated by the remaining pattern. 1bit RF tag was manufactured using Aluminum (Al) is preferred as the conductive material, but other conductive materials (such as gold, nickel, copper, bronze, brass, solder, high density graphite, aluminum filled with conductive epoxy or silver filled with conductive epoxy) may also be used in the resonant circuit. It has been used in place of aluminum without changing its properties or its behavior.

그러나 금속 포일을 에칭하여 제조하는 1bit RF 태그는 제조 에칭액에 의한 환경오염과 금속포일 가격, 에칭방지액의 가격 등으로 인하여 제조 원가가 비싸고 다양한 주파수 영역을 손쉽게 만들지 못하여 1bit 이상의 RF 태그 제조가 불가능 하였다.However, the 1-bit RF tag manufactured by etching metal foil was expensive to manufacture due to environmental pollution, metal foil price, and anti-etching solution price, and it was not possible to easily make various frequency ranges. .

본 발명의 목적은 높은 전기 도전성 잉크를 이용하여 인쇄기법으로 환경 오염없이 초저가로 LC 공진칩을 제조하는 방법 및 이로부터 제조된 LC 공진칩을 제공하는데 있다.SUMMARY OF THE INVENTION An object of the present invention is to provide a method of manufacturing an LC resonant chip at a very low cost without environmental pollution by a printing technique using a highly electrically conductive ink, and an LC resonant chip manufactured therefrom.

또한, 본 발명은 상기 LC 공진칩을 이용하여 제조된 2bit RF 태그를 제공하는데 또 다른 목적이 있다.Another object of the present invention is to provide a 2bit RF tag manufactured using the LC resonant chip.

본 발명은 높은 전기 도전성을 지닌 잉크를 이용하여 스크린, 잉크젯, 및 그라비아 프린팅 기법으로 환경오염 없이 초저가로 LC 공진칩을 제조하는 기술, 이로부터 제조된 LC공진칩 및 LC 공진칩을 이용하여 제조된 RF 태그(Tag)에 관한 것이다.The present invention is an ultra low cost LC resonant chip manufacturing method using screen, inkjet, and gravure printing method using high electrical conductivity ink without environmental pollution, LC resonant chip and LC resonant chip manufactured therefrom The present invention relates to an RF tag.

또한 본 발명은 상기와 같이 기존의 높은 도전성 잉크라면 어떤 것이든 제한 없이 사용가능하지만, 특히 본 발명에서는 기존의 도전성 잉크보다 더욱 우수한 높은 밀도를 갖는 도전성 잉크를 제공하는 것도 하나의 특징으로 한다.In addition, the present invention can be used without any limitation as long as the existing high conductive ink as described above, in particular, the present invention also provides a conductive ink having a higher density than the conventional conductive ink.

본 발명은 도전성 잉크의 정보 및 유전체의 정보(전도도, 절연층두께, 유전상수, 도전성물질 두께 등)들을 입력하고 시뮬레이션하여 얻어진 패턴[도 1,2]을 실제로 인쇄공정을 통하여 태그를 제작할 수 있는 IE3D프로그램을 이용하여 실재 인쇄를 실시하여 패턴닝 작업을 하였다. 도 1 및 도 2에 표시한 바와 같이 a와b값을 변화 시켜 인쇄하면 L과 C 값이 변화하여 다양한 주파수 영역의 RF 태그 제조가 가능하게 된다.According to the present invention, a tag obtained by inputting and simulating information of conductive ink and dielectric information (conductivity, insulating layer thickness, dielectric constant, thickness of conductive material, etc.) can be actually produced through a printing process. Patterning was done by real printing using IE3D program. As shown in Fig. 1 and Fig. 2, by changing the a and b value and printing, the L and C values are changed to enable the manufacture of RF tags in various frequency domains.

본 발명의 인쇄 시 잉크의 점도는 적용되는 인쇄방식에 따라 다양하게 변화시킬 수 있는데 예를 들면, 스크린 및 그라비아 프린팅을 위한 잉크는 15,000 cP 정도의 점도를 지닌 잉크를 이용하는 것이 좋고, 잉크젯 프린팅을 위해서는 10cP 이하의 잉크를 사용하면 좋지만 점도는 필요에 의해 적절히 조절가능하다.According to the printing method of the present invention, the viscosity of the ink may be varied depending on the printing method applied. For example, the ink for screen and gravure printing may use ink having a viscosity of about 15,000 cP, and for inkjet printing, Although ink of 10 cP or less may be used, the viscosity can be appropriately adjusted as necessary.

현재 상용화 되어있는 1bit 태그는 알루미늄 호일에 에칭하여 LC 회로를 제작하는 방식으로 제조되었으며 회로의 처음 부분부터 끝부분까지의 저항이 1Ω미만이고 Q값이 60이상인 반면, 본 발명을 통해 개발된 1~2bit RF 태그는 다양한 공진주파수와 Q값 40이상의 출력 값을 얻을 수 있었다. 일반적으로 Q 값이란 공진 주파수 중심을 공진주파수 중심에서 3dB 위치의 주파수 차이로 나눈 값을 의미한다.Currently commercially available 1bit tags are manufactured by etching LC foils to produce LC circuits. The resistance from the beginning to the end of the circuit is less than 1Ω and the Q value is over 60. The 2bit RF tag was able to obtain various resonant frequencies and output values over Q value of 40. In general, the Q value means a value obtained by dividing the resonant frequency center by the frequency difference of 3 dB from the resonant frequency center.

본 발명의 제조방법에서 사용하는 도전성 잉크로서는 통상적으로 RF 태그에 사용하는 것이라면 제한이 없지만, 전체 용액에 대하여 0.1~10중량%의 전도성고분자용액을 기본 용액으로 하고, 상기 기본용액에 나노사이즈의 도전성 금속입자를 전체 조성물에 대하여 0.1~20중량%의 범위로 첨가하여 도전성 잉크를 제조한다. 상기에서 전도성고분자의 농도가 0.1중량%이하로 사용하는 경우에는 잉크의 안정도와 인쇄후 패턴의 접착력 점에서 좋지 않고, 10중량% 이상 사용하는 경우에는 전기 전도성 점에서 좋지 않으므로 상기 범주로 사용하는 것이 좋고 더욱 좋게는 0.5~5중량%로 사용하는 것이 좋다. 상기 전도성 고분자는 통상적으로 폴리아닐린, 폴리티오펜, 폴리피롤 등의 전도성고분자이고 그 사용에 제한이 되는 것은 아니다.The conductive ink used in the manufacturing method of the present invention is not particularly limited as long as it is used for an RF tag, but the conductive polymer solution of 0.1 to 10% by weight relative to the total solution is used as the base solution, and nano-sized conductivity is used for the base solution. The conductive particles are prepared by adding metal particles in the range of 0.1 to 20% by weight based on the total composition. In the case where the concentration of the conductive polymer is less than 0.1% by weight, it is not good in terms of ink stability and adhesion after printing, and in the case of using more than 10% by weight, it is not good in electrical conductivity. It is better to use 0.5 to 5% by weight. The conductive polymer is typically a conductive polymer such as polyaniline, polythiophene, polypyrrole, and the like, and is not limited thereto.

또한 잉크 조성물에서 도전성 금속입자는 예를 들면, 알루미늄(Al), 금, 니켈, 구리, 청동, 놋쇠, 납, 고밀도 흑연, 도전성 에폭시로 채워진 알루미늄 또는 도전성 에폭시로 채워진 은이나 카본나노튜브 등의 나노입자를 사용할 수 있다. 상기 도전성 금속입자의 크기는 통상적으로 RF태크에 상용하는 입자크기의 범주내에서는 크게 제한 받지 않지만 나노사이즈의 금속입자를 사용하는 것이 조직의 치밀도 면에서 더욱 좋다.In addition, the conductive metal particles in the ink composition may be, for example, nanoparticles such as aluminum (Al), gold, nickel, copper, bronze, brass, lead, high density graphite, aluminum filled with conductive epoxy or silver or carbon nanotube filled with conductive epoxy. Particles can be used. Although the size of the conductive metal particles is not particularly limited within the range of particle sizes commonly used in RF tags, it is better to use nano-sized metal particles in terms of tissue density.

본 발명의 잉크조성물의 용매 및 전도성고분자 용액의 용매로서는 전도성고분자가 용해되고, 또한 금속입자를 분산시킬 수 있는 용매라면 크게 제한 되지 않지만 통상적으로는 이소프로판올이나 부탄올 등의 알콜류, 케톤류, 에테르류, 케비톨 등의 용매를 사용할 수 있다. The solvent of the ink composition of the present invention and the solvent of the conductive polymer solution are not particularly limited as long as the conductive polymer is dissolved and can disperse the metal particles. However, alcohols such as isopropanol and butanol, ketones, ethers, ketones Solvents, such as a bitol, can be used.

또한 본 발명에서는 필요에 의해 용매의 인쇄성을 증가시키기 위하여 계면활성제와 도판트의 역할을 동시에 할 수 있는 알킬술포네이트, 알킬술폰산등을 추가하여 사용할 수도 있다. 상기 물질로는 도데실벤젠술폰산 등을 예로들 수 있다.In addition, in the present invention, in order to increase the printability of the solvent, an alkyl sulfonate, an alkyl sulfonic acid, etc. which can simultaneously act as a surfactant and a dopant may be added. Examples of the material include dodecylbenzenesulfonic acid.

특히 본 발명의 높은 도전성을 가지는 금속나노입자는 나노사이즈의 금속입자를 사용할 수도 있고, 금속나노와이어와 금속나노입자의 혼합물을 사용할 수도 있다. 특히 놀랍게도 본 발명에서는 금속나노와아어와 금속나노입자를 혼합하여 사용하는 경우 나노입자와 와이어의 혼합작용으로 매우 밀도가 조밀하게 배열하여 입자간의 공극저항이 낮아져 기존의 나노입자로만 구성된 경우보다 저항이 5~10배 이상 낮게 조정할 수 있어, 안테나나 인덕터 등에서 매우 우수한 특성을 나타냄을 발견하였다. 즉, 기존의 은플레이크를 이용한 그라비아잉크를 이용하여 잉크조성물을 패턴닝하는 경우에는 입자와 입자간의 공극이 많아(도 3 참조) 전기저항이 높아 안테나, 인덕터, 캐패시터로 사용하는데 문제를 야기시키지만 본 발명의 하나의 특징 과 같이 나노입자와 나노와이어를 동시에 혼합하여 제조한 잉크를 이용하여 프린팅패턴을 한 결과 조직이 매우 치밀하게 배열하여 낮은 저항을 나타내는 특성을 보여줌을 알 수 있었다. 이때 나노입자와 나노와이어의 혼합비는 필요에 의해 적절히 혼합되는 것으로 그 혼합비에 제한을 받지 않는다.In particular, the metal nanoparticles having high conductivity of the present invention may use nano-sized metal particles, or may use a mixture of metal nanowires and metal nanoparticles. Surprisingly, in the present invention, when the metal nanoparticles are mixed with the metal nanoparticles, the nanoparticles and the wires are very densely arranged by the mixing action of the nanoparticles, so that the pore resistance between the particles is lowered. It was found that it can be adjusted by 5 to 10 times lower, which shows very good characteristics in antennas and inductors. That is, when the ink composition is patterned using the gravure ink using the conventional silver flakes, the gap between the particles and the particles is large (see FIG. 3), and thus the electrical resistance is high, which causes problems in using them as antennas, inductors, and capacitors. As a feature of the invention, as a result of the printing pattern using the ink prepared by mixing the nanoparticles and nanowires at the same time, it can be seen that the tissue is very closely arranged to show the characteristics of low resistance. In this case, the mixing ratio of the nanoparticles and the nanowires is appropriately mixed as necessary, and is not limited by the mixing ratio.

본 발명의 나노와이어를 제조하는 방법은 다음과 같다.Method for producing a nanowire of the present invention is as follows.

먼저, 백금족할라이드 성분을 알킬렌글리콜에 1~100ppm정도를 함유하는 용액을 제조한다. 다음으로 별도의 용기에 은전구체를 0.1~10중량%의 함량으로 알킬렌글리콜용액을 만들고 이어서 다른 별도의 용기에 0.1~2중량%의 폴리아닐린을 용해한 알킬렌글리콜을 제조하고, 상기 각각의 용액을 혼합한다. 이 때 통상적으로 혼합하는 용액의 부피비는 백금족할라이드:은전구체용액:폴리아닐린용액=1:2~20:30~300의 부피비 정도로 조절한다. 백금은 씨앗(seed) 역할을 수행하여 은전구체가 환원되며 백금 입자 위에 은전구체가 나노와이어로 성장할 수 있도록 한다.First, a solution containing about 1 to 100 ppm of platinum group halide component in alkylene glycol is prepared. Next, an alkylene glycol solution was prepared in an amount of 0.1 to 10% by weight of silver precursor in a separate container, and then alkylene glycol prepared by dissolving 0.1 to 2% by weight of polyaniline in another separate container was prepared. Mix. At this time, the volume ratio of the solution to be normally mixed is adjusted to a volume ratio of platinum group halide: silver precursor solution: polyaniline solution = 1: 2-20: 30-300. Platinum acts as a seed so that the silver precursor is reduced and allows the silver precursor to grow into nanowires on the platinum particles.

상기 혼합용액을 100~200℃에서 1~10시간 정도 가열한 후, 알킬티오펜을 상기 혼합용액의 부피에 대하여 100:0.01~0.2의 부피비로 추가한 후 상온으로 냉각하고, 이어서 아세톤등의 비용매를 이용하여 침전시키고 원심분리하고, 이를 회수한 후 다시 아세톤과 물의 혼합용매로 워싱하고 다시 원심분리하는 것을 1회이상 반복함으로써 나노사이즈의 금속와이어를 제조한다.After heating the mixed solution at 100 to 200 ° C. for about 1 to 10 hours, the alkylthiophene was added at a volume ratio of 100: 0.01 to 0.2 with respect to the volume of the mixed solution, and then cooled to room temperature, followed by the cost of acetone and the like. Precipitating with a medium and centrifuged, and recovering it, and then washed again with a mixed solvent of acetone and water and centrifuged again to produce a nano-sized metal wire.

이하는 실시예를 통하여 본 발명을 더욱 구체적으로 설명하며 본 발명은 하 기 실시예에 의해서 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, and the present invention is not limited to the following Examples.

[실시예]EXAMPLE

은나노와이어 제조Silver Nano Wire Manufacturing

0.0004g의 PtCl2를 10ml의 에틸렌글리콜에 용해한 용액과 AgNO3 1g을 50ml의 에틸렌글리콜에 용해한 용액 및 폴리아닐린 0.5g을 100ml에 녹인 에틸렌글리콜 용액을 각각 제조한 후, 이들은 혼합하고, 160℃에서 3시간 동안 교반 하였다. 이 후 헥실티오펜(hexylthiophene) 0.1ml를 첨가한 후, 상온으로 쿨링한 후 4배의 부피비의 아세톤을 투입하여 침전시키고, 이어서 원심분리기로 2000rpm으로 20분간 가동하여 침전 분리하였다. 이어서 얻어진 고체를 아세톤과 물을 3:1로 혼합한 용매로 워싱한후 동일한 조건으로 원심분리하여 은나노와이어를 제조하였다. 제조된 은 나노와이어의 SEM사진은 도 4에 나타내었다.After preparing a solution of 0.0004 g of PtCl 2 in 10 ml of ethylene glycol, a solution of 1 g of AgNO 3 in 50 ml of ethylene glycol, and an ethylene glycol solution of 0.5 g of polyaniline in 100 ml, they were mixed and mixed at 3O at 160 ° C. Stirred for hours. Thereafter, 0.1 ml of hexylthiophene was added, and after cooling to room temperature, four times the volume ratio of acetone was added thereto to precipitate, followed by precipitation at 20 rpm using a centrifuge for 20 minutes. Subsequently, the obtained solid was washed with a solvent in which acetone and water were mixed 3: 1, and then centrifuged under the same conditions to prepare silver nanowires. SEM photographs of the prepared silver nanowires are shown in FIG. 4.

은 나노입자의 제조Preparation of Silver Nanoparticles

AgNO3 0.2g과 올레일아민(oleylamine) 0.8g을 톨루엔 5ml에 투입하여 교반하면서 온도를 70℃로 올리며, 헥실티올(hexylthiol) 0.05ml를 첨가하면서 2시간 리플럭스(reflux)하였다. 이어서 페닐히드라진 0.15g을 2.5ml 톨루엔에 혼합한 용액을 서서히 첨가한 후 1시간 동안 추가 반응을 실시하였다. 반응물을 아세톤/에탄올 1:1 혼합한 혼합용액 50ml을 이용하여 워싱하고 얻어진 입자를 톨루엔에 분산하여 TEM을 측정한 결과 평균 3.5nm의 입자가 제조되었으며 이를 도 5에 나타내었다.0.2 g of AgNO 3 and 0.8 g of oleylamine were added to 5 ml of toluene, the temperature was raised to 70 ° C. while stirring, and reflux was performed for 2 hours while adding 0.05 ml of hexylthiol. Subsequently, a solution in which 0.15 g of phenylhydrazine was mixed with 2.5 ml toluene was slowly added, followed by further reaction for 1 hour. Washing the reaction using 50 ml of acetone / ethanol 1: 1 mixed solution and the obtained particles were dispersed in toluene to measure the TEM resulted in an average of 3.5nm particles were shown in FIG.

도전성 잉크의 제조Preparation of Conductive Ink

5중량%의 폴리아닐린이 용해된 이소프로필알콜용액: 은나노입자 :은와이어입자를 5:2:1의 중량비로 혼합하여 도전성 잉크를 제조하였다. 상기 잉크를 이용하여 IE3D 프로그램을 이용하여 인쇄공정을 이용하여 평평한 박막 유전체고분자 필름의 앞뒤에 회로를 프린팅하여 원하는 공진주파수를 얻기 위하여 L값과 C값을 인쇄를 통하여 손쉽게 도 1 내지 도 2와 같이 a,b 길이를 변화시켜 도 6에 도시한 인쇄 공정으로 제조하였으며, 제조된 도전막의 조직은 SEM을 통하여 관찰한 결과 매우 조밀하고 밀도가 높은 막이 형성되었음을 도 8을 통하여 알 수 있었다. 그 실험결과를 아래 표 1에 기재한 바와 같이, L값은 인쇄하는 회로의 길이로 제어하면 L 값의 중앙을 손쉽게 제어할 수 있으며, C 값은 인쇄되는 캐패시터의 면적을 제어하며 증감을 제어하였다.Isopropyl alcohol solution in which 5% by weight of polyaniline was dissolved: silver nanoparticles: silver wire particles were mixed at a weight ratio of 5: 2: 1 to prepare a conductive ink. By printing the circuit on the front and back of the flat thin film dielectric polymer film using the printing process using the IE3D program using the ink, L and C values are easily printed through printing to obtain a desired resonance frequency. The length of a and b was changed to prepare the printing process shown in FIG. 6, and the structure of the prepared conductive film was observed through SEM, and it can be seen from FIG. 8 that a very dense and dense film was formed. As shown in Table 1 below, the L value can be easily controlled by controlling the length of the printed circuit, while the C value controls the area of the printed capacitor and controls the increase and decrease. .

[표 1] L 및 C 값의 변화에 따른 특성변화[Table 1] Characteristic change according to the change of L and C values

Figure 112006057812216-pat00001
Figure 112006057812216-pat00001

분석 결과, 인쇄된 회로 저항은 Q 값에만 영향을 주고 공진주파수를 변화시키지는 않는 것으로 나타났고, L값과 C값이 증가함에 따라 공진주파수가 낮아지는 경향을 보였다. 인쇄된 1 Bit RF Tag를 도 7에 도시하였고 측정된 대표적인 공진 주파수를 도 8에 도시하였다.As a result, the printed circuit resistance only affects the Q value and does not change the resonant frequency. As the L and C values increase, the resonant frequency tends to decrease. The printed 1 Bit RF Tag is shown in FIG. 7 and the representative resonant frequencies measured are shown in FIG. 8.

또한 L값 과 C값의 적합한 혼합을 통하여 2bit 공진 RF 태그를 인쇄 제조한 Tag를 도 9에 도시 하였고 L 및 C 값의 증감에 따른 물성의 결과를 아래 표 2에 수록하였다.In addition, a tag manufactured by printing a 2-bit resonant RF tag through proper mixing of L and C values is shown in FIG. 9, and the results of physical properties according to the increase and decrease of L and C values are shown in Table 2 below.

[표 2] L 및 C 값의 변화에 따른 1,2차 공진 주파수 특성변화[Table 2] Characteristics of 1st and 2nd Resonant Frequency with Changes of L and C Values

Figure 112006057812216-pat00002
Figure 112006057812216-pat00002

도 2에 설계된 회로에 의거하여 RF Tag를 인쇄하면 공진 주파수가 서로 다른 두 영역에서 나타나며 이를 1차 및 2차 공진 주파수라 부른다. 도 2 에 설계된 대로 인쇄된 RF Tag(도 9)가 지닌 두 공진 주파수를 측정 도시 하였다(도 10).When the RF Tag is printed based on the circuit designed in FIG. 2, the resonant frequencies appear in two different regions, which are called primary and secondary resonant frequencies. As shown in FIG. 2, two resonance frequencies of the printed RF tag (FIG. 9) are measured (FIG. 10).

또한 상기 2 bit RF 태그는 1차 공진 주파수와 2차 공진 주파수를 이용하여 하기 표 3과 같이 2bit RF 태그로 사용이 가능 하였다.In addition, the 2 bit RF tag was able to be used as a 2 bit RF tag using the primary resonance frequency and the secondary resonance frequency as shown in Table 3 below.

[표 3] 1,2차 공진 주파수 활성화 또는 비활성화 조합에 따른 메모리 구축예[Table 3] Example of memory construction according to combination of 1st and 2nd resonant frequency activation or deactivation

Figure 112006057812216-pat00003
Figure 112006057812216-pat00003

이 때 1차 및 2차 공진 주파수를 인쇄공정을 통해 활성 또는 비활성화시켜 도시한 것과 같이 상기 표 3과 같이 4 바이트의 메모리 효과를 나타내도록 제조할 수 있다. At this time, the primary and secondary resonant frequencies may be manufactured or activated through a printing process to show a memory effect of 4 bytes as shown in Table 3 as shown.

이와 같은 1bit 또는 2bit RF 태그는 도 12에 도시한 것과 안테나와 리더기의 동작원리를 통하여 물건의 입출입을 모니터링 하는데 사용할 수 있어 물류 관리 및 도둑방지용 전자 태그로 사용이 가능하다. 1 bit 또는 2 bit RF Tag는 도 12에 도시한 바와 같이 트랜스미터의 안테나를 통해 전파되는 에너지, 즉 8.2 MHz(1 bit) 또는 12 MHz 와 25 MHz (2 bit)가 태그의 공진회로와 공진되어 리시버의 센서 코일을 통해 리시버에 공진된 부분만큼 변이가 일어나 리시버에서 공진에 의해 변화된 RF 변화정도를 리시버에서 읽어 활성 또는 비활성에 따라 안테나 영역 내에서 물건의 존재여부를 감지 할 수 있다.Such a 1bit or 2bit RF tag can be used to monitor the entry and exit of goods through the operation principle of the antenna and reader as shown in Figure 12 can be used as an electronic tag for logistics management and theft prevention. As shown in FIG. 12, a 1 bit or 2 bit RF Tag has energy transmitted through an antenna of a transmitter, that is, 8.2 MHz (1 bit) or 12 MHz and 25 MHz (2 bit) are resonated with the tag's resonant circuit. As the sensor coil of the sensor changes as much as the resonant part of the receiver, the receiver can read the degree of change of RF changed by resonance in the receiver and detect the presence of an object in the antenna area depending on the active or inactive.

한편, 상용화된 1 - 5 um크기의 은 플레이크를 이용한 그라비아 잉크는 인쇄후 50 - 30 옴/sq 나타내는 반면, 본 발명의 상기 실시예의 은나노입자만을 사용하여 제조한 도전성잉크를 이용하여 인쇄한 회로의 저항은 10 - 5 옴/sq 였는데, 특 히 본 발명에서 은나노입자와 은나노와이어를 1:2로 혼합한 도전성 잉크를 이용한 회로의 저항은 0.1 옴/sq로서 은나노입자와 은나노와이어를 혼합한 인쇄회로의 저항이 매우 낮은 것을 볼 때, 입자간의 공극이 많은 은나노입자 만을 사용하는 경우가 저항이 높음을 알 수 있었다.On the other hand, the gravure ink using commercially available 1-5 um silver flakes shows 50-30 ohms / sq after printing, while the circuit printed using the conductive ink prepared using only the silver nanoparticles of the above embodiment of the present invention. The resistance was 10-5 ohms / sq. In the present invention, the resistance of the circuit using a conductive ink in which silver nanoparticles and silver nanowires are mixed 1: 2 is 0.1 ohms / sq, and the printed circuit in which silver nanoparticles and silver nanowires are mixed. It was found that the resistance is high when only silver nanoparticles with many voids between particles are used.

본 발명을 통해 개발된 도전성 복합 잉크는 도전성 잉크에 주로 사용하는 100 - 200 nm 크기의 플레이크 나노실버입자가 지닌 계면간 저항의 한계를 5 nm이하의 금속 나노입자(금 또는 실버 등)와 은나노와이어를 이용해 극소화시켜 인쇄 후 전기 저항을 동박 수준인 0.1 옴/sq 으로 낮출 수 있어 RFID용 안테나 인쇄 및 PCB 기판 인쇄, 전극인쇄의 응용뿐만 아니라, 본 발명에서 개발한 공진회로를 이용한 RF Tag를 1X1에서 7X7 cm2 크기와 2 bit이상의 RF Tag로 사용이 가능하도록 손쉽게 인쇄가 가능하다. 이러한 RF tag 인쇄는 기존의 동박 및 알루미늄박의 에칭을 통해 제조되었던 1 bit RF Tag에 비해 가격최소화, 효율성극대화 및 응용분야가 확장되어, 기존의 도둑 방지 뿐만 아니라 4개 이하의 물품 전문 도매상의 물품관리에서 위조 여권, 위폐, 짝퉁 명품 방지에까지 응용이 가능하다. The conductive composite ink developed through the present invention has a limit of the interfacial resistance of flake nanosilver particles having a size of 100-200 nm, which is mainly used in conductive inks, of metal nanoparticles (such as gold or silver) and silver nanowires of 5 nm or less. After minimizing, the electrical resistance after printing can be lowered to 0.1 ohm / sq, which is the same level of copper foil. It can be printed easily so that it can be used with 7X7 cm 2 size and 2 bit or more RF Tag. This RF tag printing is more cost-effective, maximizes efficiency, and expands the field of application than conventional 1-bit RF tags manufactured by etching copper and aluminum foil. Application is possible from management to counterfeit passport, counterfeit, counterfeit luxury goods.

Claims (8)

도전성 금속나노입자를 함유하는 면저항 10 옴/sq 이하의 도전성 잉크를 기판상에 인쇄하여 제조하는 것을 특징으로 하는 LC공진칩의 제조방법.A method of manufacturing an LC resonant chip, comprising printing a conductive ink having a sheet resistance of 10 ohms / sq or less containing conductive metal nanoparticles on a substrate. 제 1항에 있어서,The method of claim 1, 상기 인쇄는 스크린, 잉크젯, 및 그라비아 프린팅방법으로 인쇄하는 것을 특징으로 하는 LC공진칩의 제조방법.The printing method of the LC resonant chip, characterized in that printed by screen, inkjet, and gravure printing method. 제 2항에 있어서,       The method of claim 2, 상기 도전성 잉크는 전도성고분자, 폴리아닐린, PEDOT (Poly(ethylenedioxythiophene) 또는 폴리 피롤을 더 함유하는 것을 특징으로 하는 LC 공진칩의 제조방법. The conductive ink is a conductive polymer, polyaniline, PEDOT (Poly (ethylenedioxythiophene) or polypyrrole manufacturing method characterized in that it further comprises a polypyrrole. 제 2항에 있어서, The method of claim 2, 상기 도전성 금속나노입자는 금속나노입자와 금속나노와이어의 혼합물인 것을 특징으로 하는 LC공진칩의 제조방법. The conductive metal nanoparticles is a method of manufacturing an LC resonant chip, characterized in that the mixture of metal nanoparticles and metal nanowires. 제 4항에 있어서, The method of claim 4, wherein 상기 도전성 잉크는 면저항 0.1 옴/sq 이하인 것을 특징으로 하는 LC공진칩의 제조방법.And the conductive ink has a sheet resistance of 0.1 ohms / sq or less. 삭제delete 삭제delete 삭제delete
KR1020060076601A 2006-08-14 2006-08-14 A method for low-cost preparation of 1bit or 2bit RF tag using printing process KR100818914B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060076601A KR100818914B1 (en) 2006-08-14 2006-08-14 A method for low-cost preparation of 1bit or 2bit RF tag using printing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060076601A KR100818914B1 (en) 2006-08-14 2006-08-14 A method for low-cost preparation of 1bit or 2bit RF tag using printing process

Publications (2)

Publication Number Publication Date
KR20080015198A KR20080015198A (en) 2008-02-19
KR100818914B1 true KR100818914B1 (en) 2008-04-04

Family

ID=39383788

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060076601A KR100818914B1 (en) 2006-08-14 2006-08-14 A method for low-cost preparation of 1bit or 2bit RF tag using printing process

Country Status (1)

Country Link
KR (1) KR100818914B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8072330B1 (en) * 2004-04-14 2011-12-06 Smartguard, Llc Hard cover product with concealed printed security device
KR100979992B1 (en) * 2008-05-14 2010-09-03 (주) 파루 RFID Tag circuit and Manufacturing process the same, using Roll to Roll printing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010075991A (en) * 2000-01-22 2001-08-11 유종근 A New Damping Circuit With a Constant Damping Rate for RFID Applications

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010075991A (en) * 2000-01-22 2001-08-11 유종근 A New Damping Circuit With a Constant Damping Rate for RFID Applications

Also Published As

Publication number Publication date
KR20080015198A (en) 2008-02-19

Similar Documents

Publication Publication Date Title
Xu et al. Controllably degradable transient electronic antennas based on water-soluble PVA/TiO2 films
Kim et al. Use of copper ink for fabricating conductive electrodes and RFID antenna tags by screen printing
Sanchez-Romaguera et al. Towards inkjet-printed low cost passive UHF RFID skin mounted tattoo paper tags based on silver nanoparticle inks
Perelaer et al. Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials
KR101963801B1 (en) conductive ink composition, method for manufacturing the same and method for manufacturing conductive thin layer using the same
Cook et al. Inkjet catalyst printing and electroless copper deposition for low-cost patterned microwave passive devices on paper
TWI620215B (en) Fractional order capacitor
US7297423B2 (en) Printed circuit board
EP1788040B1 (en) Insulated ultrafine powder and high dielectric constant resin composite material
JP2013144829A (en) Dendritic metal powder, and conductive paste, electromagnetic wave shielding material and heat dissipating material containing dendritic metal powder, as well as method for manufacturing dendritic metal powder
Das et al. Printable electronics: Towards materials development and device fabrication
Hong et al. Antioxidant high-conductivity copper paste for low-cost flexible printed electronics
Raj et al. Novel nanomagnetic materials for high-frequency RF applications
CN105358640B (en) The manufacturing method of conductive film formation composition and conductive film
Khinda et al. Flexible inkjet-printed Patch antenna array on mesoporous PET substrate for 5G applications with stable RF performance after mechanical stress cycling
KR100818914B1 (en) A method for low-cost preparation of 1bit or 2bit RF tag using printing process
KR101140270B1 (en) Electroconductive silver nano particle composite, ink and method for preparing the same
JP2008097949A (en) Conductive paste
Mohassieb et al. Effect of silver nanoparticle ink drop spacing on the characteristics of coplanar waveguide monopole antennas printed on flexible substrates
Bobinger et al. On the sintering of solution-based silver nanoparticle thin-films for sprayed and flexible antennas
GB2533782A (en) Method of manufacturing conductive ink composition, antenna structure, and antenna for RFID tag
KR101082658B1 (en) Insulated ultrafine powder, process for producing same and resin composite material with high dielectric constant using same
Mohassieb et al. Inkjet printing of a 20 GHz coplanar waveguide monopole antenna using copper oxide nanoparticles on flexible substrates: effect of drop spacing on antenna performance
EP3591012A1 (en) Conductive ink for use in manufacturing radio frequency identification (rfid) tag antenna and method for manufacturing rfid tag antenna
CN110544818A (en) Conductive ink composition for manufacturing antenna of radio frequency identification tag and manufacturing method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130318

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140127

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20160307

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170306

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180313

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190327

Year of fee payment: 12