KR100800550B1 - Method of recycle water treatment with fluidized biofilm media for wastewater treatment - Google Patents

Method of recycle water treatment with fluidized biofilm media for wastewater treatment Download PDF

Info

Publication number
KR100800550B1
KR100800550B1 KR20070018449A KR20070018449A KR100800550B1 KR 100800550 B1 KR100800550 B1 KR 100800550B1 KR 20070018449 A KR20070018449 A KR 20070018449A KR 20070018449 A KR20070018449 A KR 20070018449A KR 100800550 B1 KR100800550 B1 KR 100800550B1
Authority
KR
South Korea
Prior art keywords
treatment process
water
tank
media
sludge
Prior art date
Application number
KR20070018449A
Other languages
Korean (ko)
Inventor
이철
김현배
안동근
남해욱
고주형
윤주환
Original Assignee
주식회사 포스코건설
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코건설 filed Critical 주식회사 포스코건설
Priority to KR20070018449A priority Critical patent/KR100800550B1/en
Application granted granted Critical
Publication of KR100800550B1 publication Critical patent/KR100800550B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/08Aerobic processes using moving contact bodies
    • C02F3/085Fluidized beds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/105Characterized by the chemical composition
    • C02F3/108Immobilising gels, polymers or the like
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/109Characterized by the shape
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1205Particular type of activated sludge processes
    • C02F3/1215Combinations of activated sludge treatment with precipitation, flocculation, coagulation and separation of phosphates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1205Particular type of activated sludge processes
    • C02F3/1221Particular type of activated sludge processes comprising treatment of the recirculated sludge
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/308Biological phosphorus removal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

A method for treatment of recycle water using a fluidized media in the wastewater treatment process is provided to secure high nitritation ratio stably, enable the fluidized media to be applied to recycle water containing suspended solids at a high concentration, and enable a recycle water-treating operation to be performed stably in a wide concentration range of dissolved oxygen. A method for treatment of recycle water using a fluidized media in the wastewater treatment process comprises: a first settling process of flowing wastewater into a first settling tank(10) to settle the wastewater; a microorganism treatment process of sequentially performing the steps of emitting phosphorous contained in raw water in an anaerobic tank(20), denitrifying nitrates in an anoxic tank(30), and oxidizing and nitrifying organic matters and accumulating phosphorous in an aerobic tank(40); a second settling process of settling the microorganism treated effluent in a second settling tank(50); a sludge return process of returning some of settled microorganisms to the anaerobic tank of the microorganism treatment process; a sludge treatment process of concentrating, digesting and dewatering sludge excluded in the sludge return process; and a recycle water treatment process of injecting a fluidized media, which is a waste tire-processed carrier or a sponge type polyurethane media, into recycle water of concentrated supernatant, digested supernatant and separated liquid, thereby accelerating nitritation of the recycle water to return the recycle water to the anoxic tank.

Description

유동상 메디아를 이용한 하수처리공정의 반류수 처리방법{Method of Recycle Water Treatment with Fluidized Biofilm Media for Wastewater Treatment}Method of Recycle Water Treatment with Fluidized Biofilm Media for Wastewater Treatment

도 1은 종래의 하수처리공정을 나타내는 개략도1 is a schematic view showing a conventional sewage treatment process

도 2는 본 발명의 유동상 메디아를 이용한 하수처리공정의 반류수 처리방법을 나타내는 개략도Figure 2 is a schematic diagram showing the method of treatment of semi-reflux of sewage treatment process using the fluidized bed media of the present invention

도 3은 본 발명의 유동상 메디아를 이용한 하수처리공정의 반류수 처리공정 이후 유입수 및 유출수의 질소 농도변화를 나타내는 그래프 Figure 3 is a graph showing the nitrogen concentration change of the influent and effluent after the semi-water treatment process of the sewage treatment process using the fluidized bed media of the present invention

도 4는 본 발명의 유동상 메디아를 이용한 하수처리공정의 반류수 처리공정의 아질산율의 변화를 나타내는 그래프 Figure 4 is a graph showing the change in the nitrite rate in the countercurrent treatment of sewage treatment process using the fluidized bed media of the present invention

도 5는 본 발명의 유동상 메디아를 이용한 하수처리공정의 반류수 처리공정의 산소 소모율을 나타내는 그래프 5 is a graph showing the oxygen consumption rate of the semi-water treatment process of the sewage treatment process using the fluidized bed media of the present invention

도 6은 본 발명의 유동상 메디아를 이용한 하수처리공정의 용존산소 농도에 따른 아질산염 분포를 나타내는 그래프6 is a graph showing the nitrite distribution according to the dissolved oxygen concentration of the sewage treatment process using the fluidized bed media of the present invention

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

10: 1차 침전조 20: 혐기조10: primary sedimentation tank 20: anaerobic tank

30: 무산소조 40: 호기조30: anoxic tank 40: aerobic tank

50: 2차 침전조 60a: 농축조 50: secondary precipitation tank 60a: concentration tank

60b: 소화조 60c: 탈수조60b: digester 60c: dehydration tank

70: 반류수 처리조70: return water treatment tank

본 발명은 유동상 메디아를 이용한 하수처리공정의 반류수 처리방법에 관한 것으로서, 더욱 상세하게는 반류수를 아질산화시키는 공정에 유동상 메디아를 적용함으로써 높은 아질산화율을 안정적으로 확보하며, 넓은 용존산소(DO) 농도 범위에서 안정적 운전이 가능하고, 부유물질을 고농도로 함유한 반류수에도 적용 가능한 유동상 메디아를 이용한 하수처리공정의 반류수 처리방법에 관한 것이다.The present invention relates to a method of treating the sewage water of a sewage treatment process using fluidized media, and more particularly, by applying fluidized media to the process of nitridizing the semi-refluxed water, it is possible to stably secure a high nitrous oxidation rate and a wide range of dissolved oxygen ( DO) The present invention relates to a method for treating sewage treatment in a sewage treatment process using fluidized media, which can be operated stably in a concentration range and can be applied to sewage containing a high concentration of suspended solids.

일반적으로, 하수처리공정은 도 1에 나타낸 바와 같이 유입하수를 1차침전 후에 혐기조(An), 무산소조(Ax), 호기조(Ox)로 구성되는 미생물반응조에서 미생물을 이용하여 처리시킨 후에 다시 2차 침전지에서 침전 방류하는 방법을 택하고 있다. 미생물반응조에서 생산된 미생물을 슬러지(sludge)라고 하며, 2차 침전조에서 침전된다. 침전된 슬러지는 일부 미생물반응조로 순환되고, 일부는 방출되어 농축, 소화, 탈수과정을 거쳐 처리되는데, 이러한 슬러지 처리과정에서 생산되는 농축상 징액, 소화상징액, 탈리액 등의 반류수(Reject Water 또는 Recycle Water)는 통상 1차 침전조로 반송되고 있다.In general, the sewage treatment process is performed in the microbial reaction tank consisting of anaerobic tank (An), anoxic tank (Ax), and aerobic tank (Ox) after the first settling as shown in FIG. The sedimentation basin is discharged. The microorganisms produced in the microbial reactor are called sludge and are precipitated in the secondary settling tank. Precipitated sludge is circulated to some microbial reaction tanks, and some are discharged and processed through concentration, digestion, and dehydration.Recharged water such as concentrated water, digestive supernatant, and desorption liquid produced during such sludge treatment (Reject Water or Recycle) Water) is usually returned to the primary precipitation tank.

한편, 이와 같은 슬러지 처리 흐름에서 수처리공정으로 반송되는 반류수는 유량에 비하여 질소농도가 높아 처리장 설계와 운전에 있어서 큰 문제점으로 지적되고 있다. On the other hand, the return water returned to the water treatment process in the sludge treatment flow has a high nitrogen concentration compared to the flow rate, which is pointed out as a big problem in the design and operation of the treatment plant.

상기 반류수의 발생유량은 유입유량 대비 평균 1~3% 이내이나, 유기물(BOD; Biological Oxygen Demand, 생물학적 산소요구량) 및 영양소(N, P)부하 증가는 유입부하 대비 20~30%에 달한다. 특히, 농축조, 소화조 및 탈수조는 설계와 운전상의 문제점이 복합적으로 작용하여 고농도의 반류수를 간헐적으로 수처리계통으로 반류시키고 있기 때문에 하수처리공정의 안정적 운전을 가로막는 큰 장애 요인이 되고 있다. The flow rate of the return water is within an average of 1 to 3% compared to the inflow flow, but the increase in organic matter (BOD; Biological Oxygen Demand, biological oxygen demand) and nutrient (N, P) load is 20 to 30% compared to the inflow load. In particular, the concentration tank, the digester and the dehydration tank are combined with the problems of design and operation, and the high concentration of return water is intermittently returned to the water treatment system, which is a major obstacle to the stable operation of the sewage treatment process.

이와 같은 수처리공정에 대한 영향을 분석하면, 반류수에 의해 BOD 10~41%, 부유물질 20~61%, 총 질소(N) 21~47%, 총 인(P) 21~46% 정도의 부하가 증가하였고, 반류수 발생원별 부하증가를 비교해 보면 소화조 상징액이 유량에 비하여 부하증가 유발요인이 가장 큰 것으로 나타났다. Analysis of the effect on the water treatment process shows that BOD 10-41%, suspended solids 20-61%, total nitrogen (N) 21-47% and total phosphorus (P) 21-46% The increase in load by the source of the return water showed that the digester supernatant was the most influential factor of the load increase compared to the flow rate.

이러한 반류수가 수처리계통에 유입됨으로써 유기물 및 질소 부하를 순간적으로 크게 증가시키게 된다. 특히 질소 부하가 급격히 증가하면, 제한된 처리시간 동안에 충분히 제거되지 못하고, 유출수를 통해 방류되고 만다. 따라서 유출수질이 심각하게 저해될 수 있다.As the reflux water flows into the water treatment system, the organic matter and nitrogen loads are momentarily increased. In particular, if the nitrogen load increases rapidly, it is not sufficiently removed during the limited treatment time and is discharged through the effluent. Therefore, runoff quality can be seriously impaired.

본 발명은 상기한 종래의 문제점을 개선하기 위하여 안출된 것으로서, 반류수 처리공정의 운전 안정성과 질소 제거 효율을 향상시키기 위해 반류수를 아질산화시키는 공정에 유동상 메디아를 적용함으로써 높은 아질산화율을 안정적으로 확보하고, 부유물질을 고농도로 함유한 반류수에도 적용 가능하고, 넓은 용존산소(DO) 농도 범위에서 안정적 운전이 가능한 유동상 메디아를 이용한 하수처리공정의 반류수 처리방법을 제공하는데 그 목적이 있다.The present invention has been made to improve the above-mentioned problems, and by applying a fluidized media to the process of nitridizing the effluent to improve the operating stability and nitrogen removal efficiency of the effluent treatment process, the high nitrite oxidation rate is stably maintained. The aim is to provide a method for treating sewage treatment in sewage treatment processes using fluidized media that can be secured, applicable to reflux water containing a high concentration of suspended solids, and capable of stable operation over a wide range of dissolved oxygen (DO) concentrations. .

상기한 목적을 달성하기 위한 수단으로서, 본 발명의 유동상 메디아를 이용한 하수처리공정의 반류수 처리방법은, 하수를 1차침전조로 유입시켜 침전시키는 1차 침전공정과 상기 1차 침전공정 이후 혐기조에서 처리수 내의 인(P)을 방출하고, 무산소조에서 질산염을 탈질하며, 호기조에서 유기물의 산화, 질산화 및 인을 축적하는 순서로 미생물처리하는 미생물처리공정과 상기 미생물처리된 방출수를 2차침전조에서 침전시키는 2차 침전공정과 상기 2차 침전공정 후의 침전미생물의 일부를 상기 미생물처리공정 중의 혐기조로 반송하는 슬러지 반송공정과 상기 슬러지 반송공정에서 제외된 슬러지의 농축 및 소화시켜 탈수하는 슬러지 처리공정 및 상기 슬러지 처리공정에서 발생되는 농축상징액, 소화상징액, 탈리액의 반류수에 유동상 메디아(media)를 투입하여 상기 반류수의 아질산화를 촉진시켜 무산소조로 반송시키는 반류수 처리공정을 포함하여 이루어진 것을 특징으로 한다.As a means for achieving the above object, the semi-treatment treatment method of the sewage treatment process using the fluidized bed media of the present invention, the first precipitation step to precipitate sewage flow into the primary sedimentation tank and the anaerobic tank after the first precipitation process Releases phosphorus (P) in the treated water, denitrates the nitrates in the anoxic tank, and microbial treatment process in order to oxidize, nitrify and accumulate the organics in the aerobic tank, and the secondary microprecipitation tank Sludge conveying step of returning to the anaerobic tank in the microbial treatment step and the secondary precipitation step of precipitating in the microbial treatment step and sludge treatment step of dewatering and digesting the sludge removed from the sludge returning step And fluidized media (media) in the condensate of the concentrated supernatant, digestive supernatant, and desorption liquid generated in the sludge treatment process. It is characterized in that it comprises a semi-water treatment process to add and promote the nitrous oxidation of the counter-current to be returned to the oxygen-free tank.

바람직하게, 상기 반류수의 부유물질 농도가 18,000mg/L 이내인 것을 특징으로 한다.Preferably, the suspended solids concentration of the reflux water is characterized in that less than 18,000mg / L.

상술한 목적, 특징들 및 장점은 첨부된 도면과 관련한 다음의 상세한 설명을 통하여 보다 분명해 질 것이다. 우선 각 도면의 구성요소들에 참조 번호를 부가함에 있어서, 동일한 구성요소들에 한해서는 비록 다른 도면상에 표시되어 있더라도 가능한 한 동일한 번호를 가지도록 하고 있음에 유의하여야 한다.The above objects, features and advantages will become more apparent from the following detailed description taken in conjunction with the accompanying drawings. First, in adding reference numerals to the components of each drawing, it should be noted that the same components as much as possible, even if shown on the other drawings.

이하, 본 발명의 바람직한 실시예를 첨부된 도면을 참고로 하여 상세히 설명하면 다음과 같다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 2는 본 발명의 하수처리공정의 반류수 처리방법을 나타내는 개략도이다.Figure 2 is a schematic diagram showing the semi-waste treatment method of the sewage treatment process of the present invention.

도면에 나타낸 바와 같이, 본 발명의 하수처리공정의 반류수 처리방법은, 1차 침전공정→ 미생물처리공정→ 2차 침전공정→ 슬러지 반송공정→ 슬러지 처리공정→ 반류수 처리공정으로 이루어진 종래의 반류수 처리방법에 있어서, 상기 반류수 처리공정은, 상기 슬러지 처리공정에서 발생되는 농축상징액, 소화상징액, 탈리액 등의 반류수를 아질산화 처리하여 무산소조로 반송되도록 이루어진다.As shown in the figure, the countercurrent treatment method of the sewage treatment process of the present invention includes a conventional reflux process consisting of a primary precipitation step → a microbial treatment step → a secondary precipitation step → a sludge conveyance step → a sludge treatment step → a countercurrent water treatment step. In the water treatment method, the reflux water treatment step is carried out by nitrous oxidation of the reflux water, such as the concentrated supernatant, the digestive supernatant, and the desorption liquid generated in the sludge treatment step, to be returned to the anoxic tank.

이에 대해 후술되는 실시예를 참고로 보다 구체적으로 살펴보면 다음과 같다. Looking at this in more detail with reference to the embodiment described below as follows.

<실시예><Example>

1차 침전공정: 하수처리장의 하수를 1차침전조(10)에 유입시켜 하수내의 부유 고형물질을 침전시킨 다음 처리수를 미생물처리공정 중의 혐기조(20)로 방출한다.Primary sedimentation process: The sewage from the sewage treatment plant is introduced into the primary sedimentation tank 10 to precipitate suspended solids in the sewage, and then the treated water is discharged into the anaerobic tank 20 during the microbial treatment process.

미생물처리공정: 혐기조(20)와 무산소조(30) 및 호기조(40)로 구성된 미생물반응조에 1차침전조(10)를 통과한 처리수를 유입시켜 질소(N), 인(P) 및 유기물질을 제거한다. Microbial treatment process: Nitrogen (N), phosphorus (P) and organic substances are introduced by introducing the treated water passing through the primary settling tank (10) into the microbial reaction tank consisting of anaerobic tank (20), anoxic tank (30) and aerobic tank (40). Remove

즉, 상기 1차 침전공정 이후 혐기조에서 인(P)을 방출하고 무산소조(30)에서 질산염을 탈질하며, 호기조(40)에서 유기물의 산화, 질산화, 인을 축적하는 순서로 미생물처리한다.That is, after the first precipitation process, phosphorus (P) is released from the anaerobic tank, the nitrate is denitrated in the anoxic tank 30, and the microorganism is treated in the order of oxidizing, nitrifying, and accumulating organic matter in the aerobic tank 40.

2차 침전공정: 상기 미생물처리공정에서 생산된 미생물을 2차침전조(50)에 침전시켜 제거하고, 이때, 침전된 미생물(슬러지)의 일부는 미생물처리공정 중의 혐기조(20)로 반송시키고 나머지 슬러지는 상기 1차 침전조(10)로부터 방출된 슬러지와 함께 농축, 소화 및 탈수 공정을 거쳐 처리한다.Secondary precipitation process: the microorganisms produced in the microbial treatment process is precipitated and removed in the secondary settling tank 50, at which time, a part of the precipitated microorganisms (sludge) is returned to the anaerobic tank 20 in the microbial treatment process and the remaining sludge Is treated with a sludge discharged from the primary settling tank 10 through a concentration, digestion and dehydration process.

반류수 처리 공정: 상기 슬러지 처리공정에서 발생되는 농축상징액, 소화상징액, 탈리액 등의 반류수 내 암모니아성 질소(NH4 +-N)를 아질산염(NO2 --N)으로 전환시켜 무산소조(30)로 반송시킨다.Hemi-water treatment process: ammonia tank (30) by converting ammonia nitrogen (NH 4 + -N) in the effluent water such as concentrated supernatant, digestive supernatant, desorption liquid generated in the sludge treatment process to nitrite (NO 2 -- N) Return to

한편, 상기 반류수 처리공정에는 유동상 메디아(media)를 투입하여 반류수 내 질소의 아질산화 반응을 촉진시키는 작용을 하는 미생물이 충분히 성장하도록 한다.  On the other hand, the reflux water treatment process is introduced into the fluidized media (media) so that the microorganisms that act to promote the nitrous oxidation reaction of nitrogen in the reflux water is sufficiently grown.

이와 같은 공정에 대해 구체적으로 설명하면, 일반적으로 하수처리 시에 사용되는 메디아(담체)는 처리수 내의 미생물 농도을 높여 생물막을 형성함으로써 처리수에 대한 탈질작용을 한다. Specifically, the media (carrier) generally used in sewage treatment increases the concentration of microorganisms in the treated water to form a biofilm, thereby denitrifying the treated water.

또한, 이러한 미생물에 의해 형성된 생물막에서는, 반류수 내에 포함된 질소와 반응하여 질소를 아질산화시키는 반응을 한다. Further, in the biofilm formed by such microorganisms, the reaction is carried out by reacting with nitrogen contained in the countercurrent to nitrousize nitrogen.

즉, 메디아는 그 비중에 따라, 물보다 가벼운 비중을 갖는 유동상 메디아와 물보다 무거운 비중을 갖는 고정층 메디아로 나눌 수 있는데, 상기 고정층 메디아는 일반적으로 무산소조 내부에 고정되어 사용되는 것으로, 미생물 성장과정 시 상기 무산소조 내에 슬러지가 축적됨으로써, 처리수의 유동경로가 폐쇄되어 원활한 처리수의 유동을 확보하기 어려운 문제점이 있다. 또한, 슬러지가 고정층 메디아에 표면에 축적되어 미생물의 성장을 저해하는 요인으로 작용하게 된다.That is, according to the specific gravity, the media can be divided into a fluidized bed media having a lighter specific gravity and a fixed bed media having a heavier specific gravity than the water. The fixed bed media is generally fixed and used inside an anaerobic tank, and the microbial growth process. When sludge accumulates in the anoxic tank, the flow path of the treated water is closed, which makes it difficult to ensure a smooth flow of the treated water. In addition, the sludge accumulates on the surface of the fixed-bed media and acts as a factor that inhibits the growth of microorganisms.

따라서, 본 발명에서와 같이, 반류수 처리공정 시에 투입되는 메디아는, 반류수 내에서 부유되면서 미생물을 성장시켜 처리수의 원활한 흐름을 유지할 수 있는 유동상 메디아를 적용함으로써, 반류수에 대한 아질산화를 시키는 것이다. Therefore, as in the present invention, the media to be introduced during the treatment of the water is treated with fluidized media that can maintain the smooth flow of the treated water by growing microorganisms while floating in the water, thereby allowing nitrous acid to react with the nitrous acid. It is anger.

특히, 상기 유동상 메디아는, 통상의 플라스틱 바이오필름 캐리어(plastic biofilm carrier)가 적용될 수 있으나, 이는 표면이 메끄러워 미생물이 표면에 성장하는 데 많은 시간이 필요하므로, 단시간에 미생물의 성장이 용이하도록 폐타이어를 가공한 담체 또는 폴리우레탄 재질의 스폰지형 메디아가 적용되어 거친 메디아 표면에 미생물의 성장을 용이하도록 한다.In particular, the fluidized-bed media may be applied with a conventional plastic biofilm carrier, but since the surface is smooth and requires much time for the microorganisms to grow on the surface, the microorganisms may be easily grown in a short time. Spongy media made of a carrier or polyurethane material with waste tires are applied to facilitate the growth of microorganisms on the rough media surface.

이와 같은 유동상 메디아는, 비중이 물보다 작기 때문에 생물막이 형성된 후에도 부유상태를 유지함으로써, 유동상 메디아를 반류수 처리공정에 투입할 경우 반류수의 질소의 제거효율과 아질산화율을 향상시키는 작용을 하는 것이다.Since the fluidized media has a specific gravity smaller than that of water, it remains suspended even after the formation of the biofilm, thereby improving the efficiency of nitrogen removal and nitrous oxidation of the semi-reduced water when the fluidized media is introduced into the countercurrent treatment process. It is.

이하, 분설한 표 1은 실시예의 방법으로 수처리 하였을 때 생성된 반류수와 상기 반류수를 상기 반류수 처리공정에서 처리하였을 때 처리수의 성상을 나타낸 것이다. Hereinafter, Table 1 shows the characteristics of treated water generated when the treated water is treated in the countermeasured process and the counterflow water generated when the water is treated by the method of the example.

(단위: mg/L)                                                             (Unit: mg / L) 구 분division NH4 + -NNH 4 + -N NO2 - -NNO 2 -- N NO3 - -NNO 3 -- N PO4 3 - -PPO 4 3 -- P SCODSCOD TCODTCOD VSSVSS TSSTSS 반류수Effluent 평균Average 323.2 323.2 6.0 6.0 0.3 0.3 46.6 46.6 218.0 218.0 7343.0 7343.0 5486.7 5486.7 8307.4 8307.4 최대maximum 442.5 442.5 17.2 17.2 2.3 2.3 89.9 89.9 463.2 463.2 12075.0 12075.0 10500.0 10500.0 18533.0 18533.0 최소at least 172.5 172.5 0.7 0.7 0.0 0.0 12.7 12.7 86.0 86.0 3088.0 3088.0 2100.0 2100.0 4000.0 4000.0 처리수Treated water 평균Average 41.0 41.0 175.1 175.1 51.3 51.3 28.2 28.2 137.9 137.9 6671.8 6671.8 5056.5 5056.5 7706.5 7706.5 최대maximum 168.0 168.0 262.5 262.5 192.4 192.4 42.1 42.1 246.8 246.8 10514.0 10514.0 8367.0 8367.0 15700.0 15700.0 최소at least 1.5 1.5 31.2 31.2 0.5 0.5 10.4 10.4 104.4 104.4 2624.8 2624.8 2333.0 2333.0 3866.7 3866.7

표 1에 나타난 바와 같이 반류수에서 평균 323mg/L이던 암모니아성 질소(NH4 +-N)가 평균 41mg/L로 저감되고, 대부분이 아질산성 질소(NO2 --N)와 질산성 질소(NO3 --N)로 전환된 것을 알 수 있다. As shown in Table 1, ammonia nitrogen (NH 4 + -N), which was 323 mg / L on average, was reduced to 41 mg / L on average, and most of the nitrite nitrogen (NO 2 -- N) and nitrate nitrogen ( NO 3 -- N) can be seen.

이와 같이, 반류수를 아질산화 처리시켜 수처리공정으로 유입시킴으로써, 수처리계통에서 암모니아 부하를 크게 감소시키고, 또한 안정화시키는 것이 가능해진다. 반류수 내 총고형물질(TSS; Total Suspended Solid) 농도는 최대 18,000mg/L 이상에 이르렀으나, 이러한 때에도 50% 이상의 아질산화율을 보였으며, 이로써 고농도 반류수에 대해서도 안정적인 아질산화 처리가 가능함을 확인하였다. In this way, by subjecting the refluxed water to nitrous oxidation and flowing into the water treatment process, it is possible to greatly reduce and stabilize the ammonia load in the water treatment system. Total Suspended Solids (TSS) concentrations in the countermeasures reached up to 18,000 mg / L or more, but showed a nitrite oxidation rate of more than 50% even at this time, and thus stable nitrous oxidation treatment was possible even for high concentrations of reflux water. It was.

이때, VSS(Volatile Suspended Solids, 휘발성 부유물이고, SCOD(Soluble Chemical Oxygen Demand, 용해성의 화학적 산소 요구량)이고, TCOD(Total Chemical Oxygen Demand, 화학적 산소 요구총량)를 나타낸다. At this time, it is VSS (Volatile Suspended Solids), a volatile suspended solid, SCOD (Soluble Chemical Oxygen Demand), and TCOD (Total Chemical Oxygen Demand).

<작용><Action>

이하, 첨부된 도면을 참고하여 상기 실시예의 방법으로 수처리 하였을 때의 반류수처리 공정의 작용에 대해 설명하면 다음과 같다.Hereinafter, with reference to the accompanying drawings will be described the operation of the reflux water treatment process when the water treatment by the method of the embodiment as follows.

도 3은 본 발명의 유동상 메디아를 이용한 하수처리공정의 반류수 처리공정 이후 유입수 및 유출수의 질소 농도변화를 나타내는 그래프이고, 도 4는 본 발명의 유동상 메디아를 이용한 하수처리공정의 반류수 처리공정의 아질산율의 변화를 나타내는 그래프이다. Figure 3 is a graph showing the change in nitrogen concentration of the influent and effluent after the sewage treatment step of the sewage treatment process using the fluidized bed media of the present invention, Figure 4 is the sewage treatment of sewage treatment process using the fluidized bed media of the present invention It is a graph which shows the change of the nitrite rate of a process.

도면에 나타낸 바와 같이, 체류시간(HRT; 수리학적 체류시간)을 2일(48시간)~0.5일(12시간)로 실시한 결과, 운전상의 문제로 용존산소(DO)와 알칼리니티(Alkalinity) 부족이 발생한 일부 날짜 외에는 전체 실시기간에서 목표 아질산화율인 50%를 상회하는 안정적인 결과를 보였다. As shown in the figure, the retention time (HRT; hydraulic retention time) was carried out for 2 days (48 hours) to 0.5 days (12 hours). As a result, there was a lack of dissolved oxygen (DO) and alkalinity due to operational problems. Except for some of these dates, the results showed stable results exceeding the target nitrite rate of 50%.

또한, 기존 반류수처리공정은 HRT가 최소 1~2일인데 반해, 본 발명은 HRT 0.5일에서 유출 T-N(총 질소) 대비 57%, 유출 NOx(질소산화물) 대비 91%의 높은 아질산화율을 보였다. 체류시간을 최대 1/4로 감소시킴으로써 반응기 용적을 줄일 수 있고, 따라서 반류수 처리 반응조 건설비용과 폭기에 필요한 에너지 비용을 1/2~1/4로 절감하는 효과를 얻을 수 있다. In addition, the conventional reflux water treatment process has a HRT of at least 1 to 2 days, whereas the present invention showed a high nitrite ratio of 57% compared to the outflow T-N (total nitrogen) and 91% compared to the outflow NOx (nitrogen oxide) at HRT 0.5 days. By reducing the residence time to a maximum of 1/4, the reactor volume can be reduced, thereby reducing the cost of the semi-reactor treatment reactor and the energy required for the aeration from 1/2 to 1/4.

반류수 처리공정에서 반류수를 50% 이상 아질산화시킨 후 수처리계통에 일정한 유량으로 유입시킴으로써, 반류수에 의한 부하 충격으로 수처리계통에서 질산화가 불충분하게 일어나서 유출수질이 악화되는 것을 방지하고, 소요되는 탄소원의 양을 절감할 수 있다. In the semi-lime water treatment process, by nitrating more than 50% of the semi-limidized water and flowing it into the water treatment system at a constant flow rate, it is possible to prevent deterioration of the effluent quality due to insufficient nitrification in the water treatment system due to the load impact caused by the semi-reflux water. The amount of carbon source can be saved.

도 5는 본 발명의 유동상 메디아를 이용한 하수처리공정의 반류수 처리공정의 산소 소모율을 나타내는 그래프이다.5 is a graph showing the oxygen consumption rate of the sewage treatment process of the sewage treatment process using the fluidized bed media of the present invention.

도면에 나타낸 바와 같이, 대부분의 산소 소모가 생물막에서 이루어지는데, 이로써 반류수 내 질소의 아질산화 반응은 대부분이 미생물에 의해 이루어진다는 것을 알 수 있다. 따라서 유동상 메디아(media)을 투입하여 미생물이 성장하도록 함으로써 반류수 아질산화 성능이 크게 향상된 것을 확인할 수 있다.As shown in the figure, most of the oxygen consumption takes place in the biofilm, it can be seen that most of the nitrous oxidation reaction of nitrogen in the reflux water is made by the microorganism. Therefore, it can be confirmed that the effluent nitrite oxidation performance is greatly improved by allowing the microorganism to grow by introducing a fluidized media.

도 6은 본 발명의 유동상 메디아를 이용한 하수처리공정의 용존산소 농도에 따른 아질산염 분포를 나타내는 그래프이다.6 is a graph showing the nitrite distribution according to the dissolved oxygen concentration of the sewage treatment process using the fluidized bed media of the present invention.

도면에 나타낸 바와 같이, 본 발명의 반류수 처리공정은 용존산소 농도 범위 1.7~4mg/L에서 용존산소 농도에 따른 아질산염 농도에 큰 차이가 없고, 따라서 상기 용존산소 농도 범위에서 안정적인 아질산화가 가능한 것을 알 수 있다.As shown in the figure, the effluent treatment process of the present invention has no significant difference in the nitrite concentration according to the dissolved oxygen concentration in the dissolved oxygen concentration range of 1.7 ~ 4mg / L, and thus it can be seen that stable nitrous oxidation is possible in the dissolved oxygen concentration range Can be.

이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러가지 치환, 변형 및 변경이 가능하다는 것이 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.The present invention described above is not limited to the above-described embodiment and the accompanying drawings, and it is common in the art that various substitutions, modifications, and changes can be made without departing from the technical spirit of the present invention. It will be evident to those who have knowledge of.

이상에서 설명한 바와 같이, 본 발명의 유동상 메디아를 이용한 하수처리공정의 반류수 처리방법은, 하수처리공정 시 반류수를 아질산화시키는 공정에 유동상 메디아를 적용함으로써 높은 아질산화율을 안정적으로 확보하고, 부유물질을 고농도로 함유한 반류수에도 적용 가능하며, 폭넓은 용존산소 농도 범위에서 운전 가능하여 반류수 처리공정의 운전 안정성 확보가 가능한 효과가 있다.As described above, in the method of treating the sewage water of the sewage treatment process using the fluidized bed media of the present invention, by applying the fluidized bed media to the step of nitrifying the water in the sewage treatment process, the high nitrite oxidation rate is stably secured, It can be applied to reflux water containing a high concentration of suspended solids, and can operate in a wide range of dissolved oxygen concentration, so that it is possible to secure operational stability of the reverse water treatment process.

Claims (5)

하수를 1차침전조로 유입시켜 침전시키는 1차 침전공정;A primary precipitation step of sedimentation by introducing sewage into the primary precipitation tank; 상기 1차 침전공정 이후 혐기조에서 처리수 내의 인(P)을 방출하고, 무산소조에서 질산염을 탈질하며, 호기조에서 유기물의 산화, 질산화 및 인을 축적하는 순서로 미생물처리하는 미생물처리공정;A microbial treatment step of releasing phosphorus (P) in the treated water in the anaerobic tank after the first precipitation step, denitrifying the nitrate in the anoxic tank, and oxidizing, nitrifying and accumulating phosphorus of the organic matter in the aerobic tank; 상기 미생물처리된 방출수를 2차침전조에서 침전시키는 2차 침전공정; A secondary precipitation step of precipitating the microbial discharged water in a secondary precipitation tank; 상기 2차 침전공정 후의 침전미생물의 일부를 상기 미생물처리공정 중의 혐기조로 반송하는 슬러지 반송공정; A sludge conveying step of conveying a part of the precipitated microorganisms after the secondary precipitation step to an anaerobic tank in the microbial treatment step; 상기 슬러지 반송공정에서 제외된 슬러지의 농축 및 소화시켜 탈수하는 슬러지 처리공정; 및 Sludge treatment step of dehydration by concentrating and digesting the sludge excluded from the sludge conveying step; And 상기 슬러지 처리공정에서 발생되는 농축상징액, 소화상징액, 탈리액의 반류수에 폐타이어를 가공한 담체 또는 폴리우레탄의 스폰지형 메디아 중 어느 하나로 이루어진 유동상 메디아(media)를 투입하여 상기 반류수의 아질산화를 촉진시켜 무산소조로 반송시키는 반류수 처리공정Nitrous oxidation of the counterflow water was introduced by adding a fluidized media consisting of a carrier processed waste tires or a sponge-like media of polyurethane to the condensate of the concentrated sludge, the digestive supernatant, and the desorption liquid generated in the sludge treatment process. Water treatment process to promote and return to anoxic tank 을 포함하여 이루어진 것을 특징으로 하는 유동상 메디아를 이용한 하수처리공정의 반류수 처리방법.Semi-water treatment method of sewage treatment process using a fluidized bed media, characterized in that made. 삭제delete 제1항에 있어서,The method of claim 1, 상기 반류수 처리공정은 운전 가능한 적정 용존산소(DO) 농도가 1.7~4mg/L 범위인 것을 특징으로 하는 유동상 메디아를 이용한 하수처리공정의 반류수 처리방법.The semi-water treatment method of the sewage treatment process using sewage treatment media, characterized in that the proper dissolved oxygen (DO) concentration is 1.7 ~ 4mg / L range. 제1항에 있어서,The method of claim 1, 상기 반류수의 부유물질 농도가 18,000mg/L 이내인 것을 특징으로 하는 유동상 메디아를 이용한 하수처리공정의 반류수 처리방법. The sewage treatment method of the sewage treatment process using fluidized bed media, characterized in that the suspended solids concentration of the reflux water is within 18,000mg / L. 제1항에 있어서,The method of claim 1, 상기 반류수 처리공정에서 처리수의 체류시간은 12시간 이내인 것을 특징으로 하는 유동상 메디아를 이용한 하수처리공정의 반류수 처리방법. Refuse treatment method of the sewage treatment process using fluidized bed media, characterized in that the residence time of the treated water in the reflux treatment process is less than 12 hours.
KR20070018449A 2007-02-23 2007-02-23 Method of recycle water treatment with fluidized biofilm media for wastewater treatment KR100800550B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20070018449A KR100800550B1 (en) 2007-02-23 2007-02-23 Method of recycle water treatment with fluidized biofilm media for wastewater treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20070018449A KR100800550B1 (en) 2007-02-23 2007-02-23 Method of recycle water treatment with fluidized biofilm media for wastewater treatment

Publications (1)

Publication Number Publication Date
KR100800550B1 true KR100800550B1 (en) 2008-02-04

Family

ID=39342202

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20070018449A KR100800550B1 (en) 2007-02-23 2007-02-23 Method of recycle water treatment with fluidized biofilm media for wastewater treatment

Country Status (1)

Country Link
KR (1) KR100800550B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100838846B1 (en) 2007-02-23 2008-06-17 주식회사 포스코건설 Method for treating recycle water of wastewater treatment
KR20160042774A (en) 2014-10-10 2016-04-20 정동수 Wastewater treatment system improving T-N quality of effluent water through pre-treatment of reducing nitrogen in returning water from dehydration process at the digestion tank of community sewage disposal plant
CN109368926A (en) * 2018-11-19 2019-02-22 中化环境控股有限公司 A kind of sewage treatment micron vectors and sewage disposal system and method
CN110563128A (en) * 2019-09-03 2019-12-13 江西夏氏春秋环境股份有限公司 MBBR (moving bed biofilm reactor) sewage treatment filler and using method thereof
CN114933401A (en) * 2022-06-07 2022-08-23 中车环境科技有限公司 Municipal sludge reduction coupling autotrophic nitrogen removal treatment system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002177979A (en) * 2000-12-11 2002-06-25 Mitsubishi Kakoki Kaisha Ltd Waste water treatment equipment
KR20020063052A (en) * 2001-01-26 2002-08-01 최의소 Improved method of wastewater treatment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002177979A (en) * 2000-12-11 2002-06-25 Mitsubishi Kakoki Kaisha Ltd Waste water treatment equipment
KR20020063052A (en) * 2001-01-26 2002-08-01 최의소 Improved method of wastewater treatment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100838846B1 (en) 2007-02-23 2008-06-17 주식회사 포스코건설 Method for treating recycle water of wastewater treatment
KR20160042774A (en) 2014-10-10 2016-04-20 정동수 Wastewater treatment system improving T-N quality of effluent water through pre-treatment of reducing nitrogen in returning water from dehydration process at the digestion tank of community sewage disposal plant
CN109368926A (en) * 2018-11-19 2019-02-22 中化环境控股有限公司 A kind of sewage treatment micron vectors and sewage disposal system and method
CN110563128A (en) * 2019-09-03 2019-12-13 江西夏氏春秋环境股份有限公司 MBBR (moving bed biofilm reactor) sewage treatment filler and using method thereof
CN114933401A (en) * 2022-06-07 2022-08-23 中车环境科技有限公司 Municipal sludge reduction coupling autotrophic nitrogen removal treatment system
CN114933401B (en) * 2022-06-07 2024-03-01 中车环境科技有限公司 Urban sludge decrement coupling autotrophic nitrogen removal treatment system

Similar Documents

Publication Publication Date Title
JP5899373B2 (en) Process comprising an ANAMOX microorganism on a biofilm carrier for removing ammonium from a wastewater stream
JP3737410B2 (en) High concentration organic wastewater treatment method and apparatus using biomaker
EP0603316B1 (en) Method and system for biologically removing nitrogen from wastewater
US20140367330A1 (en) Wastewater treatment process that utilizes granular sludge to reduce cod concentration in wastewater
KR101613995B1 (en) System for advanced wastewater treatment using optimal micro-organism of pollutants and the method thereof
Rocher et al. Municipal wastewater treatment by biofiltration: comparisons of various treatment layouts. Part 1: assessment of carbon and nitrogen removal
US8721887B2 (en) Method and system for treating wastewater
KR102099380B1 (en) The Method to Remove Nitrogen and Phosphorus from Wastewater by Changing of Reactor and Recycle Method of Conventional Nutrient Removal Process and by Combining Anaerobic Ammonium Oxidation(ANAMMOX) Process
JP4649911B2 (en) Treatment of organic matter and nitrogen-containing wastewater
KR101057364B1 (en) Sewage Height Treatment Method
KR100800550B1 (en) Method of recycle water treatment with fluidized biofilm media for wastewater treatment
KR100838846B1 (en) Method for treating recycle water of wastewater treatment
US20220144678A1 (en) Method for removing nitrogen and phosphorus from sewage and wastewater through combination of biological nitrogen and phosphorus removal process using nitrite nitrogen and anaerobic ammonium oxidation process (anammox)
KR100430382B1 (en) Treatment method for livestock waste water including highly concentrated organoc, nitrogen and phosphate and treatment system used therein
KR100783789B1 (en) Apparatus for wastewater treatment and method for wastewater treatment using the same
KR100705541B1 (en) A configuration of process and system for bnr/cpr with a filamentous bio-solids bulking control
KR100632487B1 (en) Gradually operated sequencing batch reactor and method thereof
KR100440748B1 (en) High-Rate Live Stock Wastewater Treatment Method using Advanced Treatment Process Hybrid SBAR
KR20110059692A (en) Apparatus for removing nitrogen from anaerobic digested waste water
KR101045975B1 (en) Method for removing nitrogen from anaerobic digested waste water
KR20110023436A (en) Advanced sewage treatment system by mbr using snd
KR100783790B1 (en) Apparatus for wastewater treatment with multi-stage denitification-filtration and method for wastewater treatment using the same
EP3778500B1 (en) Cow excreta treatment apparatus and method
KR20010076873A (en) Organic and nitrogen compound removal methods from landfill leachate using an anaerobic-aerobic-anoxic system
KR20110045812A (en) Apparatus and method for removing nitrogen from anaerobic digested waste water

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
AMND Amendment
E90F Notification of reason for final refusal
AMND Amendment
E601 Decision to refuse application
E801 Decision on dismissal of amendment
AMND Amendment
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130103

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140102

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150102

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160104

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170102

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180102

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190102

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20200102

Year of fee payment: 13