KR100784277B1 - Measuring method for dynamic rolling radius and effective radius variation of tire during tire rolling under a load - Google Patents

Measuring method for dynamic rolling radius and effective radius variation of tire during tire rolling under a load Download PDF

Info

Publication number
KR100784277B1
KR100784277B1 KR1020060109465A KR20060109465A KR100784277B1 KR 100784277 B1 KR100784277 B1 KR 100784277B1 KR 1020060109465 A KR1020060109465 A KR 1020060109465A KR 20060109465 A KR20060109465 A KR 20060109465A KR 100784277 B1 KR100784277 B1 KR 100784277B1
Authority
KR
South Korea
Prior art keywords
tire
radius
load
variation
rolling
Prior art date
Application number
KR1020060109465A
Other languages
Korean (ko)
Inventor
박주배
김연기
Original Assignee
한국타이어 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국타이어 주식회사 filed Critical 한국타이어 주식회사
Priority to KR1020060109465A priority Critical patent/KR100784277B1/en
Priority to CN2007101662644A priority patent/CN101178339B/en
Application granted granted Critical
Publication of KR100784277B1 publication Critical patent/KR100784277B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/02Tyres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C25/00Apparatus or tools adapted for mounting, removing or inspecting tyres
    • B60C25/002Inspecting tyres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/08Measuring arrangements characterised by the use of optical techniques for measuring diameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M1/00Testing static or dynamic balance of machines or structures
    • G01M1/14Determining imbalance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)
  • Testing Of Balance (AREA)

Abstract

A method for measuring a dynamic rolling radius and an effective radius variation of a tire during tire rolling under a load is provided to evaluate ERV and to predict TFV at high speed using the ERV obtained at low speed without changing existing uniformity measuring equipment or additionally adding the equipment. A method for measuring a dynamic rolling radius and an effective radius variation of a tire(1) during tire rolling under a load includes the steps of: obtaining an RFV(Radius Force Variation) and an RRO(Radial Run Out) value in the radial direction of the tire under the condition that no load is applied during the inspection of the tire which is in contact with a rigid drum; and obtaining an ERV(Effective Radius Variation) and a DDR(Dynamic Rolling Radius) value in the radial direction of the tire by using the RFV and RRO values at the state that the tire is not subject to the load.

Description

하중 작용시 타이어의 반경 변동량과 회전반경의 계측방법{Measuring method for dynamic rolling radius and effective radius variation of tire during tire rolling under a load}Measuring method for dynamic rolling radius and effective radius variation of tire during tire rolling under a load}

도 1(A),(B),(C)는 타이어의 반경변화와 하중관계를 나타낸 설명도들,1 (A), (B), (C) are explanatory diagrams showing the relationship between the radial change of the tire and the load,

도 2는 본 발명을 설명하기 위해 기존 균일성 측정장비에서 타이어의 반경 변동량과 타이어 변형을 나타내기 위한 설명도이다.2 is an explanatory diagram for illustrating a radius variation and tire deformation of a tire in an existing uniformity measuring apparatus for explaining the present invention.

-도면의 주요부분에 대한 부호의 설명-Explanation of symbols on the main parts of the drawing

1 : 타이어, 2 : 강체드럼,1: tire, 2: rigid drum,

O1 : 타이어의 회전축, O2 : 강체드럼의 회전축.O 1 : The rotation axis of the tire, O 2 : The rotation axis of the rigid drum.

본 발명은 타이어에 하중 작용시 타이어가 하중을 받는 상태에서 반경 변동량과 회전반경을 계측할 수 있는 방법에 관한 것으로, 더욱 상세하게는 공장의 균일성 검사기(Uniformity Machine)에서 측정되는 타이어의 반경방향의 변동량(RRO)과 반경방향의 강성변화(RFV)를 이용하여 계측할 수 있는 하중 작용시 타이어의 반경 변동량과 회전반경의 계측방법에 관한 것이다.The present invention relates to a method that can measure the amount of change in the radius and the radius of rotation in the state that the tire is loaded when the load is applied to the tire, more specifically, the radial direction of the tire measured in the uniformity machine (Uniformity Machine) of the factory The present invention relates to a method for measuring the radius of change and the radius of rotation of a tire under load, which can be measured using the change in RRO and the stiffness change in the radial direction.

완성된 타이어의 균일성(Uniformity) 검사는 타이어의 균일성 정도를 검사하는 것으로, 크게 강성의 불균일(Force Variation), 치수의 불균일(Run Out), 질량의 불균일(Balance)로 요약되며, 특히 이들은 타이어 제조상의 문제로 발생되는 것으로 균일성이 불량하게 되면 차량에서 진동과 소음을 유발하게 되어 그 중요성이 높았다.The uniformity test of the finished tire is a test of the degree of uniformity of the tire, which is largely summarized as force variation, run out of dimensions, and balance of mass. It is caused by a tire manufacturing problem, the poor uniformity caused the vibration and noise in the vehicle was important.

이러한 타이어의 균일성 검사중 강성의 불균일 검사는 타이어의 반경변화와 하중에 의하여 계측되는바, 도 1(A)에 도시된 이상적인 타이어(Ideal tire)를 의미하는 경우에는 타이어 반경의 변화를 무시하고 타이어 측면(Side wall)에 표기된 공칭반경으로 타이어의 반경을 고려하였다.The non-uniformity inspection of the stiffness during the tire uniformity test is measured by the change in the radius of the tire and the load, and in the case of the ideal tire shown in FIG. The radius of the tire was taken into account for the nominal radius marked on the side wall.

그러나 실제적인 타이어는 완전한 원형이 아니기 때문에 반경의 변화를 갖고 있으며, 이러한 변화량은 하중조건에 따라 서로 다른 값을 갖는다.However, the actual tire has a change in radius because it is not a perfect round shape, and the amount of change varies depending on the load conditions.

즉, 도 1(B)와 같이 타이어가 하중을 받지 않은 상태에서 나타나는 타이어 반경방향의 변동량(Radial Run Out ; RRO)이라 정의하며, 도 1(C)와 같이 하중을 받는 상태에서 나타나는 타이어 반경방향의 변동량(Effective Radius Variation ; ERV)이라고 정의한다.That is, it is defined as a radial run out (RRO) of the tire in the state in which the tire is not loaded as shown in FIG. 1 (B), and the tire is shown in the state in which the tire is loaded as shown in FIG. 1 (C). It is defined as the Efficient Radius Variation (ERV).

그리고 타이어가 하중을 받는 상태에서는 평균반경(RO)이 아닌 다른 값을 갖게 되는데, 이를 하중 하에서의 타이어 회전반경(Dynamic Rolling Radius ; DRR)이라 정의한다.In addition, when the tire is loaded, the tire has a value other than the average radius R O , which is defined as a dynamic rolling radius (DRR) under load.

그리고, 하중을 받는 상태에서 발생하는 타이어 반경방향의 변동량을 나타내는 ERV는 타이어 접선방향의 강성변화(Tangentical Force Variation ; TFV)를 유발시키는 주요한 인자이며, 이는 다른 TFV 유발인자들과는 달리 타이어의 회전속도와 무관한 형상인자로 고려할 수 있으며, 이 ERV값을 사용하면 임의의 원하는 속도에서의 타이어의 TFV값을 예측할 수 있다.In addition, ERV, which represents the amount of radial change in tires under load, is a major factor in inducing tangential force variation (TFV) in tires, which, unlike other TFV triggering factors, It can be considered as an unrelated shape factor, and using this ERV value can predict the TFV value of the tire at any desired speed.

한편, 상기 ERV 측정의 경우 특별히 저속에서의 측정을 목표로 하는데 이는 측정시간을 짧게 하여 타이어 제조공정의 효율을 저감하지 않도록 해야 하기 때문이다. 실제적으로 고속에서의 타이어의 TFV값을 직접 측정하기 위해서는 측정속도에 도달하기까지의 가속시간 및 측정 완료 후의 감속시간이 필요하며, 결과적으로는 전체적인 타이어 생산효율을 저하시킨다.On the other hand, the ERV measurement is specifically aimed at low speed measurement because it is necessary to shorten the measurement time so as not to reduce the efficiency of the tire manufacturing process. In practice, in order to directly measure the TFV value of a tire at high speed, an acceleration time until the measurement speed is reached and a deceleration time after the measurement are completed, and as a result, reduce the overall tire production efficiency.

이러한 이유로 저속에서의 ERV측정을 통해 고속에서의 TFV값을 예측하고자 하는 종래기술이 제안되었다.For this reason, the prior art has been proposed to predict the TFV value at high speed through ERV measurement at low speed.

즉, 미국특허 제4,815,004호는 타이어의 ERV를 측정하기 위해서는 기존 균일성 측정장비에 추가적인 계측장비를 설치하여 강체드럼의 각속도 변화를 측정하여야 하는데, 이런 경우 균일성 측정장비 개발 초기에 함께 설계되지 않았기 때문에 추가적인 계측장비의 설치와 계측의 어려움이 있었다.In other words, U.S. Patent No. 4,815,004 requires measuring the angular velocity of the rigid drum by installing additional measuring equipment in the existing uniformity measuring equipment in order to measure the tire's ERV. Because of this, there were difficulties in installing and measuring additional measuring equipment.

또한, 종래기술은 타이어 고정축과 노면을 모사하는 강체드럼 축과의 거리를 상수 값으로 고정한 상태에서만 측정이 가능함에 따라 실제적으로 ERV를 측정하기 위해서는 상기와 같은 거리 고정식이 아닌 타이어에 가해지는 하중을 고정하는 방식으로 제어장치를 수정해야 하는 문제점이 있었다.In addition, in the prior art, since the distance between the fixed tire shaft and the rigid drum shaft, which simulates the road surface, can be measured only in a constant value, in order to actually measure the ERV, the load applied to the tire that is not the fixed distance type as described above. There was a problem in that the control device must be modified in a way that is fixed.

이에 본 발명은 상기와 같은 종래 문제점을 해결하기 위해 발명된 것으로, 기존 균일성 측정장비의 변경이나 추가적인 설치없이 이 균일성 측정장비에서 얻어진 타이어 반경방향의 강성변화(Radius Force Variation ; RFV)와 RRO값을 이용하여 ERV를 평가함은 물론 DRR값도 함께 얻을 수 있으며, 저속에서 얻어진 ERV값을 고속에서의 TFV 예측으로 활용할 수 있는 하중 작용시 타이어 반경방향의 변동량(ERV)과 타이어 회전반경(DRR) 계측방법을 제공함에 그 목적이 있다.Accordingly, the present invention has been invented to solve the conventional problems as described above, and the tire radial stiffness variation (Radius Force Variation; RFV) and RRO obtained from the uniformity measuring equipment without any change or additional installation of the existing uniformity measuring equipment. In addition to evaluating the ERV using the values, the DRR value can be obtained as well. The ERV value at low speeds can be used as a TFV prediction at high speeds, and the radial radius of the tire (ERV) and the tire radius (DRR) are applied. The purpose is to provide a measuring method.

이하, 본 발명을 첨부한 도면을 참고로 자세히 설명한다.Hereinafter, with reference to the accompanying drawings of the present invention will be described in detail.

도 2는 공지의 균일성 측정장비에서 본 발명을 설명하기 위한 개략 설명도이다.Figure 2 is a schematic illustration for explaining the present invention in a known uniformity measuring equipment.

먼저 일반적인 타이어의 균일성 측정과정으로 타이어(1)에 강체 드럼(2)을 접촉시킨다. 그리고 타이어(1)의 회전축(O1)과 강체 드럼(2)의 회전축(O2) 간의 거리를 특정값으로 고정하여 하중을 부과한다.First, the rigid drum 2 is brought into contact with the tire 1 by a general tire uniformity measurement process. And by fixing the distance between the rotation axis (O 1) and the axis of rotation of the drum bodies (2) (O 2) of the tire (1) to a specific value, it imposes a load.

여기서 도면부호 Ruf는 타이어(1)가 강체 드럼(2) 상에서 하중을 받고 있는 반경값으로 고정된 상수값을 갖는다. Here, Ruf has a constant value fixed to a radius value at which the tire 1 is being loaded on the rigid drum 2.

이어 본 발명을 설명하면, 도 2에서 도시된 바와 같이 타이어(1)가 각도(θ)로 회전하였을 경우에 강체 드럼(2)의 회전축(O2)에서 측정되는 힘(Fr(θ))의 변화는 다음과 같이 정의된다.Referring to the present invention, as shown in FIG. 2, when the tire 1 is rotated at an angle θ, the force Fr (θ) measured at the rotation axis O 2 of the rigid drum 2 is illustrated. Change is defined as follows.

Figure 112006081444719-pat00007
Figure 112006081444719-pat00007

식 ①에서

Figure 112007078412665-pat00008
는 드럼 회전축(O2)의 평균 힘을,
Figure 112007078412665-pat00009
는 타이어 회전에 따른 반경 방향의 강성변화 및, RO은 타이어의 평균반경을 의미한다.In equation
Figure 112007078412665-pat00008
Is the average force of the drum axis of rotation (O 2 ),
Figure 112007078412665-pat00009
Is the radial stiffness change as the tire rotates, and R O is the average radius of the tire.

따라서, 식 ①로부터 타이어 회전 시의 강성 변화(K(θ))는 다음의 식 ②와 같이 계산할 수 있다.Therefore, the stiffness change K (θ) at the time of tire rotation can be calculated from Equation 1 as follows.

Figure 112006081444719-pat00010
Figure 112006081444719-pat00010

식 ②에서,

Figure 112007078412665-pat00011
는 타이어의 평균 강성을,
Figure 112007078412665-pat00012
는 타이어 회전에 따른 타이어 강성의 변동량을 각각 나타낸다.In equation ②,
Figure 112007078412665-pat00011
The average stiffness of the tire,
Figure 112007078412665-pat00012
Denotes a variation in tire stiffness according to tire rotation, respectively.

따라서 균일성 측정을 통해 얻어진

Figure 112007078412665-pat00013
결과를 식 ②에 대입하면 타이어의 반경 방향 강성(K(θ))을 알 수 있으며, 이 타이어의 반경 방향 강성 (K(θ))를 이용하여 임의 하중 하에서 타이어(1)의 회전 속도가 낮은 경우(각속도
Figure 112007078412665-pat00014
)의
Figure 112007078412665-pat00015
을 예측할 수 있다.
즉 이를 구체적으로 설명하면;Thus obtained through uniformity measurement
Figure 112007078412665-pat00013
Substituting the result into Equation (2) shows the radial stiffness (K (θ)) of the tire. If (angular velocity
Figure 112007078412665-pat00014
)of
Figure 112007078412665-pat00015
Can be predicted.
That is to say in detail;

1. 타이어 회전 각속도(ω)의 영향을 무시하는 경우(

Figure 112006081444719-pat00016
)1.If the influence of tire rotation angular velocity (ω) is ignored (
Figure 112006081444719-pat00016
)

임의의 하중

Figure 112006081444719-pat00017
하에서의 타이어의 변형(
Figure 112006081444719-pat00018
)과 하중의 관계는 다음의 식 ③과 같이 나타낼 수 있다.Any load
Figure 112006081444719-pat00017
Deformation of tires under
Figure 112006081444719-pat00018
) And the load can be expressed by the following equation ③.

Figure 112006081444719-pat00019
Figure 112006081444719-pat00019

식 ②를 식 ③에 대입하면, Substituting equation ② into equation ③,

Figure 112006081444719-pat00020
Figure 112006081444719-pat00020

식 ④로부터 특정 하중 하에서의 반경 변화를 유도하면 다음의 식 ⑤와 같이 나타난다.Deriving the change of radius under the specified load from Equation ④ is shown as Equation ⑤ below.

Figure 112006081444719-pat00021
Figure 112006081444719-pat00021

식 ⑤를 재 정리하면 다음의 식 ⑥과 같이 나타낼 수 있다.If we rearrange Equation ⑤, it can be expressed as Equation ⑥ below.

Figure 112006081444719-pat00022
Figure 112006081444719-pat00022

여기서, 일반적인 타이어 평균강성(

Figure 112006081444719-pat00023
)와 강성변화
Figure 112006081444719-pat00024
사이에는 다음의 식 ⑦의 관계가 성립한다고 가정할 수 있다.Where the average tire stiffness (
Figure 112006081444719-pat00023
) And stiffness change
Figure 112006081444719-pat00024
It can be assumed that the relationship of the following equation ⑦ holds.

Figure 112006081444719-pat00025
Figure 112006081444719-pat00025

식 ⑦의 관계식을 이용하여 식 ⑥을 다음과 같이 정리한다.Equation ⑥ is summarized as follows using relational expression of equation ⑦.

Figure 112006081444719-pat00026
Figure 112006081444719-pat00026

최종적으로 식 ⑧로부터 상수값과 타이어 회전에 따른 변동량을 각각 정리하면

Figure 112006081444719-pat00027
Figure 112006081444719-pat00028
를 나타내는 다음의 식 ⑨와 ⑩으로 유도할 수 있다.Finally, from equation ⑧, the constant value and the amount of change due to tire rotation are summarized.
Figure 112006081444719-pat00027
Figure 112006081444719-pat00028
It can be derived from the following equations ⑨ and 나타내는.

Figure 112006081444719-pat00029
Figure 112006081444719-pat00029

Figure 112006081444719-pat00030
Figure 112006081444719-pat00030

상기 식 ⑨와 ⑩의

Figure 112006081444719-pat00031
는 타이어 회전 속도의 영향이 작거나 무시하는 경우를 가정하여 유도하였기 때문에
Figure 112006081444719-pat00032
고속 회전시에는 제한적으로 적용할 수 있는 반면,
Figure 112006081444719-pat00033
는 고속과 저속에서 큰 차이가 없는 물리량으로 알려져 있기 때문에 큰 문제없이 적용할 수 있다.Of the above formulas ⑨ and ⑩
Figure 112006081444719-pat00031
Is derived assuming that the influence of the tire rotation speed is small or neglected.
Figure 112006081444719-pat00032
While it can be limitedly applied at high speeds,
Figure 112006081444719-pat00033
Since is known as a physical quantity that does not have a big difference between high speed and low speed, it can be applied without any big problem.

2. 타이어 회전 각속도(ω)의 영향을 고려한 경우(ω>>1)2. Considering the influence of tire rotation angular velocity (ω) (ω >> 1)

실제적으로 타이어(1)의 회전에 의해 원심력이 발생하게 되면 상기 식 ③ 좌변의 하중(

Figure 112006081444719-pat00034
)에 반대되는 방향으로 원심력이 작용하게 된다. 이 원심력을 고려하여 타이어의 반경 변형 관계식을 정리하면 식 ⑪과 같이 나타낼 수 있다.When centrifugal force is actually generated by the rotation of the tire 1, the load on the left side of the above equation ③
Figure 112006081444719-pat00034
Centrifugal force acts in the opposite direction to). In consideration of this centrifugal force, the tire radial deformation relational expression can be summarized as Equation ⑪.

Figure 112006081444719-pat00035
Figure 112006081444719-pat00035

식 ⑪에서

Figure 112007078412665-pat00036
는 접지 부위에서 원심력을 발생시키는 유효 질량이다.At eclipse
Figure 112007078412665-pat00036
Is the effective mass that generates the centrifugal force at the ground.

상기 식 ⑪로부터 다음의 식 ⑫를 유도할 수 있다.The following formula VII can be derived from the above formula VII.

Figure 112006081444719-pat00037
Figure 112006081444719-pat00037

식 ⑫를 다시

Figure 112006081444719-pat00038
에 대해 정리하면,Expression 다시 again
Figure 112006081444719-pat00038
To sum up,

Figure 112006081444719-pat00039
Figure 112006081444719-pat00039

식 ⑬ 우변의 분자식에서 변동항의 곱으로 이루어진 2차항을 제거하고, 우 변의 분모식에서 상대적으로 크기가 작은 1차 변동항을 제거하면, 다음 ⑭식을 얻는다. If we remove the second term consisting of the product of the variation terms from the right side molecular formula and remove the relatively small first-order variation term from the denominator on the right side, we obtain

Figure 112006081444719-pat00040
Figure 112006081444719-pat00040

여기서

Figure 112007078412665-pat00041
는 접지 부위에서 원심력을 발생시키는 유효 질량이다.here
Figure 112007078412665-pat00041
Is the effective mass that generates the centrifugal force at the ground.

식 ⑭에서 접지부 유효 회전질량

Figure 112006081444719-pat00042
의 각도(θ)에 대한 변화량을 무시하여
Figure 112006081444719-pat00043
의 상수값으로 가정하면, 특정속도, 하중 하에서의 반경 변화를 나타내는 다음의 식 ⑮를 얻는다. Effective rotating mass of ground part in equation
Figure 112006081444719-pat00042
By ignoring the amount of change in the angle (θ) of
Figure 112006081444719-pat00043
Assuming a constant value of, we obtain the following equation 나타내는 which represents the change in radius under a specific velocity and load.

Figure 112006081444719-pat00044
Figure 112006081444719-pat00044

최종적으로 식 ⑮로부터 상수항과 변동항을 분리하면 각각

Figure 112007078412665-pat00045
를 나타내는 다음의 식
Figure 112007078412665-pat00046
Figure 112007078412665-pat00047
을 얻는다.Finally, if we separate the constant term and the variable term from Eq.
Figure 112007078412665-pat00045
The expression
Figure 112007078412665-pat00046
and
Figure 112007078412665-pat00047
Get

Figure 112006081444719-pat00048
Figure 112006081444719-pat00049
Figure 112006081444719-pat00048
Figure 112006081444719-pat00049

Figure 112006081444719-pat00050
Figure 112006081444719-pat00051
Figure 112006081444719-pat00050
Figure 112006081444719-pat00051

여기서, 특정속도의

Figure 112006081444719-pat00052
값은 DRR을 정확히 측정할 수 있는 다른 장비(예를 들어 Rolling Resistance 측정 장비)를 이용하여 역으로 계산할 수 있으며, 그리 고, 이 값을 이용하여 다시 다른 속도에서의
Figure 112006081444719-pat00053
Figure 112006081444719-pat00054
를 예측할 수 있다.Where the specific velocity
Figure 112006081444719-pat00052
The value can be calculated inversely using another instrument (e.g. Rolling Resistance measuring instrument) that can accurately measure the DRR, and then use this value again at different speeds.
Figure 112006081444719-pat00053
And
Figure 112006081444719-pat00054
Can be predicted.

상기와 같이 본 발명은 기존 타이어 균일성 측정장비를 이용하여 타이어 반경방향의 변동량(ERV)와 타이어 회전반경(DRR)을 평가할 수 있어서 타이어의 균일성 향상에 도움을 주는 효과를 가질 수 있다.As described above, the present invention can evaluate the variation in tire radial direction (ERV) and tire rotation radius (DRR) by using an existing tire uniformity measuring apparatus, and may have an effect of improving tire uniformity.

Claims (1)

강체드럼(2)에 접하는 타이어(1)의 검사시 하중을 받지 않은 상태에서의 타이어 반경방향의 강성변화(RFV)와 반경방향의 변동량(RRO) 값을 이용하여 타이어가 하중을 받는 상태에서의 타이어 반경방향의 변동량(ERV)과 타이어 회전반경(DRR)을 다음 식들에 의하여 얻어지는 것을 특징으로 하는 하중 작용시 타이어 반경 변동량과 회전반경의 계측방법.When the tire 1 is loaded using the radial stiffness change (RFV) and the radial change amount (RRO) of the tire in the unloaded state when the tire 1 is in contact with the rigid drum 2 A method of measuring tire radius variation and rotation radius under load, characterized in that the tire radial direction change (ERV) and tire rotation radius (DRR) are obtained by the following equations. 1) 타이어 회전 각속도(ω)의 영향을 무시하는 경우(
Figure 112007078412665-pat00055
)
1) In case of ignoring the influence of tire rotation angular velocity (ω)
Figure 112007078412665-pat00055
)
Figure 112007078412665-pat00056
Figure 112007078412665-pat00056
Figure 112007078412665-pat00057
Figure 112007078412665-pat00057
여기서, Ro = 타이어의 평균 반경Where Ro = average radius of the tire Fo = 드럼 회전축(O2) 평균 힘Fo = drum rotation axis (O 2 ) average force Ko = 타이어의 평균강성        Ko = average stiffness of the tire RRO(θ) = 무하중시 타이어 반경방향의 변동량        RRO (θ) = tire radial change without load RKV(θ) = 타이어 회전에 따른 타이어 강성의 변동량        RKV (θ) = variation in tire stiffness due to tire rotation 2) 타이어 회전 각속도(ω)의 영향을 고려한 경우(ω>>1)2) Considering the influence of tire rotation angular velocity (ω) (ω >> 1)
Figure 112007078412665-pat00058
Figure 112007078412665-pat00058
Figure 112007078412665-pat00059
Figure 112007078412665-pat00059
여기서,
Figure 112007078412665-pat00060
= 접지부에서 원심력을 발생시키는 유효 질량이다.
here,
Figure 112007078412665-pat00060
= Effective mass generating centrifugal force at ground.
KR1020060109465A 2006-11-07 2006-11-07 Measuring method for dynamic rolling radius and effective radius variation of tire during tire rolling under a load KR100784277B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020060109465A KR100784277B1 (en) 2006-11-07 2006-11-07 Measuring method for dynamic rolling radius and effective radius variation of tire during tire rolling under a load
CN2007101662644A CN101178339B (en) 2006-11-07 2007-11-06 Measuring method for dynamic rolling radius and effective radius variation of tire during tire rolling under a load

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060109465A KR100784277B1 (en) 2006-11-07 2006-11-07 Measuring method for dynamic rolling radius and effective radius variation of tire during tire rolling under a load

Publications (1)

Publication Number Publication Date
KR100784277B1 true KR100784277B1 (en) 2007-12-12

Family

ID=39140507

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060109465A KR100784277B1 (en) 2006-11-07 2006-11-07 Measuring method for dynamic rolling radius and effective radius variation of tire during tire rolling under a load

Country Status (2)

Country Link
KR (1) KR100784277B1 (en)
CN (1) CN101178339B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101325171B1 (en) 2013-03-07 2013-11-07 대하테크원(주) Balance control method of both sides tire for vehicle
US11745548B2 (en) * 2020-03-06 2023-09-05 Tactile Mobility Ltd. Estimating an effective radius of a tire of a vehicle
US11875614B2 (en) 2020-03-06 2024-01-16 Tactile Mobility Ltd. Evaluating a status of a vehicle
US11886188B2 (en) 2021-06-10 2024-01-30 R-Go Robotics, Ltd. Techniques for environmental parameter mapping

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101936816B (en) * 2010-07-29 2012-06-27 中国化工橡胶桂林有限公司 OTR tire radial rigidity and simulated ground indentation test device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020035154A (en) * 1999-09-28 2002-05-09 리치터 데이비드 제이. Method and apparatus for measuring vehicle wheel roll radius
KR20060046200A (en) * 2004-05-26 2006-05-17 미쉐린 러쉐르슈 에 떼크니크 에스.에이. Improved tire uniformity through compensation between radial run out and stiffness variation

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4815004A (en) * 1986-10-17 1989-03-21 Eagle-Picher Industries, Inc. Apparatus and method for predicting fore/aft forces generated by tires
US5396438A (en) * 1993-09-29 1995-03-07 General Motors Corporation Tire manufacturing method
JP3788866B2 (en) * 1998-06-04 2006-06-21 株式会社ブリヂストン High-order component prediction method and apparatus for high-speed tire uniformity, and tire manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020035154A (en) * 1999-09-28 2002-05-09 리치터 데이비드 제이. Method and apparatus for measuring vehicle wheel roll radius
KR20060046200A (en) * 2004-05-26 2006-05-17 미쉐린 러쉐르슈 에 떼크니크 에스.에이. Improved tire uniformity through compensation between radial run out and stiffness variation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101325171B1 (en) 2013-03-07 2013-11-07 대하테크원(주) Balance control method of both sides tire for vehicle
US11745548B2 (en) * 2020-03-06 2023-09-05 Tactile Mobility Ltd. Estimating an effective radius of a tire of a vehicle
US11875614B2 (en) 2020-03-06 2024-01-16 Tactile Mobility Ltd. Evaluating a status of a vehicle
US11886188B2 (en) 2021-06-10 2024-01-30 R-Go Robotics, Ltd. Techniques for environmental parameter mapping

Also Published As

Publication number Publication date
CN101178339A (en) 2008-05-14
CN101178339B (en) 2012-10-17

Similar Documents

Publication Publication Date Title
JP4025560B2 (en) Prediction of tire uniformity using balance and low speed uniformity data
EP2646791B1 (en) Method for prediction and control of tire uniformity parameters from crown thickness variation
KR100784277B1 (en) Measuring method for dynamic rolling radius and effective radius variation of tire during tire rolling under a load
US6615144B2 (en) Tire uniformity prediction using curve fitting
WO2015174323A1 (en) Method for predicting rolling resistance of tire and device for predicting rolling resistance of tire
JP4235107B2 (en) Prediction method of radial force variation
US20060272408A1 (en) Method and apparatus for tire uniformity measurement
JP5449889B2 (en) Method and apparatus for quantitatively detecting unbalanced state and method for detecting clamped state of workpiece
EP1055507B1 (en) Radial tire manufacturing method
CN100462704C (en) Method for measuring type dynamic balance unbalance amount
KR101796912B1 (en) Efficient high speed uniformity measurements using speed ramps
JP2010017842A5 (en)
JP4897835B2 (en) How to test a tire
US8171789B2 (en) Dynamic balancing apparatus and method using simple harmonic angular motion
JP6735254B2 (en) Device and method for calculating tire dynamic load radius
JP2001124666A (en) Method for measuring high-speed uniformity of tire
CN100462708C (en) Method for measuring unbalance amount of mainshaft system
KR100784279B1 (en) Hardness measuring method of tire during traveling
CN100487410C (en) Method for rating tyre dynamic balance unbalance
CN104483067A (en) Measuring method of dynamic unbalance amount of fan
KR101829436B1 (en) Test apparatus for measurement of dynamic spring rate of high speed rotating tire
JP6366410B2 (en) Method, apparatus, and computer program for calculating force variation of tire
JP7188010B2 (en) High Speed Uniformity Estimation Method for Tires
JP2004191278A (en) Tire testing device and tire testing method
JP2006242581A (en) Tire uniformity correction method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20101130

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20131202

Year of fee payment: 9