KR100784118B1 - Preparing Method of Light Olefin Trimer and Production of heavy alkylates by Using Thereof - Google Patents

Preparing Method of Light Olefin Trimer and Production of heavy alkylates by Using Thereof Download PDF

Info

Publication number
KR100784118B1
KR100784118B1 KR1020060012317A KR20060012317A KR100784118B1 KR 100784118 B1 KR100784118 B1 KR 100784118B1 KR 1020060012317 A KR1020060012317 A KR 1020060012317A KR 20060012317 A KR20060012317 A KR 20060012317A KR 100784118 B1 KR100784118 B1 KR 100784118B1
Authority
KR
South Korea
Prior art keywords
catalyst
reaction
trimer
olefin
oligomerization
Prior art date
Application number
KR1020060012317A
Other languages
Korean (ko)
Other versions
KR20070080865A (en
Inventor
정성화
장종산
윤지웅
김태진
추대현
이희두
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020060012317A priority Critical patent/KR100784118B1/en
Priority to PCT/KR2007/000706 priority patent/WO2007091862A1/en
Publication of KR20070080865A publication Critical patent/KR20070080865A/en
Application granted granted Critical
Publication of KR100784118B1 publication Critical patent/KR100784118B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H5/00Musical or noise- producing devices for additional toy effects other than acoustical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/03Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of non-aromatic carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/26Catalytic processes with hydrides or organic compounds
    • C07C2/28Catalytic processes with hydrides or organic compounds with ion-exchange resins
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10DSTRINGED MUSICAL INSTRUMENTS; WIND MUSICAL INSTRUMENTS; ACCORDIONS OR CONCERTINAS; PERCUSSION MUSICAL INSTRUMENTS; AEOLIAN HARPS; SINGING-FLAME MUSICAL INSTRUMENTS; MUSICAL INSTRUMENTS NOT OTHERWISE PROVIDED FOR
    • G10D7/00General design of wind musical instruments
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/08Non-electric sound-amplifying devices, e.g. non-electric megaphones
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K3/00Rattles or like noise-producing devices, e.g. door-knockers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/44Palladium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

본 발명은 올레핀의 올리고머화 반응, 특히 삼량체의 생성반응에 관한 것이며 올리고머화 반응에 있어서 거대 세공을 가진 수소형의 양이온 교환수지를 촉매로 사용하고, 전환율을 크게 증가시킨 조건에서 선택적으로 삼량체를 얻는 방법을 제공하는 것이다. 본 발명의 삼량체는 네오산(neo-acid)등의 원료로 사용되기도 하며 수소화 반응을 거쳐 고비점알킬레이트로 전환되어 고급 용제 및 경유 첨가제로 사용될 수 있다.The present invention relates to oligomerization reactions of olefins, in particular the formation of trimers, in which the oligomerization reaction selectively uses the hydrogen-type cation exchange resins having macropores as catalysts and selectively trimers under conditions that greatly increase the conversion. To provide a way to get. The trimer of the present invention may be used as a raw material such as neo-acid and converted to a high boiling point alkylate through a hydrogenation reaction to be used as a higher solvent and a diesel fuel additive.

올리고머화, 양이온교환수지, 거대세공, 고비점알킬레이트, 삼량체, 전환율 Oligomerization, cation exchange resins, macropores, high boiling point alkylates, trimers, conversion rates

Description

올레핀의 삼량체 제조방법 및 그를 이용한 고비점알킬레이트 제조 방법{Preparing Method of Light Olefin Trimer and Production of heavy alkylates by Using Thereof}Preparing Method of Light Olefin Trimer and Production of heavy alkylates by Using Thereof}

도 1은 실시예 1에 따른 이소부텐의 올리고머화 반응에서의 시간에 따른 전환율과 선택도의 변화를 나타낸 것이다.Figure 1 shows the change in conversion and selectivity over time in the oligomerization of isobutene according to Example 1.

도 2는 실시예 5에 따른 이소부텐 전환율에 따른 삼량체의 선택도 변화를 나타낸 것이다.Figure 2 shows the selectivity change of the trimer according to the isobutene conversion rate according to Example 5.

본 발명은 올레핀의 올리고머화 방법 및 그로 인해 얻어지는 삼량체의 제조 방법에 관한 것이다.The present invention relates to a process for the oligomerization of olefins and the preparation of trimers obtained thereby.

보다 상세하게는 올리고머화에 있어서 사용되는 산촉매의 세공 특성을 조절하고, 전환율을 높여 삼량체의 선택성을 증가시킴으로써, 올레핀의 삼량체의 생산성 및 순도를 높일 수 있는 효과적인 제조 방법을 제공하는 것이다.More specifically, it is to provide an effective production method that can increase the productivity and purity of the trimer of the olefin by adjusting the pore properties of the acid catalyst used in the oligomerization and increasing the selectivity of the trimer by increasing the conversion rate.

올레핀의 올리고머화 반응은 담지된 인산(supported phosphoric acid) 같은 산촉매를 주로 이용하여 진행되며 주로 이량체의 생산 후 수소화 반응을 거쳐 휘발유 첨가제를 제조하는데 활용 된다(USP 6689927, 6284938).The oligomerization of olefins is mainly carried out using acid catalysts such as supported phosphoric acid, and is mainly used to produce gasoline additives through hydrogenation after the production of dimers (USP 6689927, 6284938).

또 다른 방법으로는 황산 혹은 불산의 존재 하에 올레핀과 파라핀의 알킬화 반응으로 알킬레이트(alkylates)를 얻는 문헌이 공지되어 있으나(Catalysis Today, 49, 193, 1999), 액체산의 사용에 따른 환경 및 부식 문제가 항상 큰 걸림돌로 작용하고 있다. 또한 상기 선행문헌에 기재된 알킬레이트 제조 반응에서는 C9 이상의 고비점알킬레이트가 5-10% 정도로 소량 얻어져서, 고급 용제로 사용되고 경유의 세탄치 향상을 위한 첨가제로 사용되기도 하나 그 생산성에 한계가 있으므로 다른 공정 개발이 더욱 요청되는 상황이다.Another method is known for obtaining alkylates by alkylation of olefins and paraffins in the presence of sulfuric acid or hydrofluoric acid (Catalysis Today, 49, 193, 1999), but the environmental and corrosion effects of the use of liquid acids The problem is always a big stumbling block. In addition, in the alkylate preparation reaction described in the above-mentioned literature, a small amount of C 9 or more high boiling point alkylate is obtained as about 5-10%, and it is used as an advanced solvent and used as an additive for improving the cetane value of diesel oil, but the productivity is limited. There is a need for further process development.

올레핀의 올리고머화에 관한 연구 중 삼량체를 만드는 연구는 최근에 다수 알려지고 있다. 주로 고체산 촉매를 사용하여 올레핀 올리고머화를 추진하였는데 사용된 촉매로는 헤테로폴리산(JP 2005015383), 지르코니아(JP 2005015384), Al-TS-1이라는 제올라이트(US 6914165), 설페이티드(sulfated)-티타니아(J. Molecular Catalysis A, 228, 333, 2005) 및 이오닉리퀴드(CN 1379005 ) 등을 사용하여 제조하는 발명 등을 들 수 있다.Among the studies on oligomerization of olefins, studies of making trimers have been known in recent years. Olefin oligomerization was mainly carried out using a solid acid catalyst. The catalysts used were heteropolyacid (JP 2005015383), zirconia (JP 2005015384), zeolite named Al-TS-1 (US 6914165), sulfated-titania (J. Molecular Catalysis A, 228, 333, 2005), Ionic liquid (CN 1379005), etc., etc. are mentioned.

또한 양이온 교환수지를 촉매로 활용한 예도 일부 알려져 있다. US 2005/ 0119111A1의 공개 특허에서는 이량화에 이온 교환수지가 촉매로 적용될 수 있음을 주장하였고, US 5789643에서도 제올라이트, 알루미나, 이온 교환수지 등을 사용하 여 올리고머화 반응이 진행될 수 있음이 알려졌으며, US 6239321에서는 이미 이량화된 이량체의 올리고머화에 의한 사량체 혹은 오량체의 제조에 있어 이온 교환수지를 사용하기도 하였다.In addition, some examples of using a cation exchange resin as a catalyst are also known. The published patent of US 2005 / 0119111A1 claims that the ion exchange resin can be applied as a catalyst for dimerization, and it is also known that the oligomerization reaction can proceed in US 5789643 using zeolite, alumina, ion exchange resin, etc. US 6239321 has already used ion exchange resins for the preparation of tetramers or pentamers by oligomerization of dimerized dimers.

또한 Amberlyst-15라는 이온 교환수지를 촉매로 사용하여 이소부텐의 올리고머화를 진행한 예도 알려져 있으나 (Catalysis Today 100, 463, 2005) 전환율이 40% 이하로 매우 낮고, 주로 이량체가 생성되었다.In addition, an example of proceeding oligomerization of isobutene by using an ion exchange resin called Amberlyst-15 as a catalyst (Catalysis Today 100, 463, 2005) has a very low conversion rate of 40% or less, and mainly generates dimers.

그러므로 현재까지 이온 교환수지를 촉매로 사용한 경우에 삼량화를 위주로 얻은 결과는 알려진 바가 없으며 이온 교환수지의 물성을 조절하여 삼량화를 추진하고자 한 예는 더욱 없었다.Therefore, until now, when the ion exchange resin is used as a catalyst, the results obtained mainly from trimerization have not been known, and there have been no cases of promoting the trimerization by controlling the physical properties of the ion exchange resin.

이에 따라 본 발명은 올레핀의 올리고머화, 특히 삼량체를 제조하는 기술을 개발하고자 하였고 이러한 삼량체를 수소화반응에 의해 고비점알킬레이트를 용이하게 제조하는 신규한 방법을 개발하게 되어 본 발명을 완성하였다.Accordingly, the present invention has attempted to develop a technology for preparing oligomerization of olefins, in particular, trimers, and has developed a novel method for easily preparing high boiling point alkylates by hydrogenation of such trimers.

특히, 삼량체의 높은 선택도 외에 높은 생산성 및 긴 촉매 수명을 갖는 올리고머화 반응 기술 및 고비점알킬레이트 생산 기술을 개발하는데 본 발명의 목적이 있다.In particular, it is an object of the present invention to develop oligomerization reaction technology and high boiling point alkylate production technology having high productivity and long catalyst life in addition to high selectivity of trimers.

상기의 목적을 달성하기 위하여 본 발명은 올레핀 올리고머화 및 고비점알킬 레이트 제조의 신규한 방법으로서, 거대 세공을 갖는 이온 교환수지를 촉매로 활용하고 반응 전환율을 60% 이상의 고전환율을 유지함으로써, 놀랍게도 삼량체의 선택도를 크게 높인 신규한 삼량체 제조방법을 발견하게 되었다.In order to achieve the above object, the present invention is a novel method for the production of olefin oligomerization and high boiling point alkylate, and surprisingly by utilizing the ion exchange resin having macropores as a catalyst and maintaining a high conversion of the reaction conversion rate of 60% or more. A novel method for preparing trimers has been found that greatly increases the selectivity of trimers.

특히 본 발명은 React. Funct. Polymer, 35, 7, 1997에 의하여 정의된 바와 같이 건조된 상태에서도 5nm 이상의 세공에 의해 내부 표면을 갖는 수지인 거대세공(macroporous)형 수지와 내부 표면을 갖지 않는 겔(gel)형 수지 중 거대세공 수지를 이용하고 전환율을 고전환율로 유지하고, 더욱 놀랍게는 반응전환율을 60%이상 유지하게 함으로써, 현저히 높은 생산성과 높은 선택성을 갖는 삼량체를 효과적으로 제조하게 되었다.In particular, the present invention is React. Funct. Macropore of macroporous type resin, which is a resin having an inner surface by pores of 5 nm or more even in a dried state as defined by Polymer, 35, 7, 1997 and a gel type resin having no inner surface. By using a resin and maintaining the conversion rate at a high conversion rate, and more surprisingly, maintaining the reaction conversion rate at 60% or more, the trimer having remarkably high productivity and high selectivity was effectively produced.

또한 본 발명은 상기에서 제조된 선택성이 높은 올레핀의 삼량체를 이용하여 수소화반응을 통하여 C9 이상의 비점이 높은 고비점알킬레이트를 얻는다. 상기 수소화는 귀금속 혹은 니켈 촉매 존재 하에서 Fine chemicals through heterogeneous catalysis, Wiley-VCH, 2001, pp. 351-426에서 기재된 바와 같은 방법으로 비교적 용이하게 진행됨이 잘 알려져 있으므로 이에 대하여는 더 이상 설명을 생략한다.In addition, the present invention obtains a high boiling point alkylate having a high boiling point of C 9 or more through hydrogenation using the trimer of the highly selective olefin prepared above. The hydrogenation is carried out in fine chemicals through heterogeneous catalysis, Wiley-VCH, 2001, pp. It is well known that the process proceeds relatively easily in the manner described in 351-426, and thus the description thereof will be omitted.

본 발명에서, 올리고머화에 사용되는 올레핀은 C2 이상의 올레핀이면 어떠한 것이나 무관하나 C3-C4 올레핀이 적당하며 C4 올레핀이 더욱 적당하고 이소부텐이 가장 적합하다. 올리고머화에 의해 C8이상의 올레핀이 얻어지며 특히 C9 이상의 올레핀이 더욱 적합하고 C12 올레핀이 가장 적합하다.In the present invention, the olefin used for oligomerization may be any C 2 or more olefin, but C 3 -C 4 Olefin is suitable, C 4 olefin is more suitable and isobutene is most suitable. Oligomerization yields C 8 or more olefins, in particular C 9 or more olefins being more suitable and C 12 olefins being most suitable.

올리고머화 반응의 온도는 제한되지는 않으나 실온 ~ 120 ℃가 적합하며 온도가 너무 낮으면 반응 속도가 너무 느리고 온도가 너무 높으면 올리고머화 반응의 발열 반응으로 인해 반응 전환율이 불리할 뿐만 아니라 이온 교환수지 촉매가 분해하는 단점이 있다. 반응 온도는 50-100 ℃가 더욱 적당하다.The temperature of the oligomerization reaction is not limited, but room temperature ~ 120 ℃ is suitable, if the temperature is too low, the reaction rate is too slow, if the temperature is too high, the reaction conversion rate is not only disadvantageous due to exothermic reaction of the oligomerization reaction, but also the ion exchange resin catalyst Has the disadvantage of decomposing. 50-100 degreeC of reaction temperature is more suitable.

올리고머화 반응은 회분식 및 연속식 모두 가능하며 대규모의 생산 공정에는 연속식 공정이 적당하다. 연속식 공정은 고정층 반응기를 이용하여 진행함이 적당하며 반응물은 상류로 흘릴 수도 있고 하류로 흘릴 수도 있다.The oligomerization reaction can be both batch and continuous and continuous processes are suitable for large scale production processes. The continuous process is suitably run using a fixed bed reactor and the reactants may flow upstream or downstream.

올리고머화는 반응열이 매우 큰 발열 반응이므로 반응열을 제어하는 것이 매우 중요하며 또한 원료 및 생성물의 이송 등을 용이하게 하기 위해 용매를 사용하는 것이 좋다. 용매는 탄화수소가 좋고 C2-C10 사이의 파라핀 성분의 탄화수소가 더욱 좋으며 이소부탄, 노르말부탄, 펜탄, 헥산, 헵탄, 옥탄, 노난, 데칸 등이 더더욱 좋으며 시클로헥산을 사용할 수도 있다. 반응물과 용매의 비는 1:100~100:1 사이의 어떠한 조성도 무관하며 운전의 편의성과 생산성을 고려하여 1:10~10:1로 유지함이 바람직하다. 용매 대신에 희석제로 불활성 기체인 질소, 아르곤, 이산화탄소 및 헬륨을 사용할 수도 있으며 희석제로 기체를 사용하면 고정층 반응기의 경우에는 하류로 반응물과 희석제를 흘려주는 것이 좋다.Since oligomerization is an exothermic reaction with a very large heat of reaction, it is very important to control the heat of reaction and to use a solvent to facilitate the transfer of raw materials and products. Solvents may be good and the hydrocarbon is C 2 -C 10 hydrocarbon paraffin components between good more isobutane, normal butane, pentane, hexane, heptane, octane, nonane, decane, etc. is more and more good use of cyclohexane. The ratio of reactant to solvent is irrelevant to any composition between 1: 100 and 100: 1 and is preferably maintained at 1:10 to 10: 1 in consideration of ease of operation and productivity. Instead of solvents, inert gases such as nitrogen, argon, carbon dioxide and helium may be used as diluents. If gas is used as a diluent, it is preferable to flow reactants and diluents downstream in a fixed bed reactor.

올리고머화 반응의 촉매는 거대 세공을 가진 이온 교환수지이면서 수소형 (proton form)이면 어떠한 촉매라도 무관하다. 거대 세공의 크기는 React. Funct. Polymer, 35, 7, 1997에서 기술된 바와 같이 건조된 상태에서도 5nm 이상의 세공을 가진 것이면 무관하다. 너무 세공이 크면 촉매 안정성이 약하고 5nm 이하의 세공이면 겔 형 촉매와 유사하게 반응물의 이동이 어렵고 비활성화가 너무 빨리 진행되는 단점이 있다. 반면 세공이 없는 겔형 이온 교환수지는 낮은 반응성과 비활성화 문제로 사용하기가 어렵다.The catalyst of the oligomerization reaction may be any catalyst as long as it is a macroporous ion exchange resin and is in proton form. The size of the macropore is React. Funct. As described in Polymer, 35, 7, 1997, it is irrelevant as long as it has pores of 5 nm or more even in a dried state. If the pore is too large, the catalyst stability is weak, and if the pore of 5nm or less has a disadvantage that the reaction is difficult to move and the deactivation proceeds too fast, similar to the gel catalyst. On the other hand, pore-free gel ion exchange resins are difficult to use due to low reactivity and inactivation problems.

수소 이온을 지지하는 수지는 어떠한 형태라도 무관하나 스티렌과 디비닐벤젠의 공중합체로 이루어진 수지가 적당하다. 디비닐벤젠의 함량이 증가할수록 가교도가 증가하여 안정해지나 반응물의 이동이 어려워질 수 있다. 디비닐벤젠의 함량은 스티렌과 디비닐벤젠의 총합에 대비하여 2-98 wt%가 적당하다. 수소이온은 설폰산기(-SO3H) 형태로 존재할 때 산성도가 크므로 수지에 -SO3H기를 갖는 것이 필요하다. 수소 이온 농도는 높을수록 반응이 잘 진행되며 2 당량(equivalent) H+/kg-resin 이상의 농도가 필요하며 바람직하게는 3 당량 H+/kg-resin 이상이 바람직하고 더욱 바람직하게는 4 ~ 6 당량 H+/kg-resin 의 농도가 가장 좋다.The resin supporting hydrogen ions may be in any form, but a resin composed of a copolymer of styrene and divinylbenzene is suitable. As the content of divinylbenzene increases, the degree of crosslinking increases, thereby making it difficult to move the reactants. The content of divinylbenzene is suitably 2-98 wt% relative to the sum of styrene and divinylbenzene. Since hydrogen ions are highly acidic when present in the form of sulfonic acid groups (-SO 3 H), it is necessary to have -SO 3 H groups in the resin. The higher the concentration of hydrogen ions, the better the reaction is required and the concentration of 2 equivalent (equivalent) H + / kg-resin or more is required, preferably 3 equivalent H + / kg-resin or more is preferred, more preferably 4 to 6 equivalent H + / The concentration of kg-resin is the best.

양이온 교환수지 촉매는 상업적으로 통용되는 거대 세공의 수소형의 어떠한 촉매도 사용 가능하다. 가능한 예로는 거대세공을 가지는 수소형 촉매로서 Amberlyst-35, Amberlyst-DT, Diaion-PK-228 등이 사용될 수 있다. -SO3H형 수소이온을 고 농도로 갖는 양이온교환막인 Amberlyst-35 가 가장 적합하다. 또한, 양이온 교환수지는 직접 제조하여 사용할 수도 있다.The cation exchange resin catalyst may be any catalyst of the macroporous hydrogen type commercially available. Possible examples include Amberlyst-35, Amberlyst-DT, Diaion-PK-228, and the like, as hydrogen type catalysts having macropores. Amberlyst-35, a cation exchange membrane with a high concentration of -SO 3 H-type hydrogen ions, is most suitable. In addition, cation exchange resins can also be prepared and used directly.

양이온 교환수지 촉매는 수분을 함유한 젖은 형태(wet form)나 건조된 형태(dry form)는 물론이고 알콜 및 아세톤 등으로 용매 교환된 형태가 사용될 수 있 다. 반응물이 탄화수소이므로 유기물로 용매 교환된 이온 교환 수지 촉매를 사용하는 것이 반응 초기에 안정적이고 촉매 수명에도 좋은 영향을 주므로 더욱 바람직하다.As the cation exchange resin catalyst, a solvent-exchanged form such as alcohol and acetone may be used as well as a wet or dry form containing water. Since the reactant is a hydrocarbon, it is more preferable to use an ion exchange resin catalyst solvent-exchanged with an organic substance because it is stable at the beginning of the reaction and has a good effect on the catalyst life.

촉매의 크기와 형태에는 실제적으로 제한이 있는 것은 아니지만 알갱이 형태의 촉매가 운전의 편의성 및 반응물의 차압을 줄이는 측면에서 유리하며 알갱이 크기는 0.1mm 이상이 바람직하며 0.2-1.0mm가 더욱 적합하다.Although the size and shape of the catalyst is not practically limited, the granular catalyst is advantageous in terms of ease of operation and reducing the differential pressure of the reactants. The particle size is preferably 0.1 mm or more, and 0.2-1.0 mm is more suitable.

올리고머화의 전환율은 60% 이상이면 무관하나 실제적으로 높을수록 삼량체의 농도가 증가하므로 90% 이상의 전환율이 더욱 바람직하다. 너무 전환율이 낮으면 불순물의 생성이 많으며 너무 전환율이 높으면 사량체 이상의 더욱 큰 분자량의 불순물이 혼입되기 쉬우므로 희석제나 용매의 농도를 높일 필요가 있다.The conversion rate of the oligomerization is irrelevant if it is 60% or more, but the higher the practicality is, the more the concentration of trimer increases, so the conversion rate of 90% or more is more preferable. If the conversion rate is too low, there is a large amount of impurities, and if the conversion rate is too high, impurities of larger molecular weight or higher than tetramers are easily mixed, so it is necessary to increase the concentration of the diluent or the solvent.

반응물의 유속은 너무 느리면 생산성이 낮을 뿐만 아니라 큰 분자량의 불순물이 부생될 수 밖에 없으며 너무 빠르면 반응의 전환율과 삼량체의 선택도가 낮다. 올레핀의 공간속도(WHSV, weight hourly space velocity)기준으로 2-100 h-1이 적당하며 10-50 h-1이 더욱 적당하다.If the flow rate of the reactants is too slow, not only the productivity is low but also the by-products of large molecular weight are bound to by-products and if too fast, the conversion rate of the reaction and the selectivity of the trimer are low. 2-100 h -1 is appropriate for the weight hourly space velocity (WHSV) and 10-50 h -1 is more suitable.

올리고머화에 의해 얻어진 올리고머를 네오산(neo-acid) 화합물을 만드는 등 바로 산업적으로 이용할 수도 있고 수소화를 거쳐 고비점알킬레이트로 전환할 수도 있다. 수소화 반응을 위해서는 고정층 반응기 및 연속교반 반응기 등의 일반적인 수소화 반응기 및 촉매를 이용할 수 있으며 촉매는 Pd/C, Pd/알루미나, Pt/C, Pt/알루미나, Ru/C, Ru/알루미나, Ni/C, Ni/알루미나 등 담지된 촉매, 이들을 혼합한 촉매 및 수소화 활성을 갖는 Pd, Pt, Ru, Ni 등이 혼합되어 담지된 촉매도 무관하다. 수소화 반응은 액상 및 기상의 어떠한 반응도 가능하며 수소는 수소화 반응의 당량 이상이면 무관하다.The oligomers obtained by oligomerization may be used directly for industrial purposes, such as making neo-acid compounds, or may be converted to high boiling point alkylates through hydrogenation. For the hydrogenation reaction, general hydrogenation reactors and catalysts such as fixed bed reactors and continuous stirring reactors can be used.The catalysts are Pd / C, Pd / alumina, Pt / C, Pt / alumina, Ru / C, Ru / alumina, Ni / C. , Supported catalysts such as Ni / alumina, mixed catalysts thereof, and catalysts in which Pd, Pt, Ru, Ni, and the like having a hydrogenation activity are mixed and supported. The hydrogenation reaction can be any reaction in the liquid and gas phase, and hydrogen is irrelevant as long as it is equal to or more than the equivalent of the hydrogenation reaction.

이하, 아래의 비제한적 실시예에서 본 발명을 보다 자세하게 설명한다.Hereinafter, the present invention is described in more detail in the following non-limiting examples.

실시예Example 1  One

상류로 흐르는 고정층 반응기에 건조된 비드형 (평균 직경: 0.5mm, 0.2-1mm 사이에 분포)의 Amberlyst-35 촉매 2g을 장착한 후 반응기 온도를 70 ℃로 유지한 후 액체 MFC(mass flow controller)를 이용하여 n-부탄과 i-부텐을 1:1 (무게비)로 주입하며 올리고머화 반응을 추진하였다. i-부텐은 WHSV=10 h-1가 되도록 공급하였다. 반응열이 발생함에 따라 외부에서 주입 혹은 흡수하는 열량을 조절할 수 있게 액체 순환기(circulator)를 장착하여 일정한 반응 온도를 유지하였다. 반응 후 배출되는 n-부탄과 i-부텐의 총 유속을 MFM(mass flow meter)으로 계량하여 전환율을 계산하였고 GC로 기체 성분을 분석하여 전환율을 재차 확인하였다. 액체 생성물을 포집하여 GC로 분석하여 생성물의 조성을 분석하였다. 도 1에서 보는 바와 같이 70시간의 반응을 통해 전환율은 99.4 %, 삼량체의 선택도는 75.5 wt%로 유지되었고 이량체와 사량체의 선택도는 각기 9.4 wt% 및 15.1 wt%로 소량 존재하였다. 주어진 반응 조건에서는 도 1에서 보듯이 매우 높은 전환율과 삼량체 선택성을 보임을 알 수 있다. 자세한 반응 조건 및 결과는 표 1에 요약되어 있다. In a fixed bed reactor flowing upstream, 2 g of Amberlyst-35 catalyst (being average diameter: 0.5 mm, distributed between 0.2-1 mm) was mounted, and the reactor temperature was maintained at 70 ° C., followed by a liquid mass flow controller (MFC). N-butane and i-butene were injected at a ratio of 1: 1 (weight ratio), thereby promoting an oligomerization reaction. i-butene was fed so that WHSV = 10 h −1 . As the heat of reaction was generated, a liquid circulator was installed to control the amount of heat injected or absorbed from the outside to maintain a constant reaction temperature. The total flow rate of n-butane and i-butene discharged after the reaction was measured by mass flow meter (MFM) to calculate the conversion rate, and the conversion rate was again confirmed by analyzing gaseous components by GC. The liquid product was collected and analyzed by GC to analyze the composition of the product. As shown in FIG. 1, the conversion was maintained at 99.4%, the selectivity of trimer was 75.5 wt%, and the selectivity of dimer and tetramer was 9.4 wt% and 15.1 wt%, respectively. . It can be seen that given the reaction conditions, as shown in Fig. 1, very high conversion and trimer selectivity are shown. Detailed reaction conditions and results are summarized in Table 1.

실시예Example 2  2

실시예 1과 동일하게 반응을 진행하되 건조된 촉매를 사용하는 대신에 에탄올을 이용하여 수분을 대체한 촉매를 사용하였다. 사용한 촉매의 양은 건조된 촉매 기준으로 2g이 되게 하였고 WHSV=50 h-1이었다. 반응의 안정화에 약 2시간의 시간이 소요되었으나 12시간의 반응 후 전환율과 삼량체의 선택도는 만족할 만했으며 자세한 반응 조건 및 결과는 표 1에 요약되어 있다.The reaction was performed in the same manner as in Example 1, but instead of using a dried catalyst, a catalyst was used to replace water with ethanol. The amount of catalyst used was 2 g on a dry catalyst basis and WHSV = 50 h −1 . It took about 2 hours to stabilize the reaction, but the conversion and trimer selectivity were satisfactory after 12 hours of reaction. Detailed reaction conditions and results are summarized in Table 1.

실시예Example 3  3

실시예 1과 동일하게 반응을 진행하되 건조된 촉매를 사용하는 대신에 수분이 함유된 촉매를 그대로 사용하였다. 사용한 촉매의 양은 건조된 촉매 기준으로 2g이 되게 하였고 WHSV=80 h-1이었다. 비록 반응 초기에는 전환율이 낮고 안정화하는데 2시간 정도의 시간이 소요되었으나 10시간의 반응 후 전환율과 삼량체의 선택도는 만족할 만했으며 자세한 반응 조건 및 결과는 표 1에 요약되어 있다.The reaction was performed in the same manner as in Example 1, but instead of using a dried catalyst, a catalyst containing water was used as it was. The amount of catalyst used was 2 g on a dry catalyst basis and WHSV = 80 h −1 . Although the conversion was low at the beginning of the reaction and took about 2 hours to stabilize, the conversion and trimer selectivity after 10 hours of reaction were satisfactory and the detailed reaction conditions and results are summarized in Table 1.

실시예Example 4 4

실시예 3과 동일하게 반응을 진행하되 Amberlyst-35 촉매를 사용하는 대신에 Amberlyst-DT 촉매를 에탄올로 교환 후 젖은 상태로 그대로 사용하였고 WHSV는 80 h-1 대신에 50 h- 1 이었다. 사용한 촉매의 양은 건조된 촉매 기준으로 2g이 되게 하 였다. 비록 반응 초기에는 전환율이 낮고 안정화하는데 2시간 정도의 시간이 소요되었으나 12시간의 반응 후 전환율과 삼량체의 선택도를 포함한 자세한 반응 조건 및 결과는 표 1에 요약되어 있다.Example 3, but proceeds to the same reaction and after-exchanged Amberlyst DT catalyst with ethanol instead of using Amberlyst-35 catalyst was used as a wet-WHSV was 50 h instead of 80 h -1 - 1. The amount of catalyst used was brought to 2 g on a dry catalyst basis. Although the conversion was initially low and took about 2 hours to stabilize, detailed reaction conditions and results, including conversion and trimer selectivity after 12 hours, are summarized in Table 1.

실시예Example 5  5 전환율에 따른 선택도 변화Change in selectivity based on conversion rate

실시예 3과 동일하게 반응을 진행하되 반응 전환율을 40-100%가 되도록 온도, 촉매량 및 공간속도를 변화하였다. 그 결과 반응 전환율에 따른 삼량체의 선택도는 도 2와 같으며 삼량체 선택도는 전환율이 높아질수록 증가함을 알 수 있었다. 특히, 삼량체의 선택도를 50% 이상 얻기 위해서는 전환율을 60% 이상 유지해야 함을 알 수 있다.The reaction was carried out in the same manner as in Example 3, but the temperature, the amount of catalyst and the space velocity were changed so that the reaction conversion was 40-100%. As a result, the selectivity of the trimer according to the reaction conversion rate is shown in FIG. 2 and the trimer selectivity increases as the conversion rate increases. In particular, it can be seen that in order to obtain a selectivity of the trimer 50% or more, the conversion must be maintained at 60% or more.

실시예Example 6  6 수소화반응Hydrogenation

실시예 1에서 얻어진 삼량체를 증류로 분리한 후 연속교반 반응기에 10g 가한 후 용매로 시클로헥산을 90g 더하였다. 교반되는 축에 스테인레스 스틸 메쉬로 만든 촉매 바구니를 설치하고 그 안에 Pd(5%)/C의 촉매를 0.5g 담은 후 100 ℃로 승온한 뒤 수소를 이용하여 10기압으로 유지하였다. 교반을 하여 반응을 시작하였고 소모되는 수소는 배압 조절기(back pressure regulator)를 이용하여 항상 10기압이 되도록 공급하였다. 1시간의 반응 후 시클로헥산을 증류하여 제거한 후 올레핀의 파라핀으로의 전환율이 99% 이상임을 알 수 있었고 고비점알킬레이트가 성공적으로 얻어짐을 알 수 있었다.After separating the trimer obtained in Example 1 by distillation, 10 g was added to the continuous stirring reactor, and 90 g of cyclohexane was added as a solvent. A catalyst basket made of stainless steel mesh was installed on the stirred shaft, and 0.5 g of Pd (5%) / C catalyst was placed therein, and the temperature was raised to 100 ° C. and maintained at 10 atm using hydrogen. The reaction was started by stirring, and the consumed hydrogen was always supplied to 10 atm using a back pressure regulator. After 1 hour of reaction, cyclohexane was distilled off, and the conversion of olefin to paraffin was found to be greater than 99%. It was found that high boiling point alkylate was successfully obtained.

비교예Comparative example 1  One

실시예 3과 동일하게 반응을 진행하되 Amberlyst-35 촉매를 사용하는 대신에 겔 형의 거대 세공이 없는 Amberlyst-31 촉매를 수분이 있는 상태로 그대로 사용하였고 WHSV는 80 대신에 50 h-1이었다. 사용한 촉매의 양은 건조된 촉매 기준으로 2g이 되게 하였다. 실시예 들과 달리 6시간의 반응 후 전환율은 5% 이내였고 삼량체 농도도 20% 이내로 매우 낮았고 대부분은 이량체인 C8가 얻어졌다. 자세한 반응 조건 및 결과는 표 1에 요약되어 있다.The reaction proceeded in the same manner as in Example 3, but instead of using the Amberlyst-35 catalyst, the gel-type macropore-free Amberlyst-31 catalyst was used as it was, and the WHSV was 50 h −1 instead of 80. The amount of catalyst used was 2 g on a dry catalyst basis. Unlike the examples, the conversion after 6 hours was within 5%, and the trimer concentration was also very low, within 20%. Most of the dimers, C 8, were obtained. Detailed reaction conditions and results are summarized in Table 1.

[표 1] 올리고머화 반응 조건 및 결과TABLE 1 Oligomerization Reaction Conditions and Results

Figure 112006009445787-pat00001
Figure 112006009445787-pat00001

상술한 바와 같이, 본 발명에 따라 거대 세공을 갖는 수소형 이온 교환 수지를 산촉매로 사용하고 반응 전환율을 60% 이상으로 증가시킴에 따라 삼량체의 선택 도가 높아지게 되어 삼량화 반응이 선택적으로 진행될 수 있다. 이렇게 얻어진 올리고머는 네오산(neo-acid)을 제조하는 데 사용될 수도 있고 수소화 반응을 시켜 고급 용매 및 경유의 첨가제로 사용할 수 있는 고비점알킬레이트로 전환될 수도 있다.As described above, according to the present invention, the use of a hydrogen-type ion exchange resin having macropores as an acid catalyst and the increase in the reaction conversion to 60% or more increases the selectivity of the trimer, thereby allowing the trimerization reaction to proceed selectively. . The oligomers thus obtained may be used to prepare neo-acids and may be converted to high boiling alkylates which can be used as additives for higher solvents and gas oils by hydrogenation.

Claims (9)

5nm 이상의 거대세공을 갖는 양이온 교환수지를 촉매로 사용하고 올레핀 전환율을 60% 이상으로 유지하여 삼량체의 선택도를 50% 이상으로 유지함을 특징으로 하는 올레핀 삼량체의 제조방법.A method for producing an olefin trimer, wherein the cation exchange resin having a macropore of 5 nm or more is used as a catalyst and the olefin conversion is maintained at 60% or more to maintain the selectivity of the trimer at 50% or more. 제 1항에 있어서,The method of claim 1, 50 ~ 100 ℃, 공간속도가 2 ~ 100 h- 1 로 유지하여 반응하는 것을 특징으로 하는 올레핀 삼량체 제조방법.Process for producing an olefin trimer, characterized in that the reaction is maintained at 50 ~ 100 ℃, space velocity 2 ~ 100 h - 1 . 제 1항에 있어서, 양이온 교환수지 촉매는 작용기 -SO3H로 구성된 산점을 가진 것을 특징으로 하는 올레핀 삼량체의 제조방법.The method for preparing an olefin trimer according to claim 1, wherein the cation exchange resin catalyst has an acid point composed of a functional group -SO 3 H. 제 1항에 있어서, 양이온 교환수지 촉매의 수소이온 교환 용량은 2 내지 6 당량 H+/kg-resin 임을 특징으로 하는 올레핀 삼량체의 제조방법.The method for preparing an olefin trimer according to claim 1, wherein the hydrogen ion exchange capacity of the cation exchange resin catalyst is 2 to 6 equivalents of H + / kg-resin. 제 4항에 있어서, 양이온 교환수지 촉매의 수소이온 교환 용량은 4 내지 6 당량 H+/kg-resin 임을 특징으로 하는 올레핀 삼량체의 제조방법.5. The method of claim 4, wherein the hydrogen ion exchange capacity of the cation exchange resin catalyst is 4 to 6 equivalents of H + / kg-resin. 제 1항에 있어서, 올레핀의 전환율을 90% 이상으로 유지함을 특징으로 하는 올레핀 삼량체의 제조방법.The method for producing an olefin trimer according to claim 1, wherein the conversion rate of the olefin is maintained at 90% or more. 제 1항에 있어서, 올레핀은 이소부텐인 것을 특징으로 하는 올레핀 삼량체의 제조방법.The method for producing an olefin trimer according to claim 1, wherein the olefin is isobutene. 제 1항 내지 제 7항에서 선택되는 어느 한 항의 올레핀 삼량체의 제조방법에 의해서 얻어지는 삼량체를 수소화 반응하여 고비점알킬레이트를 제조하는 방법.A method for producing a high boiling point alkylate by hydrogenation of a trimer obtained by the method for producing an olefin trimer according to any one of claims 1 to 7. 제 8항에서 있어서,The method of claim 8, 상기 수소화 촉매는 담지된 Pd, Pt, Ru, Ni 중에서 선택된 하나 이상의 촉매와 수소화제(hydrogenation agent)로 수소를 사용하는 것을 특징으로 하는 고비점알킬레이트를 제조하는 방법.The hydrogenation catalyst is a method for producing a high boiling point alkylate, characterized in that using hydrogen as a hydrogenation agent (hydrogenation agent) with at least one catalyst selected from Pd, Pt, Ru, Ni.
KR1020060012317A 2006-02-09 2006-02-09 Preparing Method of Light Olefin Trimer and Production of heavy alkylates by Using Thereof KR100784118B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020060012317A KR100784118B1 (en) 2006-02-09 2006-02-09 Preparing Method of Light Olefin Trimer and Production of heavy alkylates by Using Thereof
PCT/KR2007/000706 WO2007091862A1 (en) 2006-02-09 2007-02-09 Preparation method of light olefin trimers and production of heavy alkylates by using thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060012317A KR100784118B1 (en) 2006-02-09 2006-02-09 Preparing Method of Light Olefin Trimer and Production of heavy alkylates by Using Thereof

Publications (2)

Publication Number Publication Date
KR20070080865A KR20070080865A (en) 2007-08-14
KR100784118B1 true KR100784118B1 (en) 2007-12-12

Family

ID=38345403

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060012317A KR100784118B1 (en) 2006-02-09 2006-02-09 Preparing Method of Light Olefin Trimer and Production of heavy alkylates by Using Thereof

Country Status (2)

Country Link
KR (1) KR100784118B1 (en)
WO (1) WO2007091862A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8193402B2 (en) 2007-12-03 2012-06-05 Gevo, Inc. Renewable compositions
WO2009079213A2 (en) 2007-12-03 2009-06-25 Gevo, Inc. Renewable compositions
EP2521705A4 (en) 2010-01-08 2014-06-18 Gevo Inc Integrated methods of preparing renewable chemicals
US8373012B2 (en) 2010-05-07 2013-02-12 Gevo, Inc. Renewable jet fuel blendstock from isobutanol
WO2012145495A2 (en) 2011-04-19 2012-10-26 Gevo, Inc. Variations on prins-like chemistry to produce 2,5-dimethylhexadiene from isobutanol
FI130239B (en) 2020-11-12 2023-05-04 Neste Oyj Olefin trimerization
CN113636903B (en) * 2021-08-12 2023-03-03 万华化学集团股份有限公司 Method for preparing triisobutene by oligomerization of isobutene

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4377393A (en) 1979-11-03 1983-03-22 Ec Erdolchemie Gmbh Process for the preparation of a mixture consisting essentially of iso-butene oligomers and methyl tert.-butyl ether, its use, and fuels containing such mixture
JP2003160526A (en) 2001-11-27 2003-06-03 Manac Inc Method for producing dimer and trimer of hydroquinone
KR20040095330A (en) * 2002-03-29 2004-11-12 엑손모빌 케미칼 패턴츠 인코포레이티드 Oligomerization of olefins

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6703356B1 (en) * 2000-03-23 2004-03-09 Exxonmobil Research And Engineering Company Synthetic hydrocarbon fluids
GB0016895D0 (en) * 2000-07-11 2000-08-30 Bp Chem Int Ltd Olefin oligomerisation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4377393A (en) 1979-11-03 1983-03-22 Ec Erdolchemie Gmbh Process for the preparation of a mixture consisting essentially of iso-butene oligomers and methyl tert.-butyl ether, its use, and fuels containing such mixture
JP2003160526A (en) 2001-11-27 2003-06-03 Manac Inc Method for producing dimer and trimer of hydroquinone
KR20040095330A (en) * 2002-03-29 2004-11-12 엑손모빌 케미칼 패턴츠 인코포레이티드 Oligomerization of olefins

Also Published As

Publication number Publication date
WO2007091862A1 (en) 2007-08-16
KR20070080865A (en) 2007-08-14

Similar Documents

Publication Publication Date Title
KR100784118B1 (en) Preparing Method of Light Olefin Trimer and Production of heavy alkylates by Using Thereof
Liu et al. Oligomerization of light olefins catalyzed by brønsted-acidic metal–organic framework-808
US4249031A (en) Process for the preparation of a hydrocarbon mixture
US11078433B2 (en) Conversion of mixtures of C2—C8 olefins to jet fuel and/or diesel fuel in high yield from bio-based alcohols
GB1564272A (en) Supported perfluorinated polymer catalysts and their use in hydrocarbon conversion processes
US10421698B2 (en) Production of high octane hydrocarbon from light alkane feed using oxidation and acid catalysis chemistry
CN101332432B (en) Load-type solid acid catalyst with selective oligomerisation for mixed C4
WO2015144856A1 (en) Method for catalytic conversion of ketoacids and hydrotreament to hydrocarbons
EP1421045B1 (en) Dimerization of isobutene using a cation exchange resin
JPH0288529A (en) Oligomerization of olefin
Yuan et al. Biomass high energy density fuel transformed from α-pinene catalyzed by Brönsted-Lewis acidic heteropoly inorganic-organic salt
KR101075381B1 (en) 3 Process for preparing tert-butanol
JP4537637B2 (en) Olefin oligomerization
JPH07238040A (en) Solid super acid alkylation catalyst composition and alkylation by using same
JPH05221905A (en) Method for synthesizing alkyl tertiary alkyl ether using fluorocarbon sulfonic acid polymer on inactive carrier
Sladkovskiy et al. Comparison of isobutane/n-butenes alkylation over Y-zeolite catalyst in CSTR, fixed bed and circulating flow reactors
EP0640575B1 (en) Process for upgrading a paraffinic feedstock
KR100757031B1 (en) Preparing method of light olefin trimer by using zeolites and production of heavy alkylates by using thereof
KR100775973B1 (en) Preparing Method of Light Olefin Trimer by using zeolites and Production of heavy alkylates by Using Thereof
KR100718018B1 (en) A method for preparing heavy alkylates using zeolites
KR100718014B1 (en) Preparing method of light olefin trimer by using zeolites and production of heavy alkylates by using thereof
KR100864376B1 (en) Preparing method of butene trimers from olefins containing various olefin components and production of heavy alkylates by using thereof
DE60034272T2 (en) New heteropolyanion-containing catalyst useful in paraffin conversion processes
CN114479916B (en) Method for producing alkylate by sulfuric acid catalysis
CN106278785B (en) A kind of solid acid alkylating reaction method of isoparaffin and alkene

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20120912

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130912

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140916

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20151002

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160926

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170928

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20180927

Year of fee payment: 12