KR100759914B1 - 촛점조절기능을 구비한 바이오 칩 스캐너 - Google Patents

촛점조절기능을 구비한 바이오 칩 스캐너 Download PDF

Info

Publication number
KR100759914B1
KR100759914B1 KR1020050102317A KR20050102317A KR100759914B1 KR 100759914 B1 KR100759914 B1 KR 100759914B1 KR 1020050102317 A KR1020050102317 A KR 1020050102317A KR 20050102317 A KR20050102317 A KR 20050102317A KR 100759914 B1 KR100759914 B1 KR 100759914B1
Authority
KR
South Korea
Prior art keywords
light
biochip
detector
reference point
unit
Prior art date
Application number
KR1020050102317A
Other languages
English (en)
Other versions
KR20070045723A (ko
Inventor
문우철
Original Assignee
굿젠 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 굿젠 주식회사 filed Critical 굿젠 주식회사
Priority to KR1020050102317A priority Critical patent/KR100759914B1/ko
Priority to PCT/KR2006/000921 priority patent/WO2007049843A1/en
Publication of KR20070045723A publication Critical patent/KR20070045723A/ko
Application granted granted Critical
Publication of KR100759914B1 publication Critical patent/KR100759914B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6452Individual samples arranged in a regular 2D-array, e.g. multiwell plates

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

촛점조절기능을 구비한 바이오 칩 스캐너가 개시된다. 광원부는 소정 파장의 광을 검출지점으로 조사한다. 이송부는 바이오 칩 상에서 소정거리 이격된 복수개의 기준지점에 광이 조사되도록 바이오 칩을 이송한다. 검출부는 검출지점의 상방에 위치하며, 각각의 기준지점에 조사된 광을 검출하여 각각의 기준지점에 대응하는 복수개의 영상을 출력한다. 포커싱부는 검출부로부터 입력받은 각각의 기준지점에 대응하는 각각의 영상으로부터 획득된 광의 세기의 평균값에 대응하는 거리를 촛점거리로 설정하고, 설정된 촛점거리에 따라 검출부를 상방 또는 하방으로 이동시켜 바이오 칩에 대응하는 촛점을 조절한다. 본 발명에 따르면, 상이한 표면경사를 갖는 바이오 칩 상의 각각의 샘플에 대한 자동촛점조절이 가능하므로 유전자의 발현여부를 보다 정확하게 검출할 수 있다.
바이오 칩, 스캐너, 포커싱, 유전자, 혼성화

Description

촛점조절기능을 구비한 바이오 칩 스캐너{Bio chip scanner having a function of adjusting focus}
도 1은 종래의 바이오 칩 스캐너를 도시한 도면,
도 2는 본 발명에 따른 바이오 칩 스캐너의 상세한 구성을 도시한 블록도,
도 3은 본 발명에 따른 바이오 칩 스캐너의 일 실시예의 상세한 구성을 도시한 도면,
도 4는 포커싱부의 상세한 구성이 도시한 블록도,
도 5는 포커싱부의 기준지점검출부에 의해 검출된 기준지점의 영상을 도시한 도면,
도 6은 다채널 바이오 칩 스캐너에 대한 일 실시예의 구성을 도시한 도면,
도 7은 본 발명에 따른 바이오 칩 스캐너에 적용될 수 있는 광량보상장치의 상세한 구성을 도시한 블록도, 그리고,
도 8은 광량보상장치가 장착된 바이오 칩 스캐너에 대한 일 실시예의 구성을 도시한 도면이다.
본 발명은 바이오 칩 스캐너에 관한 것으로, 보다 상세하게는, 바이오 칩으로부터 반사된 광을 검출하여 인간의 질병을 진단하기 위한 바이오 칩 스캐너에 관한 것이다.
바이오 칩은 유리, 실리콘, 나일론 등의 재질로 이루어진 작은 기판 위에 DNA, 단백질 등의 생물분자들을 집적시켜 놓은 것을 지칭한다. 통상적으로 바이오 칩 표면에는 수백에서 수만 종류의 DNA배열이 배치되며, 바이오 칩에 배치되는 DNA배열들은 인간게놈계획 등에 의해 해명된 인간의 유전정보를 기초로 작성된다. 사전에 형광 물질로 표식을 해둔 목적 DNA배열은 바이오 칩 표면에 배치되어 있는 프로브 DNA배열과 혼성화(hybridization)된다. 프로브 DNA배열과 목적 DNA배열이 결합하면 목적 DNA배열에 표식된 형광물질이 빛을 방출한다. 따라서 바이오 칩 스캐너를 이용하여 형광물질로부터 방출된 빛을 검출함으로써 유전자의 발현여부를 확인할 수 있다. 이와 같은 바이오 칩은 유전자/단백질 기능 분석, 신약 개발, 동식물 검역, 법의학, 유전자 변이 검색, 약물 감수성 검사, 항생제 내성 검사, 병원균 검색 등 매우 다양한 분야에 응용되고 있다.
바이오 칩을 분석하여 진단하는 방법으로는 광학적인 방법, 전기화학적인 방법 등이 있으며 이 중 광학적인 방법이 주된 측정 방법이다. 광학적인 방법에서는 특정 파장에 반응하는 형광물질을 분석하고자 하는 목적 DNA(target DNA)에 입힌고, 목적 DNA와 상보적인 염기를 갖는 프로브 DNA(probe DNA)와 혼성화(hybridization)한다. 다음으로, 바이오 칩 스캐너를 이용하여 바이오 칩상에서 목적 DNA와 프로브 DNA가 존재하는 영역에 특정한 파장의 여기광을 조사한 후 형광물 질로부터 방출되는 특정 파장의 빛을 검출한다. 이와 같이 바이오 칩에 존재하는 형광물질이 특수한 파장의 빛을 받으면 내부 에너지가 상승하였다가 다시 낮은 에너지 상태로 돌아가면서 여기광보다 파장이 긴 빛을 발광하는 특성을 이용하면 혼성화여부를 검출할 수 있다. 여기광의 조사 및 방출되는 빛의 검출을 위해 사용하는 장비가 바이오 칩 스캐너이다.
도 1은 종래의 바이오 칩 스캐너를 도시한 도면이다.
도 1을 참조하면, 종래의 바이오 칩 스캐너는 글래스 홀더부(glass holder)(20), 광원부(30), 이송부(40) 및 검출부(50)로 구성된다.
글래스 홀더부(20)에는 형광물질이 표식된 목적 DNA와 프로브 DNA가 혼성화 결합된 바이오 칩(10)이 장착된다. 광원부(30)는 형광물질을 발광시킬 수 있는 파장을 가진 여기광을 발생시켜 바이오 칩(10) 위의 목적 DNA에 빛을 조사한다. 이송부(40)는 글래스 홀더부(20)로부터 바이오 칩(10)을 수직 또는 수평방향으로 이송한다. 검출부(50)는 형광물질로부터 방출되는 빛을 검출하여 DNA의 형광 발현양을 측정한다.
이러한 바이오 칩 스캐너는 광원부(30)에 사용되는 광원에 따라 크게 두 가지로 분류되는 바, 크세논(xenon)이나 메탈 할라이드 램프(metal halide lamp)와 같은 백색광을 사용하는 방식과 YAG 레이저, He-Ne 레이저 등을 사용하는 레이저 방식으로 분류된다. 또한 검출부(50)에서 형광 물질로부터 방출된 빛을 검출하는 센서로는 CCD 카메라를 비롯한 영상 소자와 광증대관(PMT : photomultiplier tube) 등이 사용되고 있다.
백색광을 사용하는 경우는 백색광원에서 발생된 빛 중에서도 검출하고자 하는 형광 물질에 맞는 파장만을 선별하고자 특정 파장만이 투과하는 칼라 필터(color filter)와 스캔하고자 하는 넓은 면적에 강하게 빛을 조사하고자 굴절 렌즈 등을 사용하여 여기광을 조절하고, 영상을 얻기 위해 CCD 등과 같은 면적 센서를 채택하여야 한다. 기존의 백색광을 사용한 바이오 칩 스캐너는 램프를 사용하기 때문에 공간도 많이 차지할 뿐만 아니라 특정 파장의 빛만을 선별하기 때문에 실제 사용되는 광효율이 떨어지는 단점을 가지고 있다. 또한 램프에서 발열하는 열을 냉각시키고 발생된 빛을 집광하기 위해 부수적인 장치가 많이 필요하기 때문에 장비의 무게도 증가되고, 가공 및 조립에도 많은 시간을 투입하게 된다. 이에 레이저를 이용한 바이오 칩 스캐너의 이용이 점차 늘어나고 있다.
이와 같은 바이오 칩 스캐너를 이용하여 유전자의 발현여부를 정확하게 검출하기 위해서는 검출부(50)와 바이오 칩(10) 상에 매트릭스 형태로 배열된 샘플(즉, 목적 DNA와 프로브 DNA의 혼성화 영역) 간의 거리(즉, 촛점 거리)가 적절하게 조절될 필요가 있다. 그러나 상술한 종래의 바이오 칩 스캐너는 사용자가 검출부(50)에 의해 검출된 영상을 기초로 검출부(50)와 바이오 칩(10) 사이의 거리를 수동으로 조작하여야 하는 불편함이 존재한다. 나아가 바이오 칩(10)의 표면이 검출부(50)에 대해 수직하지 않은 경우에는 특정한 지점의 샘플에 대해서는 촛점이 올바르게 설정되었다 해도 다른 지점의 샘플에 대해서는 촛점이 맞지 않게 되는 상황이 발생한다.
본 발명이 이루고자 하는 기술적 과제는 바이오 칩과의 촛점거리의 조절이 가능한 바이오 칩 스캐너를 제공하는 데 있다.
상기의 기술적 과제를 달성하기 위한, 본 발명에 따른 바이오 칩 스캐너는, 소정 파장의 광을 검출지점으로 조사하는 광원부; 바이오 칩 상에서 소정거리 이격된 복수개의 기준지점에 상기 광이 조사되도록 상기 바이오 칩을 이송하는 이송부; 상기 검출지점의 상방에 위치하며, 상기 각각의 기준지점에 조사된 광을 검출하여 상기 각각의 기준지점에 대응하는 복수개의 영상을 출력하는 검출부; 및 상기 검출부로부터 입력받은 상기 각각의 기준지점에 대응하는 각각의 영상으로부터 획득된 광의 세기의 평균값에 대응하는 거리를 촛점거리로 설정하고, 상기 설정된 촛점거리에 따라 상기 검출부를 상방 또는 하방으로 이동시켜 상기 바이오 칩에 대응하는 촛점을 조절하는 포커싱부;를 구비한다.
이에 의해 상이한 표면경사를 갖는 바이오 칩 상의 각각의 샘플에 대한 자동촛점조절이 가능하므로 유전자의 발현여부를 보다 정확하게 검출할 수 있다.
이하에서, 첨부된 도면들을 참조하여 본 발명에 따른 바이오 칩 스캐너의 바람직한 실시예에 대해 상세하게 설명한다.
도 2는 본 발명에 따른 바이오 칩 스캐너의 상세한 구성을 도시한 블록도이고, 도 3은 본 발명에 따른 바이오 칩 스캐너의 일 실시예의 상세한 구성을 도시한 도면이다.
도 2 및 도 3을 참조하면, 본 발명에 따른 바이오 칩 스캐너는 장착부(220), 광원부(230), 이송부(240), 검출부(250), 필터부(260), 포커싱부(270) 및 제어부(280)를 구비한다.
장착부(220)에는 형광물질이 표식된 목적 DNA와 프로브 DNA가 혼성화 결합된 바이오 칩(200)이 장착된다. 이송부(240)는 장착부(220)를 장착지점으로부터 검출지점으로 이송한다. 이송부(240)는 도면에 표시된 각각의 축방향으로 이동가능하며, 장착지점으로부터 검출지점으로의 이송방향은 장치의 구성에 따라 X축 방향 또는 Y축 방향 중에서 선택된다. 또한 이송부(240)는 장착부(220)가 검출지점에 도달하면, Z축 방향으로 정해진 위치만큼 수직이동하여 장착부(220)에 장착된 바이오 칩(200) 상의 샘플과 검출부(250)의 종단 사이의 거리가 사전에 설정된 촛점거리와 일치하도록 한다.
광원부(230)는 소정 파장의 광 또는 레이저 빔을 바이오 칩(200) 상에 배열된 샘플에 조사한다. 광원부(230)는 검출부(250)의 측방에서 장착부(220)를 향해 소정 각도를 갖도록 설치되어 장착부(220)에 고정된 바이오 칩(200)에 여기광을 조사한다. 광원부(230)의 발광원은 바이오 칩의 DNA에 표식된 형광물질에 따라 달라질 수 있으며, FITC를 형광물질로 사용하는 경우에는 488㎚-레이저가 사용될 수 있고, APC(Allophyco-cyanin)를 형광물질로 사용할 경우에는 633㎚ He-Ne 레이저 또는 레이저 다이오드가 사용될 수 있다. 이 때, 레이저 다이오드를 광원으로 채용하면 장치를 보다 소형화할 수 있는 이점이 있다.
광원부(230)는 광원(231), 제1 및 제2반사거울(232, 233), 도파로(234), 제3반사거울(235) 및 집광렌즈(236)로 구성된다. 광원부(230)에 구비되는 각각의 구성 요소(231, 232, 233, 234, 235, 236)들은 단일의 패널(P)상에 배치된다. 광원(231)으로부터 방출된 광은 제1 및 제2반사거울(232, 233)에 의해 경로가 변경된 후 도파로(234)를 통과하면서 더욱 균일해지고, 이어서 제3반사거울(235)에 의하여 경로가 변경된 후 집광렌즈(236)로 향한다. 집광렌즈(236)은 광의 대부분의 에너지가 목적하는 샘플에 조사되도록 한다. 광원부(230)에 구비된 각각의 반사거울(232, 233, 235)은 광의 경로를 원하는 형태로 변경시킴으로써 광원부(230)의 크기를 소형화에 기여한다.
검출부(250)는 장착부(220)의 상방에 위치하여 장착부(220)에 장착된 바이오 칩(200)에서 발생되는 형광을 검출한다. 검출부(250)는 바이오 칩(200)에서 나오는 형광을 검출하여 영상을 형성하며, 검출부(250)로는 광증대관(PMT)이나 CCD 카메라 등이 이용될 수 있다. CCD 카메라는 TDI(time delayed integration) 센서를 비롯한 선형(linear) 이미지 소자 및 면적 이미지 소자를 포함한다. 검출부(250)는 취득한 영상을 처리하여 분석결과를 출력한다. 이러한 영상처리과정 및 분석과정은 검출부(250)가 아닌 별도의 분석장치에 의해 수행될 수 있으며, 일예로, DNA 칩 해석 장치의 경우 DNA 칩 해석 소프트웨어를 이용하여 검출부(250)가 획득한 Cy3™, Cy5™의 형광강도를 갖는 화상 데이터를 수치화한다. 수치화된 데이터는 DNA 칩 해석 소프트웨어에 의해 각각의 유전자의 발현비(mRNA양)를 스캐터 플롯(scatter plot), 원그래프 형태, 화상 겹침 등 시각적으로 다양하게 표현될 수 있다. 또한 Cy3™와 Cy5™ 신호강도의 수치도 여러 가지 인자(parameter)를 이용해서 정규화(normalization)될 수 있다. 검출부(250)에서 수행되는 영상처리 및 판독과정은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 널리 알려진 사항이므로 보다 상세한 설명은 생략한다. 검출부(250)에 의한 검사가 완료된 바이오 칩(200)은 이송부(240)에 의해 탈착지점으로 이송된 후 장착부(220)로부터 분리된다.
필터부(260)는 바이오 칩(200) 상의 목적 바이오 소자의 형광 물질로부터 발한 빛 중에서 소정의 파장대만을 투과시키는 것으로, 여기서, 필터부(260)를 통하여 필터링된 빛의 파장대는 형광 물질의 발광 파장대를 의미한다. 필터부(260)는 원형 플레이트 형상의 필터 휠과 이 필터 휠에 형성되어 있는 복수개의 개구로 구성된다. 각각의 개구에는 발광 필터들(emission filter)이 개재되어 있고, 중심축을 중심으로 회전하면서 원하는 필터링 부재들을 선택할 수 있도록 형성되어 있다.
포커싱부(270)는 검출부(250)를 수직방향(즉, Z축방향)으로 이동시켜 촛점을 조절한다. 포커싱부(270)의 촛점조절은 바이오 칩(200)에 형성되어 있는 3개 이상의 기준지점을 검출하여 수행되며, 이와 달리 바이오 칩(200) 상의 3개 이상의 샘플을 검출하여 수행될 수도 있다. 다만, 바이오 칩(200) 상의 샘플에 의해 촛점조절을 수행하는 경우 샘플 각각의 광학적 특성에 의해 정확한 촛점형성이 용이하지 않다는 문제가 있어 샘플이 존재하지 않는 영역에서 기준지점을 설정하고, 설정된 기준지점을 검출하여 촛점조절을 수행하는 것이 바람직하다. 이 때, 기준지점의 위치는 사전에 설정된다. 도 4에는 포커싱부(270)의 상세한 구성이 도시되어 있다.
도 4를 참조하면, 포커싱부(270)는 기준지점검출부(272), 프로파일분석부(274) 및 거리조절부(276)를 구비한다.
기준지점검출부(272)는 장착부(220)에 장착된 바이오 칩(200)으로부터 기준 지점(202, 204, 206)에 대한 영상을 검출한다. 이를 위해 이송부(220)는 바이오 칩(200)을 검출지점으로 이송시킨 후 검출부(250)가 바이오 칩(200)으로부터 적어도 3개 이상의 기준지점(202, 204, 206)의 영상을 획득할 수 있도록 바이오 칩(200)의 일단부로부터 타단부까지 단속적으로 이송한다. 기준지점(202, 204, 206)은 바이오 칩(200) 상의 샘플이 존재하지 않는 영역 중에서 적어도 세군데 이상 선택된다. 이 때, 기준지점(202, 204, 206)은 바이오 칩(200) 상에 표시될 수 있다. 이와 같이 바이오 칩(200)으로부터 기준지점(202, 204, 206)의 영상을 획득하는 과정을 칩 스캐닝과정이라 칭할 수 있다. 기준지점검출부(272)는 칩 스캐닝을 통해 기준지점(202, 204, 206)의 영상을 검출한다. 기준지점검출부(272)에 의해 검출된 기준지점의 영상은 도 5에 도시되어 있다. 이러한 기준지점검출부(272)의 검출동작은 이송부(220) 및 검출부(250)의 동작제어에 의해 수행될 수 있다.
프로파일분석부(274)는 각각의 기준지점(202, 204, 206)에 해당하는 영상의 광프로파일을 분석하여 각각의 기준지점(202, 204, 206) 사이의 높이차이를 산출한다. 이 때, 프로파일분석부(274)는 각각의 기준지점(202, 204, 206)에 대응하는 검출영역(도 5에 도시된 프로파일의 경우 X-Y평면 상의 (1932, 4142) ~ (1998, 4200) 영역, 즉, 바이오 칩 표면에 의해 형성되는 평면의 일꼭지점을 원점으로 하는 경우 X-Y축상으로의 픽셀거리로 표시된 영역) 내에 존재하는 Z축상으로의 높이(도 5에 도시된 프로파일의 경우 9600 ~ 16800 픽셀거리)를 평균한 값을 각각의 기준지점(202, 204, 206)의 높이값으로 설정한다.
거리조절부(276)는 프로파일분석부(274)에 의해 산출된 각각의 기준지점 (202, 204, 206)의 높이값의 평균값에 해당하는 거리만큼 검출부(250)을 상방 또는 하방으로 이동시켜 촛점을 조절한다. 이 때, 잦은 검출부(250)의 이동을 방지하기 위해 거리조절부(276)는 프로파일분석부(274)에 의해 산출된 각각의 기준지점(202, 204, 206)의 높이차가 소정의 허용값을 초과한 경우에 한하여 검출부(250)의 이동에 의한 촛점설정과정을 수행하는 것이 바람직하다.
이상의 촛점설정과정에 대한 설명에서 프로파일분석부(274)가 각각의 기준지점(202, 204, 206)에 대응하는 검출영역 내에 존재하는 Z축상으로의 높이의 평균값을 높이값으로 설정하는 것으로 기재되어 있으나, 각각의 기준지점(202, 204, 206)에 대응하는 검출영역 내에 존재하는 Z축상으로의 최대높이를 해당 기준지점(202, 204, 206)의 높이값으로 설정할 수도 있다. 한편, 각각의 기준지점(202, 204, 206)에 대응하는 검출영역 내에 존재하는 Z축상으로의 높이값은 각각의 기준지점(202, 204, 206)으로부터 검출부(250)로 입사된 광의 세기에 대응한다.
제어부(280)는 바이오 칩 스캐너의 전반적인 동작을 제어한다. 사용자가 바이오 칩(200)을 장착부(220)에 장착하면, 제어부(280)는 이송부(230)로 장착부(220)를 장착지점으로부터 검출지점으로 이송하도록 지시하는 제어신호를 출력한다. 다음으로, 제어부(280)는 광원부(230)를 구동하는 한편, 포커싱부(270)에 촛점조절을 위한 칩 스캐닝 및 거리조절을 위한 데이터의 산출을 지시한다. 포커싱부(270)에 의한 촛점설정절차가 완료되면, 제어부(280)는 검출부(250)가 검출동작을 수행하도록 제어한다.
도 2 및 도 3을 참조하여 설명한 바이오 칩 스캐너를 이용하여 바이오 칩 (200)을 분석하는 과정을 간략히 설명하면 다음과 같다.
바이오 칩(200)이 DNA 칩인 경우 칩 위에 고정된 DNA(한 가닥 DNA : single stranded DNA)와 해석하고자 하는 mRNA를 역전사 반응하여 조제한 cDNA를 혼성화하여(A=T, C=G 상보적 결합원리) mRNA의 양을 측정하는 것이 DNA 칩 실험으로 효소반응이나 실험 조작 자체는 기존에 개발된 방법과 동일하다. 그러나 혼성화시 기존에 사용되는 조작과 비교할 때, 지극히 미량(10~100 ㎕)의 반응용액으로 실험하며, DNA 칩 위에 고정된 DNA는 미량(수십 pL)이므로, DNA양의 분포 변화가 커서 이를 보정하기 위한 데이터 처리가 필요하다.
일반적으로 DNA 칩으로 실험하는 경우, 실험간 데이터를 비교하기 위하여 제어가 되는 RNA 시료와 조사하고자 하는 RNA 시료 2종류를 각각 형광물질로 역전사 반응하여 표식한다. DNA 칩 해석을 위해 사용되는 형광물질은 Cy3™와 Cy5™가 결합한 dUTP로, 거의 같은 효율로 cDNA에 표식된다. 이 형광물질은 흡수 파장과 형광 파장이 다르므로 각각의 형광강도의 측정이 가능하다. 광원(231)으로는 543nm, 633nm 등의 여기 파장을 가진 He-Ne계 레이저를 사용한다. Cy3™의 흡수 파장은 550nm이고 형광 파장은 570nm이며, Cy5™의 경우는 흡수 파장이 649nm, 형광 파장이 670nm이다.
도 6은 다채널 바이오 칩 스캐너에 대한 일 실시예의 구성을 도시한 도면이다.
도 6을 참조하면, 다채널 바이오 칩 스캐너는 광원부(230)에 복수의 광원(231, 237)이 구비된다. 도 6에 도시된 다채널 바이오 칩 스캐너의 다른 구성요소 들은 도 2 및 도 3을 참조하여 설명한 바이오 칩 스캐너의 대응되는 구성요소와 동일하므로 상세한 설명은 생략한다. 다만, 광원부(230)의 구성과 관련하여 다채널 바이오 칩 스캐너는 복수의 광원(231, 237)을 구비함으로써 추가적으로 제4반사거울(238)과 빔스플리터(239)가 필요하다. 제4반사거울(238)은 제2광원(237)로부터 방출된 광의 경로를 변경하여 빔스플리터(239)로 향하게 한다. 빔스플리터(239)는 제4반사거울(238)에 의해 반사되어 입사된 광의 경로를 변경시켜 제1반사거울(232)로 향하게 하며, 제1광원(231)로부터 방출된 광을 통과시켜 제1반사거울(232)로 향하게 한다. 이러한 빔스플리터(239)의 동작에 의해 두개의 광원(231, 237)로부터 방출된 광의 경로가 하나로 합쳐지게 된다.
상술한 바와 같이 광원이 여러 개라도 광이 하나의 경로를 통과하도록 구성하면 장비의 소형화 및 비용 절감의 효과를 얻을 수 있다. 또한, 서로 다른 파장을 갖는 두개의 광원(231, 237)에 의해 바이오 칩으로부터 유전정보를 검출하므로 보다 정확한 분석이 가능하다. 일반적으로 DNA 칩으로 실험하는 경우, 실험간 데이터를 비교하기 위하여 제어가 되는 RNA 시료와 조사하고자 하는 RNA 시료 2종류를 각각 형광물질로 역전사 반응하여 표식한다. DNA 칩 해석을 위해 사용되는 형광 물질은 Cy3™와 Cy5™가 결합한 dUTP로, 거의 같은 효율로 cDNA에 표식된다. 이 형광 물질은 흡수 파장과 형광 파장이 다르므로 각각의 형광 강도를 측정할 수 있다. 제1 및 제2 레이저 빔 소스(231, 232)로는 각각 543nm, 633nm 여기 파장을 가진 He-Ne계 레이저를 사용한다. Cy3™의 흡수 파장은 550nm이고 형광 파장은 570nm이며, Cy5™의 경우는 흡수 파장이 649nm, 형광 파장이 670nm이다.
도 7은 본 발명에 따른 바이오 칩 스캐너에 적용될 수 있는 광량보상장치의 상세한 구성을 도시한 블록도이고, 도 8은 광량보상장치가 장착된 바이오 칩 스캐너에 대한 일 실시예의 구성을 도시한 도면이다.
도 7 및 도 8을 참조하면, 광량보상부(290)는 수광부(292), 보상값산출부(294) 및 보상부(296)를 구비한다. 광량보상부(290)의 동작은 제어부(280)에 의해 제어된다. 수광부(292)는 광원부(230)와 대향되어 설치되어 광원부(230)로부터 방출되어 바이오 칩(200)에 의해 반사된 광을 검출한다. 보상값산출부(294)는 수광부(292)에 의해 검출된 광의 세기와 사전에 설정되어 있는 기준 세기를 비교하여 양자의 차이값을 산출한다. 만약 양자의 차이값이 소정의 허용값보다 크면 보상값산출부(294)는 양자의 차이값에 대응하는 보상신호를 보상부(296)로 출력한다. 보상부(296)는 입력된 보상신호에 따라 검출부(250)의 조리개를 조절하여 검출부(250)로 입사되는 광량을 조절한다. 이러한 광량보상장치는 자동촛점조절장치와 분리되어 바이오 칩 스캐너에 독립적으로 구비될 수 있다.
이상에서 본 발명의 바람직한 실시예에 대해 도시하고 설명하였으나, 본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다.
본 발명에 따른 촛점조절기능을 구비한 바이오 칩 스캐너에 의하면, 통상적 으로 상이한 표면경사를 갖는 바이오 칩 상의 각각의 샘플에 대한 자동촛점조절이 가능하므로, 유전자의 발현여부를 보다 정확하게 검출할 수 있다. 또한, 바이오 칩 스캐너에 자동촛점조절기능을 구현함으로써 장치 조작자가 일일이 촛점거리를 조절하는 불편함을 해소할 수 있다. 한편, 바이오 칩 스캐너에 광량보상장치를 장착함으로써 시간의 경과에 따라 광원으로부터 방출되는 광의 세기가 변하는 경우에도 샘플영상의 해상도가 저하되지 않는 이점이 있다.

Claims (7)

  1. 광을 검출지점으로 조사하는 광원부(230);
    바이오 칩(200) 상의 서로 이격된 두개 이상의 기준지점에 상기 광이 조사되도록 상기 바이오 칩(200)을 이송하는 이송부(240);
    상기 검출지점의 상방에 위치하며, 상기 각각의 기준지점에 조사된 광을 검출하여 상기 각각의 기준지점에 대응하는 영상을 출력하는 검출부(250); 및
    상기 검출부(250)로부터 입력받은 상기 각각의 기준지점에 대응하는 각각의 영상으로부터 획득된 광의 세기의 평균값에 대응하는 거리를 초점거리로 설정하고, 상기 설정된 초점거리를 기초로 상기 검출부(250)를 상방 또는 하방으로 이동시켜 상기 바이오 칩(200)에 대응하는 초점을 조절하는 포커싱부(270);를 포함하는 것을 특징으로 하는 바이오 칩 스캐너.
  2. 제 1항에 있어서,
    상기 포커싱부(270)는,
    상기 바이오 칩(200) 상의 상기 각각의 기준지점이 상기 검출지점에 위치하도록 상기 이송부(240)를 제어하고, 순차적으로 상기 검출지점에 위치한 상기 각각의 기준지점에 조사된 광을 검출하여 상기 각각의 기준지점에 대응하는 영상을 출력하도록 상기 검출부(250)를 제어하는 기준지점검출부(272);
    상기 각각의 기준지점에 해당하는 영상으로부터 상기 기준지점들 사이의 높이 차를 산출하는 프로파일분석부(274); 및
    상기 산출된 기준지점들 사이의 높이차의 평균값에 대응하는 거리만큼 상기 검출부(250)를 상방 또는 하방으로 이동시켜 상기 검출부(250)의 초점을 조절하는 거리조절부(276);를 포함하는 것을 특징으로 하는 바이오 칩 스캐너.
  3. 제 2항에 있어서,
    상기 프로파일분석부(274)는 상기 각각의 기준지점에 대응하는 영상의 검출영역 내에 존재하는 픽셀막대의 수직방향으로의 높이를 평균한 값을 각각의 기준지점의 높이값으로 설정하는 것을 특징으로 하는 바이오 칩 스캐너.
  4. 제 2항에 있어서,
    상기 거리조절부(276)는 상기 각각의 기준지점의 높이값의 차이가 사전에 설정되어 있는 허용값을 초과한 경우에 사기 초점거리 조절과정을 수행하는 것을 특징으로 하는 바이오 칩 스캐너.
  5. 제 1항에 있어서,
    상기 광원부(230)는 서로 다른 파장의 광을 발생시키는 두개 이상의 광원(231, 237)을 포함하며,
    상기 각각의 광원(231, 237)으로부터 방출된 광은 상기 검출지점으로 동일한 광경로를 통해 조사되는 것을 특징으로 하는 바이오 칩 스캐너.
  6. 제 1항 또는 제 5항에 있어서,
    상기 광원부(230)와 대향되어 설치되어 상기 바이오 칩(200)에 의해 반사된 광을 검출하고, 상기 검출된 반사광의 세기에 대응하는 광량보상값을 출력하는 광량보상부(290)를 더 포함하는 것을 특징으로 하는 바이오 칩 스캐너.
  7. 제 6항에 있어서,
    상기 광량보상부(290)는,
    상기 광원부(230)와 대향되어 설치되어 상기 광원부(230)로부터 방출되어 상기 바이오 칩(200)에 의해 반사된 광을 검출하는 수광부(292);
    상기 수광부(292)에 의해 검출된 광의 세기와 사전에 설정되어 있는 기준 세기를 비교하여 차이값을 산출하고, 상기 산출된 차이값이 사전에 설정되어 있는 허용값보다 크면 상기 산출된 차이값에 대응하는 보상신호를 출력하는 보상값산출부(294); 및
    상기 보상신호에 따라 상기 검출부(250)의 조리개를 조절하여 상기 검출부(250)로 입사되는 광량을 조절하는 보상부(296);를 포함하는 것을 특징으로 하는 바이오 칩 스캐너.
KR1020050102317A 2005-10-28 2005-10-28 촛점조절기능을 구비한 바이오 칩 스캐너 KR100759914B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020050102317A KR100759914B1 (ko) 2005-10-28 2005-10-28 촛점조절기능을 구비한 바이오 칩 스캐너
PCT/KR2006/000921 WO2007049843A1 (en) 2005-10-28 2006-03-15 Bio-chip scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050102317A KR100759914B1 (ko) 2005-10-28 2005-10-28 촛점조절기능을 구비한 바이오 칩 스캐너

Publications (2)

Publication Number Publication Date
KR20070045723A KR20070045723A (ko) 2007-05-02
KR100759914B1 true KR100759914B1 (ko) 2007-09-18

Family

ID=37967938

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050102317A KR100759914B1 (ko) 2005-10-28 2005-10-28 촛점조절기능을 구비한 바이오 칩 스캐너

Country Status (2)

Country Link
KR (1) KR100759914B1 (ko)
WO (1) WO2007049843A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100848118B1 (ko) * 2007-05-03 2008-07-24 삼성전자주식회사 광 센서 생체 신호 측정 장치 및 상기 장치의 광 센서 제어방법
GB201610434D0 (en) 2016-06-15 2016-07-27 Q-Linea Ab Image based analysis of samples
CN106353320A (zh) * 2016-09-12 2017-01-25 北京纳迅科技股份有限公司 便携式生物芯片阅读仪
WO2022005142A1 (en) * 2020-06-29 2022-01-06 Seegene, Inc. Nucleic acid detection device comprising movable light detection assembly
CN112592818A (zh) * 2020-12-18 2021-04-02 覃日华 一种基因分型芯片的自动化检测设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001065241A1 (en) * 2000-02-29 2001-09-07 The University Of Chicago A biochip scanner device
KR20050008148A (ko) * 2003-07-14 2005-01-21 스타브이-레이주식회사 형광 집속수단을 갖는 바이오칩 스캐너
KR100478137B1 (ko) * 2002-07-19 2005-03-21 주식회사 마크로젠 여기광 집속효율이 향상된 바이오 칩 스캐너
KR20050050858A (ko) * 2003-11-26 2005-06-01 스타브이-레이주식회사 레이저 빔을 이용한 바이오칩 스캐너

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001065241A1 (en) * 2000-02-29 2001-09-07 The University Of Chicago A biochip scanner device
KR100478137B1 (ko) * 2002-07-19 2005-03-21 주식회사 마크로젠 여기광 집속효율이 향상된 바이오 칩 스캐너
KR20050008148A (ko) * 2003-07-14 2005-01-21 스타브이-레이주식회사 형광 집속수단을 갖는 바이오칩 스캐너
KR20050050858A (ko) * 2003-11-26 2005-06-01 스타브이-레이주식회사 레이저 빔을 이용한 바이오칩 스캐너

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
대한민국 공개특허 제10-2005-0008148호(2005.01.21.)
대한민국 공개특허 제10-2005-0050858호(2005.06.01.)
대한민국 등록특허 제10-0478137호(2005.03.11.)

Also Published As

Publication number Publication date
WO2007049843A1 (en) 2007-05-03
KR20070045723A (ko) 2007-05-02

Similar Documents

Publication Publication Date Title
EP1228354B1 (en) Apparatus and method for calibration of a microarray scanning system
JP6782268B2 (ja) 高スループットシーケンシング用のレーザライン照明装置
US7354389B2 (en) Microarray detector and methods
JP7432779B2 (ja) モジュラー光学解析システム及び方法
US20080265139A1 (en) Combination reader
US9201230B2 (en) Systems for and methods of facilitating focusing an optical scanner
EP1347285A1 (en) Method and apparatus for measuring fluorescence luminance
EP2908089A1 (en) Detection method, microarray analysis method and fluorescence reading device
KR100759914B1 (ko) 촛점조절기능을 구비한 바이오 칩 스캐너
CN114200660A (zh) 载片卡死确定***
US6630680B2 (en) Scanner having confocal optical system, method for producing focus position data of confocal optical system of scanner having confocal optical system and method for producing digital data of scanner having confocal optical system
JP7044875B2 (ja) スライドラック判定システム
WO2003100474A2 (en) Microarray detector and methods
KR100818351B1 (ko) 다채널 바이오 칩 스캐너
KR101383805B1 (ko) 레이저빔을 이용한 젤 이미징 장치
KR101188233B1 (ko) 바이오칩을 위한 진단장치
RU188251U1 (ru) Устройство для сканирования биочипов
KR20110136299A (ko) 광학 스캐너 보정 소자, 그를 제조하는 방법 및 그를 사용하여 광학 스캐너를 보정하는 방법
KR102441156B1 (ko) 다파장 광원을 이용한 다중 분석장치
EP1545119A1 (en) Image reading apparatus and image reading method
KR20050050858A (ko) 레이저 빔을 이용한 바이오칩 스캐너
CN116930137A (zh) 样本检测设备及图形处理方法
KR20220018846A (ko) 머신러닝 기반의 액상시료 정량 분석 알고리즘을 탑재한 고집속 고감도 형광검출 스캐닝 시스템
KR20150022179A (ko) 형광신호 자동 분석 장치
JP2005257313A (ja) 蛍光読取装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120910

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140312

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20141230

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150819

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160811

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170907

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20180904

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20190904

Year of fee payment: 13