KR100754305B1 - Low-GIDL MOSFET structure and method for fabrication - Google Patents

Low-GIDL MOSFET structure and method for fabrication Download PDF

Info

Publication number
KR100754305B1
KR100754305B1 KR1020057010895A KR20057010895A KR100754305B1 KR 100754305 B1 KR100754305 B1 KR 100754305B1 KR 1020057010895 A KR1020057010895 A KR 1020057010895A KR 20057010895 A KR20057010895 A KR 20057010895A KR 100754305 B1 KR100754305 B1 KR 100754305B1
Authority
KR
South Korea
Prior art keywords
gate conductor
gate
side wing
conductor
center
Prior art date
Application number
KR1020057010895A
Other languages
Korean (ko)
Other versions
KR20050091003A (en
Inventor
칼 라덴스
오머 에이치. 도쿠마씨
브루스 비. 도리스
올레그 글러스첸코브
잭 에이. 맨델맨
Original Assignee
인터내셔널 비지네스 머신즈 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인터내셔널 비지네스 머신즈 코포레이션 filed Critical 인터내셔널 비지네스 머신즈 코포레이션
Publication of KR20050091003A publication Critical patent/KR20050091003A/en
Application granted granted Critical
Publication of KR100754305B1 publication Critical patent/KR100754305B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4983Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET with a lateral structure, e.g. a Polysilicon gate with a lateral doping variation or with a lateral composition variation or characterised by the sidewalls being composed of conductive, resistive or dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28105Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor next to the insulator having a lateral composition or doping variation, or being formed laterally by more than one deposition step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66484Unipolar field-effect transistors with an insulated gate, i.e. MISFET with multiple gate, at least one gate being an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6656Unipolar field-effect transistors with an insulated gate, i.e. MISFET using multiple spacer layers, e.g. multiple sidewall spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7831Field effect transistors with field effect produced by an insulated gate with multiple gate structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7836Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with a significant overlap between the lightly doped extension and the gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26586Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S257/00Active solid-state devices, e.g. transistors, solid-state diodes
    • Y10S257/90MOSFET type gate sidewall insulating spacer

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)

Abstract

저-GIRL 전류를 제공하는 저-GIRL 전류 MOSFET 장치(90) 구조 및 그 제조 방법이 제공된다. MOSFET 장치 구조는 에지가 소스/드레인 확산부(88, 88)와 약간 중첩할 수 있는 중앙 게이트 도체(10), 및 박형 절연 및 확산 장벽층(50, 52)에 의해 중앙 게이트 도체로부터 분리되는 좌우측 사이드 윙 게이트 도체(70, 70)를 포함한다.A low-GIRL current MOSFET device 90 structure providing a low-GIRL current and a method of manufacturing the same are provided. The MOSFET device structure is left and right separated from the center gate conductor by a center gate conductor 10 whose edges may slightly overlap with the source / drain diffusions 88 and 88, and thin insulating and diffusion barrier layers 50 and 52. Side wing gate conductors 70 and 70.

저-GIDL 전류, 중앙 게이트 도체, 사이드 윙 게이트 도체, 금속 측벽 스페이서, 오프셋 막 Low-GIDL Current, Center Gate Conductor, Side Wing Gate Conductor, Metal Sidewall Spacer, Offset Membrane

Description

저-GIDL MOSFET 구조 및 그 제조 방법{Low-GIDL MOSFET structure and method for fabrication}LOW-GIDL MOSFET structure and method for fabrication

본 발명은 일반적으로 저(low)-GIDL(Gate-Induced Drain Leakage: 게이트 유도 드레인 누설) 전류 MOSFET 장치의 구조 및 그 제조 방법에 관한 것이다.FIELD OF THE INVENTION The present invention generally relates to structures of low-gate induced drain leakage (GIDL) current MOSFET devices and methods of fabricating the same.

장치 크기가 축소됨에 따라, 게이트 유도 드레인 누설(GIDL) 전류로 인해 신뢰성 문제가 생기고, 이로 인해 최상의 장치 성능을 위해 요구된 것보다 낮은 전압에서 장치를 동작시킬 수밖에 없다.As device sizes shrink, gate induced drain leakage (GIDL) current introduces reliability issues, which forces the device to operate at voltages lower than required for best device performance.

NMOSFET에서 드레인 전위가 게이트 전위보다 더 큰(+1V보다 큰) 플러스 전위로 되도록 장치가 바이어스될 때 그리고 PMOSFET에서 게이트 전위가 드레인 전위보다 더 큰(+1V보다 큰) 플러스 전위일 때, 게이트 도체가 드레인 확산 영역과 중첩하는 영역을 따라 전계 효과 트랜지스터의 표면 드레인 공핍 영역에서 전자-홀 쌍들이 생성되고 이에 의해 GIDL 전류가 발생된다.When the device is biased such that the drain potential in the NMOSFET is a positive potential that is greater than the gate potential (greater than + 1V) and when the gate potential is greater than the drain potential (greater than + 1V) in the PMOSFET, the gate conductor Electron-hole pairs are generated in the surface drain depletion region of the field effect transistor along the region overlapping the drain diffusion region, thereby generating a GIDL current.

본 발명은 저-GIDL 전류 MOSFET 장치 구조 및 저-GIDL 전류 MOSFET 장치의 제조 방법을 제공하는데, 이러한 저-GIDL 전류 MOSFET 장치는 종래의 MOSFET 장치에 비해 감소된 저-GIDL 전류를 제공한다. MOSFET 장치 구조는 에지가 소스/드레인 확산부와 약간 중첩할 수 있는 중앙 게이트 도체 및 박형 절연 및 확산 장벽층에 의해 중앙 게이트 도체로부터 분리되는 사이드 윙(side wing) 게이트 도체를 포함한다.The present invention provides a low-GIDL current MOSFET device structure and a method of manufacturing a low-GIDL current MOSFET device, which provide a reduced low-GIDL current compared to conventional MOSFET devices. The MOSFET device structure includes a center gate conductor whose edge may slightly overlap with the source / drain diffusion and a side wing gate conductor separated from the center gate conductor by a thin insulating and diffusion barrier layer.

NMOSFET 장치의 경우, 사이드 윙 게이트 도체는 양호하게 N+ 폴리실리콘으로 만들어지고, PMOSFET 장치의 경우, 사이드 윙 게이트 도체는 양호하게 P+ 폴리실리콘으로 만들어진다. 중앙 게이트 도체 영역은, (DRAM 애플리케이션에서와 같이) 고-Vt(임계 전압) NMOSFET이 요구되는 경우 P+ 폴리실리콘일 수 있고 또는 향상된 성능을 위해 저-Vt NMOSFET가 요구되는 경우라면 N+ 폴리실리콘일 수 있다(PFET는 상보적인 도핑을 사용할 수 있다). 사이드 윙 게이트 도체 및 중앙 게이트 도체는 위에 놓여있는 금속 측벽 도전층에 의해 함께 스트랩(strap)된다. 더욱이, 중앙 게이트 도체 아래 및 사이드 윙 도체 아래의 게이트 절연체 두께는 독립적으로 지정가능하다. 이로 인해 사이드 도체 아래의 게이트 절연체가 중앙 도체 아래의 게이트 절연체보다 양호하게 더 두껍게 될 수 있다.For NMOSFET devices, the side wing gate conductors are preferably made of N + polysilicon, and for PMOSFET devices, the side wing gate conductors are preferably made of P + polysilicon. The central gate conductor region can be P + polysilicon if a high-Vt (threshold voltage) NMOSFET is required (as in DRAM applications) or N + polysilicon if a low-Vt NMOSFET is required for improved performance. (PFETs may use complementary doping). The side wing gate conductor and the center gate conductor are strapped together by a metal sidewall conductive layer lying thereon. Moreover, the gate insulator thickness below the center gate conductor and below the side wing conductor is independently assignable. This can make the gate insulator under the side conductors better thicker than the gate insulator under the center conductor.

저-GIDL MOSFET 및 그 제조 방법에 관한 본 발명의 상기 목적 및 장점은 몇몇 실시예에 관한 다음의 상세한 설명을 첨부된 도면과 함께 참조함으로써 본 분야에 숙련된 기술자에 의해 더욱 쉽게 이해될 수 있으며, 도면에서 유사한 구성요소들은 동일한 참조번호로 표시된다.The above objects and advantages of the present invention with respect to low-GIDL MOSFETs and methods of manufacturing the same can be more readily understood by those skilled in the art by referring to the following detailed description of some embodiments in conjunction with the accompanying drawings, Like elements in the figures are designated by like reference numerals.

도 1 내지 9는 본 발명의 교시에 따른 저-GIDL MOSFET 장치의 제조 방법을 도시한 도면.1-9 illustrate a method of fabricating a low-GIDL MOSFET device in accordance with the teachings of the present invention.

도 1은 MOSFET 게이트 전극 폴리실리콘 증착이 표준 리소그래피 및 RIE 프로세스에 의해 패터닝된 후의 장치를 도시한 도면.1 shows an apparatus after MOSFET gate electrode polysilicon deposition is patterned by standard lithography and RIE processes.

도 2는 HDP와 같은 이방성 유전체 증착이 수평면 상에 오프셋 막을 형성하기 위해 사용된 후의 장치를 도시한 도면.FIG. 2 shows the apparatus after anisotropic dielectric deposition, such as HDP, has been used to form an offset film on a horizontal plane.

도 3은 도전성 확산 장벽(즉, WN, TiN)이 증착되고, CVD W/WN 스페이서와 같은 금속 스페이서가 PC의 측벽을 따라 형성된 후의 장치를 도시한 도면.FIG. 3 shows the apparatus after conductive diffusion barriers (ie, WN, TiN) are deposited and metal spacers such as CVD W / WN spacers are formed along the sidewalls of the PC.

도 4는 오프셋 막 HDP 유전체가 행잉(hanging) 스페이서를 형성하기 위해 스트립(strip)된 후의 장치를 도시한 도면.4 shows the apparatus after the offset film HDP dielectric has been stripped to form a hanging spacer.

도 5는 폴리실리콘 및 실리콘 기판이 W 금속 스페이서에 대해 선택적으로 산화된 후의 장치를 도시한 도면.FIG. 5 shows the device after the polysilicon and silicon substrates have been selectively oxidized to the W metal spacer.

도 6은 박형 LPCVD 폴리실리콘이 W 스페이서 아래의 언더컷(undercut) 영역에 의해 형성된 디보트(divot)를 채우기 위해 증착된 후의 장치를 도시한 도면.FIG. 6 shows the apparatus after thin LPCVD polysilicon has been deposited to fill a divert formed by an undercut region under the W spacer.

도 7은 박형 LPCVD 실리콘이 (스트랩 에칭과 같은) 등방성 에칭에 의해 필드 영역으로부터 제거된 후(박형 LPCVD 실리콘이 측벽 디보트 내에는 남아있음)의 장치를 도시한 도면.FIG. 7 shows the apparatus after thin LPCVD silicon is removed from the field region by an isotropic etch (such as strap etch) (thin LPCVD silicon remains in the sidewall dibot).

도 8은 S/D 확장부/헤일로(halo) 및 스페이서가 이온 주입과 같은 종래의 프로세스에 의해 형성된 후의 장치를 도시한 도면.FIG. 8 shows the apparatus after S / D extensions / halos and spacers have been formed by conventional processes such as ion implantation.

도 9는 살리사이드(salicide)가 종래의 프로세스에 의해 형성된 후의 장치를 도시한 도면.Figure 9 shows the apparatus after salicide is formed by a conventional process.

도 1 내지 9는 본 발명의 교시에 따른 저-GIDL MOSFET(금속 산화물 반도체 전계 효과 트랜지스터) 장치의 제조 방법을 도시한 것이다.1-9 illustrate a method of fabricating a low-GIDL MOSFET (metal oxide semiconductor field effect transistor) device in accordance with the teachings of the present invention.

도 1은 MOSFET 일차/주 중앙 게이트 전극 폴리실리콘 증착부(10)가 게이트 산화물 유전체 절연체(14)에 의해 덮여진 기판(12) 상에서 표준 리소그래피 및 RIE(반응성 이온 에칭) 프로세스에 의해 패터닝된 후의 장치를 도시한 것이다.1 shows an apparatus after MOSFET primary / main center gate electrode polysilicon deposition 10 is patterned by standard lithography and reactive ion etching (RIE) processes on a substrate 12 covered by a gate oxide dielectric insulator 14. It is shown.

게이트 PC(폴리 크리스탈) 폴리는 에칭 이전에 선택적으로 도핑될 수 있다. 도시된 실시예에서, 게이트(10)는 고-Vt(임계 전압) 표면 채널 NFET 또는 저-Vt 매립 채널 NFET를 생성하기 위해 P형 불순물로 도핑된다.Gate PC (poly crystal) poly may be selectively doped prior to etching. In the illustrated embodiment, gate 10 is doped with P-type impurities to produce a high-Vt (threshold voltage) surface channel NFET or a low-Vt buried channel NFET.

도 2는 HDP(고밀도 플라즈마), 양호하게 산화물과 같은 비등방성 유전체 증착부(20)가 수평면 상에 이산화 실리콘과 같은 오프셋 막을 형성하기 위해 사용된 후의 장치를 도시한 것이다.Figure 2 shows the apparatus after HDP (high density plasma), preferably anisotropic dielectric deposition 20, such as oxide, is used to form an offset film, such as silicon dioxide, on a horizontal plane.

도 3은 도전성 확산 장벽(30)(즉, 측벽 금속과 게이트 폴리 사이의 반응을 방지하기 위한 WN(텅스텐/질화 텅스텐), TiN)이 증착되고, CVD(화학 증착) 텅스텐/질화 텅스텐 스페이서와 같은 금속 스페이서(금속 측벽 스페이서)(32)가 CVD 및 비등방성 RIE를 사용하여 PC의 측벽을 따라 형성된 후의 장치를 도시한 것이다.3 shows a conductive diffusion barrier 30 (i.e., WN (tungsten / tungsten nitride), TiN) deposited to prevent reaction between sidewall metal and gate poly, and a CVD (chemical vapor deposition) tungsten / tungsten nitride spacer, such as The device after metal spacers (metal sidewall spacers) 32 are formed along the sidewalls of the PC using CVD and anisotropic RIE.

금속 측벽 스페이서는 게이트 전극 폴리실리콘과 후속적으로 형성된 측벽 디보트 폴리실리콘 게이트 확장부(사이드 윙 게이트 도체)(70) 사이에 정류 접합(rectifying junction)이 형성되지 않게 한다.The metal sidewall spacer prevents a rectifying junction from being formed between the gate electrode polysilicon and the subsequently formed sidewall devoted polysilicon gate extension (side wing gate conductor) 70.

도 4는 비등방성 유전체 증착부(20)인 오프셋 막 HDP 유전체(20)가 언더컷 영역(40) 위에 행잉 스페이서(32)를 형성하기 위해 스트립된 후의 장치를 도시한 것이다.FIG. 4 shows the apparatus after the offset film HDP dielectric 20, anisotropic dielectric deposition 20, has been stripped to form the hanging spacer 32 over the undercut region 40.

도 5는 폴리실리콘 및 실리콘 기판이 W 금속 스페이서에 대해 선택적으로 참조번호(50)에서 산화된 후의 장치를 도시한 것이다(예를 들어, S. Iwata 등 저의 IEEE Trans. Electron Devices, ED-31, p.1174(1984) 참조). 노출된 폴리실리콘 게이트 전극의 측벽(52)은 산화되고, 산화물 장벽은 n+ 게이트 사이드 윙 게이트 도체와 p+ 중앙 게이트 도체 폴리의 상이한 일 함수로 인해 접합이 생성되지 않도록 박형 절연 및 확산 장벽층을 제공한다.FIG. 5 shows the device after polysilicon and silicon substrates are optionally oxidized at 50 for W metal spacers (see, for example, S. Iwata et al., IEEE Trans. Electron Devices, ED-31, p. 1174 (1984). The sidewalls 52 of the exposed polysilicon gate electrode are oxidized and the oxide barrier provides a thin insulation and diffusion barrier layer such that no junction is created due to the different work function of the n + gate side wing gate conductor and the p + center gate conductor poly. .

도 6은 박형 LPCVD(저압 화학 증착) 폴리실리콘(60)이 W 스페이서 아래의 언더컷 영역에 의해 형성된 디보트를 채우기 위해 증착된 후의 장치를 도시한 것이다.FIG. 6 shows the apparatus after thin LPCVD (Low Pressure Chemical Vapor Deposition) polysilicon 60 has been deposited to fill the divert formed by the undercut region under the W spacer.

박형 LPCVD 폴리실리콘은 도핑 또는 비도핑으로 증착될 수 있다. 도핑되면, 그 도핑 극성은 S/D 확산부의 극성과 반대이다. 비도핑 증착되면, 박형 LPCVD 폴리는 저 에너지 앵글드(angled) 이온 주입, 플라즈마 침적(immersion), 기체상(gas phase) 도핑 또는 고체 소스 도핑과 같은 공지된 방법 중의 어느 하나, 또는 그것의 조합을 사용하여 도핑될 수 있다. 모든 도핑 기술은 NFET와 PFET 사이를 구별하기 위해 리소그래피로 정의된 블록 마스킹 층(산화물 또는 질화물)을 이용할 수 있다.Thin LPCVD polysilicon may be deposited by doping or undoping. If doped, its doping polarity is opposite to that of the S / D diffusion. Once undoped deposited, the thin LPCVD poly may be subjected to any one of known methods, such as low energy angled ion implantation, plasma immersion, gas phase doping or solid source doping, or a combination thereof. Can be doped using. All doping techniques can use a lithographically defined block masking layer (oxide or nitride) to distinguish between NFETs and PFETs.

도 7은 박형 LPCVD 실리콘이 (스트랩 에칭과 같은) F1 또는 C1 라디컬을 사용하는 화학 건식 에칭(CDE)과 같은 등방성 에칭에 의해 필드 영역으로부터 제거된 후(박형 LPCVD 실리콘(70)이 측벽 디보트 내에는 남아있음)의 장치를 도시한 것이다.7 shows thin LPCVD silicon removed from the field region by isotropic etching, such as chemical dry etching (CDE) using F1 or C1 radicals (such as strap etch) (thin LPCVD silicon 70 devoted to sidewalls). Remaining within).

도 8은 S/D 확장부/헤일로(84) 및 스페이서(86)가 명명된 그리고 명명되지 않은 이온 주입을 포함하는 종래의 프로세스에 의해 형성된 후의 장치를 도시한 것이다. 소스 및 드레인 영역(88)은 농후하게 도핑된 영역인 반면, 확장부/헤일로 영역(84)은 희박하게 도핑되고, 제1 실시예에서는 참조번호(80)에서의 사이드 윙 게이트 도체와 약간 중첩하고, 제2 실시예에서는 참조번호(82)에서의 중앙 게이트 도체와 약간 중첩한다.FIG. 8 shows the apparatus after the S / D extension / halo 84 and the spacer 86 are formed by a conventional process involving named and unnamed ion implantation. The source and drain region 88 is a heavily doped region, while the extension / halo region 84 is sparsely doped, slightly overlapping the side wing gate conductor at 80 in the first embodiment. In the second embodiment, the center gate conductor slightly overlaps with reference numeral 82.

도 9는 살리사이드(92)가 종래의 프로세스에 의해 형성된 후의 저-GIDL 전류 MOSFET 장치(90)를 도시한 것이다.9 shows a low-GIDL current MOSFET device 90 after salicide 92 is formed by a conventional process.

설명된 제조 방법은 에지가 소스/드레인 확산부와 약간 중첩할 수 있는 중앙 게이트 도체, 및 박형 절연 및 확산 장벽층에 의해 중앙 게이트 도체로부터 분리된 사이드 윙 게이트 도체를 갖는 저-GIDL 전류 MOSFET 장치를 생성한다.The fabrication method described is a low-GIDL current MOSFET device having a center gate conductor whose edges may slightly overlap with the source / drain diffusions, and a side wing gate conductor separated from the center gate conductor by a thin insulating and diffusion barrier layer. Create

NMOSFET 장치의 경우, 사이드 윙 게이트 도체는 양호하게 N+ 폴리실리콘으로 만들어지고, PMOSFET 장치의 경우, 사이드 윙 게이트 도체는 양호하게 P+ 폴리시리콘으로 만들어진다. 중앙 게이트 도체 영역은, 고-Vt(임계 전압) NMOSFET가 (DRAM 애플리케이션에서와 같이) 요구되면 P+ 폴리실리콘일 수 있고, 또는 저-Vt NMOSFET가 향상된 성능을 위해 요구되면 N+ 폴리실리콘일 수 있다(PFET는 상보적인 도핑을 사용할 수 있다).For NMOSFET devices, the side wing gate conductors are preferably made of N + polysilicon, and for PMOSFET devices, the side wing gate conductors are preferably made of P + polysilicon. The central gate conductor region may be P + polysilicon if a high-Vt (threshold voltage) NMOSFET is required (as in DRAM applications), or may be N + polysilicon if a low-Vt NMOSFET is required for improved performance ( PFETs may use complementary doping).

사이드 윙 게이트 도체 및 중앙 게이트 도체는 위에 놓여있는 금속 측벽 도전층에 의해 함께 스트랩된다. 더욱이, 중앙 게이트 도체 아래 및 사이드 윙 도체 아래의 게이트 절연체 GI 두께는 독립적으로 지정가능하다. 이것은 사이드 도체 아래의 게이트 절연체가 중앙 도체 아래의 게이트 절연체보다 양호하게 더 두껍게 될 수 있게 한다.The side wing gate conductor and the center gate conductor are strapped together by a metal sidewall conductive layer lying thereon. Moreover, the gate insulator GI thickness below the center gate conductor and below the side wing conductor is independently assignable. This allows the gate insulator under the side conductors to become thicker than the gate insulator under the center conductors.

게이트 전극의 에지에서 반대로 도핑된 LPCVD 디보트 영역들 사이의 내부확산 및 게이트 전극 도핑은 측벽 산화물 장벽에 의해 억제된다. 반대로 도핑된 디보트와 게이트 전극 사이의 전기적 접촉은 금속 스페이서에 의해 제공된다.Interdiffusion and gate electrode doping between the oppositely doped LPCVD devoted regions at the edge of the gate electrode are suppressed by the sidewall oxide barrier. In contrast, electrical contact between the doped divert and the gate electrode is provided by a metal spacer.

외부 게이트 도체들(N+ 측벽)을 위한 게이트 산화물의 재성장으로 인해, 중앙 게이트 도체의 에지 아래에 새부리(bird's beak) 모양이 형성되는 범위를 조사하기 위해 시뮬레이션이 행해졌다. 시뮬레이션은 (N+ 측벽 게이트 도체를 위한) 제2 게이트 산화물 재성장 이전의 중앙 게이트 도체 에지의 외형을 필요로 했으며, 프로세스의 이 시점에서 30Å 게이트 산화물이 중앙 게이트 아래에 존재한다. 그 다음, 구조물은 전형적인 게이트 산화 주기(950C, 150s, RTO, 100% 드라이 O2)에 종속되어, 그 후에 외부 N+ 게이트 도체 세그먼트를 포함할 영역 내의 기판 표면 상에 30Å의 산화물을 성장시키고, 그 결과 무시할 만한 새부리 모양이 발생했다. 명백하게, 새부리 모양은 아주 최소한으로 되고, 장치의 동작에 아무런 문제도 일으키지 않게 하고자 했다.Due to the regrowth of the gate oxide for the outer gate conductors (N + sidewalls), a simulation was performed to investigate the extent to which bird's beak shapes are formed under the edge of the center gate conductor. The simulation required the appearance of the center gate conductor edge before the second gate oxide regrowth (for the N + sidewall gate conductor), at which point 30 kV gate oxide is present below the center gate. The structure is then subjected to typical gate oxidation cycles (950C, 150s, RTO, 100% dry O2), which then grows 30 산화물 of oxide on the substrate surface in the region that will contain the outer N + gate conductor segment, resulting in There was a negligible beak appearance. Obviously, the beak shape was kept to a very minimum and to avoid causing any problems with the operation of the device.

큰 새부리 모양이 형성된 경우라도, P+ 내부 게이트 영역에 대한 N+ 외부 게이트 영역의 1.1V 일함수 변화는 외부 게이트 영역 내에서 반전이 처음 발생하게 할 수 있었다. 그러므로, 채널 전류는 가장 높은 Vt를 갖는 중앙 게이트 영역에 의해 지배될 수 있어서, 새부리 모양이 채널 전류 상에서 나타낼 수 있는 어떤 효과들을 최소화할 수 있다.Even when a large beak was formed, a 1.1V work function change of the N + outer gate region to the P + inner gate region could cause the inversion to occur within the outer gate region for the first time. Therefore, the channel current can be dominated by the central gate region with the highest Vt, thereby minimizing any effects that the beak shape can exhibit on the channel current.

본 발명은 패터닝된 중앙 게이트 도체 및 주위 기판 영역의 수평면 상에 오프셋 막을 형성하기 위해 양호하게 비등방성 유전체 증착을 사용함으로써, 패터닝된 중앙 게이트 도체 및 주위 기판 영역의 수평면 상에 오프셋 막을 형성하는 단계를 포함하는 저 게이트 유도 누설 전류(GIDL) MOSFET 장치를 제조하는 방법을 제공한다. 패터닝된 중앙 게이트 도체는 게이트 유전체에 의해 덮여진 기판상에 폴리실리콘을 증착한 다음에, 리소그래피 및 반응성 이온 에칭 프로세스에 의해 MOSFET 중앙 게이트 도체를 패터닝함으로써 양호하게 형성된다.The present invention provides a method of forming an offset film on a horizontal plane of a patterned center gate conductor and a surrounding substrate region by using preferably anisotropic dielectric deposition to form an offset film on a horizontal plane of a patterned central gate conductor and a surrounding substrate region. A method of manufacturing a low gate induced leakage current (GIDL) MOSFET device is provided. The patterned central gate conductor is well formed by depositing polysilicon on a substrate covered by the gate dielectric and then patterning the MOSFET central gate conductor by lithography and reactive ion etching processes.

그 다음, 프로세스는 계속하여, 중앙 게이트 도체의 측벽 상에 도전성 확산 장벽을 증착한 다음에, 중앙 게이트 도체 측벽 상의 도전성 확산 장벽 위에 금속 스페이서를 형성하고, 그 후 오프셋 막은 언더컷 영역 위에 행잉 금속 스페이서를 형성하기 위해 스트립된다.The process then continues by depositing a conductive diffusion barrier on the sidewalls of the central gate conductor, then forming a metal spacer over the conductive diffusion barrier on the central gate conductor sidewalls, and then the offset film forms a hanging metal spacer over the undercut region. Are stripped to form.

그 다음, 프로세스는 계속하여, 중앙 게이트 도체와 후속적으로 형성된 좌우측 사이드 윙 게이트 도체 사이에 정류 접합이 형성되지 않게 하기 위해 행잉 금속 스페이서 아래의 중앙 게이트 도체를 산화시킨 다음에, 행잉 금속 스페이서 아래의 언더컷 영역을 채우기 위해 폴리실리콘 층을 증착하고, 그 후 폴리실리콘 층은 좌우측 사이드 윙 게이트 도체를 형성하기 위해 행잉 금속 스페이서 아래의 언더컷 영역 내에 폴리실리콘을 남겨 둔채로 등방성 에칭에 의해 제거된다.The process then continues by oxidizing the center gate conductor under the hanging metal spacer so that no rectifying junction is formed between the center gate conductor and the subsequently formed left and right side wing gate conductors, and then under the hanging metal spacer. A layer of polysilicon is deposited to fill the undercut regions, and then the polysilicon layer is removed by isotropic etching leaving polysilicon in the undercut regions under the hanging metal spacers to form the left and right side wing gate conductors.

그 다음, 프로세스는 계속하여, 소스 및 드레인 확장부/헤일로 및 스페이서를 증착한 다음에, 도체 상에 살리사이드를 형성함으로써 완료된다. 양호한 실시예에서, 중앙 게이트 도체 및 좌우측 사이드 윙 게이트 도체는 양호하게 도핑된 폴 리실리콘으로 형성된다.The process is then completed by depositing the source and drain extensions / halo and spacers and then forming salicide on the conductor. In a preferred embodiment, the center gate conductor and the left and right side wing gate conductors are formed of well doped polysilicon.

설명된 프로세스는 소스 확산 영역, 드레인 확산 영역 및 중앙 게이트를 포함하는 저 게이트 유도 누설(GIDL) 전류를 갖는 MOSFET 장치를 제공한다. 중앙 게이트는 중앙 게이트 도체, 좌측 사이드 윙 게이트 도체 및 우측 사이드 윙 게이트 도체를 포함하고, 좌측 사이드 윙 게이트 도체 및 우측 사이드 윙 게이트 도체의 각각은 박형 절연 및 확산 장벽층에 의해 중앙 게이트 도체로부터 분리된다.The described process provides a MOSFET device having a low gate induced leakage (GIDL) current comprising a source diffusion region, a drain diffusion region and a central gate. The center gate comprises a center gate conductor, a left side wing gate conductor and a right side wing gate conductor, each of the left side wing gate conductor and the right side wing gate conductor separated from the center gate conductor by a thin insulation and diffusion barrier layer. .

중앙 게이트 도체의 좌측 및 우측 에지는 소스 확산 영역 및 드레인 확산 영역 중의 하나와 중첩할 수 있다. 좌우측 사이드 윙 게이트 도체의 좌측 및 우측 에지도 또한 소스 확산 영역 및 드레인 확산 영역 중의 하나와 중첩할 수 있다.The left and right edges of the center gate conductor may overlap one of the source diffusion region and the drain diffusion region. The left and right edges of the left and right side wing gate conductors may also overlap one of the source diffusion region and the drain diffusion region.

중앙 게이트 도체 및 좌우측 사이드 윙 게이트 도체는 위에 놓여있는 금속 측벽 도전층에 의해 함께 스트랩된다. 위에 놓여있는 금속 측벽 도전층은 중앙 게이트 도체와 좌우측 사이드 윙 게이트 도체 사이에서 정류 접합이 형성되지 않게 하기 위해 중앙 게이트 도체의 좌우 측벽을 따라 형성된 좌우 금속 측벽 스페이서를 포함한다. 좌우 금속 측벽 스페이서는 도전성 확산 장벽층에 의해 중앙 게이트 도체로부터 분리된다.The center gate conductor and the left and right side wing gate conductors are strapped together by a metal sidewall conductive layer overlying them. The underlying metal sidewall conductive layer includes left and right metal sidewall spacers formed along the left and right sidewalls of the center gate conductor to prevent the formation of a rectifying junction between the center gate conductor and the left and right side wing gate conductors. The left and right metal sidewall spacers are separated from the central gate conductor by a conductive diffusion barrier layer.

좌우측 사이드 윙 도체 아래의 게이트 절연체의 두께는 중앙 도체 아래의 게이트 절연체의 두께보다 더 두꺼워질 수 있도록 독립적으로 지정가능하게 될 수 있다.The thickness of the gate insulator under the left and right side wing conductors can be independently assignable so that it can be thicker than the thickness of the gate insulator under the center conductor.

저 GIDL MOSFET 및 그 제조 방법에 관한 본 발명의 몇몇 실시예 및 변형이 여기에서 상세하게 설명되었지만, 본 발명의 개시 및 교시는 본 분야에 숙련된 기 술자들에게 많은 대안적인 설계를 제안할 수 있다는 것을 명백히 알아야 된다.While some embodiments and variations of the present invention regarding low GIDL MOSFETs and methods of fabricating the same have been described in detail herein, the disclosure and teachings of the present invention may suggest many alternative designs to those skilled in the art. It should be clear that

본 발명은 일반적으로 전자 장치, 더욱 구체적으로 저-GIDL MOSFET 구조에 대한 산업상 이용가능성을 갖는다.The present invention generally has industrial applicability for electronic devices, more specifically for low-GIDL MOSFET structures.

Claims (20)

저 게이트 유도 누설(low gate-induced leakage: GIDL) 전류를 제공하는 MOSFET 장치에 있어서, MOSFET device providing low gate-induced leakage (GIDL) current, 소스 확산 영역, 드레인 확산 영역 및 중앙 게이트를 포함하고;A source diffusion region, a drain diffusion region and a central gate; 상기 중앙 게이트는 중앙 게이트 도체, 좌측 사이드 윙(side wing) 게이트 도체 및 우측 사이드 윙 게이트 도체를 포함하고, 좌측 사이드 윙 게이트 도체 및 상기 우측 사이드 윙 게이트 도체의 각각은 박형 절연 및 확산 장벽층에 의해 상기 중앙 게이트 도체로부터 분리되는 것을 특징으로 하는 MOSFET 장치.The center gate includes a center gate conductor, a left side wing gate conductor and a right side wing gate conductor, each of the left side wing gate conductor and the right side wing gate conductor by a thin insulating and diffusion barrier layer. MOSFET device, wherein the MOSFET is separated from the center gate conductor. 제1항에 있어서, 상기 중앙 게이트 도체의 좌측 및 우측 에지 또는 상기 좌우측 사이드 윙 게이트 도체의 좌측 및 우측 에지는 상기 소스 확산 영역 및 드레인 확산 영역 중의 하나와 중첩하는 것을 특징으로 하는 MOSFET 장치.2. The MOSFET device of claim 1, wherein the left and right edges of the center gate conductor or the left and right edges of the left and right side wing gate conductors overlap one of the source and drain diffusion regions. 삭제delete 제1항에 있어서, 상기 중앙 게이트 도체 및 상기 좌우측 사이드 윙 게이트 도체들은 위에 놓여있는 금속 측벽 도전층에 의해 함께 스트랩(strap)되는 것을 특징으로 하는 MOSFET 장치.2. The MOSFET device of claim 1, wherein the center gate conductor and the left and right side wing gate conductors are strapped together by a metal sidewall conductive layer overlying them. 제1항에 있어서, 상기 좌우측 사이드 윙 도체들 아래의 게이트 절연체의 두께는 상기 중앙 도체 아래의 게이트 절연체의 두께보다 더 두꺼운 것을 특징으로 하는 MOSFET 장치.2. The MOSFET device of claim 1, wherein the thickness of the gate insulator under the left and right side wing conductors is thicker than the thickness of the gate insulator under the center conductor. 청구항 6은(는) 설정등록료 납부시 포기되었습니다.Claim 6 was abandoned when the registration fee was paid. 제1항에 있어서, 상기 중앙 게이트 도체와 상기 좌우측 사이드 윙 게이트 도체들 사이에서 정류 접합(rectifying junction)이 형성되지 않게 하기 위해 상기 중앙 게이트 도체의 좌우 측벽을 따라 형성된 좌우 금속 측벽 스페이서들을 더 포함하는 것을 특징으로 하는 MOSFET 장치.The semiconductor device of claim 1, further comprising left and right metal sidewall spacers formed along left and right sidewalls of the center gate conductor such that a rectifying junction is not formed between the center gate conductor and the left and right side wing gate conductors. MOSFET device, characterized in that. 청구항 7은(는) 설정등록료 납부시 포기되었습니다.Claim 7 was abandoned upon payment of a set-up fee. 제6항에 있어서, 상기 좌우 금속 측벽 스페이서들은 도전성 확산 장벽층에 의해 상기 중앙 게이트 도체로부터 분리되는 것을 특징으로 하는 MOSFET 장치.7. The MOSFET device of claim 6, wherein the left and right metal sidewall spacers are separated from the center gate conductor by a conductive diffusion barrier layer. 제1항에 있어서, NMOSFET 장치를 포함하고, 좌측 사이드 윙 도체 및 사이드 윙 게이트 도체의 각각은 N+ 폴리실리콘으로 형성되는 것을 특징으로 하는 MOSFET 장치.2. The MOSFET device of claim 1 comprising an NMOSFET device, wherein each of the left side wing conductor and side wing gate conductor is formed of N + polysilicon. 제1항에 있어서, PMOSFET 장치를 포함하고, 좌측 사이드 윙 도체 및 사이드 윙 게이트 도체의 각각은 P+ 폴리실리콘으로 형성되는 것을 특징으로 하는 MOSFET 장치.2. The MOSFET device of claim 1 comprising a PMOSFET device, wherein each of the left side wing conductor and side wing gate conductor is formed of P + polysilicon. 제1항에 있어서, 상기 중앙 게이트 도체는 높은 Vt(임계 전압) NMOSFET 또는 낮은 Vt(임계 전압) PMOSFET를 형성하기 위해 P+ 폴리실리콘으로 형성되는 것을 특징으로 하는 MOSFET 장치.2. The MOSFET device of claim 1, wherein the center gate conductor is formed of P + polysilicon to form a high Vt (threshold voltage) NMOSFET or a low Vt (threshold voltage) PMOSFET. 제1항에 있어서, 상기 중앙 게이트 도체는 낮은 Vt(임계 전압) NMOSFET 또는 높은 Vt(임계 전압) PMOSFET를 형성하기 위해 N+ 폴리실리콘으로 형성되는 것을 특징으로 하는 MOSFET 장치.2. The MOSFET device of claim 1, wherein the center gate conductor is formed of N + polysilicon to form a low Vt (threshold voltage) NMOSFET or a high Vt (threshold voltage) PMOSFET. 삭제delete 삭제delete 삭제delete 삭제delete 저 게이트 유도 누설 전류(GIDL) MOSFET 장치를 제조하는 방법에 있어서,A method of fabricating a low gate induced leakage current (GIDL) MOSFET device, 패터닝된 중앙 게이트 도체 및 주위의 기판 영역들의 수평면들 상에 오프셋 막을 형성하는 단계;Forming an offset film on the horizontal planes of the patterned central gate conductor and surrounding substrate regions; 상기 중앙 게이트 도체의 측벽들 상에 도전성 확산 장벽을 증착하는 단계;Depositing a conductive diffusion barrier on sidewalls of the central gate conductor; 상기 중앙 게이트 도체의 측벽 상의 도전성 확산 장벽 위에 금속 스페이서들을 형성하는 단계;Forming metal spacers over a conductive diffusion barrier on the sidewall of the central gate conductor; 언더컷(undercut) 영역들 위에 행잉(hanging) 금속 스페이서들을 형성하기 위해 오프셋 막을 스트립(strip)하는 단계;Stripping the offset film to form hanging metal spacers over undercut regions; 상기 중앙 게이트 도체와 후속으로 형성된 좌우측 사이드 윙 게이트 도체들 사이에 정류 접합이 형성되지 않게 하기 위해 상기 행잉 금속 스페이서들 아래의 중앙 게이트 도체를 산화시키는 단계;Oxidizing a central gate conductor under the hanging metal spacers such that no rectifying junction is formed between the central gate conductor and subsequent left and right side wing gate conductors formed; 상기 행잉 금속 스페이서들 아래의 언더컷 영역들을 채우기 위해 폴리실리콘 층을 증착하는 단계; 및Depositing a polysilicon layer to fill undercut regions below the hanging metal spacers; And 좌우측 사이드 윙 게이트 도체들을 형성하기 위해 상기 행잉 금속 스페이서들 아래의 언더컷 영역들 내에 상기 폴리실리콘 층을 남겨 둔 채로 등방성 에칭에 의해 상기 폴리실리콘 층을 제거하는 단계Removing the polysilicon layer by isotropic etching leaving the polysilicon layer in undercut regions under the hanging metal spacers to form left and right side wing gate conductors. 를 포함하는 것을 특징으로 하는 방법.Method comprising a. 제16항에 있어서, 상기 제거하는 단계 후, 소스 및 드레인 확장부들/헤일로들(halos) 및 스페이서들을 형성하고, 그 다음에 도체들 상에 살리사이드(salicide)를 형성하는 것을 특징으로 하는 방법.17. The method of claim 16, wherein after the removing step, source and drain extensions / halos and spacers are formed, and then salicide is formed on the conductors. 청구항 18은(는) 설정등록료 납부시 포기되었습니다.Claim 18 was abandoned upon payment of a set-up fee. 제16항에 있어서, 상기 패터닝된 중앙 게이트 도체는 게이트 유전체에 의해 덮여진 기판 상에 폴리실리콘을 증착한 다음에, 리소그래피 및 반응성 이온 에칭 프로세스에 의해 상기 중앙 게이트 도체를 패터닝함으로써 형성되는 것을 특징으로 하는 방법.17. The patterned center gate conductor of claim 16, wherein the patterned center gate conductor is formed by depositing polysilicon on a substrate covered by a gate dielectric and then patterning the center gate conductor by lithography and reactive ion etching processes. How to. 청구항 19은(는) 설정등록료 납부시 포기되었습니다.Claim 19 was abandoned upon payment of a registration fee. 제16항에 있어서, 상기 패터닝된 중앙 게이트 도체 및 주위의 기판 영역들의 수평면들 상에 상기 오프셋 막을 형성하기 위해 비등방성 유전체 증착을 사용하는 단계를 더 포함하는 것을 특징으로 하는 방법.17. The method of claim 16, further comprising using anisotropic dielectric deposition to form the offset film on the horizontal planes of the patterned central gate conductor and surrounding substrate regions. 청구항 20은(는) 설정등록료 납부시 포기되었습니다.Claim 20 was abandoned upon payment of a registration fee. 제16항에 있어서, 도핑된 폴리실리콘으로 상기 중앙 게이트 도체 및 상기 좌우측 사이드 윙 게이트 도체들을 형성하는 단계를 더 포함하는 것을 특징으로 하는 방법.17. The method of claim 16, further comprising forming the center gate conductor and the left and right side wing gate conductors with doped polysilicon.
KR1020057010895A 2003-01-15 2004-01-15 Low-GIDL MOSFET structure and method for fabrication KR100754305B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/345,472 2003-01-15
US10/345,472 US6841826B2 (en) 2003-01-15 2003-01-15 Low-GIDL MOSFET structure and method for fabrication

Publications (2)

Publication Number Publication Date
KR20050091003A KR20050091003A (en) 2005-09-14
KR100754305B1 true KR100754305B1 (en) 2007-09-03

Family

ID=32711928

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020057010895A KR100754305B1 (en) 2003-01-15 2004-01-15 Low-GIDL MOSFET structure and method for fabrication

Country Status (8)

Country Link
US (2) US6841826B2 (en)
EP (1) EP1588403B1 (en)
JP (1) JP4678875B2 (en)
KR (1) KR100754305B1 (en)
CN (1) CN101410951B (en)
AT (1) ATE551727T1 (en)
TW (1) TWI270145B (en)
WO (1) WO2004066367A2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10336876B4 (en) * 2003-08-11 2006-08-24 Infineon Technologies Ag Memory cell with nanocrystals or nanodots and process for their preparation
KR100602122B1 (en) * 2004-12-03 2006-07-19 동부일렉트로닉스 주식회사 Method of manufacturing semiconductor device
US8154088B1 (en) 2006-09-29 2012-04-10 Cypress Semiconductor Corporation Semiconductor topography and method for reducing gate induced drain leakage (GIDL) in MOS transistors
JP5559567B2 (en) * 2010-02-24 2014-07-23 パナソニック株式会社 Semiconductor device
CN102194870B (en) * 2010-03-17 2012-08-29 中国科学院微电子研究所 Semiconductor device and manufacturing method thereof
US8592911B2 (en) * 2010-03-17 2013-11-26 Institute of Microelectronics, Chinese Academy of Sciences Asymmetric semiconductor device having a high-k/metal gate and method of manufacturing the same
CN102544098B (en) * 2010-12-31 2014-10-01 中国科学院微电子研究所 MOS (Metal-Oxide-Semiconductor) transistor and forming method thereof
US8743628B2 (en) 2011-08-08 2014-06-03 Micron Technology, Inc. Line driver circuits, methods, and apparatuses
CN102263133B (en) * 2011-08-22 2012-11-07 无锡新洁能功率半导体有限公司 Low-gate charge low-on resistance deep trench power metal oxide semiconductor field effect transistor (MOSFET) device and manufacturing method
CN102446771A (en) * 2011-11-11 2012-05-09 上海华力微电子有限公司 Method for reducing gate induced drain leakage (GIDL) effect of metal oxide semiconductor (MOS) input-output (IO) device
US8501566B1 (en) * 2012-09-11 2013-08-06 Nanya Technology Corp. Method for fabricating a recessed channel access transistor device
US8896035B2 (en) 2012-10-22 2014-11-25 International Business Machines Corporation Field effect transistor having phase transition material incorporated into one or more components for reduced leakage current
US9685526B2 (en) * 2014-02-12 2017-06-20 International Business Machines Corporation Side gate assist in metal gate first process
CN104900504B (en) * 2015-05-25 2018-02-06 上海华虹宏力半导体制造有限公司 The method for reducing MOS transistor GIDL electric currents
FR3090999B1 (en) * 2018-12-20 2022-01-14 Commissariat Energie Atomique Process for manufacturing a semiconductor component based on a III-N compound
CN112663541B (en) * 2020-12-22 2022-10-21 浙江交工集团股份有限公司 Installation and construction method for ecological prefabricated guardrail of central separation zone

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4714519A (en) * 1987-03-30 1987-12-22 Motorola, Inc. Method for fabricating MOS transistors having gates with different work functions
US5091763A (en) * 1990-12-19 1992-02-25 Intel Corporation Self-aligned overlap MOSFET and method of fabrication

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01133366A (en) * 1987-11-18 1989-05-25 Sanyo Electric Co Ltd Manufacture of mos semiconductor device
JPH02288341A (en) * 1989-04-28 1990-11-28 Seiko Epson Corp Mis-type semiconductor device
JPH036830A (en) * 1989-06-02 1991-01-14 Sharp Corp Semiconductor device
JPH043939A (en) * 1990-04-20 1992-01-08 Mitsubishi Electric Corp Manufacture of semiconductor device
US5210435A (en) * 1990-10-12 1993-05-11 Motorola, Inc. ITLDD transistor having a variable work function
US5108939A (en) * 1990-10-16 1992-04-28 National Semiconductor Corp. Method of making a non-volatile memory cell utilizing polycrystalline silicon spacer tunnel region
US5221632A (en) * 1990-10-31 1993-06-22 Matsushita Electric Industrial Co., Ltd. Method of proudcing a MIS transistor
KR940001402B1 (en) * 1991-04-10 1994-02-21 삼성전자 주식회사 Manufacturing method of semiconductor device with gold-structure
KR940005293B1 (en) * 1991-05-23 1994-06-15 삼성전자 주식회사 Mosfet and fabricating method thereof
US5314834A (en) * 1991-08-26 1994-05-24 Motorola, Inc. Field effect transistor having a gate dielectric with variable thickness
JPH05175492A (en) * 1991-12-20 1993-07-13 Nippon Steel Corp Manufacture of semiconductor device
JPH05226361A (en) * 1992-02-12 1993-09-03 Oki Electric Ind Co Ltd Field effect transistor
JPH065850A (en) * 1992-06-17 1994-01-14 Mitsubishi Electric Corp Semiconductor device and manufacture thereof and semiconductor integrated circuit device using the device
JPH0629521A (en) * 1992-07-07 1994-02-04 Nec Corp Manufacture of mos field-effect transistor
US5372960A (en) * 1994-01-04 1994-12-13 Motorola, Inc. Method of fabricating an insulated gate semiconductor device
KR960006004A (en) * 1994-07-25 1996-02-23 김주용 Semiconductor device and manufacturing method
US5661048A (en) * 1995-03-21 1997-08-26 Motorola, Inc. Method of making an insulated gate semiconductor device
US5599726A (en) * 1995-12-04 1997-02-04 Chartered Semiconductor Manufacturing Pte Ltd Method of making a conductive spacer lightly doped drain (LDD) for hot carrier effect (HCE) control
US5877058A (en) * 1996-08-26 1999-03-02 Advanced Micro Devices, Inc. Method of forming an insulated-gate field-effect transistor with metal spacers
US5714786A (en) * 1996-10-31 1998-02-03 Micron Technology, Inc. Transistors having controlled conductive spacers, uses of such transistors and methods of making such transistors
US5953596A (en) * 1996-12-19 1999-09-14 Micron Technology, Inc. Methods of forming thin film transistors
US5793089A (en) * 1997-01-10 1998-08-11 Advanced Micro Devices, Inc. Graded MOS transistor junction formed by aligning a sequence of implants to a selectively removable polysilicon sidewall space and oxide thermally grown thereon
JP3003633B2 (en) * 1997-07-09 2000-01-31 日本電気株式会社 Field effect transistor and method for manufacturing the same
US6090671A (en) * 1997-09-30 2000-07-18 Siemens Aktiengesellschaft Reduction of gate-induced drain leakage in semiconductor devices
KR100273273B1 (en) * 1998-01-19 2001-02-01 김영환 Interconnects for semiconductor device, semiconductor device using such interconnects and fabricating method thereof
DE19812212A1 (en) * 1998-03-19 1999-09-23 Siemens Ag MOS transistor in a one-transistor memory cell with a locally thickened gate oxide and manufacturing method
US6091101A (en) * 1998-03-30 2000-07-18 Worldwide Semiconductor Manufacturing Corporation Multi-level flash memory using triple well
US6259142B1 (en) * 1998-04-07 2001-07-10 Advanced Micro Devices, Inc. Multiple split gate semiconductor device and fabrication method
US6661057B1 (en) * 1998-04-07 2003-12-09 Advanced Micro Devices Inc Tri-level segmented control transistor and fabrication method
US6097069A (en) * 1998-06-22 2000-08-01 International Business Machines Corporation Method and structure for increasing the threshold voltage of a corner device
US5998848A (en) * 1998-09-18 1999-12-07 International Business Machines Corporation Depleted poly-silicon edged MOSFET structure and method
US6235598B1 (en) * 1998-11-13 2001-05-22 Intel Corporation Method of using thick first spacers to improve salicide resistance on polysilicon gates
US6097070A (en) * 1999-02-16 2000-08-01 International Business Machines Corporation MOSFET structure and process for low gate induced drain leakage (GILD)
US6312995B1 (en) * 1999-03-08 2001-11-06 Advanced Micro Devices, Inc. MOS transistor with assisted-gates and ultra-shallow “Psuedo” source and drain extensions for ultra-large-scale integration
US6251737B1 (en) * 1999-11-04 2001-06-26 United Microelectronics Corp. Method of increasing gate surface area for depositing silicide material
US6169017B1 (en) * 1999-11-23 2001-01-02 United Silicon Incorporated Method to increase contact area
US6238988B1 (en) * 1999-12-09 2001-05-29 United Microelectronics Corp. Method of forming a MOS transistor
JP2001267562A (en) * 2000-03-15 2001-09-28 Hitachi Ltd Semiconductor device and its manufacturing method
US6555858B1 (en) * 2000-11-15 2003-04-29 Motorola, Inc. Self-aligned magnetic clad write line and its method of formation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4714519A (en) * 1987-03-30 1987-12-22 Motorola, Inc. Method for fabricating MOS transistors having gates with different work functions
US5091763A (en) * 1990-12-19 1992-02-25 Intel Corporation Self-aligned overlap MOSFET and method of fabrication

Also Published As

Publication number Publication date
TWI270145B (en) 2007-01-01
WO2004066367A3 (en) 2009-05-28
US6841826B2 (en) 2005-01-11
EP1588403B1 (en) 2012-03-28
WO2004066367A2 (en) 2004-08-05
US6878582B2 (en) 2005-04-12
CN101410951B (en) 2010-05-05
ATE551727T1 (en) 2012-04-15
US20040248356A1 (en) 2004-12-09
CN101410951A (en) 2009-04-15
EP1588403A2 (en) 2005-10-26
EP1588403A4 (en) 2010-03-24
US20040137689A1 (en) 2004-07-15
JP4678875B2 (en) 2011-04-27
TW200504887A (en) 2005-02-01
JP2007524984A (en) 2007-08-30
KR20050091003A (en) 2005-09-14

Similar Documents

Publication Publication Date Title
US6097070A (en) MOSFET structure and process for low gate induced drain leakage (GILD)
KR100754305B1 (en) Low-GIDL MOSFET structure and method for fabrication
US6403423B1 (en) Modified gate processing for optimized definition of array and logic devices on same chip
US6753235B2 (en) Method of manufacturing CMOS thin film transistor
US7265425B2 (en) Semiconductor device employing an extension spacer and a method of forming the same
KR20080011227A (en) Method for fabricating soi device
KR20040102052A (en) Semiconductor device formed over a multiple thickness buried oxide layer, and methods of making same
US20190051565A1 (en) Cmos devices and manufacturing method thereof
JP2007036116A (en) Semiconductor device manufacturing method
US20090050980A1 (en) Method of forming a semiconductor device with source/drain nitrogen implant, and related device
JP2015133398A (en) Semiconductor integrated circuit device, and method of manufacturing the same
US7141852B2 (en) Semiconductor device and fabricating method thereof
US6355531B1 (en) Method for fabricating semiconductor devices with different properties using maskless process
US9818652B1 (en) Commonly-bodied field-effect transistors
US9184260B2 (en) Methods for fabricating integrated circuits with robust gate electrode structure protection
CN103094217B (en) Manufacture method of transistor
KR100311177B1 (en) A method of fabricating semiconductor device
JP2010056239A (en) Semiconductor device, and method of manufacturing semiconductor device
KR20100078055A (en) Method for manufacturing of semiconductor device
JPH04322423A (en) Manufacture of semiconductor device
KR20040056434A (en) Method for manufacturing a semiconductor device
KR20050001835A (en) Method for manufacturing MOS Transistor
KR20040056450A (en) Method for manufacturing a semiconductor device
WO2001097290A2 (en) Buried inverted gate field-effect transistor (bigfet)
KR19980081640A (en) Method of Forming Capacitor Structure on Silicon Substrate by MOS Process

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110802

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee