KR100752471B1 - Polymer composition for photoinduced liquid crystal alignment using carbon nano-tube, the film for photoinduced liquid crystal alignment thereby, preparation method thereof and the liquid crystal cell comprising the film - Google Patents

Polymer composition for photoinduced liquid crystal alignment using carbon nano-tube, the film for photoinduced liquid crystal alignment thereby, preparation method thereof and the liquid crystal cell comprising the film Download PDF

Info

Publication number
KR100752471B1
KR100752471B1 KR1020030082487A KR20030082487A KR100752471B1 KR 100752471 B1 KR100752471 B1 KR 100752471B1 KR 1020030082487 A KR1020030082487 A KR 1020030082487A KR 20030082487 A KR20030082487 A KR 20030082487A KR 100752471 B1 KR100752471 B1 KR 100752471B1
Authority
KR
South Korea
Prior art keywords
liquid crystal
crystal aligning
film
aligning agent
carbon nanotubes
Prior art date
Application number
KR1020030082487A
Other languages
Korean (ko)
Other versions
KR20050048775A (en
Inventor
박규순
김진율
신동천
김태민
Original Assignee
엘에스전선 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스전선 주식회사 filed Critical 엘에스전선 주식회사
Priority to KR1020030082487A priority Critical patent/KR100752471B1/en
Publication of KR20050048775A publication Critical patent/KR20050048775A/en
Application granted granted Critical
Publication of KR100752471B1 publication Critical patent/KR100752471B1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes

Abstract

본 발명에서는 카본 나노튜브를 이용한 감광성 고분자 액정 배향제 조성물, 이를 이용한 액정 배향막, 그 제조방법 및 상기 액정 배향막을 포함하는 액정 소자가 개시된다. 본 발명의 액정 배향제는 안정된 액정 배향성을 유지하면서도 열적 및 기계적 성질이 우수하고 또한 내화학성을 함께 가지고 있으며, 기존의 폴리이미드 배향제와의 호환성도 보유하는 효과를 달성하게 된다. 그리고 이를 통해 제조된 액정 표시 소자들은 고화질 및 고품위의 디스플레이 화질을 구현하는 효과를 달성하게 된다.Disclosed is a photosensitive polymer liquid crystal aligning agent composition using carbon nanotubes, a liquid crystal aligning film using the same, a method of manufacturing the same, and a liquid crystal device including the liquid crystal aligning film. While the liquid crystal aligning agent of the present invention maintains stable liquid crystal aligning property, it has excellent thermal and mechanical properties, has chemical resistance, and achieves the effect of retaining compatibility with existing polyimide aligning agents. In addition, the liquid crystal display devices manufactured thereby achieve an effect of realizing high quality and high quality display quality.

액정, 배향제, 배향막, 액정소자, 카본나노튜브, 열적성질, 기계적성질 Liquid crystal, alignment agent, alignment film, liquid crystal device, carbon nanotube, thermal property, mechanical property

Description

카본 나노튜브를 이용한 감광성 고분자 액정 배향제 조성물, 이를 이용한 액정 배향막, 그 제조방법 및 상기 액정 배향막을 포함하는 액정 소자{POLYMER COMPOSITION FOR PHOTOINDUCED LIQUID CRYSTAL ALIGNMENT USING CARBON NANO-TUBE, THE FILM FOR PHOTOINDUCED LIQUID CRYSTAL ALIGNMENT THEREBY, PREPARATION METHOD THEREOF AND THE LIQUID CRYSTAL CELL COMPRISING THE FILM} Photosensitive polymer liquid crystal aligning agent composition using carbon nanotubes, liquid crystal aligning film using the same, a method for manufacturing the same, and a liquid crystal device comprising the liquid crystal aligning film THEREBY, PREPARATION METHOD THEREOF AND THE LIQUID CRYSTAL CELL COMPRISING THE FILM}

도 1은 종래의 러빙방법에 의한 액정 배향막의 배향공정을 나타내는 개략도, 1 is a schematic view showing an alignment process of a liquid crystal alignment film by a conventional rubbing method,

도 2는 본 발명에 따른 감광성 고분자 액정 배향제 조성물을 이용한 액정 배향막의 배향공정중 조사단계를 나타내는 개략도이다. 2 is a schematic view showing an irradiation step in the alignment process of the liquid crystal alignment film using the photosensitive polymer liquid crystal aligning agent composition according to the present invention.

*주요 도면 부호에 관한 간단한 설명** A brief description of the major reference marks *

1:배향막 2:기판1: Orientation Film 2: Substrate

3:러빙 드럼 4:자외선3: rubbing drum 4: UV

본 발명은 카본 나노튜브를 이용한 감광성 고분자 액정 배향제 조성물, 이를 이용한 액정 배향막, 그 제조방법 및 상기 액정 배향막을 포함하는 액정 소자에 관한 것이다. The present invention relates to a photosensitive polymer liquid crystal aligning agent composition using carbon nanotubes, a liquid crystal aligning film using the same, a manufacturing method thereof, and a liquid crystal device including the liquid crystal aligning film.

본 발명의 감광성 고분자 액정 배향제는 광학적 특성을 이용한 소자의 액정 배향제로 사용되는 것으로서 일반적으로 기판위에 배향제를 도포하고 그 면에 자외광을 조사하여 표면에 이방성을 형성시킴으로써 액정을 배향시키는 물질의 조합 및 그 구성 물질들을 의미한다. The photosensitive polymer liquid crystal aligning agent of the present invention is used as a liquid crystal aligning agent of a device using optical properties. Generally, a liquid crystal is oriented by applying an alignment agent on a substrate and irradiating ultraviolet light to the surface to form anisotropy on the surface. Combinations and their constituent materials.

이러한 감광성 고분자 액정 배향제를 사용한 액정 소자는 액정 표시 소자(LCD : Liquid Crystal Display), 보상판(Compensator) 및 광부품 등 여러가지 분야에 응용된다. 본 발명에서는 특히 액정 표시 소자(LCD)에의 적용이 주로 기술되나, 이에 한정되는 것은 아니며, 본 발명의 기술적 사상을 포섭하는 범주내의 응용은 모두 포함된다. The liquid crystal device using the photosensitive polymer liquid crystal aligning agent is applied to various fields such as a liquid crystal display (LCD), a compensator and an optical part. In the present invention, in particular, the application to the liquid crystal display device (LCD) is mainly described, but is not limited thereto, and all applications within the scope encompassing the technical idea of the present invention are included.

액정 표시 소자는 휴대가 간편하고 전력소모가 적다는 이점을 가지고 있어 평판 디스플레이 시장을 주도하고 있으며 계산기 노트북등의 용도에서 점차 벽걸이 TV 및 하이데피니션 TV등으로 용도가 확장됨에 따라 고화질, 고품위화 및 광시야각이 요구되고 있다. The liquid crystal display device is leading the flat panel display market because it has the advantages of easy portability and low power consumption. As the usage is gradually expanded to applications such as calculator notebooks and wall-mounted TVs and high-definition TVs, high-definition, high-quality and optical Viewing angle is required.

이러한 액정 표시 소자는 일반적으로 배향막이 코팅된 두 장의 유리기판 사이에 배향된 액정으로 채워져 있으며, 외부에서 가해준 전장(Electric field)에 의해 액정 분자들의 재배열(스위칭)이 일어나 원하는 화상이 형성된다. 이 때 균일한 휘도(brightness)와 높은 콘트라스트비(contrast ratio)를 얻기 위해서는 액정을 특정한 방향으로 균일하게 배향시키는 것이 필수적이다.Such liquid crystal display devices are generally filled with liquid crystals oriented between two glass substrates coated with an alignment layer, and rearrangement (switching) of liquid crystal molecules occurs by an electric field applied from the outside to form a desired image. . At this time, in order to obtain uniform brightness and high contrast ratio, it is essential to orient the liquid crystal uniformly in a specific direction.

현재 액정을 배향시키는 방법으로는 러빙방법(Rubbing Process)과 비러빙방법(Non-Rubbing Process)으로서 산화규소 경사방향 증착방법 및 광배향법등이 알려 져 있다.Currently, as a method of orienting the liquid crystal, a silicon oxide gradient deposition method and a photo-alignment method are known as a rubbing process and a non-rubbing process.

도 1은 종래의 러빙 방법에 의한 액정 배향막의 배향 공정을 나타내는 개략도이다. 1 is a schematic view showing an alignment step of a liquid crystal alignment film by a conventional rubbing method.

러빙 방법은, 도 1에 도시한 바와 같이, 기판(2)에 폴리이미드 등의 고분자 화합물을 프린팅 방법등에 의해 도포하고, 이 표면을 나이론이나 폴리에스테르 레이온 섬유를 식모한 천이 감긴 러빙 드럼(3)으로 고속 회전시켜 문지름으로써 중합체의 표면에 아주 미세한 홈을 형성하는 방법이다. In the rubbing method, as shown in FIG. 1, the rubbing drum 3 which coated the cloth 2 which apply | coated high molecular compounds, such as a polyimide, to the board | substrate 2 by printing methods, etc., and planted this surface into the nylon and polyester rayon fiber. It is a method of forming a very fine groove on the surface of the polymer by rubbing by rotating at a high speed.

러빙 공정을 거치면서 액정 분자는 배향제 표면에서 일정한 선경사각(θ)을 갖고 배향되는데, 이러한 러빙방법은 공정이 간단하고 대면적화와 고속처리가 가능하여 공업적으로 널리 이용되고 있다.While the rubbing process is carried out, the liquid crystal molecules are aligned with a constant pretilt angle (θ) on the surface of the alignment agent. This rubbing method is widely used industrially because the process is simple, large-area and high-speed treatment is possible.

그러나, 배향포와 배향막의 마찰강도에 따라 배향막(1)에 형성되는 미세홈(microgroove)의 형태가 달라지고, 이로 인해 액정분자의 배열이 불균일하게 되어 위상왜곡(phase distortion)과 광산란(light scattering)이 발생하며, 고분자 표면을 러빙함으로써 발생하는 정전기(ESD: ElectroStatic Discharge)로 인한 기판(2) 손상 및 러빙 드럼(3)에서 생성되는 미세한 먼지등에 의해 생산수율이 저하되는 문제점이 있다. However, the shape of the microgrooves formed in the alignment layer 1 varies according to the frictional strength of the alignment cloth and the alignment layer, resulting in non-uniform arrangement of liquid crystal molecules, resulting in phase distortion and light scattering. This occurs, and there is a problem that the production yield is lowered by damage to the substrate 2 due to electrostatic discharge (ESD) generated by rubbing the polymer surface and fine dust generated in the rubbing drum 3.

또한 광시야각을 달성하기 위한 방법의 하나로, 화소 한 개를 작은 화소로 각각 분할하여 각 분할 화소의 액정 배향 상태가 달라지게 함으로써 시야각을 넓히는 멀티도메인(multi-domain) 디스플레이를 만들고자 할 경우, 배향막 코팅, 러빙, 포토레지스트의 코팅, 노출(exposure) 및 현상(development), 러빙, 포토레지스트 의 제거등 복잡한 리소그래피공정(lithographic process)이 요구되는 바, 생산성 측면에서 바람직하지 못하다. In addition, as one of the methods for achieving a wide viewing angle, an alignment film is coated to make a multi-domain display that widens the viewing angle by dividing one pixel into small pixels so that the liquid crystal alignment state of each divided pixel is changed. Complex lithographic processes such as rubbing, photoresist coating, exposure and development, rubbing and photoresist removal are required, which is undesirable in terms of productivity.

그래서 비러빙방법으로서 산화규소 경사방향 증착방법을 이용하기도 하는데,이는 기판에 대하여 산화규소를 경사방향으로 증착하는 방법으로, 기판에 대한 증착각이나 막두께의 균일성을 유지하는 것이 곤란하고, 프로세스가 대규모가 되는 문제점이 있다. Therefore, a silicon oxide oblique deposition method is also used as a non-rubbing method, which is a method of depositing silicon oxide in an oblique direction with respect to a substrate, and it is difficult to maintain uniformity of the deposition angle and the film thickness with respect to the substrate. Has the problem of becoming large.

한편, 비러빙방법으로서 광배향법은 감광성 고분자가 도포된 기판에 선편광(linearly polarized)된 자외선등을 경사 또는 수직 조사하여 광이량화(Photo-dimerization)나 광이성화(Photo-isomerization)등을 유도하여, 그 결과로 표면에 이방성을 형성하는 배향 표면에 대하여 비접촉식으로 처리하는 방법이다. On the other hand, as a non-rubbing method, the photo-alignment method induces photo-dimerization or photo-isomerization by inclining or vertically irradiating linearly polarized ultraviolet light on a substrate coated with a photosensitive polymer. As a result, it is a method of non-contact treatment with respect to the orientation surface which forms anisotropy in the surface.

이러한 광배향법의 가능성은 아조벤젠 화합물을 이용해서 밝혀졌으며(K. lchimura et al., Langmuir, 4, 1214, 1988) 그 후 폴리말레이미드(H.J.Choi et al., US Patent 6218501), 폴리올레핀(R. H. Herr et al. US. Patent 6201087)등 여러 종류의 고분자 화합물들이 광배향 재료로서 개발 되었다.The possibility of this photoalignment method has been found using azobenzene compounds (K. lchimura et al., Langmuir, 4, 1214, 1988), followed by polymaleimide (HJChoi et al., US Patent 6218501), polyolefins (RH). Herr et al. US Patent 6201087) have been developed as a photo-alignment material.

액정 배향제를 이용한 광배향법에 있어서 액정배향제는 선편광된 자외선의 편광방향에 대해 일정한 방향을 갖게 되며, 이는 사용된 감광성 고분자의 구조에 의해 결정된다. 또한 프리틸트 방향은 조사된 자외선의 입사방향에 의해, 프리틸트각은 조사에너지와 입사각에 의해 달라진다. 현재까지 주로 사용되는 고분자로서 예를 들면 감광성이 있는 에텐기를 포함하는 것이 있으며, 감광부로서는 칼콘, 시 나모일, 쿠마린 등이 대표적이다. In the photoalignment method using the liquid crystal aligning agent, the liquid crystal aligning agent has a certain direction with respect to the polarization direction of the linearly polarized ultraviolet light, which is determined by the structure of the photosensitive polymer used. In addition, the pretilt direction varies with the incident direction of irradiated ultraviolet rays, and the pretilt angle varies with the irradiation energy and the incident angle. As the polymer mainly used up to now, for example, there is a photoene-containing group containing an ethene group, and examples of the photosensitive portion include chalcone, cinnamoyl and coumarin.

광배향법은 비접촉방식이기 때문에 불순물 이입 및 정전기 발생으로 인한 문제점을 원천적으로 배제할 수 있어 청정이 유지되고 배향처리가 간편하므로 수율을 향상시키며 대량생산에 적합하다. Since the photo-alignment method is a non-contact method, it is possible to eliminate the problems caused by the introduction of impurities and static electricity at the source, so that the cleanness is maintained and the alignment process is easy, thus improving the yield and suitable for mass production.

또한 포토마스크를 이용하여 영역에 따라 편광 방향을 달리하면서 자외선을 조사하는 비교적 간단한 공정에 의해 멀티도메인(multi-domain)을 형성할 수 있으므로 시야각 개선에 유리하다. In addition, since the multi-domain can be formed by a relatively simple process of irradiating ultraviolet rays while varying the polarization direction according to the region using the photomask, it is advantageous to improve the viewing angle.

그러나 광배향 재료의 실제적 활용을 위해서는 여전히 높은 광반응도, 열적 및 기계적 안정성의 문제점이 해결되어야 하고, 전기 광학적 성질이 개선되어야 하며, 조사과정에서 자외선의 양이 많이 요구되는 문제점이 해결되어야 한다. However, for the practical use of the photo-alignment material, the problems of high optical reactivity, thermal and mechanical stability still need to be solved, the electro-optic properties should be improved, and the problem of requiring a large amount of ultraviolet rays in the irradiation process should be solved.

이중 특히 액정 배향제에 대한 열적 및 기계적 안정성은, 액정의 배향이 외부의 열적 및 기계적 스트레스에 따라 변형되지 않아야 한다는 것으로, 액정 디스플레이 제조공정에 배향막을 적용하기 위해 반드시 구비되어야 하는 특성이다. Among them, thermal and mechanical stability, in particular for the liquid crystal aligning agent, is that the orientation of the liquid crystal should not be deformed according to external thermal and mechanical stress, which is a property that must be provided in order to apply the alignment film to the liquid crystal display manufacturing process.

그러나 종래에 감광성 고분자 액정 배향제는 요구되는 광반응도와 열적, 기계적 안정성을 동시에 만족하지 못하였다. However, conventionally, the photosensitive polymer liquid crystal aligning agent did not satisfy the required photoreactivity, thermal and mechanical stability at the same time.

즉, 종래 대부분의 감광성 고분자 액정 배향제에는 자외선에 노출시 높은 광반응도를 유지하기 위해 비교적 유연한 구조의 주쇄가 채택되었고, 이에 따라 인접한 반응기 사이의 변형이 용이하고 상호 결합이 가능한 위치로의 옮겨짐이 용이하여 반응에 참여하는 반응단위의 수는 증가되었으나, 외부에서 작용하는 열적, 기계적 자극에 큰 영향을 받지 않을 수 없었고 따라서 안정성이 달성될 수 없었다. That is, most photosensitive polymer liquid crystal aligning agents in the related art have a main chain having a relatively flexible structure in order to maintain a high photoreactivity when exposed to ultraviolet rays, and thus, transfer between adjacent reactors is easy to be deformed and mutually coupled. The number of reaction units that easily participated in the reaction was increased, but it was inevitably affected by external thermal and mechanical stimuli, and thus stability could not be achieved.

이를 해결하기 위해 종래에 고분자를 혼합하는 기술 예를 들어 열적 안정성이 떨어지는 폴리비닐시나메이트나 폴리비닐메톡시시나메이트를 열적 성질이 우수한 폴리이미드와 혼합하는 방법등을 수행하기도 하였으나, 이와 같은 방식으로는 충분한 배향 안정성을 확보할 수가 없었고, 서로 상이한 종류의 고분자가 혼합하므로 상분리가 발생할 우려가 있었다.In order to solve this problem, a method of mixing a polymer, for example, a method of mixing polyvinyl cinnamate or polyvinyl methoxy cinnamate having poor thermal stability with a polyimide having excellent thermal properties, has been performed. Was not able to secure sufficient orientation stability, and because different types of polymers were mixed, there was a risk of phase separation.

따라서 본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로, Therefore, the present invention has been made to solve the above problems,

본 발명의 목적은 충분한 액정 배향성을 유지하면서 또한 열적 및 기계적 성질이 우수한 카본 나노튜브를 이용한 감광성 고분자 액정 배향제 조성물을 제공하는 것이다.It is an object of the present invention to provide a photosensitive polymer liquid crystal aligning agent composition using carbon nanotubes which maintains sufficient liquid crystal alignment and is excellent in thermal and mechanical properties.

본 발명의 다른 목적은 상기 감광성 고분자 액정 배향제 조성물을 이용한 액정 배향막(1)을 제공하는 것이다. Another object of the present invention is to provide a liquid crystal aligning film 1 using the photosensitive polymer liquid crystal aligning agent composition.

본 발명의 또 다른 목적은 상기 감광성 고분자 액정 배향제 조성물을 이용한 액정 배향막(1)의 제조방법을 제공하는 것이다. Another object of the present invention is to provide a method for producing a liquid crystal alignment film 1 using the photosensitive polymer liquid crystal aligning agent composition.

본 발명의 또 다른 목적은 상기 액정 배향막(1)을 포함하는 고화질과 고품위의 화질 구현이 가능한 액정 소자를 제공하는 것이다.Still another object of the present invention is to provide a liquid crystal device capable of realizing high quality and high quality images including the liquid crystal alignment layer 1.

상기와 같은 본 발명의 목적은, The object of the present invention as described above,

폴리에틸렌, 폴리프로필렌 계열을 포함하는 알리파틱 폴리올레핀계 고분자; 폴리스타이렌계 고분자; 폴리메틸메타크릴레이트를 포함하는 아크릴계 고분자; 폴리 아마이드계 고분자; 폴리 아세탈계 고분자; 페놀계 고분자; 에폭사이드계 고분 자; 폴리우레탄계 고분자; 폴리이소시아뉴레이트계 고분자; 및 폴리실록산계 고분자;로 이루어지는 그룹에서 선택되는 어느 하나의 고분자를 주쇄로 하여, 하기 [구조1]의 신나메이트; 하기 [구조2]의 칼콘; 하기 [구조3]의 아조화합물; 및 하기 [구조4]의 이미드;로 이루어지는 그룹에서 선택되는 어느 하나의 광할성 단위를 주쇄에 포함하거나 또는 측쇄에 포함하는 광활성 고분자; 및 Aliphatic polyolefin-based polymers including polyethylene and polypropylene series; Polystyrene-based polymers; Acrylic polymers including polymethyl methacrylate; Polyamide-based polymers; Polyacetal polymer; Phenolic polymers; Epoxide-based polymers; Polyurethane-based polymers; Polyisocyanurate polymers; And a polysiloxane-based polymer; a cinnamate of the following [Structure 1] using any polymer selected from the group consisting of a main chain; The chalcone of the following [Structure 2]; Azo compounds of the following [Structure 3]; And a photoactive polymer comprising any one of the photohalogen units selected from the group consisting of imides of the following [structure 4] in the main chain or in the side chain; And

카본나노튜브;의 혼합물을 포함하는 카본나노튜브를 이용한 감광성 고분자 액정 배향제 조성물에 의해 달성된다.It is achieved by a photosensitive polymer liquid crystal aligning agent composition using carbon nanotubes comprising a mixture of carbon nanotubes.

[구조1] [Structure 1]

Figure 112003043751142-pat00001
Figure 112003043751142-pat00001

[구조2]Structure 2

Figure 112003043751142-pat00002
Figure 112003043751142-pat00002

[구조3]Structure 3

Figure 112003043751142-pat00003
Figure 112003043751142-pat00003

[구조4][Structure 4]

Figure 112003043751142-pat00004
Figure 112003043751142-pat00004

상기와 같은 다른 목적은 카본나노튜브를 이용한 감광성 고분자 액정 배향제 조성물을 포함하는 액정 배향막(1)에 의해 달성된다.Another object as described above is achieved by the liquid crystal aligning film 1 including the photosensitive polymer liquid crystal aligning agent composition using carbon nanotubes.

상기와 같은 또 다른 목적은 상기 카본 나노튜브를 이용한 감광성 고분자 액정 배향제 조성물을 유기용매에 용해시키는 단계(S1); 상기 용액을 스핀코팅 또는 프린팅 방법에 의해 기판(2)상에 도포하여 배향막(1)을 형성하는 단계(S2); 및 상기 배향막(1)의 표면에 편광자를 사용하여 선형 편광시킨 자외선(4) 또는 편광자를 이용하지 않은 비편광된 자외선(4)을 경사조사 또는 수직조사하는 단계(S3);로 구성되는 액정 배향막(1)의 제조 방법에 의해 달성된다.Another object as described above is dissolving the photosensitive polymer liquid crystal aligning agent composition using the carbon nanotubes in an organic solvent (S1); Applying the solution onto the substrate (2) by spin coating or printing to form an alignment layer (S2); And irradiating or vertically irradiating ultraviolet rays 4 linearly polarized using a polarizer on the surface of the alignment layer 1 or unpolarized ultraviolet rays 4 not using a polarizer (S3). It is achieved by the manufacturing method of (1).

상기와 같은 또 다른 목적은 액정소자에 있어서, 카본 나노튜브를 이용한 감광성 고분자 액정 배향제 조성물을 포함하는 액정 배향막(1)을 포함하는 액정 소자에 의해 달성된다. Another object as described above is achieved by a liquid crystal device comprising a liquid crystal aligning film 1 containing a photosensitive polymer liquid crystal aligning agent composition using carbon nanotubes in a liquid crystal device.

이하 본 발명에 따른 카본 나노튜브를 이용한 감광성 액정 고분자 배향제 조성물, 이를 이용한 액정 배향막, 그 제조방법 및 상기 액정 배향막을 포함하는 액정 소자에 대하여 상세하게 설명한다.Hereinafter, a photosensitive liquid crystal polymer aligning agent composition using carbon nanotubes according to the present invention, a liquid crystal aligning film using the same, a manufacturing method thereof, and a liquid crystal device including the liquid crystal aligning film will be described in detail.

본 발명에 따른 카본 나노튜브를 이용한 감광성 고분자 액정 배향제 조성물 은 광활성 고분자와 카본 나노튜브의 혼합물을 가장 기본적인 구성으로 포함한다.The photosensitive polymer liquid crystal aligning agent composition using carbon nanotubes according to the present invention includes a mixture of a photoactive polymer and carbon nanotubes as the most basic configuration.

상기 광할성 고분자는 제1고분자를 주쇄로 하고, 광할성 단위를 주쇄에 포함하거나 또는 측쇄에 포함한다. The photoreactive polymer has a first polymer as a main chain and includes a photoreactive unit in a main chain or in a side chain.

상기 제1고분자는 폴리에틸렌, 폴리프로필렌 계열을 포함하는 알리파틱 폴리올레핀계 고분자, 폴리스타이렌계 고분자, 폴리메틸메타크릴레이트를 포함하는 아크릴계 고분자, 폴리 아마이드계 고분자, 폴리 아세탈계 고분자, 페놀계 고분자, 에폭사이드계 고분자, 폴리우레탄계 고분자, 폴리이소시아뉴레이트계 고분자 및 폴리실록산계 고분자로 이루어지는 그룹에서 선택되는 어느 하나이다.The first polymer is polyethylene, polypropylene-based aliphatic polyolefin-based polymer, polystyrene-based polymer, acrylic polymer including polymethyl methacrylate, polyamide-based polymer, polyacetal-based polymer, phenol-based polymer, epoxide It is any one selected from the group consisting of a polymer, a polyurethane polymer, a polyisocyanate polymer and a polysiloxane polymer.

그리고, 상기 광활성 단위는 하기 [구조1]의 신나메이트, 하기 [구조2]의 칼콘, 하기 [구조3]의 아조화합물 및 하기 [구조4]의 이미드로 이루어지는 그룹에서 선택되는 어느 하나이다.The photoactive unit is any one selected from the group consisting of cinnamates of the following [structure 1], chalcones of the following [structure 2], azo compounds of the following [structure 3] and imides of the following [structure 4].

[구조1] [Structure 1]

Figure 112003043751142-pat00005
Figure 112003043751142-pat00005

[구조2]Structure 2

Figure 112003043751142-pat00006
Figure 112003043751142-pat00006

[구조3]Structure 3

Figure 112003043751142-pat00007
Figure 112003043751142-pat00007

[구조4][Structure 4]

Figure 112003043751142-pat00008
Figure 112003043751142-pat00008

상기 광활성 고분자와 카본나노튜브는 질량비로 각각 1000:1 ~ 50:1로 혼합되는 것이 바람직하다. The photoactive polymer and the carbon nanotubes are preferably mixed at a mass ratio of 1000: 1 to 50: 1.

카본나노튜브 중량대비 광활성 고분자가 50 미만으로 혼합되는 경우에는 광배향성이 떨어지고, 광활성 고분자가 1000 을 초과하여 혼합되는 경우에는 열적 기계적 성질이 바람직하지 못하다.When the photoactive polymer is mixed with the carbon nanotube weight less than 50, the optical orientation is inferior, and when the photoactive polymer is mixed with more than 1000, the thermal mechanical properties are not preferable.

본 발명에 따른 감광성 고분자 액정 배향막은 카본 나노튜브를 이용한 감광성 고분자 액정 배향제 조성물을 포함하는 감광성 고분자 액정 배향막이다.The photosensitive polymer liquid crystal aligning film which concerns on this invention is a photosensitive polymer liquid crystal aligning film containing the photosensitive polymer liquid crystal aligning agent composition which used carbon nanotube.

바람직하게는 상기 조성물이 기판에 도포되어 포함되고 자외선이 조사되어 액정 배향성을 갖게 된다. Preferably, the composition is applied to a substrate and included, and ultraviolet rays are irradiated to have liquid crystal alignment.

도 2는 본 발명에 따른 감광성 고분자 액정 배향제 조성물을 이용한 액정 배향막(1)의 배향공정중 조사단계를 나타내는 개략도이다. 2 is a schematic view showing an irradiation step in the alignment process of the liquid crystal aligning film 1 using the photosensitive polymer liquid crystal aligning agent composition according to the present invention.

본 발명에 따른 카본 나노튜브를 이용한 감광성 고분자 액정 배향제 조성물을 이용한 액정 배향막(1)의 제조방법은 먼저 상기한 카본 나노튜브를 이용한 감광 성 고분자 액정 배향제 조성물을 클로로벤젠, N-메틸피롤리돈(NMP), N-에틸피롤리돈(NEP), N,N-디메틸이미다졸리디논(DMI), N,N-디프로필이미다졸리디논(DPI), 디메틸포름아미드(DMF), 디메틸아세트아미드(DMAc), 디메틸술폭시드(DMSO), 시클로펜타논, 시클로헥사논, 디클로로에탄, 부틸셀루솔브, 감마부티로락톤 및 테트라히드로퓨란(THF)으로 이루어진 그룹에서 선택되는 어느 하나 또는 적어도 어느 둘 이상의 혼합용매로 이루어진 유기용매에 1 ~ 20wt%의 농도로 용해시켜 1 ~ 100cps의 점도로 만든다.Method for producing a liquid crystal aligning film (1) using the photosensitive polymer liquid crystal aligning agent composition using the carbon nanotubes according to the present invention is first the photosensitive polymer liquid crystal aligning agent composition using the carbon nanotubes chlorobenzene, N-methylpyrroli Don (NMP), N-ethylpyrrolidone (NEP), N, N-dimethylimidazolidinone (DMI), N, N-dipropylimidazolidinone (DPI), dimethylformamide (DMF), dimethyl Any one or at least any one selected from the group consisting of acetamide (DMAc), dimethyl sulfoxide (DMSO), cyclopentanone, cyclohexanone, dichloroethane, butylcellulsolve, gammabutyrolactone and tetrahydrofuran (THF) It is dissolved in an organic solvent consisting of two or more mixed solvents at a concentration of 1 to 20 wt% to a viscosity of 1 to 100 cps.

다음으로 상기 용액을 스핀코팅 또는 프린팅 방법에 의해 10 ~ 500nm의 두께로 기판(2) 예를 들어 ITO 유리 기판(2)상에 도포하여 배향막(1)을 형성한다.Next, the solution is applied onto the substrate 2, for example, an ITO glass substrate 2, by a thickness of 10 to 500 nm by spin coating or printing to form an alignment layer 1.

상기 배향막(1)의 표면에 편광자를 사용하여 선형 편광시킨 자외선(4) 또는 편광자를 이용하지 않은 비편광된 자외선(4)을 2초 ~ 10분 동안 경사조사 또는 수직조사하여 기판(2)상에 액정 배향막(1)을 제조한다.The surface of the alignment layer 1 is inclined or vertically irradiated with ultraviolet rays 4 linearly polarized using a polarizer or unpolarized ultraviolet rays 4 without polarizers for 2 seconds to 10 minutes, and then onto the substrate 2. The liquid crystal aligning film 1 is manufactured in this.

조사시간은 램프의 전력에 따라 달라지며 전력이 클수록 조사시간이 짧아지며, 전력이 작을수록 조사시간이 커진다. 약 500W의 램프의 경우 2초 ~ 10분동안 경사조사 또는 수평조사한다. The irradiation time depends on the power of the lamp. The larger the power, the shorter the irradiation time. The smaller the power, the larger the irradiation time. For lamps of approximately 500W, tilt or level for 2 seconds to 10 minutes.

본 발명에 따른 카본 나노튜브를 이용한 감광성 고분자 액정 배향제 조성물은 경사 조사하는 자외선(4)의 경사각에 따라 배향되는 액정의 선경사각에 변화를 줄 수 있으며, 화학구조의 변화 또는 자외선(4)의 조사각을 조작하여 선경사각을 0°가 되도록 할 수 있다. The photosensitive polymer liquid crystal aligning agent composition using carbon nanotubes according to the present invention may change the pretilt angle of the liquid crystal oriented according to the inclination angle of the ultraviolet ray 4 to be inclinedly irradiated, and may change the chemical structure or the ultraviolet ray 4. The irradiation angle can be manipulated so that the pretilt angle becomes 0 °.

본 발명에 따른 카본나노튜브를 이용한 감광성 고분자 액정 배향제 조성물을 이용한 액정 배향막을 포함하는 액정 소자의 제조 방법은 다음과 같다. The manufacturing method of the liquid crystal element containing the liquid crystal aligning film using the photosensitive polymer liquid crystal aligning agent composition using the carbon nanotube which concerns on this invention is as follows.

상기한 바에 따라 제조된 액정 배향막을 가지는 광반응된 기판 2개에 일정 크기를 가지는 스페이서를 뿌린 후, 접착제를 이용해 양 기판 사이가 일정한 두께를 가지도록 부착하여 이 셀을 130℃에서 1시간동안의 경화공정을 거치게 한 뒤 접착제를 경화시켜 2개의 기판이 완전히 접착되게 하여 셀을 제조한다. 그 후 상기 셀에 액정을 주입하고 100 ~ 130℃에서 약 1시간 동안 열을 가한 다음 온도를 다시 상온으로 떨어뜨리는 열처리 공정을 1회 수행한다.After sputtering spacers having a certain size onto two photoreacted substrates having a liquid crystal alignment film prepared as described above, the adhesive was attached so as to have a constant thickness between the two substrates using an adhesive. After the curing process, the adhesive is cured so that the two substrates are completely bonded to prepare a cell. Thereafter, a liquid crystal is injected into the cell, heat is applied at 100 to 130 ° C. for about 1 hour, and then a heat treatment step of dropping the temperature to room temperature is performed once.

본 발명에 따른 카본나노튜브를 이용한 감광성 고분자 액정 배향제 조성물을 이용하여 제조되는 액정 표시 소자의 구동 모드는 STN(Super Twisted Nematic), TN(Twisted Nematic), IPS(In Plane Switching), VATN(Vertically Alligned Twisted Nematic)모드 등 여러가지 모드에 적용이 가능하다. The driving mode of the liquid crystal display device manufactured using the photosensitive polymer liquid crystal aligning agent composition using carbon nanotubes according to the present invention is STN (Super Twisted Nematic), TN (Twisted Nematic), IPS (In Plane Switching), VATN (Vertically It can be applied to various modes such as Alligned Twisted Nematic mode.

이하, 본 발명의 바람직한 실시예를 설명함으로써 본 발명을 더욱 상세하게 설명한다. 그러나 본 발명은 하기 실시예에 한정되는 것은 아니라 첨부된 특허청구범위내에서 다양한 형태의 실시예들이 구현될 수 있으며, 단지 하기 실시예는 본 발명의 개시가 완전하도록 함과 동시에 당업계에서 통상의 지식을 가진 자에게 발명의 실시를 용이하게 하고자 하는 것이다.Hereinafter, the present invention will be described in more detail by explaining preferred embodiments of the present invention. However, the present invention is not limited to the following examples, and various forms of embodiments can be implemented within the scope of the appended claims, and the following examples are only common to those skilled in the art to complete the present disclosure. It is intended to facilitate the implementation of the invention to those with knowledge.

[실시예1]Example 1

본 실시예1은 카본나노튜브를 포함하는 신나메이트 감광성 관능기를 갖는 폴리아크릴계 액정배향제 조성물, 이를 이용한 액정 배향막 제조 방법 및 상기 액정 배향막을 포함하는 액정 소자에 관한 것이다.Embodiment 1 relates to a polyacrylic liquid crystal aligning agent composition having a cinnamate photosensitive functional group including carbon nanotubes, a method for preparing a liquid crystal alignment layer using the same, and a liquid crystal device including the liquid crystal alignment layer.

(1)신나메이트 관능기의 도입(1) Introduction of cinnamate functional group

신나믹산 14.8g을 질소가 충진된 둥근바닥 플라스크에 넣고 티오닐클로라이드(SOCl2) 17.8g을 첨가하여 교반을 시켰다. 그리고 플라스크안에 디메틸포름아미드(DMF) 0.5ml를 추가로 첨가한 후, 상온에서 24시간 반응시켰다. 반응을 종료시킨 후 감압증류하여 신나모일클로라이드 16g을 얻었다.14.8 g of cinnamic acid was placed in a round bottom flask filled with nitrogen, and 17.8 g of thionyl chloride (SOCl 2 ) was added thereto, followed by stirring. Then, 0.5 ml of dimethylformamide (DMF) was further added to the flask, followed by reaction at room temperature for 24 hours. After the reaction was completed, distillation under reduced pressure was carried out to obtain 16 g of cinnamoyl chloride.

(2)아마이드 연결고리의 형성(2) formation of amide linkages

아미노페놀 7g을 질소가 충진된 둥근바닥플라스크에 넣고 피리딘(pyridine) 50ml를 0℃로 유지시키면서 메틸렌클로라이드(MC) 10ml에 희석시킨 신나모일클로라이드 16g을 천천히 적하시켰다. 1시간동안 교반시킨 후에 반응물을 3N농도의 염산수용액에서 침전물을 형성시킨 후 침전물을 여과하고 물을 완전히 제거한 다음 메탄올에서 재결정을 한 후 감압여과하였다. 얻어진 고체상의 물질을 진공감압하여 4-하이드록시페닐신나마이드 18g을 얻었다.7 g of aminophenol was placed in a round bottom flask filled with nitrogen, and 16 g of cinnamoyl chloride diluted in 10 ml of methylene chloride (MC) was slowly added dropwise while keeping 50 ml of pyridine at 0 ° C. After stirring for 1 hour, the reaction product formed a precipitate in 3N aqueous hydrochloric acid solution. The precipitate was filtered, the water was completely removed, recrystallized from methanol, and filtered under reduced pressure. The obtained solid substance was decompressed in vacuum to obtain 18 g of 4-hydroxyphenylcinamide.

(3)신나메이트 감광성 관능기를 갖는 아크릴 단량체(3) acrylic monomer having cinnamate photosensitive functional group

상기 얻어진 4-하이드록시페닐신나마이드 15g을 질소가 충진된 둥근바닥 플라스크에 넣고, 테트라하이드로퓨란(THF) 80ml와 트리에틸아민(TEA) 30ml를 넣어, 0℃에서 녹인 후 메타아크릴로일 클로라이드 7g을 천천히 적하시켰다. 적하가 끝난 후 1시간 동안 반응을 시키고 반응물을 3N농도의 염산수용액에서 침전물을 형성시킨 후 침전물을 여과하고 물을 완전히 제거한 다음 메틸렌클로라이드와 메탄올을 1:1의 비율로 재결정을 한 후 감압여과하였다. 얻어진 고체상의 물질을 진공감압하 여 신나메이트 감광성 관능기를 갖는 아크릴 단량체 10g을 얻었다.15 g of the 4-hydroxyphenyl cinnamid obtained was placed in a round bottom flask filled with nitrogen, 80 ml of tetrahydrofuran (THF) and 30 ml of triethylamine (TEA) were added thereto, dissolved at 0 ° C., and 7 g of methacryloyl chloride. Was slowly added dropwise. After the dropping was completed, the reaction was carried out for 1 hour, and the reactant was formed into a precipitate in 3N aqueous hydrochloric acid solution. . The obtained solid substance was decompressed in vacuum to obtain 10 g of an acrylic monomer having a cinnamate photosensitive functional group.

(4)신나메이트 감광성 관능기를 갖는 아크릴레이트 고분자의 중합(4) Polymerization of acrylate polymer having cinnamate photosensitive functional group

상기 얻어진 아크릴 단량체 10g을 디메틸포름아미드(DMF) 80ml에 녹인 후 온도를 80℃로 승온시킨 후 아조비스아이소부티로나이트릴(AIBN)300mg을 넣은 후 24시간 교반시켰다. 반응 후 반응 혼합물을 메탄올 1L에서 침전을 형성시켰다. 디메틸포름아미드 50ml에 녹인 후 메탄올에 재침전 후 감압 여과시켰다. 감압여과후에 진공건조시켜 신나메이트 감광성 관능기를 포함하는 폴리아크릴레이트 고분자 7g을 얻었다.10 g of the obtained acrylic monomer was dissolved in 80 ml of dimethylformamide (DMF), the temperature was raised to 80 ° C., and 300 mg of azobisisobutyronitrile (AIBN) was added thereto, followed by stirring for 24 hours. After the reaction, the reaction mixture formed a precipitate in 1 L of methanol. It was dissolved in 50 ml of dimethylformamide, reprecipitated in methanol, and filtered under reduced pressure. After vacuum drying under reduced pressure, 7 g of a polyacrylate polymer containing a cinnamate photosensitive functional group was obtained.

(5)카본나노튜브를 포함하는 감광성 고분자 액정 배향제 용액 제조 및 액정 소자의 제조(5) Production of photosensitive polymer liquid crystal aligning agent solution containing carbon nanotube and production of liquid crystal device

상기 얻어진 액정 배향제 1g의 샘플(샘플 P:카본나노튜브를 혼합하지 않음), 액정배향제 1g에 카본나노튜브 5mg(0.5wt%)을 혼합한 샘플(샘플 P-0.5:카본나노튜브를 0.5wt%로 혼합), 그리고 액정배향제 1g에 카본나노튜브 10mg(1wt%)을 혼합한 샘플(샘플 P-1:카본나노튜브를 1wt%로 혼합)와 NMP 및 부틸셀루솔브의 혼합용매 8wt%로 이루어진 용액등 용액 3개를 준비한 후, 각 용액을 0.1㎛의 미세공 크기를 갖는 여과막에 통과시켜 용해되지 않는 불순물 입자를 제거하였다. The sample (sample P-0.5: carbon nanotube) which mixed 5 mg (0.5 wt%) of carbon nanotubes with 1 g of the liquid crystal aligning agents (sample P: carbon nanotubes not obtained) and 1 g of the liquid crystal aligning agent which were obtained above was mixed. wt% mixed), and a mixed solvent of NMP and butyl cellulsolve (Sample P-1: carbon nanotube mixed at 1wt%) and a sample of carbon nanotube 10mg (1wt%) mixed with 1 g of the liquid crystal aligning agent. After preparing three solutions such as a solution consisting of, each solution was passed through a filtration membrane having a micropore size of 0.1 ㎛ to remove insoluble impurities particles.

이와 같이 얻어진 용액을 투명 전극이 도포된 유리기판 위에 50~500nm의 두께로 프린팅하여 감광성 고분자 액정 배향제를 도포시키고, 유리기판을 100~200℃에서 약 1시간동안 건조시켜 용매를 제거하였다. The solution thus obtained was printed on a glass substrate coated with a transparent electrode to a thickness of 50 to 500 nm to apply a photosensitive polymer liquid crystal aligning agent, and the glass substrate was dried at 100 to 200 ° C. for about 1 hour to remove the solvent.

이 유리기판을 500W 수은램프의 자외광에 대하여 약 20°의 각도로 2초에서 10분간 1회 광조사를 수행하여 신나메이트기의 광중합, 고분자 사슬의 광분해등 복합적인 광반응을 유도하여 고분자 액정 배향막을 제조하였다. This glass substrate is irradiated with ultraviolet light of 500W mercury lamp at an angle of about 20 ° once for 2 seconds to 10 minutes to induce complex photoreaction such as photopolymerization of cinnamate group and photolysis of polymer chain. An alignment film was prepared.

이어 광반응된 2개의 유리기판 위에 4~5㎛의 크기를 갖는 스페이서를 뿌린 후 에폭시 접착제를 이용하여 2개의 유리기판 사이의 두께(cell gap)가 4~5㎛가 되도록 부착시켰다. 이 셀을 130℃에서 1시간 동안의 경화공정을 거치게 함으로써 에폭시 접착제를 경화시켜 두개의 유리기판이 완전히 접착되게 하여 소자의 제조를 완성하였다. Subsequently, a spacer having a size of 4˜5 μm was sprinkled on the photoreacted two glass substrates, and then attached using a epoxy adhesive such that the cell gap between the two glass substrates was 4˜5 μm. The cell was subjected to a curing process at 130 ° C. for 1 hour to cure the epoxy adhesive so that the two glass substrates were completely bonded to complete the fabrication of the device.

완성된 소자에 액정을 주입한 후 100~130℃에서 1시간동안 열을 가한 후에 온도를 다시 상온으로 떨어뜨리는 열처리 공정을 1회 진행하여 최종적으로 액정 표시 소자를 완성하였다. After injecting the liquid crystal into the finished device, a heat treatment was performed once at a temperature of 100 to 130 ° C. for 1 hour, and then the temperature was lowered to room temperature.

[실시예2]Example 2

본 실시예1은 카본나노튜브를 포함하는 칼콘 감광성 관능기를 갖는 폴리아미드계 액정배향제 조성물, 이를 이용한 액정 배향막 제조 방법 및 상기 액정 배향막을 포함하는 액정 소자에 관한 것이다.Embodiment 1 relates to a polyamide-based liquid crystal aligning agent composition having a chalcone photosensitive functional group including carbon nanotubes, a method for preparing a liquid crystal alignment layer using the same, and a liquid crystal device including the liquid crystal alignment layer.

(1)칼콘 감광성 관능기의 합성(1) Synthesis of chalcone photosensitive functional groups

4-메톡시칼콘 10g과 시안화나트륨 2.05g을 디메틸설폭시드 100ml에 용해시킨 후 24시간동안 반응을 시켰다. 반응종결후 반응용액을 클로로포름에 혼합한 후 증류수와 교반하여 불순물을 추출하였다. 수용액상을 제거한 후 상온에서 감압하여 클로로포름을 제거하였다. 남아있는 고체상을 메탄올에서 재결정한 후 40℃에서 진공건조하여 광반응을 위한 측쇄 4-히드록시칼콘을 얻었다.10 g of 4-methoxychalcone and 2.05 g of sodium cyanide were dissolved in 100 ml of dimethyl sulfoxide and allowed to react for 24 hours. After completion of the reaction, the reaction solution was mixed with chloroform and stirred with distilled water to extract impurities. After removing the aqueous phase, chloroform was removed under reduced pressure at room temperature. The remaining solid phase was recrystallized in methanol and then dried in vacuo at 40 ° C. to obtain side chain 4-hydroxychalcone for photoreaction.

(2)트리아진 고리에 칼콘 감광성 관능기의 도입(2) Introduction of chalcone photosensitive functional group in triazine ring

상기 얻어진 4-히드록시칼콘 23.8g 을 질소가 충진된 둥근바닥플라스크에 넣고 수분을 제거한 테트라히드로퓨란 240ml에 녹였다. 여기에 수소화나트륨(NaH) 2.4g을 넣고 상온에서 6시간 반응을 시켰다. 이 용액을 시아누릭 클로라이드 18.4g을 둥근바닥플라스크에 넣고 수분이 제거된 테트라히드로퓨란 200ml에 녹인 용액에 -5℃에서 천천히 적하시키면서 격렬하게 교반하며 24시간 반응시켰다. 반응을 종결한 후 감압증류하여 테트라히드로퓨란을 제거하였으며 얻어진 고체를 다시 클로로포름에 용해시켰다. 이 용액을 분별깔대기에서 증류수로 3회 씻어 불순물을 추출한 후 칼슘클로라이드로 수분을 제거하였다. 이 용액을 다시 감압증류하여 클로로포름을 제거한 후 메틸렌클로라이드와 노말핵산의 혼합용매로 재결정을 하였다. 얻어진 물질을 감압여과한 후 진공건조하여 칼콘 감광성 관능기를 갖는 트리아진을 얻었다. 23.8 g of the obtained 4-hydroxychalcone was placed in a round bottom flask filled with nitrogen and dissolved in 240 ml of tetrahydrofuran from which moisture was removed. 2.4 g of sodium hydride (NaH) was added thereto and allowed to react at room temperature for 6 hours. 18.4 g of cyanuric chloride was added to a round bottom flask, and the solution was dissolved in 200 ml of tetrahydrofuran from which moisture was removed. The solution was reacted vigorously with vigorous stirring at -5 ° C for 24 hours. After completion of the reaction, distillation under reduced pressure was carried out to remove tetrahydrofuran, and the obtained solid was dissolved in chloroform again. The solution was washed three times with distilled water in a separatory funnel to extract impurities, and then water was removed with calcium chloride. The solution was distilled under reduced pressure again to remove chloroform and recrystallized with a mixed solvent of methylene chloride and normal nucleic acid. The obtained material was filtered under reduced pressure and then vacuum dried to obtain triazine having a chalcone photosensitive functional group.

(3)두개의 아민 관능기를 갖는 트리아진 단량체의 합성(3) Synthesis of Triazine Monomer Having Two Amine Functions

상기 합성된 칼콘 감광성 관능기를 갖는 트리아진 38.6g을 4-아미노페놀 32.8g과 수산화나트륨 12g을 브롬화세틸트리메틸암모늄 3g을 녹인 증류수 300ml에 녹여서 앞의 트리아진 용액과 섞어서 격렬하게 24시간 반응시켰다. 반응을 종결한 후 유기용액 상을 분리하여 분별깔대기에 옮겨 놓고 증류수로 3회 씻어 불순물을 추출한 후 칼슘클로라이드로 수분을 제거하였다. 수분이 제거된 용액을 감압증류하여 유기용매인 클로로포름을 제거한 후 메틸렌클로라이드와 노말핵산의 혼합용매에서 재결정을 수행하였다. 석출된 결정을 감압여과한 후 진공건조하여 트리아진 단 량체를 얻었다.38.6 g of the triazine having the above-described chalcone photosensitive functional group was dissolved in 300 ml of distilled water in which 32.8 g of 4-aminophenol and 12 g of sodium hydroxide were dissolved in 3 g of cetyltrimethylammonium bromide, followed by a vigorous reaction for 24 hours. After completion of the reaction, the organic solution phase was separated, transferred to a separatory funnel, washed three times with distilled water to extract impurities, and then water was removed with calcium chloride. The water-removed solution was distilled under reduced pressure to remove chloroform, which is an organic solvent, and then recrystallized in a mixed solvent of methylene chloride and normal nucleic acid. The precipitated crystals were filtered under reduced pressure and dried in vacuo to obtain a triazine monomer.

(4)칼콘 감광성 관능기를 갖는 폴리아미드계 감광성 고분자 액정 배향제의 중합(4) Polymerization of polyamide-based photosensitive polymer liquid crystal aligning agent having a calcon photosensitive functional group

상기 얻어진 트리아진 단량체 53.15g을 질소가 충진된 둥근바닥플라스크에 넣고 수분이 제거된 테트라히드로퓨란 400ml에 녹였다. 이 용액에 트리에틸아민 20.24g을 첨가하였다. 테레프탈로일 클로라이드 20.3g을 수분을 제거한 테트라히드로퓨란 100ml에 용해시킨 후 앞의 트리아진 단량체와 트리에틸아민이 녹아 있는 용액에 천천히 적하시키면서 격렬하게 교반시켜 12시간 반응을 시켰다. 반응종결후 메탄올에 반응용액을 천천히 흘려주어 침전시키고 여과하여 침전물을 진공건조하였다. 얻어진 침전물을 다시 테트라히드로퓨란에 용해시킨 후 메탄올에 침전시키는 과정을 2회 반복 후 진공건조하여 최종적으로 트리아진 고리를 이용하여 칼콘 감광성 관능기를 갖는 폴리아미드계 감광성 고분자 액정 배향제를 중합하였다.53.15 g of the obtained triazine monomer was placed in a round bottom flask filled with nitrogen and dissolved in 400 ml of tetrahydrofuran from which moisture was removed. 20.24 g of triethylamine was added to this solution. After dissolving 20.3 g of terephthaloyl chloride in 100 ml of tetrahydrofuran from which water was removed, the mixture was stirred vigorously while slowly dropping into the solution in which the triazine monomer and triethylamine were dissolved, followed by reaction for 12 hours. After completion of the reaction, the reaction solution was slowly poured into methanol to precipitate and filtered, and the precipitate was dried in vacuo. The obtained precipitate was again dissolved in tetrahydrofuran and then precipitated in methanol twice. After vacuum drying, a polyamide photosensitive polymer liquid crystal aligning agent having a chalcon photosensitive functional group was finally polymerized using a triazine ring.

(5)카본 나노튜브를 포함하는 감광성 액정 배향제 용액 제조 및 액정 셀의 제조(5) Production of photosensitive liquid crystal aligning agent solution containing carbon nanotube and production of liquid crystal cell

상기 얻어진 액정 배향제 1g의 샘플(샘플 T:카본나노튜브를 혼합하지 않음),액정배향제 1g에 카본나노튜브 5mg(0.5wt%)을 혼합을 샘플(샘플 T-0.5:카본나노튜브를 0.5wt% 혼합), 그리고 위의 액정배향제 1g에 카본나노튜브 10mg(1wt%)을 혼합한 샘플(샘플 T-1:카본나노튜브를 1wt% 혼합)와 NMP 및 부틸셀루솔브의 혼합용매 8wt%로 이루어진 용액등 용액 3개를 준비한 후, 이 용액을 0.1㎛의 미세공 크기를 갖는 여과막에 통과시켜 용해되지 않는 불순물 입자를 제거하였다. A sample of 1 g of the obtained liquid crystal aligning agent (sample T: carbon nanotubes are not mixed) and 5 mg (0.5 wt%) of carbon nanotubes were mixed with 1 g of liquid crystal aligning agent, and a sample (sample T-0.5: carbon nanotubes was 0.5 wt% mixed), and a mixed solvent of NMP and butyl cellulsolve 8wt% with a sample (1wt% mixed with carbon nanotube 10mg (1wt%) mixed with carbon nanotube 10mg (1wt%) to 1g of the liquid crystal aligning agent) After preparing three solutions, such as a solution consisting of, the solution was passed through a filtration membrane having a micropore size of 0.1 ㎛ to remove insoluble impurities particles.

얻어진 용액을 투명 전극이 도포된 유리기판위에 50~500nm의 두께로 프린팅하여 감광성 고분자 액정 배향제를 도포시키고, 유리기판을 100~200℃에서 약 1시간동안 건조시켜 용매를 제거하였다. 이 유리기판을 500W 수은램프의 자외광에 대하여 20°의 각도로 2초에서 10분간 1회 광조사를 통한 칼콘기의 광중합, 고분자 사슬의 광분해등 복합적인 광반응을 유도하여 고분자 액정 배향막을 제조하였다. The obtained solution was printed on a glass substrate coated with a transparent electrode at a thickness of 50 to 500 nm to apply a photosensitive polymer liquid crystal aligning agent, and the glass substrate was dried at 100 to 200 ° C. for about 1 hour to remove the solvent. The glass substrate was used to induce a complex photoreaction such as photopolymerization of chalcone groups and photolysis of polymer chains through light irradiation once every 2 seconds to 10 minutes at an angle of 20 ° to ultraviolet light of a 500W mercury lamp to prepare a polymer liquid crystal alignment layer. It was.

이어 광반응된 2개의 유리기판 위에 4~5㎛의 크기를 갖는 스페이서를 뿌린 후 에폭시 접착제를 이용하여 2개의 유리기판 사이의 두께(cell gap)가 4~5㎛가 되도록 부착시켰다. 이 셀을 130℃에서 1시간 동안의 경화공정을 거치게 함으로써 에폭시 접착제를 경화시켜 두개의 유리기판이 완전히 접착되게 하여 셀의 제조를 완성하였다. Subsequently, a spacer having a size of 4˜5 μm was sprinkled on the photoreacted two glass substrates, and then attached using a epoxy adhesive such that the cell gap between the two glass substrates was 4˜5 μm. The cell was subjected to a curing process at 130 ° C. for 1 hour to cure the epoxy adhesive so that the two glass substrates were completely bonded to complete the manufacture of the cell.

완성된 셀에 액정을 주입한 후 100~130℃에서 1시간동안 열을 가한 후에 온도를 다시 상온으로 떨어뜨리는 열처리 공정을 1회 진행하여 최종적으로 액정디스플레이 셀을 완성하였다. After injecting the liquid crystal into the finished cell was heated for 1 hour at 100 ~ 130 ℃ and proceeded to the heat treatment step of dropping the temperature back to room temperature once to finally complete the liquid crystal display cell.

상기 각 실시예에 있어서의 각 샘플 즉 샘플 P, P-0.5, P-1, T, T-0.5, T-1의 열처리에 따른 선경사각의 변화 측정, 온도 및 시간변화에 따른 선경사각 측정, TGA를 통한 열분해 온도 측정, 광안정성 및 광조사량 측정 결과를 하기 표1 내지 표4에 나타내었다. Measurement of the change of the pretilt angle according to the heat treatment of each sample, that is, samples P, P-0.5, P-1, T, T-0.5, T-1 in each of the above embodiments, the measurement of the pretilt angle according to temperature and time change, Pyrolysis temperature measurement, light stability and light irradiation measurement results through TGA are shown in Tables 1 to 4 below.

먼저 표1은 열처리에 따른 선경사각의 변화를 나타낸 것이다. First, Table 1 shows the change of the pretilt angle according to the heat treatment.

샘플 구분                Sample division PP P-0.5P-0.5 P-1P-1 TT T-0.5T-0.5 T-1T-1 공정fair 광조사Light irradiation 광조사Light irradiation 광조사Light irradiation 광조사Light irradiation 광조사Light irradiation 광조사Light irradiation 농도density 8wt%8wt% 8wt%8wt% 8wt%8wt% 8wt%8wt% 8wt%8wt% 8wt%8wt% 선경사각Pretilt 상온Room temperature 0 ~ 5°0 to 5 ° 0 ~ 4°0 to 4 ° 0 ~ 4°0 to 4 ° 0 ~ 5°0 to 5 ° 0 ~ 4°0 to 4 ° 0 ~ 4°0 to 4 ° 열처리후After heat treatment 0 ~ 5°0 to 5 ° 0 ~ 4°0 to 4 ° 0 ~ 4°0 to 4 ° 0 ~ 5°0 to 5 ° 0 ~ 4°0 to 4 ° 0 ~ 4°0 to 4 ° 대비비Contrast 195195 193193 193193 195195 193193 193193

*선경사각 측정은 crystal angle rotation 방법에 의해 측정하였음.* The pretilt angle was measured by the crystal angle rotation method.

*열처리는 실베이킹 온도인 150℃에서 3분 실시.* The heat treatment is carried out for 3 minutes at 150 ° C, the baking temperature.

상기 표에서 보는 바와 같이 카본나노튜브를 포함하는 액정 배향제의 경우(P-0.5, P-1, T-0.5, T-1) 열처리 이후에도 선경사각의 변화가 없음을 알 수 있다. As shown in the above table, in the case of the liquid crystal aligning agent including carbon nanotubes (P-0.5, P-1, T-0.5, and T-1), it can be seen that there is no change in the pretilt angle even after the heat treatment.

따라서 본 실시예의 감광성 고분자 액정 배향제를 이용하여 광배향 액정 표시 소자를 제조할 경우에 단순 공정에 의해서도 멀티도메인 액정배향을 얻을 수 있으며, 고온 공정인 실베이킹 이후에도 액정의 선경사각이 유지되고 향상된 액정 배향 특성으로 인하여 고화질과 광시야각이 요구되는 액정디스플레이 장치에 응용될 수 있다는 평가를 내릴 수 있었다. Therefore, when the photoalignment liquid crystal display device is manufactured using the photosensitive polymer liquid crystal aligning agent of the present embodiment, a multi-domain liquid crystal alignment can be obtained by a simple process, and the pretilt angle of the liquid crystal is maintained even after the high temperature process of the silbaking and improved liquid crystal Due to the orientation characteristic, it could be evaluated that it can be applied to a liquid crystal display device requiring high image quality and wide viewing angle.

본 실시예에 있어서 액정 표시 소자의 열안정성을 평가하기 위하여 온도 및 시간변화에 따른 선경사각을 측정하였다. In this embodiment, in order to evaluate the thermal stability of the liquid crystal display device, the pretilt angle according to temperature and time change was measured.

즉, 액정 표시 소자의 초기 선경사각을 측정한 후 150℃와 250℃에서 열노화를 시키면서 시간에 따른 선경사각의 변화를 측정하는 방법으로 열안정성을 평가한 것으로, 배향제 배향의 열안정성이 불안정한 경우 선경사각이 시간에 따라 변화하는 반면 안정한 경우에는 변화가 거의 없게 된다. That is, the thermal stability was evaluated by measuring the change of the pretilt angle with time while measuring the initial pretilt angle of the liquid crystal display device at 150 ° C. and 250 ° C., and the thermal stability of the alignment agent orientation was unstable. In this case, the pretilt angle changes with time, while in a stable case, there is almost no change.

표2는 온도 및 시간변화에 따른 선경사각 측정결과를 나타낸 것이다. Table 2 shows the pretilt angle measurement results with temperature and time changes.

샘플 구분        Sample                                                  division PP P-0.5P-0.5 P-1P-1 TT T-0.5T-0.5 T-1T-1 선경사각Pretilt ~5°~ 5 ° ~4°~ 4 ° ~4°~ 4 ° ~5°~ 5 ° ~4°~ 4 ° ~4°~ 4 ° 열노화온도 및 시간Thermal aging temperature and time 150℃에서 48시간동안48 hours at 150 ℃ 선경사각변화량Pretilt change 없음none 없음none 없음none 없음none 없음none 없음none 열노화온도 및 시간Thermal aging temperature and time 250℃에서 48시간동안48 hours at 250 ℃ 선경사각 변화량Pretilt variation ~1°~ 1 ° 0.1°0.1 ° 없음none ~1°~ 1 ° 없음none 없음none

상기 표2에서 확인되는 바와 같이, 본 실시예에서 각 감광성 고분자 액정 배향제는 150℃에서 액정의 배향과 선경사각이 안정적으로 유지되는 우수한 열안정성을 갖고 있지만, 250℃에서는 카본나노튜브를 혼합한 샘플들만이 선경사각이 안정적으로 유지되어 열안정성이 우수한 것으로 나타났다. As can be seen from Table 2, each photosensitive polymer liquid crystal aligning agent in the present embodiment has excellent thermal stability that the alignment and pretilt angle of the liquid crystal are stably maintained at 150 ° C., but the carbon nanotubes are mixed at 250 ° C. Only the samples showed that the pretilt angle remained stable, indicating excellent thermal stability.

본 실시예에서 열적 안정성을 평가하기 위하여 TGA를 사용하여 각 감광성 고분자 액정 배향제의 열분해 온도를 측정하였다. 열분해 온도는 LCD 공정에서 열적안정성을 확보하고자 필요한 데이타로 열분해온도가 높을수록 열적 안정성이 우수한 것이다.In this example, the thermal decomposition temperature of each photosensitive polymer liquid crystal aligning agent was measured using TGA to evaluate thermal stability. Pyrolysis temperature is the data necessary to ensure thermal stability in LCD process. The higher the pyrolysis temperature, the better the thermal stability.

표3은 TGA를 통한 열분해 온도 측정 결과를 나타낸 것이다.Table 3 shows the results of pyrolysis temperature measurement through TGA.

샘플 구분      Sample                                                  division PP P-0.5P-0.5 P-1P-1 TT T-0.5T-0.5 T-1T-1 최초열분해온도Initial pyrolysis temperature 330℃330 ℃ 350℃350 ℃ 370℃370 ℃ 340℃340 ℃ 365℃365 ℃ 380℃380 ℃ 무게비50%까지의 열분해 온도Pyrolysis temperature up to 50% by weight 450℃450 ℃ 485℃485 ℃ 500℃500 ℃ 460℃460 ℃ 490℃490 ℃ 510℃510 ℃

상기 표3에서 확인되는 바와 같이, 본 실시예의 카본나노튜브를 포함한 샘플 의 열분해 온도는 그렇지 않는 샘플의 열분해 온도보다 높아 열적 안정성이 우수한 것으로 나타났다.As confirmed in Table 3, the pyrolysis temperature of the sample including the carbon nanotubes of the present example was higher than the pyrolysis temperature of the sample that was not excellent thermal stability.

본 실시예들에 따른 액정 표시 소자의 제조방법으로 광안정성 측정용 액정 표시 소자를 제조하였다. 광안정성 측정은 하나의 액정 표시 소자의 배향면에 1 ~ 10분간 자외선과 가시광선 영역의 빛을 조사한 후 액정 표시 소자의 조사면과 비조사면의 배향특성의 변화를 육안으로 확인하는 방법으로 수행한 것이다. As a method of manufacturing a liquid crystal display device according to the present embodiments, a liquid crystal display device for measuring light stability was manufactured. Photostability measurement was performed by irradiating the alignment surface of one liquid crystal display device with ultraviolet light and visible light for 1 to 10 minutes, and then visually confirming the change of alignment characteristics between the irradiation surface and the non-irradiation surface of the liquid crystal display device. will be.

표4은 광안정성 평가 결과를 나타낸 것이다. Table 4 shows the results of light stability evaluation.

구분division PP P-0.5P-0.5 P-1P-1 TT T-0.5T-0.5 T-1T-1 광조사량Light irradiation 0.5J/cm2 0.5J / cm 2 변화없음No change 변화없음No change 변화없음No change 변화없음No change 변화없음No change 변화없음No change 1J/cm2 1 J / cm 2 변화없음No change 변화없음No change 변화없음No change 변화없음No change 변화없음No change 변화없음No change 2J/cm2 2J / cm 2 변화없음No change 변화없음No change 변화없음No change 변화없음No change 변화없음No change 변화없음No change 광조사각Wide angle 90°90 ° 변화없음No change 변화없음No change 변화없음No change 변화없음No change 변화없음No change 변화없음No change 80°80 ° 변화없음No change 변화없음No change 변화없음No change 변화없음No change 변화없음No change 변화없음No change 70°70 ° 변화없음No change 변화없음No change 변화없음No change 변화없음No change 변화없음No change 변화없음No change

상기 표4에 확인할 수 있듯이, 본 실시예의 감광성 고분자 액정 배향제의 경우 배향특성의 변화가 없어 광안정성이 우수함을 알 수 있다. 따라서 액정 배향특성의 변화로 인하여 비조사면과의 현격한 차이를 나타내거나 액정의 배향 파괴로 인하여 액정의 배향 방향이 불특정한 방향으로 혼합되어 표시 소자에 사용되지 못하게 되는 문제점이 없다.As can be seen in Table 4, it can be seen that the photosensitive polymer liquid crystal aligning agent of the present embodiment is excellent in light stability because there is no change in the orientation characteristic. Accordingly, there is no problem in that the liquid crystal alignment characteristics may be markedly different from the non-irradiated surface or the alignment direction of the liquid crystal may be mixed in an unspecific direction due to the breakdown of the liquid crystal, thereby preventing the use of the display device.

본 발명의 액정 배향제는 안정된 액정 배향성을 유지하면서도 열적 기계적 성질이 우수하고 또한 내화학성을 함께 가지고 있으며, 기존의 폴리이미드 배향제와의 호환성도 보유하는 효과를 달성하게 된다. 그리고 이를 통해 제조된 액정 표 시 소자들은 고화질 및 고품위의 디스플레이 화질을 구현하는 효과를 달성하게 된다.While the liquid crystal aligning agent of the present invention maintains a stable liquid crystal alignment property, it has excellent thermal mechanical properties and chemical resistance, and achieves the effect of retaining compatibility with existing polyimide alignment agents. In addition, the liquid crystal display devices manufactured thereby achieve an effect of realizing high quality and high quality display quality.

비록 본 발명이 상기 언급된 바람직한 실시예와 관련하여 설명되어졌지만, 발명의 요지와 범위로부터 벗어남이 없이 다양한 수정이나 변형을 하는 것이 가능하다. 따라서 첨부된 특허청구의 범위는 본 발명의 요지에서 속하는 이러한 수정이나 변형을 포함할 것이다.
Although the present invention has been described in connection with the above-mentioned preferred embodiments, it is possible to make various modifications or variations without departing from the spirit and scope of the invention. Accordingly, the appended claims will cover such modifications and variations as fall within the spirit of the invention.

Claims (8)

폴리에틸렌, 폴리프로필렌 계열을 포함하는 알리파틱 폴리올레핀계 고분자; 폴리스타이렌계 고분자; 폴리메틸메타크릴레이트를 포함하는 아크릴계 고분자; 폴리 아마이드계 고분자; 폴리 아세탈계 고분자; 페놀계 고분자; 에폭사이드계 고분자; 폴리우레탄계 고분자; 폴리이소시아뉴레이트계 고분자; 및 폴리실록산계 고분자;로 이루어지는 그룹에서 선택되는 어느 하나의 고분자를 주쇄로 하여, 하기 [구조식 1]의 신나메이트; 하기 [구조식 2]의 칼콘; 하기 [구조식 3]의 아조화합물; 및 하기 [구조식 4]의 이미드;로 이루어지는 그룹에서 선택되는 어느 하나의 광활성 단위를 주쇄에 포함하거나 또는 측쇄에 포함하는 광활성 고분자; 및 Aliphatic polyolefin-based polymers including polyethylene and polypropylene series; Polystyrene-based polymers; Acrylic polymers including polymethyl methacrylate; Polyamide-based polymers; Polyacetal polymer; Phenolic polymers; Epoxide-based polymers; Polyurethane-based polymers; Polyisocyanurate polymers; And a polysiloxane-based polymer; using any one polymer selected from the group consisting of cinnamate represented by the following [Formula 1]; Chalcone of the following [Formula 2]; Azo compounds of the following [formula 3]; And an imide of [Formula 4]; a photoactive polymer comprising any one photoactive unit selected from the group consisting of a main chain or a side chain; And 카본나노튜브;의 혼합물을 포함하는 것을 특징으로 하는 카본나노튜브를 이용한 감광성 고분자 액정 배향제 조성물.A photosensitive polymer liquid crystal aligning agent composition using carbon nanotubes comprising a mixture of carbon nanotubes. [구조식 1] [Formula 1]
Figure 712006000937218-pat00009
Figure 712006000937218-pat00009
[구조식 2][Formula 2]
Figure 712006000937218-pat00010
Figure 712006000937218-pat00010
[구조식 3][Formula 3]
Figure 712006000937218-pat00011
Figure 712006000937218-pat00011
[구조식 4][Structure 4]
Figure 712006000937218-pat00012
Figure 712006000937218-pat00012
제 1 항에 있어서, The method of claim 1, 상기 감광성 고분자 액정 배향제 조성물은 광활성 고분자 및 카본나노튜브의 혼합비가 질량비로 1000:1 ~ 50:1인 것을 특징으로 하는 카본나노튜브를 이용한 감광성 고분자 액정 배향제 조성물. The photosensitive polymer liquid crystal aligning agent composition is a photosensitive polymer liquid crystal aligning agent composition using carbon nanotubes, characterized in that the mixing ratio of the photoactive polymer and the carbon nanotubes is in a mass ratio of 1000: 1 to 50: 1. 제 1 항 또는 제 2 항에 의한 카본나노튜브를 이용한 감광성 고분자 액정 배향제 조성물을 유기용매에 용해시키는 단계(S1);Dissolving the photosensitive polymer liquid crystal aligning agent composition using the carbon nanotubes according to claim 1 in an organic solvent (S1); 상기 용액을 스핀코팅 또는 프린팅 방법에 의해 기판(2)상에 도포하여 배향막(1)을 형성하는 단계(S2); 및 Applying the solution onto the substrate (2) by spin coating or printing to form an alignment layer (S2); And 상기 배향막(1)의 표면에 편광자를 사용하여 선형 편광시킨 자외선(4) 또는 편광자를 이용하지 않은 비편광된 자외선(4)을 경사조사 또는 수직조사하는 단계(S3);를 포함하는 것을 특징으로 하는 액정 배향막의 제조 방법. A step (S3) of obliquely or vertically irradiating the ultraviolet (4) linearly polarized using the polarizer on the surface of the alignment layer (1) or the unpolarized ultraviolet light (4) not using the polarizer (S3); The manufacturing method of a liquid crystal aligning film to be made. 제 3 항에 있어서, The method of claim 3, wherein 상기 S1 단계의 유기용매의 농도는 1 ~ 20wt%의 농도이고 점도는 1 ~ 100cps인 것을 특징으로 하는 액정 배향막의 제조 방법. The concentration of the organic solvent of the S1 step is a concentration of 1 ~ 20wt% and the viscosity is a method of producing a liquid crystal alignment film, characterized in that 1 ~ 100cps. 제 3 항에 있어서, The method of claim 3, wherein 상기 S2 단계의 기판(2)상에 도포되는 배향막(1)의 두께는 10 ~ 500nm인 것을 특징으로 하는 액정 배향막의 제조 방법. The thickness of the alignment film (1) to be applied on the substrate (2) of the step S2 is 10 to 500nm, the manufacturing method of the liquid crystal alignment film. 제 3 항에 있어서, The method of claim 3, wherein 상기 S1 단계는, 유기용매로서, 클로로벤젠, N-메틸피롤리돈(NMP), N-에틸피롤리돈(NEP), N,N-디메틸이미다졸리디논(DMI), N,N-디프로필이미다졸리디논(DPI), 디메틸포름아미드(DMF), 디메틸아세트아미드(DMAc), 디메틸술폭시드(DMSO), 시클로펜타논, 시클로헥사논, 디클로로에탄, 부틸셀루솔브, 감마부티로락톤 및 테트라히드로퓨란(THF)으로 이루어진 그룹에서 선택되는 어느 하나 또는 적어도 어느 둘 이상의 혼합용매를 사용하는 것을 특징으로 하는 액정 배향막의 제조 방법. The step S1 is, as an organic solvent, chlorobenzene, N-methylpyrrolidone (NMP), N-ethylpyrrolidone (NEP), N, N-dimethylimidazolidinone (DMI), N, N-di Propylimidazolidinone (DPI), Dimethylformamide (DMF), Dimethylacetamide (DMAc), Dimethylsulphoxide (DMSO), Cyclopentanone, Cyclohexanone, Dichloroethane, Butylcellulsolve, Gammabutyrolactone and A method for producing a liquid crystal alignment film, characterized by using any one or at least two or more mixed solvents selected from the group consisting of tetrahydrofuran (THF). 액정 배향막에 있어서, 제 1 항 또는 제 2 항에 의한 카본나노튜브를 이용한 감광성 고분자 액정 배향제 조성물을 포함하는 것을 특징으로 하는 액정 배향막.A liquid crystal aligning film comprising the photosensitive polymer liquid crystal aligning agent composition using the carbon nanotubes according to claim 1 or 2. 액정 소자에 있어서, 제 7 항에 의한 액정 배향막을 포함하는 것을 특징으로 하는 액정 소자.A liquid crystal element comprising the liquid crystal alignment film according to claim 7.
KR1020030082487A 2003-11-20 2003-11-20 Polymer composition for photoinduced liquid crystal alignment using carbon nano-tube, the film for photoinduced liquid crystal alignment thereby, preparation method thereof and the liquid crystal cell comprising the film KR100752471B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030082487A KR100752471B1 (en) 2003-11-20 2003-11-20 Polymer composition for photoinduced liquid crystal alignment using carbon nano-tube, the film for photoinduced liquid crystal alignment thereby, preparation method thereof and the liquid crystal cell comprising the film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030082487A KR100752471B1 (en) 2003-11-20 2003-11-20 Polymer composition for photoinduced liquid crystal alignment using carbon nano-tube, the film for photoinduced liquid crystal alignment thereby, preparation method thereof and the liquid crystal cell comprising the film

Publications (2)

Publication Number Publication Date
KR20050048775A KR20050048775A (en) 2005-05-25
KR100752471B1 true KR100752471B1 (en) 2007-08-27

Family

ID=37247397

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030082487A KR100752471B1 (en) 2003-11-20 2003-11-20 Polymer composition for photoinduced liquid crystal alignment using carbon nano-tube, the film for photoinduced liquid crystal alignment thereby, preparation method thereof and the liquid crystal cell comprising the film

Country Status (1)

Country Link
KR (1) KR100752471B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100412654C (en) * 2005-10-27 2008-08-20 清华大学 Liquid crystal display device and its manufacturing method
KR101203521B1 (en) * 2005-12-29 2012-11-21 엘지디스플레이 주식회사 Method of fabrication rubbing membrane material and method of liquid crystal display device using thereof
KR100818192B1 (en) * 2006-07-10 2008-04-01 비오이 하이디스 테크놀로지 주식회사 Substrate for display apparatus, and method for manufacturing the same
KR101276004B1 (en) * 2006-08-22 2013-06-19 엘지디스플레이 주식회사 Liquid Crystal Display and Manufacturing Method of the same
KR102008613B1 (en) * 2018-02-27 2019-08-07 한국산업기술대학교산학협력단 Carbon nanotube sheet alignment film and liquid crystal display comprising the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002338221A (en) 2001-03-14 2002-11-27 Mitsubishi Gas Chem Co Inc Method for producing orienting carbon nanotube membrane
KR20030011398A (en) * 2001-08-02 2003-02-11 일진나노텍 주식회사 Method of manufacturing carbon nanotubes-thin film
JP2003082202A (en) 2001-06-27 2003-03-19 Toray Ind Inc Biaxially oriented polyester film
JP2003292312A (en) 2002-03-29 2003-10-15 Japan Fine Ceramics Center Carbon nanotube, carbon nanotube film, silicon carbide substrate including carbon nanotube, carbon nanotube film body, and method for production them
KR20030089657A (en) * 2003-10-06 2003-11-22 양갑승 Preparation of activated polyimide-based carbon nanofiber electrode for supercapacitor by electrospinning and its application
KR20040092881A (en) * 2003-04-29 2004-11-04 (주)애드뷰 Polymer composition for photoinduced liquid crystal alignment using carbon nano-tube, the film for photoinduced liquid crystal alignment thereby, preparation method thereof and the liguid crystal cell comprising the film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002338221A (en) 2001-03-14 2002-11-27 Mitsubishi Gas Chem Co Inc Method for producing orienting carbon nanotube membrane
JP2003082202A (en) 2001-06-27 2003-03-19 Toray Ind Inc Biaxially oriented polyester film
KR20030011398A (en) * 2001-08-02 2003-02-11 일진나노텍 주식회사 Method of manufacturing carbon nanotubes-thin film
JP2003292312A (en) 2002-03-29 2003-10-15 Japan Fine Ceramics Center Carbon nanotube, carbon nanotube film, silicon carbide substrate including carbon nanotube, carbon nanotube film body, and method for production them
KR20040092881A (en) * 2003-04-29 2004-11-04 (주)애드뷰 Polymer composition for photoinduced liquid crystal alignment using carbon nano-tube, the film for photoinduced liquid crystal alignment thereby, preparation method thereof and the liguid crystal cell comprising the film
KR20030089657A (en) * 2003-10-06 2003-11-22 양갑승 Preparation of activated polyimide-based carbon nanofiber electrode for supercapacitor by electrospinning and its application

Also Published As

Publication number Publication date
KR20050048775A (en) 2005-05-25

Similar Documents

Publication Publication Date Title
US20040039150A1 (en) Triazine ring based polymers for photoinduced liquid crystal alignment, liquid crystal alignment layer containing the same, liquid crystal element using the alignment layer and method of manufacturing the same
KR100508102B1 (en) Composition for liquid crystal alignment composed of compounds of photosensitive polymers and non-photosensitive polymers, preparation method of the film for photoinduced liquid crystal thereby and the liguid crystal cell comprising the film
KR100752471B1 (en) Polymer composition for photoinduced liquid crystal alignment using carbon nano-tube, the film for photoinduced liquid crystal alignment thereby, preparation method thereof and the liquid crystal cell comprising the film
KR100451442B1 (en) Triazine ring based polyurea polymers for photoinduced liquid crystal alignment and liquid crystal alignment layer comprising the same
KR101451739B1 (en) Polyimide polymer liquid crystal alignment material, Method for fabricating liquid crystal alignment layer and Liquid crystal display device using the same
KR100545258B1 (en) Polymer composition for photoinduced liquid crystal alignment using carbon nano-tube, the film for photoinduced liquid crystal alignment thereby, preparation method thereof and the liguid crystal cell comprising the film
KR100819973B1 (en) Composition for photoinduced liquid crystal alignment comprising crown ether, the film for photoinduced liquid crystal alignment thereby and manufacturing method of the same
KR100436575B1 (en) Triazine based polymeric composite material for photoinduced liquid crystal alignment, the method of making liquid crystal alignment layer comprising the same and a liquid crystal device
KR100516157B1 (en) Triazine ring with one more photoactive groups based polyester polymers composition for photoinduced liquid crystal alignment, preparation method of the film for photoinduced liquid crystal thereby and the liguid crystal cell comprising the film
KR100468399B1 (en) Triazine ring with one more photoactive groups based poly(ether-tioether) copolymers composition for photoinduced liquid crystal alignment, the film for photoinduced liquid crystal thereby, preparation method thereof and the liguid crystal cell comprising the film
KR100791174B1 (en) Composition for photoinduced liquid crystal alignment comprising conductive polymers, the film for photoinduced liquid crystal alignment thereby and manufacturing method of the same
KR100204347B1 (en) Light-curing liquid crystal orientation material and process for the preparation of liquid crystal orientation layer thereof
KR100545255B1 (en) Composition for photoinduced liquid crystal alignment comprising conductive polymers, the film for photoinduced liquid crystal alignment thereby, manufacturing method of the same and the liguid crystal cell comprising the film
KR100545256B1 (en) Composition for photoinduced liquid crystal alignment comprising silica, the film for photoinduced liquid crystal alignment thereby, manufacturing method of the same and the liguid crystal cell comprising the film
KR100516159B1 (en) Triazine ring with one more photoactive groups based polythioether polymers composition for photoinduced liquid crystal alignment, preparation method of the film for photoinduced liquid crystal thereby and the liguid crystal cell composed of the film
KR100208974B1 (en) Cinnamate which is photo-polymerization material for lc orientation and method thereof
KR100508104B1 (en) Triazine ring with one more photoactive groups based poly(imide-urea) copolymers composition for photoinduced liquid crystal alignment, the film for photoinduced liquid crystal thereby, preparation method thereof and the liguid crystal cell comprising the film
KR100536122B1 (en) Composition for photoinduced liquid crystal alignment having porous structure, the film for photoinduced liquid crystal alignment thereby, manufacturing method of the same and the liguid crystal cell comprising the film
KR100508103B1 (en) Triazine ring with one more photoactive groups based poly(amide-urea) copolymers composition for photoinduced liquid crystal alignment, the film for photoinduced liquid crystal thereby, preparation method thereof and the liguid crystal cell comprising the film
KR100792939B1 (en) Composition for photoinduced liquid crystal alignment comprising silica, the film for photoinduced liquid crystal alignment thereby, manufacturing method of the same and the liguid crystal cell comprising the film
KR100516158B1 (en) Triazine ring with one more photoactive groups based polyether polymers composition for photoinduced liquid crystal alignment, preparation method of the film for photoinduced liquid crystal thereby and the liguid crystal cell composed of the film
KR100545259B1 (en) Composition for photoinduced liquid crystal alignment comprising crown ether, the film for photoinduced liquid crystal alignment thereby, manufacturing method of the same and the liguid crystal cell comprising the film
KR100468400B1 (en) Triazine ring with one more photoactive groups based poly(amide-ester) copolymers composition for photoinduced liquid crystal alignment, the film for photoinduced liquid crystal thereby, preparation method thereof and the liguid crystal cell comprising the film
KR100468398B1 (en) Polyacrylate polymers composition for photoinduced liquid crystal alignment through co-polymerization, preparation method of the film for photoinduced liquid crystal thereby and the liguid crystal cell using the film
KR100607623B1 (en) Photosensitive group, the photosensitive polymer with the same and the method for producing the photosensitive liquid cristal orientation layer using thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
E801 Decision on dismissal of amendment
B601 Maintenance of original decision after re-examination before a trial
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20060224

Effective date: 20070529

S901 Examination by remand of revocation
GRNO Decision to grant (after opposition)
GRNT Written decision to grant
G170 Re-publication after modification of scope of protection [patent]
LAPS Lapse due to unpaid annual fee