KR100750996B1 - 전기 이중층 캐패시터, 전기 이중층 캐패시터용 분극전극및 이들의 제조방법 - Google Patents

전기 이중층 캐패시터, 전기 이중층 캐패시터용 분극전극및 이들의 제조방법 Download PDF

Info

Publication number
KR100750996B1
KR100750996B1 KR1020050133340A KR20050133340A KR100750996B1 KR 100750996 B1 KR100750996 B1 KR 100750996B1 KR 1020050133340 A KR1020050133340 A KR 1020050133340A KR 20050133340 A KR20050133340 A KR 20050133340A KR 100750996 B1 KR100750996 B1 KR 100750996B1
Authority
KR
South Korea
Prior art keywords
double layer
electric double
layer capacitor
electrode
activated carbon
Prior art date
Application number
KR1020050133340A
Other languages
English (en)
Other versions
KR20070070611A (ko
Inventor
최병철
김강윤
서영기
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020050133340A priority Critical patent/KR100750996B1/ko
Publication of KR20070070611A publication Critical patent/KR20070070611A/ko
Application granted granted Critical
Publication of KR100750996B1 publication Critical patent/KR100750996B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

활성 탄소에 강유전체가 분산된 전기 이중층 캐패시터용 분극전극 및 그 제조방법, 이를 이용한 전기 이중층 캐패시터가 제공된다. 본 발명에 따른 전기 이중층 캐패시터용 분극전극은, 75 ~ 85wt%의 활성 탄소; 5 ~ 10wt%의 도전재; 5 ~ 10wt%의 바인더; 및 1 ~ 5wt%의 강유전체를 포함한다.
전기 이중층 캐패시터, 분극전극, 강유전체

Description

전기 이중층 캐패시터, 전기 이중층 캐패시터용 분극전극 및 이들의 제조방법{ELECTRIC DOUBLE LAYER CAPACITOR, POLARIZABLE ELECTRODE FOR ELECTRIC DOUBLE LAYER CAPACITOR AND METHOD FOR MANUFACTURING THE SAME}
도 1은 종래의 전기 이중층 캐패시터의 기본 셀의 구성을 나타내는 단도면이다.
도 2a 내지 도 2f는 본 발명의 일 실시예에 따른 전기 이중층 캐패시터의 제조방법의 일부를 도시한 단면도이다.
도 3은 본 발명의 일 실시예에 따른 분극전극의 제조방법을 설명하기 위한 플로우 차트이다.
본 발명은 전기 이중층 캐패시터에 관한 것으로서, 더욱 상세하게는 활성 탄소에 강유전체가 분산된 전기 이중층 캐패시터용 분극전극 및 그 제조방법, 이를 이용한 전기 이중층 캐패시터에 관한 것이다.
일반적인 캐패시터는 대향하는 두 개의 전극 사이에 유전체를 개재함으로써 그 재료가 가지는 유전율에 따라 캐패시터에 축적되는 정전용량이 결정된다. 그러 나 전기 이중층 캐패시터는 유전체를 사용하는 다른 캐패시터와는 달리 고체와 액체의 다른 2층이 접한 그 계면에 정(+)과 부(-)의 전하가 매우 짧은 거리를 두고 분포됨으로써 캐패시터를 형성한다.
이 계면에 분포된 층을 '전기 이중층(Electric Double layer)'이라 부르며 이것을 이용한 캐패시터를 전기 이중층 캐패시터로 분류한다.
전기 이중층 캐패시터의 고체에는 표면적이 보다 큰 소재를 사용함으로써 전기 이중층을 많이 형성하여 보다 큰 용량을 얻을 수 있다. 따라서 전기 이중층 캐패시터에는 표면적이 1000㎡/g 이상이나 되는 활성 탄소 분말이나 활성 탄소 섬유를, 액체에는 희(希)황산 수용액 등을 각각 사용하여 종래의 캐패시터의 용량영역을 훨씬 초과하는 F(Farad) 단위의 고용량의 캐패시터를 얻을 수 있다.
이러한 전기 이중층 캐패시터는 전해콘덴서와 이차전지의 중간적인 특성을 갖는 에너지저장장치로써 급속충방전이 가능하며 높은 효율, 반영구적인 수명 특성으로 이차전지의 병용 및 대체 가능한 에너지저장장치로 주목을 받고 있다.
도 1은 종래의 전기 이중층 캐패시터의 기본 셀의 구성을 나타내는 단면도이다.
도 1을 참조하면, 종래의 전기 이중층 캐패시터는, 시트형 다공질의 세퍼레이터(11; separator)와, 세퍼레이터(11)의 표면 및 이면에 상기 세퍼레이터와 두께 방향으로 맞추어 배치되는 한 쌍의 평판형 분극전극(12, 12)과, 이들 분극전극(12, 12)의 세퍼레이터(11)에 대한 반대측 면에 상기 분극전극(12, 12)과 두께 방향으로 맞추어 배치되는 한 쌍의 시트형 집전체(13, 13)와, 세퍼레이터(11) 및 분극전극 (12, 12)의 두께 방향으로 직교하는 방향의 주위에 배치되는 동시에 집전체(13, 13) 사이에 개재된 프레임 형상의 가스켓(14)을 가지며, 내부에 전해액이 함유된 상태로 밀봉되는 기본 셀(10)을 구비한다.
분극전극(12, 12)은 일반적으로 활성 탄소, 도전재 및 바인더로 구성되고 각 성분은 전극의 물리적 또는 전기적 특성을 고려하여 배합된다. 이때 고려되어야 할 전극의 물성치는 전극밀도(g/㎤), 집전체(13, 13)와의 결착력, 저항 등이 있고, 이들 물성치들은 전극 성분의 선택과 배합에 따라 좌우된다. 일반적으로 도전재는 활성 탄소의 충진밀도를 높이고 전기전도도의 향상을 위해 첨가되는데, 분말 및 섬유상의 도전재의 분체저항은 대략 10-2Ω㎝ 정도이다. 종래에 분극전극(12, 12)은 활성 탄소, 도전재 및 바인더를 각각 단일 종류의 성분을 선택하여 배합하였고, 배합비는 활성 탄소가 65 ~ 90wt%, 도전재가 5 ~ 20wt%, 바인더가 5 ~ 15wt%인 것이 일반적이다.
또한, 전기 이중층 캐패시터의 특성은 용량과 관련한 에너지밀도(Wh/kg)와 저항과 관련된 출력밀도(W/kg)로 나타낼 수 있다. 출력밀도를 높이기 위해서는 전기전도도가 우수한 도전재를 활성 탄소와 배합하여 활성 탄소의 표면에서의 이온의 흡탈착이 빨라지도록 해야한다.
따라서, 활성 탄소의 표면에서 이온의 이동도를 증가시킬 수 있는 새로운 구조의 분극전극의 개발이 요망된다.
본 발명은 활성 탄소의 표면에 강유전체를 분산시켜 이온의 이동도를 향상시킴으로써 캐패시터의 출력 성능을 향상시킬 수 있는 전기 이중층 캐패시터용 분극전극 및 그 제조방법, 이를 이용한 전기 이중층 캐패시터를 제공하는 것을 그 목적으로 한다.
상기와 같은 목적 달성을 위해, 본 발명에 따른 전기 이중층 캐패시터용 분극전극은, 75 ~ 85wt%의 활성 탄소; 5 ~ 10wt%의 도전재; 5 ~ 10wt%의 바인더; 및 1 ~ 5wt%의 강유전체를 포함하는 것을 특징으로 한다.
여기서, 상기 강유전체는 BaTiO3 , PbTiO3, SrTiO3, CaTiO3, 또는 MgTiO3로 이루어진 그룹에서 선택될 수 있다.
또한, 본 발명에 따른 전기 이중층 캐패시터는, 시트형 다공질의 세퍼레이터; 상기 세퍼레이터의 표면 및 이면에 상기 세퍼레이터와 대향 배치된 한 쌍의 분극전극; 각 분극전극의 세퍼레이터에 대한 반대측 면에 배치된 한 쌍의 시트형 집전체; 및 상기 세퍼레이터 및 분극전극의 주변에 배치되는 가스켓을 포함하며, 내부에 전해액이 함유된 상태로 밀봉된 기본 셀을 적어도 하나 이상 구비하되, 상기 분극전극은, 75 ~ 85wt%의 활성 탄소; 5 ~ 10wt%의 도전재; 5 ~ 10wt%의 바인더; 및 1 ~ 5wt%의 강유전체를 포함한다.
여기서, 상기 강유전체는 BaTiO3 , PbTiO3, SrTiO3, CaTiO3, 또는 MgTiO3로 이루어진 그룹에서 선택될 수 있다.
또한, 본 발명에 따른 전기 이중층 캐패시터용 분극전극의 제조방법은, (a) 용매에 활성 탄소, 강유전체, 도전재 및 바인더를 혼합하여 이를 교반하여 슬러리를 제조하는 단계; (b) 상기 슬러리를 소정의 두께의 시트 형태로 캐스팅한 후 건조시키는 단계; 및 (c) 단계 (b)의 생성물을 롤 프레싱하는 단계를 포함한다.
여기서, 상기 강유전체는 BaTiO3 , PbTiO3, SrTiO3, CaTiO3, 또는 MgTiO3로 이루어진 그룹에서 선택될 수 있다.
또한, 상기 단계 (a)에서, 75 ~ 85wt%의 활성 탄소; 5 ~ 10wt%의 도전재; 5 ~ 10wt%의 바인더; 및 1 ~ 5wt%의 강유전체가 용매에 혼합될 수 있다.
이하에서는 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예에 대해 상세히 설명한다.
도 2a 내지 도 2f는 본 발명의 일 실시예에 따른 전기 이중층 캐패시터의 제조방법의 일부를 도시한 단면도이다.
도 2a에 도시한 바와 같이, 먼저 집전체 필름(33) 상에 다수의 분극전극(32)을 형성한다.
집전체 필름(33)은 탄소 분말을 함유하는 스티렌-에틸렌-부틸렌-스티렌 공중합체 수지로 이루어진 도전성 필름인 것이 바람직하다. 또한, 상기 집전체 필름(33)은 가요성(flexibility)이 있는 수지 필름인 것이 바람직하다.
분극전극(32)은, 활성 탄소, 도전재 분말, 강유전체, 바인더 및 용매를 혼합 하여 슬러리를 제조하고, 상기 슬러리를 집전체 필름(33)의 상에 도포한 후 이를 건조시키고, 이어 건조된 막을 롤 프레싱함으로써 제조될 수 있다. 분극전극(32)을 제조하는 방법에 관해서는 본 발명에 따른 분극전극의 제조방법과 관련하여 후반부에서 구체적으로 설명하도록 한다.
본 발명의 일 특징에 따라, 활성 탄소의 표면에서의 전해액 이온의 이동도를 향상시키기 위해 강유전체가 이용되며, 강유전체에는 제한됨이 없이 공지의 강유전체를 사용할 수 있으나, BaTiO3 , PbTiO3, SrTiO3, CaTiO3, 또는 MgTiO3을 단독으로 사용하거나 이들을 조합하여 사용하는 것이 바람직하다.
분극전극(32)의 구성 성분 중 바인더는 전극을 구성하는 성분들 간의 결착력 또는 분극전극(32)과 집전체 필름(33) 간의 결착력을 부여하고 전극밀도 (g/㎤) 및 구성 성분들 간의 접촉저항을 감소시키는 역할을 한다.
바람직하게는, 상기 바인더에는 폴리비닐리돈플루오라이드헥사플루오로프로필렌, 폴리테트라플루오르에틸렌, 카르복시메틸셀룰로스 , 폴리비닐알콜, 폴리비닐플루라이드, 폴리비닐피롤리돈, 메틸셀룰로스 등이 사용된다.
또한, 도전재로서는, 예를 들어, 과립상의 아세틸렌 블랙, 슈퍼 피 블랙(Super P Black), 카본 블랙, 활성카본, 하드 카본(Hard carbon), 소프트 카본(Soft carbon), 그라파이트(Graphite), 금속 분말 (Al, Pt, Ni, Cu, Au, Stainless steel 또는 기술한 금속의 한 종류 이상을 포함하는 합금)과, 기술한 금속을 무전해 도금에 의해 카본 블랙(Carbon black), 활성카본(Activated carbon), 하드카본 (Hard carbon), 소프트 카본(Soft carbon), 그라파이트(Graphite)에 코팅한 분말 중 한 종류 또는 두 종류 이상이 혼합된 것을 사용할 수 있다.
분극전극(32)을 집전체 필름(33) 상에 형성한 후에, 도 2b에 도시된 바와 같이, 진공 중에서 분극전극(32)에 전해액을 주입한다.
전해액은 테트라에틸암모니움테트라플루오로보레이트(Et4NBF4), 테트라부틸암모니움헥사플루오로포스페이트(Bt4NPF4) 등의 전해질은 프로필렌카보네이트(PC), 에틸메틸카보네이트(EMC), 디메톡시에탄(DME), γ-부티로락톤(GBL) 등의 용매에 용해시켜 전해액으로서는 황산이나 수산화칼륨 등을 물에 용해시킨 수용질 전해액, 내지 카보네이트 등의 유기용매에 전해질로서 4급 암모니아염을 용해시킨 유기 전해액 노르말 농도의 전해액을 만들고, 함수율을 50 ppm 이하로 제습한다.
본 실시예에서는 후술하는 가스켓(34)의 설치 전에 전해액을 주입하였지만, 필요에 따라 가스켓(34)의 설치 후에 전해액을 주입하여도 좋다.
다음에, 도 2c에 도시된 바와 같이, 분극전극(32)을 수납할 수 있는 프레임 형태의 가스켓(34)을 설치한다.
가스켓(34)의 재질로는 예를 들면, ABS, 부틸고무, 폴리올레핀계 수지 등의 수지가 사용될 수 있다. 바람직하게는, 가스켓(34)의 재질은 무색 투명한 폴리올레핀계 수지이다. 폴리올레핀계 수지는 화학 특성, 열 특성, 기계적 강도의 측면에서 가스켓(34)이 필요로 하는 모든 요건을 만족할 수 있고, 무색 투명하기 때문에 제조공정에서 전해액이 누설되는 것을 육안으로 확인할 수 있는 장점이 있다.
다음에, 도 2d에 도시된 바와 같이, 가스켓(34) 상에 세퍼레이터(31)를 설치한다.
이때, 인접한 세퍼레이터들(31, 31) 사이에 가스켓(34)의 상단면의 일부가 노출될 수 있는 공간이 형성되는 것이 바람직하다. 이렇게 확보된 인접한 세퍼레이터들(31, 31) 사이의 공간은 후술하는 공정에서의 두 개의 가스켓(34, 34) 간의 열융착을 가능하게 한다.
다음에, 도 2e에 도시된 바와 같이, 도 2a 내지 도 2c의 공정에 의해 제조된 중간 생성물들을 세퍼레이터(31)를 사이에 두고 서로 대향하도록 설치한다. 그리고 세퍼레이터(31)를 사이에 두고 대향하는 가스켓(34, 34)이 서로 접합되도록 상기 중간 생성물들을 상하 방향으로 열압착하여 도 2f에 도시된 바와 같은 구조체를 제조한다.
다음, 도 2f에 도시된 구조체의 인접한 세퍼레이터(31, 31) 사이를 가로지르는 점선으로 도시된 절단선(C)을 따라 상하 교대로 집전체 필름(33) 및 가스켓(34, 34)을 절단한다. 절단선(C)에 의해 구분되는 영역은 전기 이중층 캐패시터의 하나의 기본 셀(30)을 형성한다.
도시하지는 않았지만, 기본 셀(30)을 필요한 수만큼 적층한 기본 셀 적층 구조체의 상하 양단에 있는 기본 셀(30)의 집전체(31) 표면에 외부 전극을 부착하고, 외장 패키지로 외장하여 완성된 전기 이중층 캐패시터를 제조할 수 있다.
이하, 본 발명의 일 실시예에 따른 분극전극의 제조방법에 대해 설명한다.
도 3은 본 발명의 일 실시예에 따른 분극전극의 제조방법을 설명하기 위한 플로우 차트이다.
도 3을 참조하면, 먼저, 기계식 교반기에 용매, 활성 탄소, 강유전체 분말, 도전재 분말 및 바인더의 혼합액을 넣고 약 450 내지 500 rpm의 속도로 혼합액을 교반 및 분산시켜 점도 1 내지 5 포이즈(Poise)의 슬러리를 제조한다(S1). 이때, 용매에 혼합되는 성분들의 중량비는 활성 탄소가 75 ~ 85wt%, 도전재가 5 ~ 10wt%, 바인더가 5 ~ 10wt%, 강유전체가 1 ~ 5wt%인 것이 바람직하다.
다음, 상기 슬러리 상태의 혼합물을 자동 필름 어플리케이터와 같은 도포기를 이용하여 0.5 내지 3mm 두께로 캐스팅한다(S2).
다음, 50 내지 200℃의 온도에서 2 내지 24시간 동안 캐스팅된 막을 건조시킨다(S3).
다음, 건조된 막을 약 10,000 내지 20,000 kgf/㎠의 압력으로 롤 프레싱함으로써 0.1 ~ 0.5mm 두께의 막을 얻는다.
마지막으로, 원하는 분극전극의 형태에 따라 절단한 후, 진공 건조한다(S5 및 S6).
이상의 과정을 통해 강유전체가 활성 탄소의 표면에 분산된 구조를 갖는 전기 이중층 캐패시터용 분극전극을 얻을 수 있다.
(A) 활성탄소(wt%) (B)도전재(wt%) (C) 바인더(wt%) 강유전체(A+B+C의 합 100중량부 중 중량부) ESR(Ω) 비정전 용량 (F/g)
비교예 85 7 8 1.2 30.4
실시예 1 85 7 8 2.5 0.7 30.2
실시예 2 85 7 8 5.0 0.45 29.7
표 1은 본 발명에 일 실시예에 따라 활성 탄소의 표면에 강유전체 물질을 분산시켜 제조된 분극전극과 종래기술에 의해 제조된 분극전극을 비교하기 위한 것이다.
비교예, 실시예 1 및 2에서 활성 탄소로는 Kuraray사(社)의 활성탄(비표면적 2000)을 사용하였고, 도전재로는 슈퍼 피 블랙(Super P. Black)을 사용하였으며, 바인더로는 PTFE와 CMC를 7:3의 비율로 혼합하여 사용하였다. 한편, 비교예에서는 강유전체 물질을 첨가하지 않았으며, 실시예 1과 실시예 2에서는 활성 탄소, 도전재 및 바인더의 혼합물을 100으로 할 때 각각 2.5 및 5.0의 중량부로 강유전체를 첨가하였다. 강유전체로는 BaTiO3가 사용되었다.
상기 표에 나타난 바와 같이, 강유전체가 분산된 분극전극(실시예 1 및 실시예 2)이 직렬등가저항이나 비정전 용량의 면에서 그렇지 않은 경우(비교예)보다 우수함을 알 수 있다. 따라서 활성 탄소의 표면에 강유전체를 분산시킨 분극전극의 표면에서 이온의 이동도가 향상되어 출력 특성이 향상될 수 있음을 확인할 수 있다.
본 발명에 의하면, 분극전극의 표면에서 이온의 이동도가 향상되기 때문에 캐패시터의 출력 성능이 향상되는 장점이 있다.
상기한 본 발명의 바람직한 실시예는 예시의 목적을 위해 개시된 것이고, 본 발명에 대한 통상의 지식을 가지는 당업자라면 본 발명의 사상과 범위 안에서 다양한 수정, 변경, 부가가 가능할 것이며, 이러한 수정, 변경 및 부가는 하기의 특허청구범위에 속하는 것으로 보아야 할 것이다.

Claims (7)

  1. 75 ~ 85wt%의 활성 탄소;
    5 ~ 10wt%의 도전재;
    5 ~ 10wt%의 바인더; 및
    1 ~ 5wt%의 강유전체를 포함하는 전기 이중층 캐패시터용 분극전극.
  2. 제 1 항에 있어서, 상기 강유전체는 BaTiO3 , PbTiO3, SrTiO3, CaTiO3, 또는 MgTiO3로 이루어진 그룹에서 선택되는 것을 특징으로 하는 분극전극.
  3. 시트형 다공질의 세퍼레이터;
    상기 세퍼레이터의 표면 및 이면에 상기 세퍼레이터와 대향 배치된 한 쌍의 분극전극;
    각 분극전극의 세퍼레이터에 대한 반대측 면에 배치된 한 쌍의 시트형 집전체; 및
    상기 세퍼레이터 및 분극전극의 주변에 배치되는 가스켓을 포함하며,
    내부에 전해액이 함유된 상태로 밀봉된 기본 셀을 적어도 하나 이상 구비하되,
    상기 분극전극은,
    75 ~ 85wt%의 활성 탄소;
    5 ~ 10wt%의 도전재;
    5 ~ 10wt%의 바인더; 및
    1 ~ 5wt%의 강유전체를 포함하는 것을 특징으로 하는 전기 이중층 캐패시터.
  4. 제 3 항에 있어서, 상기 강유전체는 BaTiO3 , PbTiO3, SrTiO3, CaTiO3, 또는 MgTiO3로 이루어진 그룹에서 선택되는 것을 특징으로 하는 전기 이중층 캐패시터.
  5. (a) 용매에 활성 탄소, 강유전체, 도전재 및 바인더를 혼합하여 이를 교반하여 슬러리를 제조하는 단계;
    (b) 상기 슬러리를 소정의 두께의 시트 형태로 캐스팅한 후 건조시키는 단계; 및
    (c) 단계 (b)의 생성물을 롤 프레싱하는 단계를 포함하는 전기 이중층 캐패시터용 분극전극의 제조방법.
  6. 제 5 항에 있어서, 상기 강유전체는 BaTiO3 , PbTiO3, SrTiO3, CaTiO3, 또는 MgTiO3로 이루어진 그룹에서 선택되는 것을 특징으로 하는 전기 이중층 캐패시터용 분극전극의 제조방법.
  7. 제 5 항에 있어서,
    단계 (a)에서, 75 ~ 85wt%의 활성 탄소; 5 ~ 10wt%의 도전재; 5 ~ 10wt%의 바인더; 및 1 ~ 5wt%의 강유전체가 용매에 혼합되는 것을 특징으로 하는 전기 이중층 캐패시터용 분극전극의 제조방법.
KR1020050133340A 2005-12-29 2005-12-29 전기 이중층 캐패시터, 전기 이중층 캐패시터용 분극전극및 이들의 제조방법 KR100750996B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050133340A KR100750996B1 (ko) 2005-12-29 2005-12-29 전기 이중층 캐패시터, 전기 이중층 캐패시터용 분극전극및 이들의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050133340A KR100750996B1 (ko) 2005-12-29 2005-12-29 전기 이중층 캐패시터, 전기 이중층 캐패시터용 분극전극및 이들의 제조방법

Publications (2)

Publication Number Publication Date
KR20070070611A KR20070070611A (ko) 2007-07-04
KR100750996B1 true KR100750996B1 (ko) 2007-08-22

Family

ID=38505883

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050133340A KR100750996B1 (ko) 2005-12-29 2005-12-29 전기 이중층 캐패시터, 전기 이중층 캐패시터용 분극전극및 이들의 제조방법

Country Status (1)

Country Link
KR (1) KR100750996B1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011084787A1 (en) * 2009-12-21 2011-07-14 Ioxus, Inc. Improved energy storage in edlcs by utilizing a dielectric layer
JP2019009252A (ja) * 2017-06-23 2019-01-17 国立大学法人 岡山大学 強誘電体炭素複合材料及びその製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11283886A (ja) 1998-03-30 1999-10-15 Sanyo Electric Co Ltd 電気化学キャパシタ及びその製造方法
KR20030058315A (ko) * 2001-12-31 2003-07-07 (주)폴리메리츠 폴리피롤을 이용한 슈퍼커패시터용 분극성 복합전극 및 그제조 방법
KR20040078565A (ko) * 2003-03-03 2004-09-10 가부시키가이샤 무라타 세이사쿠쇼 유전체 세라믹 및 그 제조방법, 적층 세라믹 콘덴서

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11283886A (ja) 1998-03-30 1999-10-15 Sanyo Electric Co Ltd 電気化学キャパシタ及びその製造方法
KR20030058315A (ko) * 2001-12-31 2003-07-07 (주)폴리메리츠 폴리피롤을 이용한 슈퍼커패시터용 분극성 복합전극 및 그제조 방법
KR20040078565A (ko) * 2003-03-03 2004-09-10 가부시키가이샤 무라타 세이사쿠쇼 유전체 세라믹 및 그 제조방법, 적층 세라믹 콘덴서

Also Published As

Publication number Publication date
KR20070070611A (ko) 2007-07-04

Similar Documents

Publication Publication Date Title
US9941059B2 (en) Low resistance ultracapacitor electrode and manufacturing method thereof
TW434604B (en) Supercapacitor structure and method of making same
US6335857B1 (en) Electric double layer capacitor and electrode therefor
US9478364B2 (en) Carbon-based electrodes containing molecular sieve
US10211001B2 (en) Ultracapacitor with improved aging performance
CN1870192A (zh) 双电层电容器
RU2427052C1 (ru) Электродный материал для конденсатора электрического, способ его изготовления и суперконденсатор электрический
KR101331966B1 (ko) 전기 화학 캐패시터
KR100750996B1 (ko) 전기 이중층 캐패시터, 전기 이중층 캐패시터용 분극전극및 이들의 제조방법
KR100434827B1 (ko) 폴리피롤을 이용한 슈퍼커패시터용 분극성 복합전극 및 그제조 방법
JPS62200715A (ja) 電気二重層コンデンサ
JP3085250B2 (ja) 電気二重層コンデンサ
EP1209707B1 (en) Electric double layer capacitor and electrolyte therefor
KR102188237B1 (ko) 전해액 함침성이 우수한 전극을 제조할 수 있는 슈퍼커패시터 전극용 조성물, 이를 이용한 슈퍼커패시터 전극의 제조방법 및 상기 제조방법을 이용하여 제조된 슈퍼커패시터
KR102188242B1 (ko) 전극밀도를 개선할 수 있는 슈퍼커패시터 전극용 조성물, 이를 이용한 슈퍼커패시터 전극의 제조방법 및 상기 제조방법을 이용하여 제조된 슈퍼커패시터
KR20180110335A (ko) 울트라커패시터 전극용 조성물, 이를 이용한 울트라커패시터 전극의 제조방법 및 상기 제조방법을 이용하여 제조된 울트라커패시터
KR100750992B1 (ko) 전기 이중층 캐패시터, 전기 이중층 캐패시터용 분극전극및 이들의 제조방법
KR20180019812A (ko) 전기적 안정성이 우수한 울트라커패시터 전극용 조성물, 이를 이용한 울트라커패시터 전극의 제조방법 및 상기 제조방법을 이용하여 제조된 울트라커패시터
KR100451133B1 (ko) 폴리피롤을 함유한 분극성 복합전극을 이용한 슈퍼커패시터
KR100342069B1 (ko) 왕겨활성탄을 원료로한 분극성 전극의 제조방법 및 그분극성 전극을 적용한 전기이중층 캐패시터
KR20140132444A (ko) 전극 밀도가 개선되는 슈퍼커패시터 전극용 조성물 및 이를 이용한 슈퍼커패시터 전극의 제조방법
KR102561404B1 (ko) 전기이중층 커패시터용 전해액, 이를 이용한 전기이중층 커패시터 및 그 제조방법
KR102347581B1 (ko) 이온성 액체를 포함하는 슈퍼커패시터의 전해액, 이를 이용한 고전압 슈퍼커패시터 및 그 제조방법
JP2009200368A (ja) 電気二重層コンデンサ
KR100772442B1 (ko) 전기 이중층 캐패시터, 전기 이중층 캐패시터용 분극전극및 이들의 제조방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120727

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130724

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140724

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150724

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160722

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee