KR100733323B1 - Methode of co2 absorption from flue gas by vortex tube - Google Patents

Methode of co2 absorption from flue gas by vortex tube Download PDF

Info

Publication number
KR100733323B1
KR100733323B1 KR1020060062329A KR20060062329A KR100733323B1 KR 100733323 B1 KR100733323 B1 KR 100733323B1 KR 1020060062329 A KR1020060062329 A KR 1020060062329A KR 20060062329 A KR20060062329 A KR 20060062329A KR 100733323 B1 KR100733323 B1 KR 100733323B1
Authority
KR
South Korea
Prior art keywords
absorption
vortex
gas
tube
flue gas
Prior art date
Application number
KR1020060062329A
Other languages
Korean (ko)
Inventor
김제영
이영운
Original Assignee
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 포항산업과학연구원 filed Critical 재단법인 포항산업과학연구원
Priority to KR1020060062329A priority Critical patent/KR100733323B1/en
Application granted granted Critical
Publication of KR100733323B1 publication Critical patent/KR100733323B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

A method of absorbing and removing CO2 using a vortex tube is provided to miniaturize the size of a carbon dioxide absorption apparatus, improve the absorption efficiency, reduce the consumption of an absorption liquid during removal of carbon dioxide, and reduce the cost of energy consumed in the regeneration of the absorption liquid. In a method of absorbing and removing carbon dioxide contained in flue gas by flowing combustion flue gas and an absorption liquid in a counterflow within an absorption column packed with a packing having a large surface area, a method of absorbing and removing CO2 from the combustion flue gas comprises the process of using a vortex tube(200) instead of the absorption column. The process of using the vortex tube comprises the steps of: subjecting the combustion flue gas and a CO2 absorption liquid to high pressure spraying in a parallel flow through a flue gas injection port of the vortex tube to supply the combustion flue gas and the CO2 absorption liquid into a vortex rotating chamber(230); generating a strong vortex flow in the combustion flue gas and the CO2 absorption liquid supplied into the vortex rotating chamber; continuously rotating the generated vortex flow in the tube to discharge the CO2 gas absorbed absorption liquid to an exit(270) at the opposite side while increasing temperature of a peripheral part of the tube and lowering temperature of a central part of the tube; and collecting the discharged CO2 gas absorbed absorption liquid, and separating CO2 gas and absorption liquid from the CO2 gas absorbed absorption liquid to regenerate the absorption liquid.

Description

보르텍스 튜브를 이용한 CO2 흡수제거 방법 {Methode of CO2 absorption from flue gas by vortex tube}Method of CO2 absorption removal using vortex tube {Methode of CO2 absorption from flue gas by vortex tube}

도 1은 종래의 흡수탑을 이용한 CO2 흡수제거 장치를 도시한 구성도,1 is a block diagram showing a CO 2 absorption removal device using a conventional absorption tower,

도 2는 본 발명에 따른 보르텍스 튜브내에 배가스를 공급할 때 와류가 형성되는 과정을 도시한 모식도,Figure 2 is a schematic diagram showing the process of forming the vortex when supplying the exhaust gas in the vortex tube according to the present invention,

도 3 (a)는 본 발명에 따른 보르텍스 튜브에 배가스와 흡수액을 별도로 공급하는 경우를 도시한 개념도,Figure 3 (a) is a conceptual diagram showing a case of separately supplying the exhaust gas and the absorption liquid to the vortex tube according to the present invention,

도 3 (b)는 본 발명에 따른 보르텍스 튜브에 배가스와 흡수액을 별도로 공급할 때 기체와 액체비 변화에 따른 흡수율의 변화를 도시한 도표,Figure 3 (b) is a diagram showing the change in absorption rate according to the gas and liquid ratio change when the exhaust gas and the absorption liquid is separately supplied to the vortex tube according to the present invention,

도 4 (a)는 본 발명에 따른 보르텍스 튜브에 배가스와 흡수액을 동일한 위치로 공급하는 경우를 도시한 개념도,4 (a) is a conceptual diagram illustrating a case where the exhaust gas and the absorbent liquid are supplied to the vortex tube according to the present invention at the same position,

도 4 (b)는 본 발명에 따른 보르텍스 튜브에 배가스와 흡수액을 동일한 위치로 공급할 때 기체와 액체비 변화에 따른 흡수율의 변화를 도시한 도표.Figure 4 (b) is a diagram showing the change in absorption rate according to the gas and liquid ratio change when supplying the exhaust gas and the absorbent liquid to the same position in the vortex tube according to the present invention.

< 도면의 주요 부분에 대한 부호의 설명 ><Description of Symbols for Main Parts of Drawings>

본 발명은 보르텍스 튜브를 이용한 CO2 흡수제거 방법에 관한 것으로서, 보다 상세히는 보르텍스 튜브를 흡수탑으로 활용하여 연소배가스와 CO2 흡수액을 병류로 고압분사하여 와류를 생성시키면서, CO2가스를 흡수한 흡수액이 반대편 출구로 배출되고, CO2가스를 흡수한 흡수액을 수거하여 CO2가스와 흡수액으로 분리하여 흡수액을 재생하여 재사용함으로써, 이산화탄소 흡수장치의 크기를 소형화하고, 흡수효율을 향상시키며, 이산화탄소 제거시 흡수액의 사용량을 줄이고, 흡수액 공급 비용 및 흡수액 재생에 소모되는 에너지 비용을 절감시키는 보르텍스 튜브를 이용한 CO2 흡수제거 방법에 관한 것이다.The present invention relates to a CO 2 absorption removal method using a vortex tube, and more specifically, by using a vortex tube as an absorption tower, high-pressure injection of combustion exhaust gas and CO 2 absorbent liquid in a co-current to generate a vortex while generating a CO 2 gas The absorbed absorbent liquid is discharged to the opposite outlet, and the absorbent liquid absorbing CO 2 gas is collected, separated into CO 2 gas and absorbent liquid, and regenerated and reused. Thus, the size of the carbon dioxide absorber is reduced and the absorption efficiency is improved. The present invention relates to a CO 2 absorption removal method using a vortex tube to reduce the amount of absorbent used to remove carbon dioxide, and to reduce the cost of supplying the absorbent and the energy cost of regenerating the absorbent.

일반적으로 화석연료의 연소시 발생하는 이산화탄소는 대기 중으로 방출되었을 때 태양으로부터 오는 열을 지구대기 밖으로 방출하지 못하게 하는 온실효과의 주원인이 된다. In general, carbon dioxide from the burning of fossil fuels is a major cause of the greenhouse effect that prevents the release of heat from the sun to the atmosphere when released into the atmosphere.

따라서 이산화탄소를 배가스에서 분리 회수하여 농축된 상태로 저장 또는 고정화하는 방법이 현재 많이 연구 개발되어 있고, 배가스로부터 이산화탄소를 분리 회수하는 방법에 있어서 흡착법, 흡수법,막분리법등이 개발되어 있다.Therefore, many methods of separating and recovering carbon dioxide from exhaust gas and storing or immobilizing it in a concentrated state have been researched and developed. Adsorption, absorption, and membrane separation methods have been developed for separating and recovering carbon dioxide from exhaust gas.

흡착법은 대용량화 및 공정운전에 소모되는 에너지가 많이 필요하여 실용화에 어려움이 있고, 막분리법은 에너지절감 공정이나 소형에 활용할 수 있는 방법이므로 대규모 배가스 배출장치에 활용하기는 어렵다. The adsorption method is difficult to commercialize because it requires a lot of energy consumed in large capacity and process operation, and the membrane separation method is a method that can be used for energy saving process or small size, so it is difficult to use for large-scale exhaust gas discharge device.

이에 반해 흡수법은 이미 수십년 전부터 기술의 완성도 및 상업화에 성공하여 석유 및 천연가스처리공정에서 발생하는 이산화탄소를 제거하기 위해 활용되고 있으며 현재 수천 기가 운전되고 있다. 그러나 흡수법은 흡수액의 종류에 따라 경제성이 매우 많이 좌우되는 문제가 있다. On the other hand, the absorption method has already succeeded in the completion and commercialization of technology for decades, and is being used to remove carbon dioxide generated from oil and natural gas processing processes, and thousands of units are currently in operation. However, the absorption method has a problem that the economic efficiency depends very much on the type of absorbent liquid.

대표적인 이산화탄소 흡수액은 아민계 화합물로서 현재 상업적으로 가장 많이 이용되고 있다. Representative carbon dioxide absorbents are the most commercially available amine compounds at present.

아민계 흡수액을 사용하는 종래의 CO2 흡수법의 일반적인 공정은 그림 1도와 같이 나타낼 수 있다.The general process of the conventional CO 2 absorption method using an amine-based absorbent liquid can be shown in Fig. 1.

도시된 바와 같이, 이산화탄소를 포함한 배가스(110)를 흡수탑(100) 하방에서 취입하고, 흡수액(130)은 흡수탑 상방에서 공급한다. 흡수탑 안에는 흡수탑내의 배가스와 흡수액의 접촉면적을 향상시키기 위해 표면적이 큰 충진물(140)을 장입하여 이를 통해 향류, 즉 반대 방향으로 흐르는 기체와 액체가 서로 접촉하게 함으로써 흡수율을 향상시킨다. 이산화탄소가 포함된 흡수액은 재생탑(150)에서 이산화탄소만 별도로 분리되고, 분리된 이산화탄소(170)는 가압냉각되어 액상으로 저장탱크(160)에 저장된다. 그리고 재생된 흡수액(130)은 다시 흡수탑(100)으로 보내지는 과정이 되풀이된다. 이 때 이산화탄소가 제거된 정제가스(120)는 흡수탑 상부로 배출된다.As shown, the exhaust gas 110 including carbon dioxide is blown under the absorption tower 100, and the absorption liquid 130 is supplied above the absorption tower. In the absorption tower, a filler 140 having a large surface area is charged to improve the contact area between the exhaust gas and the absorbent liquid in the absorption tower, and thus, the counter current, that is, the gas flowing in the opposite direction and the liquid contact each other to improve the absorption rate. Absorption liquid containing carbon dioxide is separated only from the carbon dioxide in the regeneration tower 150, the separated carbon dioxide 170 is pressure-cooled and stored in the storage tank 160 in the liquid phase. Then, the regenerated absorbent liquid 130 is repeatedly sent to the absorption tower 100. At this time, the purified gas 120 from which carbon dioxide is removed is discharged to the upper portion of the absorption tower.

그러나 이러한 충진탑식 흡수방법은 흡수탑의 크기가 커지는 단점이 있고 흡수액을 많이 사용함에 따라 흡수액 비용이 증가되며 특히 흡수액을 재생하는데 있 어서 에너지소모를 많이 요구하므로 전체적으로 운전비용이 증가되는 문제가 있다.However, the packed tower absorption method has a disadvantage in that the size of the absorption tower is increased, and the cost of the absorbent liquid is increased by using a lot of the absorbent liquid. In particular, it requires a lot of energy consumption in regenerating the absorbent liquid.

본 발명은 상술한 종래의 문제점을 극복하기 위한 것으로서, 본 발명의 목적은 보르텍스 튜브를 흡수탑으로 활용하여 이산화탄소 흡수장치의 크기를 소형화하고, 흡수효율을 향상시키며, 이산화탄소 제거시 흡수액의 사용량을 줄이고, 흡수액 공급 비용 및 흡수액 재생에 소모되는 에너지 비용을 절감시키는 보르텍스 튜브를 이용한 CO2 흡수제거 방법을 제공하는데 있다.The present invention is to overcome the above-mentioned conventional problems, an object of the present invention by using a vortex tube as an absorption tower to reduce the size of the carbon dioxide absorbing device, improve the absorption efficiency, the amount of the absorbent used when removing carbon dioxide The present invention provides a method for removing CO 2 absorption using a vortex tube, which reduces the cost of absorbing liquid and reduces the energy cost of absorbing liquid regeneration.

본 발명은 보르텍스 튜브를 이용한 CO2 흡수제거 방법에 관한 것으로서, 보다 상세히는 보르텍스 튜브를 흡수탑으로 활용하여 연소배가스와 CO2 흡수액을 병류로 고압분사하여 와류를 생성시키면서, CO2가스를 흡수한 흡수액이 반대편 출구로 배출되고, CO2가스를 흡수한 흡수액을 수거하여 CO2가스와 흡수액으로 분리하여 흡수액을 재생하여 재사용함으로써, 이산화탄소 흡수장치의 크기를 소형화하고, 흡수효율을 향상시키며, 이산화탄소 제거시 흡수액의 사용량을 줄이고, 흡수액 공급 비용 및 흡수액 재생에 소모되는 에너지 비용을 절감시키는 보르텍스 튜브를 이용한 CO2 흡수제거 방법에 관한 것이다.The present invention relates to a CO 2 absorption removal method using a vortex tube, and more specifically, by using a vortex tube as an absorption tower, high-pressure injection of combustion exhaust gas and CO 2 absorbent liquid in a co-current to generate a vortex while generating a CO 2 gas The absorbed absorbent liquid is discharged to the opposite outlet, and the absorbent liquid absorbing CO 2 gas is collected, separated into CO 2 gas and absorbent liquid, and regenerated and reused. Thus, the size of the carbon dioxide absorber is reduced and the absorption efficiency is improved. The present invention relates to a CO 2 absorption removal method using a vortex tube to reduce the amount of absorbent used to remove carbon dioxide, and to reduce the cost of supplying the absorbent and the energy cost of regenerating the absorbent.

이하, 본 발명의 실시예를 첨부한 도면을 참조하여 설명하기로 한다.Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

도 2을 참조하면, 본 발명에 따른 보르텍스 튜브(200)내에 배가스를 공급할 때 와류가 형성되는 과정을 나타낸 모식도가 도시되어 있다.2, there is shown a schematic diagram showing the process of forming the vortex when supplying the exhaust gas in the vortex tube 200 according to the present invention.

보르텍스 튜브(200)는 배가스(210)가 주입되는 배가스 투입구(220)가 보르텍스 회전실(230)에 직교하는 방향으로 연통하여 있고, 보르텍스 회전실(230)은 실린더 형태의 반응부(240)와 연통한다. 반응부(240) 끝에는 배기구(260)의 크기를 조절할 수 있도록 전후 이동이 가능한 원추형의 조절밸브(250)가 설치되어 있는데, 원추는 보르텍스 회전실(230)을 향하는 방향으로 설치되어 있다. 그 반대방향인 보르텍스 회전실 끝에는 배가스 출구(270)가 형성되어 있다.The vortex tube 200 communicates with the exhaust gas inlet 220 through which the exhaust gas 210 is injected in a direction orthogonal to the vortex rotation chamber 230, and the vortex rotation chamber 230 has a cylindrical reaction part ( Communication with 240). At the end of the reaction unit 240 is provided a conical control valve 250 that can be moved back and forth to adjust the size of the exhaust port 260, the cone is installed in the direction toward the vortex rotating chamber 230. The exhaust gas outlet 270 is formed at the end of the vortex rotating chamber in the opposite direction.

이 때 배가스(210)와 흡수액(280)이 공급되는 보르텍스 회전실 입구(231)는 배가스 투입구(220)보다 직경이 작게 형성되고, 배가스 출구(270)는 보르텍스 회전실(230)과 접하는 부분보다 외부로 향하는 방향의 직경이 커지도록 원추형의 형상으로 형성된다.At this time, the vortex rotation chamber inlet 231 to which the exhaust gas 210 and the absorbent liquid 280 are supplied is formed to have a smaller diameter than the exhaust gas inlet 220, and the exhaust gas outlet 270 is in contact with the vortex rotation chamber 230. It is formed in a conical shape so that the diameter of the direction toward the outside becomes larger than the portion.

상기와 같은 구성에 의해서 본 발명에 따른 보르텍스 튜브를 이용한 CO2 흡수제거 방법은 다음과 같이 기능한다.By the above configuration, the CO 2 absorption removal method using the vortex tube according to the present invention functions as follows.

CO2를 포함하는 배가스(210)를 압축기를 사용하여 3~10기압의 압력으로 보르텍스 튜브(200)의 투입구(220)로 고압분사한다. 이 때 흡수액(280)을 배가스(210)와 병류, 즉 같은 방향으로 동시에 공급해준다.The exhaust gas 210 including the CO 2 is injected at a high pressure into the inlet 220 of the vortex tube 200 at a pressure of 3 to 10 atm using a compressor. At this time, the absorption liquid 280 is co-currently supplied with the exhaust gas 210, that is, in the same direction.

흡수액(280) 동시 공급 방법은 도 3 (a)에 도시한 바와 같이 별도의 투입구에서 공급하는 방법과, 도 4 (a)에 도시한 바와 같이 동일한 위치의 투입구를 통하여 공급해주는 방법이 있다.Simultaneously supplying the absorbent liquid 280 includes a method of supplying a separate inlet as shown in FIG. 3 (a) and a method of supplying the same through an inlet of the same position as shown in FIG.

이 때 사용할 수 있는 흡수액으로는 모노에탄올아민(MEA, Monoethanolamine), 메틸디에탄올아민(MDEA, Methyldiethanolamine), 디에탄올아민(DEA, diethanolamine), 3급 아민, K2CO3, NH3 등이 있고, 본 발명에서는 모노에탄올아민(이하 MEA라 함)을 사용하였다.At this time, the absorption liquid can be monoethanolamine (MEA, Monoethanolamine), methyl diethanolamine (MDEA, Methyldiethanolamine), diethanolamine (DEA, diethanolamine), tertiary amine, K 2 CO 3 , NH 3 In the present invention, monoethanolamine (hereinafter referred to as MEA) was used.

공급된 흡수액(280)은 고압분사된 배가스(210)와 혼합되어 보르텍스 회전실(230)로 다시 공급되고, 보텍스 회전실(230) 내부로 분사된 배가스(210)와 흡수액(280)은 회전실 내부를 회전하면서 강한 와류를 형성하게 되고, 이 때 형성된 배가스(210)의 강한 와류로 인해 흡수액(280) 액적은 미세하게 분산된다. The supplied absorbent liquid 280 is mixed with the high-pressure injected exhaust gas 210 and supplied back to the vortex rotating chamber 230, and the exhaust gas 210 and the absorbing liquid 280 injected into the vortex rotating chamber 230 rotate. Rotating inside the chamber forms a strong vortex, and the droplets of the absorbing liquid 280 are finely dispersed due to the strong vortex of the exhaust gas 210 formed at this time.

미세하게 분산된 흡수액(280)은 액적이 클 때보다 비표면적이 급격히 증가하므로 배가스(210)와의 접촉면적이 넓어지게 되고, 동일한 양의 흡수액을 사용하더라도 비표면적의 증대로 인해 배가스(210)와의 반응효과는 더욱 증가하게 된다.Since the specific surface area of the finely dispersed absorbent liquid 280 increases more rapidly than when the droplets are large, the contact area with the exhaust gas 210 is widened, and even if the same amount of the absorbent liquid is used, the absorbed liquid 280 has an increased specific surface area. The reaction effect is further increased.

강한 와류를 형성한 배가스(210)와 액적이 미세화된 흡수액(280)은 소용돌이 형상으로 반응부(240)안에서 회전하면서 이산화탄소가 흡수액(280)에 흡수되고 동시에 압축된다. 이 때, 흡수액(280)으로 사용되는 MEA의 화학식은 다음과 같다.The exhaust gas 210 and the liquid droplets 280 in which the vortex forms a strong vortex are finely rotated in the reaction part 240 in a vortex shape, and carbon dioxide is absorbed in the absorption liquid 280 and simultaneously compressed. At this time, the chemical formula of MEA used as the absorption liquid 280 is as follows.

MEA의 구조 : NH2-CH2-CH2-OH (이하 RNH2 로 표시한다)Structure of MEA: NH 2 -CH 2 -CH 2 -OH (hereinafter referred to as RNH 2 )

또한 배가스(210)중의 이산화탄소와 흡수액(280)과의 반응식은 다음과 같은 세가지 형태로 일어난다.In addition, the reaction between the carbon dioxide and the absorbent liquid 280 in the exhaust gas 210 takes place in three forms as follows.

2RNH2 + CO2 = (RNH3)+ + (RNHCOO)- 2RNH 2 + CO 2 = (RNH 3 ) + + (RNHCOO) -

2RNH2 + CO2 + H2O = 2(RNH3)+ + CO3 2- 2RNH 2 + CO 2 + H 2 O = 2 (RNH 3 ) + + CO 3 2-

2RNH3 +·CO3 2- + CO2 + H20 = 2RNH3 + + 2HCO3 - 2RNH 3 + · CO 3 2- + CO 2 + H 2 0 = 2RNH 3 + + 2HCO 3 -

이 때 반경방향에서 정온 차이점을 통해서 반응부(240)내에서 회전하는 동안 주변부분에서는 높은 압력으로 압축되어지기 때문에 온도가 상승하고 중심부분에서는 압력이 낮아 팽창하기 때문에 온도가 하강한다.At this time, due to the difference in the constant temperature in the radial direction during the rotation in the reaction unit 240 is compressed because of the high pressure in the peripheral portion because the temperature rises and the temperature in the central portion is lowered because the pressure expands.

원추 형상의 조절밸브(250)는 앞으로 이동하면 배기구(260)의 면적이 좁아지고, 뒤로 이동하며 넓어지는 구조를 갖도록 설치된다. 와류는 흡수반응을 일으키며 조절밸브(250)까지 이동하고, 이 때 조절밸브에서 이산화탄소와 반응하고 냉각응축된 흡수액 액적은 다시 반응부(240) 중심부를 거슬러 배가스 출구(270)로 배출되고 나머지 뜨거운 배가스는 조절밸브(250) 주위에 생성된 배기구(260)로 배출된다. 본 발명의 실시예에 있어서는 상기 조절밸브(250)를 완전히 앞으로 이동하여 배기구(260)가 형성되지 않도록 하였으며, 흡수액와 이산화탄소는 반응하여 응축되어서 배가스 출구(270)로 배출 및 회수되고, 이산화탄소를 제외한 배가스는 대기로 방출되거나 별도의 처리 장치를 통해 정화된다.If the cone-shaped control valve 250 is moved forward, the area of the exhaust port 260 is narrowed, it is installed to have a structure that is moved back and widened. The vortex causes an absorption reaction and moves up to the control valve 250. At this time, the absorbed liquid droplets reacted with carbon dioxide in the control valve and are cooled and condensed are discharged back to the exhaust gas outlet 270 through the center of the reaction unit 240 and the remaining hot exhaust gas. Is discharged to the exhaust port 260 generated around the control valve 250. In the exemplary embodiment of the present invention, the control valve 250 is completely moved forward so that the exhaust port 260 is not formed, and the absorbent liquid and carbon dioxide react and condense to be discharged and recovered to the exhaust gas outlet 270, and exhaust gas excluding carbon dioxide. Is discharged to the atmosphere or purified via a separate treatment unit.

이 때, 조절밸브(250)를 앞으로 이동하여 배기구(260)의 면적을 좁힐수록 배가스 출구로 배출되는 흡수액과 배가스의 온도는 내려가게 되는데, 본 발명은 배기구(260)를 완전히 닫음으로써 응축효과를 최대화 하였다.At this time, as the control valve 250 is moved forward to narrow the area of the exhaust port 260, the temperature of the absorbing liquid and the exhaust gas discharged to the exhaust gas outlet is lowered. The present invention provides a condensation effect by closing the exhaust port 260 completely. Maximized.

상기 보르텍스 튜브(200) 내부에서의 냉각 및 응축 기제와 효과, 배가스 출구로의 배출 과정 등은 실험에 의하여 경험적으로 알고 있는 바이나, 현재 그 원리가 명확히 규명되어 있지는 않다. The cooling and condensation mechanisms and effects in the vortex tube 200, the discharge process to the exhaust gas outlet, etc. are known empirically by experiment, but the principle is not clearly defined at present.

상기 배가스 출구(270)로 배출된 흡수액(280)은 이산화탄소를 포함하고 있는데, 이 흡수액은 별도로 회수되어 재생탑(150)을 거쳐서 이산화탄소를 분리하여 재생되고 다시 보르텍스 튜브(200) 안으로 공급되는 순환 과정을 거치게 된다. 또한 이 때 분리된 이산화탄소는 별도의 저장탱크(160)에 보관된다.The absorbent liquid 280 discharged to the exhaust gas outlet 270 includes carbon dioxide, which is separately recovered and recycled by separating the carbon dioxide through the regeneration tower 150 and supplied back into the vortex tube 200. You will go through the process. In addition, the separated carbon dioxide is stored in a separate storage tank 160 at this time.

<실시예 1><Example 1>

이산화탄소가 12%인 배가스를 20%의 농도를 가지는 모노에탄올아민을 흡수액으로 이용하여 배가스와 함께 보르텍스튜브에 공급할 때 도 3 (a)와 같이 기체와 액체의 공급을 별도의 주입구에서 공급하면서 기체와 액체비를 변화시키면서 흡수실험한 결과 도 3 (b)와 같은 흡수율의 변화를 나타내고 있다.When supplying the exhaust gas with 12% carbon dioxide to the vortex tube with the exhaust gas using monoethanolamine having a concentration of 20% as an absorbent, as shown in FIG. 3 (a), the gas and liquid are supplied from separate inlets. As a result of the absorption experiment with changing the liquid ratio and, the absorption rate is changed as shown in FIG.

도 3 (b)에서 보면 기체 공급 유량이 증가 할 때 기체와 액체비가 증가함에도 흡수율은 높게 유지됨을 알 수 있으며 기체/액체비 450에서 이산화탄소의 흡수율은 28%였다.In Figure 3 (b) it can be seen that as the gas supply flow rate increases the absorption rate is maintained even when the gas and liquid ratio increases, the absorption rate of carbon dioxide at the gas / liquid ratio 450 was 28%.

<실시예 2><Example 2>

실시예 1의 배가스를 이용하여 도 4 (a)와 같이 기체와 액체를 동일한 공급위치에서 공급하면서 기체와 액체비를 변화시키면서 흡수실험을 한 경우 도 4 (b)와 같은 결과를 나타내고 있다.When the absorption experiment was carried out while varying the gas and liquid ratios while supplying the gas and the liquid at the same supply position as in FIG. 4 (a) using the exhaust gas of Example 1, the results as shown in FIG.

기체와 액체비가 350일 때 38%의 이산화탄소 흡수율을 나타내고 있다.When the gas and liquid ratio is 350, the carbon dioxide absorption rate is 38%.

<비교예>Comparative Example

실시예 1의 배가스를 이용하여 흡수탑에서 탑의 상부에는 모노에탄올 아민 20%용액을 흡수탑의 하부에는 실시예1과 같은 조성의 배가스를 공급하여 기체와 액체비를 35로 하였을 때 흡수율은 98%를 나타내었으며 기체와 액체비를 100으로 하였을 때 35%정도의 흡수율을 나타내었다. 실시예 1과 실시예 2에서 비교예 1에 비해 흡수액의 사용량을 약 60% 이상 절감할 수 있었다.In the absorption tower using the exhaust gas of Example 1, a 20% solution of monoethanol amine was supplied to the upper part of the tower and the exhaust gas having the same composition as that of Example 1 was supplied to the lower part of the absorption tower so that the gas and liquid ratio was 35. % And the absorption ratio was about 35% when the gas and liquid ratio were set to 100. In Examples 1 and 2, the amount of the absorbent solution used was reduced by about 60% or more compared with Comparative Example 1.

<비교표><Comparison Table>

본 발명의 보르텍스 튜브를 흡수탑으로 사용한 경우와 종래의 흡수탑 공정을 비교표를 통해 기/액 비, 공존가스에 의한 영향 등의 면에서 다음과 같이 비교해볼 수 있다.The case of using the vortex tube of the present invention as an absorption tower and a conventional absorption tower process can be compared in terms of gas / liquid ratio, influence by coexistence gas, etc. as follows.

Vortex tubeVortex tube 종래의 흡수탑 공정Conventional Absorption Tower Process 흡수액 가격Absorbent price 100%100% 100%100% 재생온도Regeneration temperature 140℃140 ℃ 140℃140 ℃ CO2 loadingCO 2 loading 0.5kg CO2/kg MEA0.5kg CO 2 / kg MEA 0.5kg CO2/kg MEA0.5kg CO 2 / kg MEA 기/액 비Q / liquid ratio 450(40% 제거) 200(90% 제거)450 (40% removed) 200 (90% removed) 30(90% 제거)30 (90% removal) 공존가스에 의한 영향 (Sox, NOx, O2)Effect of coexisting gas (So x , NO x , O 2 ) 흡수액 열화 보충액 공급량 적음Absorbent deterioration supplement supply 좌동 보충액 공급량 많음High fluid supply

상술한 바와 같이, 본 발명에 따른 보르텍스 튜브를 이용한 CO2 흡수제거 방법은 보르텍스 튜브를 흡수탑으로 이용하여 배가스 중에 함유된 이산화탄소를 흡수제거한 결과 기존의 충진식 흡수탑 방법에 비해 흡수액을 60%이상 절감할 수 있으면서 이산화탄소를 제거할 수 있었고, 이산화탄소 흡수장치의 크기를 소형화하고, 흡수효율을 향상시킬 수 있었다.As described above, in the CO 2 absorption removal method using the vortex tube according to the present invention, as a result of absorbing and removing carbon dioxide contained in the exhaust gas using the vortex tube as an absorption tower, the absorption liquid is 60 compared with the conventional packed absorption tower method. Carbon dioxide can be removed while saving more than%, miniaturizing the size of the carbon dioxide absorber and improving the absorption efficiency.

Claims (5)

표면적이 큰 충진물이 장입된 흡수탑내에 연소배가스와 흡수액을 향류로 흐르게 하여 배가스중에 함유된 이산화탄소를 흡수제거하는 방법에 있어서,In the method of flowing the exhaust flue gas and the absorbent liquid in countercurrent in the absorption tower packed with a large surface area charge absorbing and removing the carbon dioxide contained in the flue gas, 상기 흡수탑 대신 보르텍스 튜브를 사용하여 연소배가스로부터 CO2를 제거하는 방법.Using a vortex tube instead of the absorption tower to remove CO 2 from the flue gas. 제 1항에 있어서,The method of claim 1, 상기 보르텍스 튜브 사용은,The vortex tube is used, 보르텍스 튜브의 배가스 투입구를 통해 연소배가스와 CO2 흡수액을 병류로 고압분사하여 보르텍스 회전실로 공급하는 단계와; Supplying the combustion flue gas and the CO 2 absorbent liquid co-currently through a flue gas inlet of the vortex tube in parallel to supply the vortex rotating chamber; 상기 보르텍스 회전실에 공급되는 연소배가스와 CO2 흡수액에 강한 와류를 생성시키는 단계와; Generating strong vortices in the combustion exhaust gas and the CO 2 absorbent liquid supplied to the vortex rotating chamber; 상기 생성된 와류를 튜브내에서 계속 회전시킴으로써 튜브 주변부로는 온도가 상승되고 중심부는 온도가 하강하면서 CO2가스를 흡수한 흡수액이 반대편 출구로 배출되는 단계와;Continuously rotating the generated vortex in the tube to increase the temperature around the tube and the central portion of the tube to discharge the absorbent liquid absorbing the CO 2 gas to the opposite outlet; 상기 배출된 CO2가스를 흡수한 흡수액을 수거하여 CO2가스와 흡수액으로 분리하여 흡수액을 재생하는 단계로 이루어지는 것을 특징으로 하는 연소배가스로부 터 CO2를 제거하는 방법.How to remove the combustion gas portion emitter CO 2, it characterized in that the collected absorption liquid which has absorbed the discharged CO 2 gas formed by reproducing the absorbing solution by separating CO 2 gas and the absorption liquid. 제 2항에 있어서, The method of claim 2, 상기 흡수액은 모노에탄올아민(MEA, Monoethanolamine), 메틸디에탄올아민(MDEA, Methyldiethanolamine), 디에탄올아민(DEA, diethanolamine), 3급 아민, K2CO3, NH3 중 1종인 것을 특징으로 하는 보르텍스 튜브를 이용한 CO2 흡수제거 방법The absorption liquid is a monoethanolamine (MEA, Monoethanolamine), methyl diethanolamine (MDEA, Methyldiethanolamine), diethanolamine (DEA, diethanolamine), tertiary amine, K 2 CO 3 , characterized in that one of NH 3 Bor CO 2 Absorption Removal Using Tex Tube 제 2항에 있어서,The method of claim 2, 상기 연소배가스와 CO2 흡수액을 병류로 고압분사하는 단계는 배가스와 흡수액을 별도의 투입구에서 공급하거나 동일한 위치의 투입구를 통하여 공급하는 것을 특징으로 하는 보르텍스 튜브를 이용한 CO2 흡수제거 방법The step of co-current high-pressure injection into the combustion gas and the CO 2 absorbing solution is how to remove CO 2 absorption using a vortex tube, characterized in that for supplying the exhaust gas and the absorbing liquid from a separate inlet or supplied through an inlet in the same position 제 2항에 있어서, The method of claim 2, 상기 연소배가스의 분사 압력은 3~10kg/cm2 인 것을 특징으로 하는 보르텍스 튜브를 이용한 CO2 흡수제거 방법Injection pressure of the combustion exhaust gas is CO 2 absorption removal method using a vortex tube, characterized in that 3 ~ 10kg / cm 2
KR1020060062329A 2006-07-04 2006-07-04 Methode of co2 absorption from flue gas by vortex tube KR100733323B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060062329A KR100733323B1 (en) 2006-07-04 2006-07-04 Methode of co2 absorption from flue gas by vortex tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060062329A KR100733323B1 (en) 2006-07-04 2006-07-04 Methode of co2 absorption from flue gas by vortex tube

Publications (1)

Publication Number Publication Date
KR100733323B1 true KR100733323B1 (en) 2007-06-28

Family

ID=38373705

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060062329A KR100733323B1 (en) 2006-07-04 2006-07-04 Methode of co2 absorption from flue gas by vortex tube

Country Status (1)

Country Link
KR (1) KR100733323B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9914090B2 (en) 2013-06-28 2018-03-13 Uop Llc Vapor-liquid contacting apparatuses and methods for removing contaminants from gas streams

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4421725A (en) 1980-07-09 1983-12-20 Institut Francais Du Petrole Process for purifying a gas containing hydrogen sulfide and carbon dioxide and apparatus therefor
JPH0443807A (en) * 1990-06-11 1992-02-13 Calsonic Corp Silencer
KR100511088B1 (en) 2003-12-29 2005-08-30 삼성정밀화학 주식회사 Removal method of carbon-dioxide from methyl-amine wastewater

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4421725A (en) 1980-07-09 1983-12-20 Institut Francais Du Petrole Process for purifying a gas containing hydrogen sulfide and carbon dioxide and apparatus therefor
JPH0443807A (en) * 1990-06-11 1992-02-13 Calsonic Corp Silencer
KR100511088B1 (en) 2003-12-29 2005-08-30 삼성정밀화학 주식회사 Removal method of carbon-dioxide from methyl-amine wastewater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9914090B2 (en) 2013-06-28 2018-03-13 Uop Llc Vapor-liquid contacting apparatuses and methods for removing contaminants from gas streams

Similar Documents

Publication Publication Date Title
JP5661681B2 (en) Method for obtaining an acid gas stream under high pressure by removing acid gas from a fluid stream
CA2386397C (en) Method for removing cos from a stream of hydrocarbon fluid and wash liquid for use in a method of this type
US10413860B2 (en) Absorbent system and method for capturing CO2 from a gas stream
AU2012347153B2 (en) Method and device for separating hydrogen sulfide and hydrogen production system using the same
US20110217218A1 (en) Systems and Methods for Acid Gas Removal
US20170333831A1 (en) Process for separating a product gas from a gaseous mixture utilizing a gas pressurized separation column and a system to perform the same
US9399188B2 (en) Apparatus for removing carbon dioxide in combustion exhaust gas
EP2131943A1 (en) Improved co2 absorption method
CA2804627A1 (en) A gas pressurized separation column and process to generate a high pressure product gas
KR20120098929A (en) Water wash method and system for a carbon dioxide capture process
JP4851679B2 (en) Deoxidation of hydrocarbon fluid streams.
MX2012007064A (en) Ammonia removal, following removal of co2, from a gas stream.
CA2379233A1 (en) Method for removing mercaptans from fluid fluxes
KR100779618B1 (en) Apparatus and methode of co2 absorption from flue gas by double vortex tube
KR20130010253A (en) Method of resource reuse of stripping system for acid gas capture
KR101738335B1 (en) Apparatus for removing water and acid gas of a natural gas
KR100733323B1 (en) Methode of co2 absorption from flue gas by vortex tube
WO2016094036A1 (en) Gas-assisted stripping of liquid solvents for carbon capture
SU1477454A1 (en) Method of removing carbon dioxide from gas
KR20140039916A (en) Absorption tower for treating acidic gas
RU2809723C2 (en) Absorber and absorbent for removing acid gases from gaseous hydrocarbon-containing raw materials
KR102521310B1 (en) Gas separation tower, and apparatus for treating waste gas comprising the same and method for treating waste gas using the same
CN116116188A (en) Method and system for reducing amine loss in absorption process in carbon capture process
Anthony Carbon dioxide: Generation and capture
KR20180013324A (en) Multi-stage supply of absorbent for carbon dioxide capture process of reducing absorbent loss

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20111220

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130624

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee