KR100721780B1 - Method for manufacturing high strength ultra-fine/nano-structured Al/AlN or Al alloy/AlN composite materials - Google Patents

Method for manufacturing high strength ultra-fine/nano-structured Al/AlN or Al alloy/AlN composite materials Download PDF

Info

Publication number
KR100721780B1
KR100721780B1 KR1020050045516A KR20050045516A KR100721780B1 KR 100721780 B1 KR100721780 B1 KR 100721780B1 KR 1020050045516 A KR1020050045516 A KR 1020050045516A KR 20050045516 A KR20050045516 A KR 20050045516A KR 100721780 B1 KR100721780 B1 KR 100721780B1
Authority
KR
South Korea
Prior art keywords
aluminum
aluminum nitride
powder
alloying
alloy
Prior art date
Application number
KR1020050045516A
Other languages
Korean (ko)
Other versions
KR20060123880A (en
Inventor
신광선
유승훈
Original Assignee
주식회사 다이너머트리얼스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 다이너머트리얼스 filed Critical 주식회사 다이너머트리얼스
Priority to KR1020050045516A priority Critical patent/KR100721780B1/en
Priority to US11/916,239 priority patent/US20090193935A1/en
Priority to PCT/KR2006/002093 priority patent/WO2006129965A1/en
Priority to JP2008514552A priority patent/JP4989636B2/en
Publication of KR20060123880A publication Critical patent/KR20060123880A/en
Application granted granted Critical
Publication of KR100721780B1 publication Critical patent/KR100721780B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0068Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1084Alloys containing non-metals by mechanical alloying (blending, milling)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • B22F2003/208Warm or hot extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Abstract

본 발명은 알루미늄 분말 또는 합금원소와의 혼합 분말을 기계적 밀링/합금화 장비의 용기에 장입하고, 질화 반응을 유도하기 위하여 질소를 함유한 질소 가스(N2), 암모니아 가스(NH3) 또는 이들이 혼합된 분위기에서 기계적 밀링/합금화하여 질화알루미늄의 전구체를 제조하며, 후속 열처리 및 열간 성형 공정에 의하여 고강도 극미세/나노구조 알루미늄/질화알루미늄 혹은 알루미늄 합금/질화알루미늄 복합재료를 제조하는 것을 특징으로 한다. The present invention charges aluminum powder or mixed powder with alloying elements into a vessel of a mechanical milling / alloying equipment, and contains nitrogen gas (N 2 ), ammonia gas (NH 3 ) or a mixture thereof containing nitrogen to induce nitriding reactions. Mechanical milling / alloying to produce a precursor of aluminum nitride in a predetermined atmosphere, it characterized in that the high-strength ultra fine / nanostructured aluminum / aluminum nitride or aluminum alloy / aluminum nitride composite material by the subsequent heat treatment and hot forming process.

이 발명에 따르면 기존의 기계적 밀링/합금화를 이용하여 질화알루미늄 강화 극미세/나노구조 복합재료를 제조함으로써 액상 제조법이나 기존의 분말야금 공정으로 제조된 알루미늄합금 복합재료의 강도를 훨씬 뛰어넘는 강도와 열적 안정성을 지닌 복합재료를 제조할 수 있다. According to the present invention, by fabricating aluminum nitride reinforced ultrafine / nanostructured composites using conventional mechanical milling / alloying, the strength and thermal properties far exceed those of aluminum alloy composites produced by liquid phase manufacturing or conventional powder metallurgy processes. A composite material with stability can be produced.

질화알루미늄, 극미세/나노구조, 알루미늄 복합재료, 기계적 밀링/합금화, 열간 성형 Aluminum Nitride, Micro / Nano Structures, Aluminum Composites, Mechanical Milling / Alloys, Hot Forming

Description

고강도 극미세/나노구조 알루미늄/질화알루미늄 또는 알루미늄합금/질화알루미늄 복합재료의 제조 방법{Method for manufacturing high strength ultra-fine/nano-structured Al/AlN or Al alloy/AlN composite materials}Method for manufacturing high strength ultra-fine / nano-structured Al / AlN or Al alloy / AlN composite materials}

도 1은 본 발명의 제조공정을 나타내는 공정순서도,1 is a process flowchart showing a manufacturing process of the present invention;

도 2는 질화 반응을 유도하기 위한 질소 함유 가스 분위기에서 기계적 밀링/합금화한 알루미늄 분말의 X-선 회절패턴과 500℃, 600℃, 900℃에서 1시간 동안 등온 열처리 후 X-선 회절패턴도,2 is an X-ray diffraction pattern of an aluminum powder mechanically milled / alloyed in a nitrogen-containing gas atmosphere to induce nitriding reactions, and an X-ray diffraction pattern after isothermal heat treatment at 500 ° C., 600 ° C., and 900 ° C. for 1 hour.

도 3은 질화 반응을 유도하기 위한 질소 함유 가스 분위기에서 기계적 밀링/합금화한 알루미늄 분말의 시차 열분석(Differential Thermal Analysis : DTA) 결과를 나타낸 그래프도,3 is a graph showing differential thermal analysis (DTA) results of mechanically milled / alloyed aluminum powder in a nitrogen-containing gas atmosphere to induce nitriding reactions;

도 4는 질화 반응을 유도하기 위한 질소 함유 가스 분위기에서 기계적 밀링/합금화한 알루미늄 분말과 500℃, 600℃에서 1시간 동안 등온 열처리한 분말의 N(1s) 전자에 대한 XPS(X-ray Photoelectron Spectroscopy)분석 결과도,4 is an X-ray photoelectron spectroscopy (XS) of N (1s) electrons of mechanically milled / alloyed aluminum powder and isothermally heat treated powder at 500 ° C. and 600 ° C. for 1 hour in a nitrogen-containing gas atmosphere to induce nitriding reaction. Analysis results,

도 5는 기계적 밀링/합금화 및 후속 열처리 공정을 거쳐 제조된 알루미늄/질화알루미늄 복합분말의 사진, (a) 복합분말의 투과전자현미경 명시야상 사진, (b) 복합분말 내의 알루미늄의 투과전자현미경 암시야상 사진, (c) 복합분말 내의 질화알루미늄의 투과전자현미경 암시야상 사진, (d) 복합분말의 제한시야 회절도형,5 is a photograph of an aluminum / aluminum nitride composite powder prepared through mechanical milling / alloying and subsequent heat treatment, (a) a transmission electron microscope bright field image of the composite powder, and (b) a transmission electron microscope dark field image of aluminum in the composite powder. Photograph, (c) transmission electron microscope dark field image of aluminum nitride in composite powder, (d) limited field diffraction diagram of composite powder,

도 6은 기계적 합금화로 제조한 알루미늄/질화알루미늄 분말을 540℃, 580℃에서 등온 열처리 시 시간에 따른 수소 함량 변화를 나타낸 그래프.Figure 6 is a graph showing the hydrogen content change with time during isothermal heat treatment of aluminum / aluminum nitride powder prepared by mechanical alloying at 540 ℃, 580 ℃.

본 발명은 기존의 액상제조법 및 분말야금 공정으로 제조된 알루미늄합금 및 알루미늄 기지 복합재료의 강도를 뛰어넘는 고강도 극미세/나노구조 알루미늄/질화알루미늄 혹은 알루미늄합금/질화알루미늄 복합재료 및 그 제조방법에 관한 것이다. The present invention relates to a high strength ultra fine / nano structured aluminum / aluminum nitride or aluminum alloy / aluminum nitride composite material and a method of manufacturing the same, which exceeds the strength of the aluminum alloy and aluminum matrix composite material prepared by the conventional liquid phase manufacturing method and powder metallurgy process. will be.

질화알루미늄은 우수한 강도, 높은 열전도도, 고온에서의 안정성, 알루미늄과의 양호한 젖음성, 화학적 안정성 등으로 우수한 특성을 가지는 알루미늄 기지 복합재료의 강화재로 기대되고 있다. 기존의 알루미늄 기지 복합재료의 강화재로 사용되는 알루미나(Al2O3), 실리콘카바이드(SiC) 등이 알루미늄 기지와 강화상 간의 취약한 계면 특성으로 인하여 그 실제적인 적용에 있어서 많은 제약이 있는 것에 비하여, 질화알루미늄은 알루미늄 기지와의 우수한 계면특성으로 인하여 기존의 강화재보다 우수한 성능을 가지는 것으로 주목 받고 있다.Aluminum nitride is expected to be a reinforcing material for aluminum matrix composites having excellent properties such as excellent strength, high thermal conductivity, stability at high temperatures, good wettability with aluminum, and chemical stability. While alumina (Al 2 O 3 ) and silicon carbide (SiC), which are used as reinforcement materials of the existing aluminum matrix composites, have many limitations in their practical applications due to the weak interface characteristics between the aluminum matrix and the reinforced phase, Aluminum nitride is attracting attention because it has a superior performance than the existing reinforcement due to the excellent interfacial properties with the aluminum base.

그러나, 복합재료 제조 시 질화알루미늄을 알루미늄의 용탕에 첨가하거나, 기존의 분말야금 공정을 이용하여 제조할 경우, 질화알루미늄 표면의 산화물 층으로 인하여 원하는 계면특성을 얻기가 어려우며, 질화 유도 가스를 이용하여 용탕 내에 직접 질화알루미늄을 생성시키는 공정의 경우, 강화재의 크기 제어 및 강화재 분포의 불균일성 등의 어려운 문제가 수반된다. 따라서, 우수한 특성을 가진 알루미늄/질화알루미늄 혹은 알루미늄합금/질화알루미늄 복합재료를 제조하기 위해서는 미세하고 균일한 크기분포를 갖는 강화재, 강화재의 균일한 분포, 강화재 및 기지금속의 표면의 산화물 층의 제거 혹은 생성방지를 위한 새로운 제조공정의 개발이 필수적이다.However, when aluminum nitride is added to an aluminum molten metal or manufactured using a conventional powder metallurgy process, it is difficult to obtain desired interfacial properties due to the oxide layer on the aluminum nitride surface. In the case of producing aluminum nitride directly in the molten metal, difficult problems such as control of the size of the reinforcement and nonuniformity of the reinforcement distribution are accompanied. Therefore, in order to produce an aluminum / aluminum nitride or aluminum alloy / aluminum nitride composite material having excellent characteristics, it is necessary to remove the oxide layer on the surface of the reinforcement material having a fine and uniform size distribution, uniform distribution of the reinforcement material, and the reinforcement material and the base metal. Development of new manufacturing processes to prevent production is essential.

상기와 같은 문제점들을 해결하기 위하여 본 발명에서는 알루미늄 분말 또는 합금원소와의 혼합 분말의 질화 반응을 유도하기 위하여, 질소를 함유한 질소 가스(N2), 암모니아 가스(NH3) 또는 이들이 혼합된 분위기에서 기계적 밀링/합금화를 통해 직접 질화 반응을 유도함으로써, 우수한 계면특성을 지닌 알루미늄/질화알루미늄의 복합분말을 제조하는 공정을 발명하였다. 직접 질화 반응은 기존의 기계적 밀링/합금화 공정과 동일한 공정 하에서 이루어지기 때문에 추가적인 공정에 따른 경제적 손실 없이 고강도 극미세/나노구조 알루미늄/질화알루미늄 혹은 알루미늄 합금/질화알루미늄 복합재료를 제조가 가능하다.In order to solve the above problems, in the present invention, in order to induce nitriding reaction of aluminum powder or mixed powder with alloying elements, nitrogen-containing nitrogen gas (N 2 ), ammonia gas (NH 3 ) or an atmosphere in which they are mixed By inducing a direct nitriding reaction through mechanical milling / alloying in the invention, a process for preparing a composite powder of aluminum / aluminum nitride having excellent interfacial properties was invented. Since the direct nitriding reaction is performed under the same process as the existing mechanical milling / alloying process, it is possible to manufacture a high strength ultra fine / nano structured aluminum / aluminum nitride or an aluminum alloy / aluminum nitride composite material without any economic loss due to the additional process.

따라서, 본 발명의 목적은 기계적 합금화 시 직접 질화 반응을 통하여 우수한 계면특성을 가지는 알루미늄/질화알루미늄 혹은 알루미늄합금/질화알루미늄 복합분말을 제조하는 방법과 분말의 열간 성형을 통하여 고강도 극미세/나노구조 알루미늄/질화알루미늄 혹은 알루미늄합금/질화알루미늄 복합재료의 제조방법을 제공 하는 데 있다.Accordingly, an object of the present invention is a method of preparing an aluminum / aluminum nitride or aluminum alloy / aluminum nitride composite powder having excellent interfacial properties through direct nitriding reaction during mechanical alloying and high strength ultra fine / nano structure aluminum through hot forming of powder. To provide a method for producing an aluminum nitride or aluminum alloy / aluminum nitride composite material.

상술한 기술적 과제를 달성하기 위하여 본 발명은 알루미늄 분말 또는 합금원소와의 혼합 분말의 질화 반응을 유도하기 위하여, 질소를 함유한 질소 가스(N2), 암모니아 가스(NH3) 또는 이들이 혼합된 분위기에서 기계적 밀링/합금화하여 질화알루미늄의 전구체를 제조한 후, 후속 열처리 공정을 거쳐 알루미늄/질화알루미늄 혹은 알루미늄합금/질화알루미늄 복합분말을 제조하고, 상기 복합분말을 열간 성형 공정을 통하여 복합재료를 제조하는 것을 특징으로 하는 고강도 극미세/나노구조 알루미늄/질화알루미늄 또는 알루미늄합금/질화알루미늄 복합재료의 제조 방법을 제공한다.In order to achieve the above technical problem, in order to induce nitriding reaction of aluminum powder or mixed powder with alloying elements, nitrogen-containing nitrogen gas (N 2 ), ammonia gas (NH 3 ) or an atmosphere in which they are mixed After the mechanical milling / alloying to prepare a precursor of aluminum nitride, and then to a subsequent heat treatment process to produce an aluminum / aluminum nitride or aluminum alloy / aluminum nitride composite powder, and to produce a composite material through a hot forming process Provided is a method for producing a high strength ultra fine / nano structured aluminum / aluminum nitride or an aluminum alloy / aluminum nitride composite material.

또한, 본 발명은 상기 질소가스, 암모니아가스 또는 이들이 혼합된 질화 유도 가스 분위기를 지속적으로 유지시킨 용기 내에서 상기 기계적 밀링/합금화를 수행하는 것을 특징으로 하는 제조 방법을 제공한다.In addition, the present invention provides a manufacturing method characterized in that the mechanical milling / alloying is carried out in a container in which the nitrogen gas, ammonia gas or a mixed nitrogen induction gas atmosphere continuously maintained.

또한, 본 발명은 제조한 복합분말의 상기 후속 열처리는 질화알루미늄의 생성을 위하여 400℃ 이상으로부터 상기 복합분말의 용융온도 이하의 온도에서 0.1~48시간 열처리하는 것을 특징으로 하는 제조 방법을 제공한다.In another aspect, the present invention provides a manufacturing method characterized in that the subsequent heat treatment of the prepared composite powder is heat-treated for 0.1 ~ 48 hours at a temperature of 400 ℃ or more from below the melting temperature of the composite powder for the production of aluminum nitride.

또한, 본 발명은 상기 열간 성형 공정에서 상기 후속 열처리는 고온 탈가스 공정인 것을 특징으로 하는 제조 방법을 제공한다.In another aspect, the present invention provides a manufacturing method, characterized in that the subsequent heat treatment in the hot forming process is a high temperature degassing process.

또한, 본 발명은 상기 기계적 밀링/합금화 공정에 의하여, 알루미늄 혹은 알 루미늄 합금기지의 결정립 크기와 질화알루미늄 강화상의 크기가 10㎛ 이하의 극미세/나노구조를 가지는 것을 특징으로 제조 방법을 제공한다.In addition, the present invention provides a manufacturing method characterized in that by the mechanical milling / alloying process, the grain size of the aluminum or aluminum alloy base and the size of the aluminum nitride reinforcement phase having an ultra fine / nano structure of 10㎛ or less.

또한, 본 발명은 알루미늄 기지에 고용강화 원소인 Mg, Ag, Mn 중 하나 이상의 원소를 무게비 0.1% ~ 고용한도 이하로 첨가하거나, 석출강화 원소인 Cu, Zn, Si, Ti, Fe, Li, Sn, Cr, Zr 중 하나 이상의 원소를 고용한도 이상으로 첨가하거나, 희토류 원소인 Y, Ce, La, Sc, Sm, Nd, Gd, Pr 중 하나 이상의 원소 또는 미시메탈(misch metal)을 무게비로 0.1~10.0%를 첨가하거나, W, Mo, Co의 합금원소 또는 Al2O3, SiC, Si3N4 등의 세라믹 입자를 무게비 0.1% ~ 50%를 첨가하는 것을 특징으로 하는 제조 방법을 제공한다.In addition, the present invention is added to at least one element of solid solution strengthening elements Mg, Ag, Mn to the aluminum base at a weight ratio of 0.1% to less than the solid-solution limit, or the precipitation strengthening elements Cu, Zn, Si, Ti, Fe, Li, Sn At least one element of Cr, Zr, or more is added above the solubility limit, or the rare earth elements Y, Ce, La, Sc, Sm, Nd, Gd, Pr, or one or more elements of the misch metal are 0.1 ~ 10.0% is added, or an alloying element of W, Mo, Co or ceramic particles of Al 2 O 3 , SiC, Si 3 N 4 and the like provides a manufacturing method characterized by adding a weight ratio of 0.1% to 50%.

본 발명에서 기계적 밀링/합금화는 원료분말과 강구(steel ball), 세라믹구(ceramic ball)와 같은 분쇄 매체를 볼밀(ball mill) 또는 어트리터(attritor)와 같은 분쇄장비에 함께 장입한 후, 분쇄 매체 사이의 반복적인 충돌 시 수반되는 원료분말의 반복되는 파괴(fracture)와 냉간 압접(cold welding)에 의하여 조직의 미세화, 강화상의 분쇄를 통한 미세화 및 균일한 분포, 고용한도 이상으로의 합금화 등의 효과를 얻을 수 있는 공정으로서, 본 발명의 기계적 밀링/합금화가 효과적으로 일어나기 위해서는 분쇄 매체와 원료분말의 무게비는 5:1 ~ 50:1 사이의 비율이 바람직하다. In the present invention, the mechanical milling / alloying is pulverized after charging the grinding media such as raw powder, steel balls, ceramic balls into the grinding equipment such as ball mill or attritor, Repetitive fracture and cold welding of raw material powder during repeated collisions between media, refinement of the structure, refinement and uniform distribution through pulverization of reinforcing phases, alloying over solid solution, etc. As a process to obtain the effect, in order for the mechanical milling / alloying of the present invention to occur effectively, the weight ratio of the grinding media and the raw powder is preferably in a ratio of 5: 1 to 50: 1.

본 발명에서는 기계적 밀링/합금화를 위한 장비에 질화 반응을 유도하기 위하여 질소를 함유한 질소 가스(N2), 암모니아 가스(NH3) 또는 이들의 혼합된 가스를 균일한 압력으로 지속적으로 공급하고 배출하는 장치를 설치하여, 용기 내의 압력을 일정하게 유지하였다. 이를 통하여, 질화반응에 필요한 분위기 가스의 지속적인 공급과 질화반응에 따른 생성물들을 지속적으로 제거함으로써, 질화반응이 계속적으로 이루어지도록 한 것을 특징으로 한다.In the present invention, in order to induce a nitriding reaction in the equipment for mechanical milling / alloying, nitrogen gas containing nitrogen (N 2 ), ammonia gas (NH 3 ) or a mixture of these gases continuously supplied and discharged at a uniform pressure A device was installed to keep the pressure in the container constant. Through this, the continuous supply of the atmosphere gas required for the nitriding reaction and by continuously removing the products according to the nitriding reaction, it characterized in that the nitriding reaction is carried out continuously.

기계적 밀링/합금화 공정을 거친 분말에는 질화알루미늄의 전구체가 형성되며, 이를 안정한 질화알루미늄으로 변환하기 위하여는 후속 열처리 공정을 필요로 한다. Powders that have undergone mechanical milling / alloying processes form precursors of aluminum nitride and require subsequent heat treatment to convert them to stable aluminum nitride.

후속 열처리 공정 조건은 시차 열분석, XPS, X-선 회절, 고온 열처리, 수소분석의 실험으로부터 구하였으며, 400℃ 이상으로부터 복합분말의 용융온도 이하에서 0.1~48시간 열처리하여 안정한 질화알루미늄을 제조하였다. 복합분말의 용융온도는 첨가한 합금원소 및 표면 상태에 따라 달라지므로, 특정한 온도로 한정할 수는 없다.Subsequent heat treatment process conditions were obtained from experiments of differential thermal analysis, XPS, X-ray diffraction, high temperature heat treatment, and hydrogen analysis, and stable aluminum nitride was prepared by heat treatment at 400 ° C. or above at a melting temperature of the composite powder for 0.1 to 48 hours. . Since the melting temperature of the composite powder varies depending on the alloying elements and the surface state added, the melting temperature of the composite powder cannot be limited to a specific temperature.

상기 공정을 통하여 제조된 알루미늄/질화알루미늄 혹은 알루미늄합금/질화알루미늄 복합분말을 열간 가압(Hot Press) 공정, 열간 정수 가압(Hot Isostatic Press) 공정, 열간 압출(Hot Extrusion) 공정과 같은 열간 성형 공정을 통하여 성형체로 제조할 수 있다. The aluminum / aluminum nitride or aluminum alloy / aluminum nitride composite powder produced through the above process is subjected to hot forming processes such as a hot press process, a hot isostatic press process, and a hot extrusion process. It can be produced into a molded body.

분말재료의 여러 가지 열간 성형 공정은 고온 탈가스 공정을 필요로 한다. 고온 탈가스 공정은 분말을 금속캔에 장입하여 냉간 압축한 후, 금속관이 달린 뚜껑을 용접하여, 고온으로 가열하며 진공(1×10-1torr 이하의 진공이 적절함)으로 배 기하는 공정으로서, 캔 내부에 잔류하는 기체 성분의 제거 및 분말표면과 내부에 잔류하는 수분, 유기물, 수소 등의 성분을 제거하여 성형체의 결함제거, 성형체의 기계적 성질 향상을 위해서 필수적인 공정이다. Many hot forming processes of powder materials require hot degassing processes. The hot degassing process is a process in which powder is charged into a metal can and cold pressed, and then a lid with a metal tube is welded, heated to a high temperature, and evacuated to a vacuum (a vacuum of 1 × 10 -1 torr or less is appropriate). It is an essential process for removing defects in the molded article and improving mechanical properties of the molded article by removing gaseous components remaining in the can and removing components such as moisture, organic matter, and hydrogen remaining on the powder surface and inside.

본 발명에서는 열간 성형 공정 사용 시 필요한 공정인 고온 탈가스 공정을 후속 열처리 공정에 필요한 400℃ 이상으로부터 복합의 용융온도 이하의 온도 범위에서 0.1~48시간 동안 행함으로써, 별도의 후속 열처리 공정 없이 일반적인 분말재료의 열간 성형 공정에서 사용하는 것과 동일한 공정으로 복합재료의 성형체를 제조할 수 있는 점을 특징으로 한다. In the present invention, by performing a high temperature degassing process, which is a process required for using the hot forming process, for 0.1 to 48 hours in a temperature range of 400 ° C. or more and below the melting temperature of the composite required for the subsequent heat treatment process, a general powder without a separate subsequent heat treatment process It is characterized in that a molded article of a composite material can be produced by the same process as used in the hot forming step of the material.

이하 도면을 통하여 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명에 의한 알루미늄/질화알루미늄 혹은 알루미늄합금/질화알루미늄 복합재료의 제조방법을 나타낸 공정 순서도이다. 원료분말 준비단계(P1)에서는 질화알루미늄의 생성을 위한 알루미늄 분말 또는 합금원소와의 혼합 분말을 준비한다. 합금원소는 소정의 첨가량을 맞추기 위해서 개별 원소 분말을 첨가할 수도 있으며, 모합금 분말을 제조하여 첨가할 수도 있다. 질화 분위기에서의 기계적 밀링/합금화 단계(P2)에서는 질화 반응을 유도하기 위하여 질소를 함유한 질소 가스(N2), 암모니아 가스(NH3) 또는 이들이 혼합된 분위기를 지속적으로 공급, 배출하여, 용기 내의 질화 유도 가스 분위기가 일정하게 유지될 수 있는 장비에서 기계적 밀링/합금화하여 알루미늄에 질화알루미늄의 전구체가 형성되도록 한다. Al/AlN 형성을 위한 후속 열처리 단계(P3)는 열간 성형 단계(P4)에서 분말의 열간 성형에 필 요한 고온 탈가스 공정을 후속 열처리 공정의 조건에서 행하면 별도의 공정을 거칠 필요가 없다. 그러나, 다른 성형 공정에서는 400℃ 이상으로부터 복합분말의 용융온도 이하의 온도에서 0.1~48시간 동안의 후속 열처리 단계를 거친다.1 is a process flowchart showing a method of manufacturing an aluminum / aluminum nitride or aluminum alloy / aluminum nitride composite material according to the present invention. In the raw material powder preparation step (P1), aluminum powder or mixed powder with alloying elements for preparing aluminum nitride is prepared. The alloying elements may be added with individual element powders in order to meet a predetermined addition amount, or may be added by preparing a master alloy powder. In the mechanical milling / alloying step (P2) in the nitriding atmosphere, the nitrogen gas containing nitrogen (N 2 ), ammonia gas (NH 3 ), or a mixed atmosphere thereof is continuously supplied and discharged to induce the nitriding reaction. Mechanical milling / alloying in equipment in which the nitriding induced gas atmosphere within it can be kept constant causes the precursor of aluminum nitride to be formed in aluminum. The subsequent heat treatment step (P3) for forming Al / AlN does not need to go through a separate process if the hot degassing process required for the hot forming of the powder in the hot forming step (P4) under the conditions of the subsequent heat treatment process. However, other molding processes undergo a subsequent heat treatment for 0.1-48 hours at temperatures above 400 ° C. and below the melting temperature of the composite powder.

도 2는 질화 반응을 유도하기 위한 질소 함유 가스 분위기에서 기계적 밀링/합금화한 직후의 알루미늄 분말과 500℃, 600℃, 900℃에서 1시간 등온 열처리한 알루미늄 분말의 X-선 회절패턴이다. 기계적 밀링/합금화한 직후에는 알루미늄의 회절도형만이 관찰되나, 열처리를 수행함에 따라서 질화알루미늄의 회절도형이 관찰된다. 이는 기계적 밀링/합금화한 직후의 알루미늄 분말이 질화알루미늄 형성의 전구체로 작용하며, 질화알루미늄을 생성하기 위해서 적정 조건에서 후열처리가 필요함을 알 수 있다. 2 is an X-ray diffraction pattern of aluminum powder immediately after mechanical milling / alloying in a nitrogen-containing gas atmosphere to induce nitriding reaction and aluminum powder subjected to isothermal heat treatment at 500 ° C., 600 ° C., and 900 ° C. for 1 hour. Immediately after mechanical milling / alloying, only the diffraction diagram of aluminum is observed, but as the heat treatment is carried out, the diffraction figure of aluminum nitride is observed. It can be seen that the aluminum powder immediately after mechanical milling / alloying acts as a precursor for aluminum nitride formation, and post-heat treatment is required under appropriate conditions to produce aluminum nitride.

도 3은 상기 알루미늄 분말을 일정한 승온 속도로 가열하여 시차 열분석한 결과로, 알루미늄의 용융 전에 430℃와 565℃를 정점으로 하는 두 차례의 발열반응이 관찰된다. 기계적 밀링/합금화 직후와 등온 열처리에 따른 질소원자의 결합상태를 확인하기 위하여, N(1s)전자에 대한 XPS결과를 도 4에 도시하였다. 기계적 밀링/합금화한 직후에는 질소원자가 AlN, NH, NH2의 결합을 가지고 있으나, 500℃의 등온 열처리에서는 NH2의 결합의 소멸과 600℃의 등온 열처리에서는 NH의 결합의 소멸을 관찰할 수 있으며, 전체 질소원자가 알루미늄과 결합하여 질화알루미늄을 형성하는 것을 관찰할 수 있다.3 is a result of differential thermal analysis by heating the aluminum powder at a constant temperature increase rate, and two exothermic reactions with peaks of 430 ° C. and 565 ° C. before melting of aluminum are observed. XPS results for N (1s) electrons are shown in FIG. 4 in order to confirm the bonding state of nitrogen atoms immediately after mechanical milling / alloying and following isothermal heat treatment. Immediately after mechanical milling / alloying, the nitrogen atom has AlN, NH, NH 2 bonds, but the disappearance of NH 2 bonds in isothermal heat treatment at 500 ° C and the loss of NH bonds in isothermal heat treatment at 600 ° C. It can be observed that all nitrogen atoms combine with aluminum to form aluminum nitride.

도 5는 600℃에서 등온 열처리한 알루미늄/질화알루미늄 복합분말의 투과전 자현미경사진으로, 알루미늄 결정립의 크기와 질화알루미늄 입자의 크기 모두 200nm 미만의 극미세/나노구조를 가지고 있음을 나타내고 있다.5 is a transmission electron micrograph of an aluminum / aluminum nitride composite powder subjected to isothermal heat treatment at 600 ° C., showing that both the size of aluminum crystal grains and the size of aluminum nitride particles have an ultrafine / nano structure of less than 200 nm.

상기 공정에 의하여 제조한 질화알루미늄 전구체의 후속 열처리에 따른 수소 함량의 변화를 도 6에 나타내었다. 540℃에서는 3시간, 580℃에서는 2시간 등온 열처리한 후에 수소를 검출할 수 없었으며, 전구체내의 NH2, NH등이 모두 질화알루미늄으로 변화한 것을 도 2 내지 도 4의 결과로부터 확인할 수 있다. 따라서, 복합분말 내의 질화알루미늄 전구체를 알루미늄/질화알루미늄 혹은 알루미늄합금/질화알루미늄 복합분말로 변화시키기 위한 후속 열처리 공정(P3)은 400℃ 이상으로부터 복합분말의 용융온도 이하에서 행하는 것이 바람직하며, 열처리 시간은 온도에 따라 다르나, 0.1~48시간인 것이 바람직하다. 6 shows a change in hydrogen content according to subsequent heat treatment of the aluminum nitride precursor prepared by the above process. Hydrogen could not be detected after 3 hours isothermal heat treatment at 540 ° C. and 2 hours at 580 ° C., and it was confirmed from the results of FIGS. 2 to 4 that all of NH 2 , NH, etc. in the precursor were changed to aluminum nitride. Therefore, the subsequent heat treatment step (P3) for converting the aluminum nitride precursor in the composite powder into an aluminum / aluminum nitride or aluminum alloy / aluminum nitride composite powder is preferably performed at not lower than 400 ° C. but below the melting temperature of the composite powder. Silver varies with temperature, but is preferably 0.1 to 48 hours.

이하, 본 발명을 실시예에 의거하여 상세히 설명하면 다음과 같은 바, 본 발명이 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to the following Examples, but the present invention is not limited by the Examples.

(실시예 1)(Example 1)

알루미늄 분말과, 알루미늄과 마그네슘이 무게비가 50:50인 모합금 분말을 혼합하여, 마그네슘의 무게비가 4%인 원료 분말을 준비하였다. 상기 서술한 과정을 통하여, 질화알루미늄의 부피비가 25%인 복합분말을 제조하였으며, 냉간 압축, 탈가스, 열간 압출 공정을 통하여 복합재료를 제조하였다. An aluminum powder and a master alloy powder having a weight ratio of 50:50 of aluminum and magnesium were mixed to prepare a raw material powder having a weight ratio of magnesium of 4%. Through the above-described process, a composite powder having a volume ratio of aluminum nitride of 25% was prepared, and a composite material was prepared through cold compression, degassing, and hot extrusion.

(실시예 2)(Example 2)

알루미늄 분말과 티타늄 분말을 혼합하여 티타늄의 무게비가 5%인 원료 분말을 준비하였다. 상기 서술한 과정을 통하여 질화알루미늄의 부피비가 25%인 복합분말을 제조하였으며, 냉간 압축, 탈가스, 열간 압출 공정을 통하여 복합재료를 제조하였다.Aluminum powder and titanium powder were mixed to prepare a raw material powder having a weight ratio of titanium of 5%. Through the above-described process, a composite powder having a volume ratio of aluminum nitride of 25% was prepared, and a composite material was prepared through cold compression, degassing, and hot extrusion.

(실시예 3)(Example 3)

알루미늄 분말과 아연 분말을 혼합하여 아연의 무게비가 5%인 원료 분말을 준비하였다. 상기 서술한 과정을 통하여 질화알루미늄의 부피비가 25%인 복합분말을 제조하였으며, 냉간 압축, 탈가스, 열간 압출 공정을 통하여 복합재료를 제조하였다.Aluminum powder and zinc powder were mixed to prepare a raw powder having a weight ratio of 5% zinc. Through the above-described process, a composite powder having a volume ratio of aluminum nitride of 25% was prepared, and a composite material was prepared through cold compression, degassing, and hot extrusion.

(비교예 1)(Comparative Example 1)

질화알루미늄 분말을 6061 알루미늄에 부피비가 50%가 되도록 넣은 후 스퀴즈 캐스팅으로 제조하였다.Aluminum nitride powder was added to 6061 aluminum so as to have a volume ratio of 50%, and then manufactured by squeeze casting.

실시예 1~3에 따라 제조한 복합재료에 대하여 상온 및 200℃에서 압축시험을 실시하였으며, 그 결과를 표 1에 비교예 1과 함께 나타내었다.The composite material prepared according to Examples 1 to 3 was subjected to a compression test at room temperature and 200 ℃, the results are shown in Table 1 with Comparative Example 1.

구분division 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 비교예 1Comparative Example 1 항복강도(MPa at 25℃)Yield strength (MPa at 25 ℃) 957957 390390 440440 300300 항복강도(MPa at 200℃)Yield strength (MPa at 200 ℃) 328328 241241 225225

※ 비교예 1 : Min Zhao, Gaohui Wu, Dezhi Zhu, Longtao Jiang and Zuoyong Dou : Materials Letters, 58(2004) p.1899.Comparative Example 1: Min Zhao, Gaohui Wu, Dezhi Zhu, Longtao Jiang and Zuoyong Dou: Materials Letters, 58 (2004) p.1899.

표 1의 결과로부터 질화 반응을 유도하기 위하여 질소를 함유한 질소 가스(N2), 암모니아 가스(NH3) 또는 이들이 혼합된 분위기에서 기계적 밀링/합금화를 통하여 제조한 알루미늄/질화알루미늄 혹은 알루미늄합금/질화알루미늄 복합재료는 질화알루미늄의 부피비가 25%로 비교예 1의 50%의 절반을 첨가하였음에도 비교예 1에 비하여 월등한 강도를 지니고 있음을 알 수 있다. 이는 기계적 밀링/합금화에 의하여 결정립과 질화알루미늄의 극미세/나노구조화, 질화알루미늄의 균일한 분포의 효과에 의하여 강도가 향상된 것이며, 특히, 알루미늄/질화알루미늄 복합재료에 합금원소로서 마그네슘을 첨가한 실시예 1의 경우, 동일한 공정으로 제조되고 티타늄과 아연을 합금원소로 첨가한 실시예 2, 3에 비하여도 2.5~3배의 고강도를 나타낸다. 이는 일반적으로 마그네슘이 첨가된 알루미늄 합금에서 마그네슘이 강도에 미치는 효과에 비하여 월등히 크다. In order to induce the nitriding reaction from the results of Table 1, the nitrogen gas containing nitrogen (N 2 ), ammonia gas (NH 3 ) or aluminum / aluminum nitride or aluminum alloy / made by mechanical milling / alloying in a mixed atmosphere thereof It can be seen that the aluminum nitride composite material had superior strength compared to Comparative Example 1 even though the volume ratio of aluminum nitride was 25% and 50% of Comparative Example 1 was added. The strength is improved by the effect of the ultrafine / nano structure of grains and aluminum nitride and the uniform distribution of aluminum nitride by mechanical milling / alloying. Especially, magnesium is added as an alloying element to the aluminum / aluminum nitride composite. In the case of Example 1, the strength was 2.5 to 3 times higher than that of Examples 2 and 3, which were prepared by the same process and added titanium and zinc as alloy elements. This is generally much greater than the effect of magnesium on the strength of magnesium-added aluminum alloys.

본 발명에 따르면 기계적 밀링/합금화 공정으로 고강도 극미세/나노구조의 알루미늄/질화알루미늄 혹은 알루미늄합금/질화알루미늄 복합재료를 제조할 수 있으므로 경제적 효과가 매우 크다. According to the present invention, it is possible to manufacture a high strength ultra fine / nano structured aluminum / aluminum nitride or an aluminum alloy / aluminum nitride composite material by a mechanical milling / alloying process, and thus the economic effect is very large.

또한, 적절한 합금원소를 첨가함으로써 기존 알루미늄합금의 강도를 훨씬 뛰어넘으며, 우수한 강도와 열적 안정성을 지닌 복합재료의 제조가 가능하며, 상온 및 고온에서 고비강도를 요구하는 산업분야에의 적용 시 그 효과가 매우 크다.In addition, by adding appropriate alloying elements, it is possible to manufacture composite materials with excellent strength and thermal stability, far exceeding the strength of existing aluminum alloys, and when applied to industrial fields requiring high specific strength at room temperature and high temperature The effect is very big.

Claims (6)

알루미늄 분말 또는 합금원소와의 혼합 분말을 질화 반응을 유도하기 위하여 질소를 함유한 암모니아 가스(NH3) 분위기에서 기계적 합금화 또는 기계적 밀링하여 질화알루미늄의 전구체를 제조한 후, 후속 열처리 공정을 거쳐 알루미늄과 질화알루미늄 혹은 알루미늄합금과 질화알루미늄 복합분말을 제조하고, 상기 복합분말을 열간 성형 공정을 통하여 복합재료를 제조하는 것을 특징으로 하는 고강도 극미세 나노구조 알루미늄과 질화알루미늄 또는 알루미늄합금과 질화알루미늄 복합재료의 제조 방법.In order to induce the nitriding reaction of the aluminum powder or the alloying powder, a precursor of the aluminum nitride is prepared by mechanical alloying or mechanical milling in an ammonia gas containing nitrogen (NH 3 ) atmosphere, and then subjected to a subsequent heat treatment process. An aluminum nitride or aluminum alloy and aluminum nitride composite powder is prepared, and the composite powder is prepared by a hot forming process to produce a composite material of high strength ultra-fine nanostructured aluminum and aluminum nitride or aluminum alloy and aluminum nitride composite material. Manufacturing method. 제 1 항에 있어서, The method of claim 1, 상기 질화 반응을 유도하기 위하여 질소를 함유한 암모니아 가스(NH3) 분위기를 지속적으로 유지시킨 용기 내에서 상기 기계적 합금화 또는 기계적 밀링을 수행하는 것을 특징으로 하는 고강도 극미세 나노구조 알루미늄과 질화알루미늄 또는 알루미늄합금과 질화알루미늄 복합재료의 제조 방법.In order to induce the nitriding reaction, the high-strength ultra-fine nanostructured aluminum and aluminum nitride or aluminum are characterized in that the mechanical alloying or mechanical milling is carried out in a vessel continuously maintaining a nitrogen-containing ammonia gas (NH 3 ) atmosphere. Method for producing alloy and aluminum nitride composites. 제 1 항에 있어서, The method of claim 1, 상기 후속 열처리는 질화알루미늄의 생성을 위하여 400℃ 이상으로부터 상기 복합분말의 용융온도 이하의 온도에서 0.1~48시간 열처리하는 것을 특징으로 하는 고강도 극미세 나노구조 알루미늄과 질화알루미늄 또는 알루미늄합금과 질화알루미늄 복합재료의 제조 방법.The subsequent heat treatment is a high-strength ultra-fine nanostructure aluminum and aluminum nitride or aluminum alloy and aluminum nitride composite, characterized in that the heat treatment for 0.1 to 48 hours at a temperature of 400 ℃ or more from below the melting temperature of the composite powder to produce aluminum nitride Method of making the material. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2, 상기 열간 성형 공정에서 상기 후속 열처리는 고온 탈가스 공정인 것을 특징으로 하는 고강도 극미세 나노구조 알루미늄과 질화알루미늄 또는 알루미늄합금과 질화알루미늄 복합재료의 제조 방법.The subsequent heat treatment in the hot forming process is a high-temperature degassing process, characterized in that the high-strength ultra-fine nanostructure aluminum and aluminum nitride or aluminum alloy and aluminum nitride composite material. 제 1 항에 있어서, 상기 기계적 합금화 또는 기계적 밀링 공정에 의하여, 알루미늄 혹은 알루미늄합금 기지의 결정립 크기와 질화알루미늄 강화상의 크기가 10㎛ 이하의 극미세 나노구조를 가지는 것을 특징으로 고강도 극미세 나노구조 알루미늄과 질화알루미늄 또는 알루미늄합금과 질화알루미늄 복합재료의 제조 방법.The high-strength ultrafine nanostructured aluminum according to claim 1, wherein the mechanical alloying or mechanical milling process has an ultrafine nanostructure having an aluminum or aluminum alloy matrix grain size and an aluminum nitride reinforced phase having a size of 10 µm or less. Method for producing aluminum nitride or aluminum alloy and aluminum nitride composite material. 제 1 항에 있어서, 알루미늄 기지에 고용강화 원소인 Mg, Ag, Mn 중 하나 이상의 원소를 무게비 0.1% ~ 고용한도 이하로 첨가하거나, 석출강화 원소인 Cu, Zn, Si, Ti, Fe, Li, Sn, Cr, Zr 중 하나 이상의 원소를 고용한도 이상으로 첨가하거나, 희토류 원소인 Y, Ce, La, Sc, Sm, Nd, Gd, Pr 중 하나 이상의 원소 또는 미시메탈(misch metal)을 무게비로 0.1%~10.0%를 첨가하거나, W, Mo, Co의 합금원소 또는 Al2O3, SiC, Si3N4 등의 세라믹 입자를 무게비 0.1% ~ 50%를 첨가하는 것을 특징으로 하는 고강도 극미세 나노구조 알루미늄과 질화알루미늄 또는 알루미늄합금과 질화알루미늄 복합재료의 제조 방법.The method according to claim 1, wherein at least one element of Mg, Ag, Mn, which is a solid solution strengthening element, is added to the aluminum base at a weight ratio of 0.1% to a solid solution limit, or Cu, Zn, Si, Ti, Fe, Li, At least one element of Sn, Cr, Zr is added above the solubility limit, or one or more elements of rare earth elements Y, Ce, La, Sc, Sm, Nd, Gd, Pr, or misch metal are added in a weight ratio of 0.1 High-strength ultrafine nano, characterized in that the addition of% to 10.0%, or alloying elements of W, Mo, Co, or ceramic particles such as Al 2 O 3 , SiC, Si 3 N 4 , by weight ratio of 0.1% to 50% Method for producing structural aluminum and aluminum nitride or aluminum alloy and aluminum nitride composite material.
KR1020050045516A 2005-05-30 2005-05-30 Method for manufacturing high strength ultra-fine/nano-structured Al/AlN or Al alloy/AlN composite materials KR100721780B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020050045516A KR100721780B1 (en) 2005-05-30 2005-05-30 Method for manufacturing high strength ultra-fine/nano-structured Al/AlN or Al alloy/AlN composite materials
US11/916,239 US20090193935A1 (en) 2005-05-30 2006-05-30 Method for Manufacturing High Strength Ultra-Fine/Nano-Structured Al/Aln or Al Alloy/Aln Composite Materials
PCT/KR2006/002093 WO2006129965A1 (en) 2005-05-30 2006-05-30 Method for manufacturing high strength ultra-fine/nano-structured al /aln or al alloy/aln composite materials
JP2008514552A JP4989636B2 (en) 2005-05-30 2006-05-30 High strength ultrafine nanostructured aluminum and aluminum nitride or aluminum alloy and aluminum nitride composite manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050045516A KR100721780B1 (en) 2005-05-30 2005-05-30 Method for manufacturing high strength ultra-fine/nano-structured Al/AlN or Al alloy/AlN composite materials

Publications (2)

Publication Number Publication Date
KR20060123880A KR20060123880A (en) 2006-12-05
KR100721780B1 true KR100721780B1 (en) 2007-05-25

Family

ID=37481848

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050045516A KR100721780B1 (en) 2005-05-30 2005-05-30 Method for manufacturing high strength ultra-fine/nano-structured Al/AlN or Al alloy/AlN composite materials

Country Status (4)

Country Link
US (1) US20090193935A1 (en)
JP (1) JP4989636B2 (en)
KR (1) KR100721780B1 (en)
WO (1) WO2006129965A1 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4740002B2 (en) * 2006-03-20 2011-08-03 日本碍子株式会社 Aluminum nitride sintered body, member for semiconductor manufacturing apparatus, and method for manufacturing aluminum nitride sintered body
CN100450971C (en) * 2007-02-12 2009-01-14 河北理工大学 Preparation method of A1-A1N-ZrO2 ceramic material
KR101489571B1 (en) * 2013-02-26 2015-02-03 전북대학교산학협력단 Method for preparing metal-nitride composite powder using gas-solid reaction and metal-nitride composite powder prepared by the same
KR20160023003A (en) * 2014-08-20 2016-03-03 현대모비스 주식회사 method of fabricating aluminum alloy
KR101749066B1 (en) * 2014-12-15 2017-06-20 이건배 A method of fabricating an aluminum matrix composite and an aluminum matrix composite fabricated by the same
CN104532033B (en) * 2014-12-24 2016-08-24 南昌大学 A kind of preparation method of nano aluminium oxide reinforced aluminum matrix composites semi solid slurry
CN104532032B (en) * 2014-12-24 2016-11-02 南昌大学 A kind of method preparing nano aluminium oxide reinforced aluminum matrix composites semi solid slurry based on complex vibration technology
EP3181711B1 (en) * 2015-12-14 2020-02-26 Apworks GmbH Aluminium alloy containing scandium for powder metallurgy technologies
CN105772709A (en) * 2016-03-11 2016-07-20 九江学院 Method for preparing coated Al2O3/Al composite powder through hydrothermal method
CN107716917B (en) * 2017-09-20 2019-07-23 西安理工大学 A kind of method that gas carburization method reaction in-situ prepares W/WC composite powder
CN108455996B (en) * 2018-01-04 2021-06-01 梅文婕 Preparation method of nano aluminum ceramic
CN108342606B (en) * 2018-01-19 2020-01-24 江苏大学 Method for improving in-situ aluminum matrix composite material structure and performance by mixing rare earth
CN111922349B (en) * 2020-09-21 2021-01-05 西安斯瑞先进铜合金科技有限公司 Preparation method of special metal chromium powder for CuCr alloy electrical contact
CN112359240B (en) * 2020-10-23 2022-02-22 黑龙江科技大学 Preparation method of ceramic phase reinforced high-entropy alloy of directional array
CN112143943B (en) * 2020-10-29 2022-03-08 昆明理工大学 Preparation method of heat-resistant aluminum alloy conductor
CN113005317A (en) * 2021-02-24 2021-06-22 山东省科学院新材料研究所 High-thermal-stability magnesium alloy with mixed crystal structure and controllable preparation method and application
CN113652630B (en) * 2021-08-18 2022-10-28 合肥工业大学 Method for preparing nitrogen-containing modified layer on surface of magnesium-lithium alloy at room temperature
CN114561562B (en) * 2022-03-23 2023-07-21 兰州理工大学 Al-Ti-La intermediate alloy and method for refining and modifying Al-7Si alloy by using same
CN115029590B (en) * 2022-07-07 2023-06-09 南京理工大学 High-rigidity high-strength high-temperature-resistant aluminum-based composite material and preparation method thereof
CN115725881B (en) * 2022-12-06 2023-11-24 山东创新金属科技有限公司 High-temperature-resistant aluminum alloy material and preparation method thereof
CN116623061A (en) * 2023-07-25 2023-08-22 杭州圣钘能源有限公司 Composite phase-change heat storage material and heat storage device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0285301A (en) * 1988-09-06 1990-03-26 Exxon Res & Eng Co Aluminum base oxide dispersed reinforcing powder and extruded product having no texture thereof
JPH04128336A (en) * 1990-09-18 1992-04-28 Kobe Steel Ltd Aluminum alloy having high strength and high electric conductivity and its production
JPH0617179A (en) * 1992-07-02 1994-01-25 Kobe Steel Ltd High strength and high conductive aluminum alloy for brazing and its manufacture
US20040177723A1 (en) 2003-03-12 2004-09-16 The Boeing Company Method for preparing nanostructured metal alloys having increased nitride content
US6902699B2 (en) 2002-10-02 2005-06-07 The Boeing Company Method for preparing cryomilled aluminum alloys and components extruded and forged therefrom

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4818481A (en) * 1987-03-09 1989-04-04 Exxon Research And Engineering Company Method of extruding aluminum-base oxide dispersion strengthened
JP2868889B2 (en) * 1990-11-20 1999-03-10 大同ほくさん株式会社 Manufacturing method of aluminum powder press molded product
JPH04371505A (en) * 1991-06-17 1992-12-24 Mitsubishi Materials Corp Production of soft magnetic powder having high saturation magnetic flux density
JP3419582B2 (en) * 1995-03-22 2003-06-23 ワイケイケイ株式会社 Method for producing high-strength aluminum-based composite material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0285301A (en) * 1988-09-06 1990-03-26 Exxon Res & Eng Co Aluminum base oxide dispersed reinforcing powder and extruded product having no texture thereof
JPH04128336A (en) * 1990-09-18 1992-04-28 Kobe Steel Ltd Aluminum alloy having high strength and high electric conductivity and its production
JPH0617179A (en) * 1992-07-02 1994-01-25 Kobe Steel Ltd High strength and high conductive aluminum alloy for brazing and its manufacture
US6902699B2 (en) 2002-10-02 2005-06-07 The Boeing Company Method for preparing cryomilled aluminum alloys and components extruded and forged therefrom
US20040177723A1 (en) 2003-03-12 2004-09-16 The Boeing Company Method for preparing nanostructured metal alloys having increased nitride content

Also Published As

Publication number Publication date
US20090193935A1 (en) 2009-08-06
JP2008542541A (en) 2008-11-27
JP4989636B2 (en) 2012-08-01
WO2006129965A1 (en) 2006-12-07
KR20060123880A (en) 2006-12-05

Similar Documents

Publication Publication Date Title
KR100721780B1 (en) Method for manufacturing high strength ultra-fine/nano-structured Al/AlN or Al alloy/AlN composite materials
US5882561A (en) Process for making a dense ceramic workpiece
US5723799A (en) Method for production of metal-based composites with oxide particle dispersion
Long et al. Fabrication of high strength Cu–NbC composite conductor by high pressure torsion
US5632827A (en) Aluminum alloy and process for producing the same
Dong et al. Comparative study on the densification process of different titanium powders
US5454999A (en) Composite silicide/silicon carbide mechanical alloy
US5000910A (en) Method of manufacturing intermetallic compound
JP2003535969A (en) Intermetallic aluminide and silicide sputtering target and method of manufacturing the same
CN110042270A (en) The preparation method of Ultra-fine grain copper titanium alloy wire
Leszczyńska-Madej et al. Microstructure characterization of SiC reinforced aluminium and Al4Cu alloy matrix composites
Moon et al. Consolidation of nanocrystalline Al–5 at.% Ti alloy powders by ultra high-pressure hot pressing
Lai et al. Formation of Mg–Al–Ti/MgO composite via reduction of TiO2
JP4123388B2 (en) Zinc antimony compound sintered compact
CN110193597B (en) Method for producing crystalline aluminum-iron-silicon alloy
KR101410490B1 (en) Injection molding method using powder
JP2011068538A (en) Method for producing titanium silicon carbide ceramic
JP3793813B2 (en) High strength titanium alloy and method for producing the same
Lee et al. Fabrication of Mg2Si thermoelectric materials by mechanical alloying and spark-plasma sintering process
JP3704556B2 (en) Method for producing zinc antimony compound
KR100722530B1 (en) Method for manufacturing the high strength ultra-fine/nano-structured aluminum composite materials strengthened with quasi-crystalline phases by mechanical milling/alloying
JPH0688153A (en) Production of sintered titanium alloy
KR20140061014A (en) Carbide-dispersed metal matrix composites by liquid reactive sintering and method thereof
JPS63199843A (en) Composite molded body of molybdenum or its alloy and zirconia and its production
KR102271297B1 (en) Composite of titanium-carbon, method of preparing same and sintering materil comprising same

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Re-publication after modification of scope of protection [patent]
FPAY Annual fee payment

Payment date: 20130422

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140513

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150508

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160926

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee