KR100707855B1 - Manufacturing method of metal fine particles-feedstock for powder injection molding - Google Patents

Manufacturing method of metal fine particles-feedstock for powder injection molding Download PDF

Info

Publication number
KR100707855B1
KR100707855B1 KR1020050060092A KR20050060092A KR100707855B1 KR 100707855 B1 KR100707855 B1 KR 100707855B1 KR 1020050060092 A KR1020050060092 A KR 1020050060092A KR 20050060092 A KR20050060092 A KR 20050060092A KR 100707855 B1 KR100707855 B1 KR 100707855B1
Authority
KR
South Korea
Prior art keywords
metal
injection molding
feedstock
powder injection
organic
Prior art date
Application number
KR1020050060092A
Other languages
Korean (ko)
Other versions
KR20070005992A (en
Inventor
이진
박선희
Original Assignee
주식회사 엔씨메탈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엔씨메탈 filed Critical 주식회사 엔씨메탈
Priority to KR1020050060092A priority Critical patent/KR100707855B1/en
Priority to PCT/KR2006/002591 priority patent/WO2007004836A1/en
Publication of KR20070005992A publication Critical patent/KR20070005992A/en
Application granted granted Critical
Publication of KR100707855B1 publication Critical patent/KR100707855B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/14Making metallic powder or suspensions thereof using physical processes using electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/16Auxiliary treatment of granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • B22F3/225Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0013Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor using fillers dispersed in the moulding material, e.g. metal particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B2009/125Micropellets, microgranules, microparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/16Auxiliary treatment of granules
    • B29B2009/168Removing undesirable residual components, e.g. solvents, unreacted monomers; Degassing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • B29K2105/162Nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2505/00Use of metals, their alloys or their compounds, as filler
    • B29K2505/02Aluminium

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

본 발명은 분말사출성형용 금속 미세입자 피드스톡의 제조방법에 관한 것으로서, 특히 물 또는 유기 용매 중 어느 하나가 담겨진 용기 내에 소량의 알카리 금속 이온을 함유시킴과 동시에 그 내에 두 개 이상의 금속전극을 이격배치 한 후 시간이 경과함에 따라 크기와 방향이 주기적으로 변하는 전류를 인가하여 100nm 크기 이하의 금속 미세입자를 제조하는 제 1단계와; 상기 제 1단계를 거친 용기내에서 분말사출성형용 유기결합제를 첨가하는 제2단계와; 상기 첨가된 유기결합제를 용해시켜 미세입자와 균일하게 혼합하는 제3단계와; 상기 용기 내부의 물 또는 유기용매를 제거한 다음 그 내의 유기결합제와 미세입자 혼합물을 분쇄하는 제 4단계로 이루어짐을 특징으로 한다.The present invention relates to a method for preparing a metal microparticle feedstock for powder injection molding, and in particular, contains a small amount of alkali metal ions in a container containing either water or an organic solvent and simultaneously spaces two or more metal electrodes therein. A first step of manufacturing metal microparticles having a size of 100 nm or less by applying a current whose size and direction periodically change as time passes after the arrangement; A second step of adding an organic binder for injection molding in a container which has undergone the first step; Dissolving the added organic binder to uniformly mix with the fine particles; After removing the water or the organic solvent in the vessel, characterized in that the fourth step of pulverizing the organic binder and fine particle mixture therein.

따라서 본 발명은 완전치밀화가 가능한 100nm 크기 이하의 한가지 이상의 금속미세입자 또는 한가지 이상의 금속 산화물과 금속미세입자로 이루어진 분말사출성형용 피드스톡의 제조가 가능하며 또한 별도의 장치없이 산화반응을 배제하면서 분말사출성형용 금속미세입자 피드스톡을 제조할 수 있는 이점을 가지게 된다.Therefore, the present invention enables the production of powder injection molding feedstock made of one or more metal microparticles of 100 nm or less or one or more metal oxides and metal microparticles, which can be fully densified, and also excludes oxidation without additional equipment. It has the advantage of manufacturing a metal microparticle feedstock for injection molding.

유기결합제, 물, 용기, 유기용매, 금속미세입자 Organic binder, water, container, organic solvent, fine metal particles

Description

분말사출성형용 금속 미세입자 피드스톡의 제조방법{Manufacturing method of metal fine particles-feedstock for powder injection molding}Manufacturing method of metal fine particles-feedstock for powder injection molding}

도 1은 본 발명의 일 실시예를 나타낸 미세입자의 확대사진,1 is an enlarged photograph of microparticles showing an embodiment of the present invention;

도 2는 본 발명의 일 실시예를 통해 제조된 알루미늄 미세입자 피드스톡의 나타낸 외형사진,Figure 2 is an appearance photograph of the aluminum microparticle feedstock prepared through an embodiment of the present invention,

도 3은 본 발명의 일 실시예를 통해 제조된 알루미늄 미세입자 피드스톡의 X선 회절분석결과.Figure 3 is an X-ray diffraction analysis of the aluminum microparticle feedstock prepared through one embodiment of the present invention.

본 발명은 분말사출성형용 금속 미세입자 피드스톡의 제조방법에 관한 것으로서, 이를 보다 상세히 설명하자면, 완전치밀화가 가능한 100nm 크기 이하의 한가지 이상의 금속미세입자 또는 한가지 이상의 금속산화물과 금속 미세입자로 이루어진 분말사출성형용 피드스톡을 제조 가능케 함에 그 목적을 가지는 것이다.The present invention relates to a method for producing a powder injection molding metal microparticle feedstock, which will be described in more detail, a powder consisting of one or more metal microparticles of 100 nm or less or one or more metal oxides and metal microparticles that can be fully densified Its purpose is to enable the manufacture of feedstock for injection molding.

종래에 미세한 금속 입자제조방법 및 이를 이용한 분말사출성형용 피드스톡의 제조방법을 살펴보면, 먼저 초음파 볼밀링을 이용하여 금속산화물을 분쇄한 후 수소환원하여 미세한 금속 입자를 제조케 하는 국내특허 제0408647호 "고순도의 합금 및 복합상 나노금속분말의 제조방법"이 안출된 바 있는데, Conventionally, a method of manufacturing fine metal particles and a method of manufacturing a powder injection molding feedstock using the same, first, by pulverizing a metal oxide using ultrasonic ball milling and then hydrogen reduction to produce fine metal particles No. 0408647 "Preparation method of high purity alloy and composite nano metal powder" has been devised.

이러한 상기 기술은 불순물 혼입 없이 산화물을 미세분쇄한 후 수소환원하여 미세한 금속입자를 얻는 방법이다.This technique is a method of obtaining fine metal particles by hydrogen reduction after finely pulverizing oxide without incorporation of impurities.

그러나 산화물을 얻기 힘든 금속은 제조할 수 없고 수소에 의해 환원되지 않는 금속산화물에서는 금속 미세입자를 얻을 수 없다.However, metals that are difficult to obtain oxides cannot be produced and metal fine particles cannot be obtained from metal oxides that are not reduced by hydrogen.

예를 들어 귀금속계의 금속은 산화물을 얻기가 매우 힘들고, 있다 하더라도 금속가격에 비해 매우 고가이다.Precious metals, for example, are very difficult to obtain oxides, even if they are very expensive compared to metal prices.

또한 알루미늄 산화물, 크롬산화물, 아연산화물, 티타늄산화물 등은 수소에 의해 환원되지 않는다.In addition, aluminum oxide, chromium oxide, zinc oxide, titanium oxide and the like are not reduced by hydrogen.

또 다른 문제점은 수소환원공정에서는 열처리가 필연적인데, 이 단계에서 환원된 미세 금속입자들의 성장과 함께 분쇄되기 어려운 응집체가 형성된다.Another problem is that heat treatment is inevitable in the hydrogen reduction process, and at this stage, aggregates are formed that are difficult to be pulverized with the growth of the reduced fine metal particles.

이러한 응집체의 크기는 대략 수 마이크론 크기이며 복잡형상의 고기능성 제품을 제조하기 위해 분말사출성형 공정에 적용시 문제를 야기한다.These aggregates are approximately a few microns in size and cause problems when applied to powder injection molding processes to produce complex, high performance products.

응집체 내부까지 유기결합제가 침투되지 않고 공간으로 잔류하여 결합제 제거공정시 열에 의한 기체의 팽창으로 성형체의 균열을 가져온다.The organic binder does not penetrate into the agglomerate and remains in the space, resulting in cracking of the molded product due to expansion of the gas by heat during the binder removal process.

또한 침투가 잘되었다 하더라도 응집체 사이에 매우 큰 기공들이 존재하기 때문에 소결공정에서 완전치밀화된 제품을 얻기 힘든 것으로 보고되고 있다.In addition, even though the penetration is good, it is reported that it is difficult to obtain a fully densified product in the sintering process because there are very large pores between the aggregates.

알콜 등을 용매로 하여 볼밀링하면서 유기결합제와 혼합하여 응집체의 분쇄를 유도할 수는 있지만, 볼밀링 에너지는 금속나노입자의 압축에 의한 성장과 볼과 볼밀링 용기에서 불순물이 유입되는 것을 피할 수 없다While ball milling with an alcohol or the like as a solvent can be mixed with an organic binder to induce pulverization of the aggregates, the ball milling energy can be prevented from growth due to the compression of metal nanoparticles and impurities from ball and ball milling vessels. none

그리고 상기 금속 미세입자를 이용하여 분말 사출성형용 피드스톡을 제조하는데 있어, 산화반응을 피하기 위하여 불활성 분위기를 유지하는 챔버내에 7- 200℃로 가열하면서 유기결합제와 금속 미세입자를 혼합하여 피드스톡을 제조하는 국내특허 제0366773호 "금속사출성형용 나노금속분말 피드스톡 제조방법"이 안출된 바 있는데, And in the production of powder injection molding feedstock using the metal microparticles, in order to avoid the oxidation reaction by heating the organic binder and metal microparticles while heating to 7-200 ℃ in a chamber maintaining an inert atmosphere feedstock Korean Patent No. 0366773, "Method of manufacturing nano metal powder feedstock for metal injection molding," has been proposed.

이때, 금속입자가 반응성이 매우 커서 산소와 쉽게 반응한다.At this time, the metal particles are very reactive and easily react with oxygen.

복잡형상의 고기능성 재료를 제조하기 위해서는 분말사출성형 공정이 필연적이다.The powder injection molding process is inevitable in order to produce complex high functional materials.

분말사출성형공정에 적용하기 위해서는 금속미세입자와 유기결합제를 혼합하는 공정이 요구되는데 유기결합제에 유동성을 부여하기 위해 가열을 하게 된다.In order to apply to the powder injection molding process, a process of mixing the metal microparticles and the organic binder is required, and heating is performed to give fluidity to the organic binder.

상온에서도 쉽게 산소와 반응하는 금속 미세입자에 온도까지 상승시키기 때 문에 금속미세입자가 산화된다는 것은 자명하다.It is obvious that metal microparticles are oxidized because they are raised to the temperature of metal microparticles which easily react with oxygen even at room temperature.

따라서 상기 기술은 이러한 문제점을 해결하기 위해서 불활성 분위기로 유지되는 챔버에서 금속 미세입자를 유기결합제와 온도를 상승시켜 혼합하는 방법으로 산화력이 낮은 금속은 산화시키지 않고 피드스톡을 제조할 수 있다.Therefore, in order to solve this problem, the feedstock may be manufactured without oxidizing a metal having low oxidizing power by mixing the metal microparticles with an organic binder in a chamber maintained in an inert atmosphere by raising the temperature.

그러나, 알루미늄 같은 금속은 열역학적으로 산소분압이 약

Figure 112005036290560-pat00001
atm에서 부터 산화되기 때문에 불활성분위기를 이 조건으로 유지하기란 매우 어렵다.However, metals such as aluminum have a thermodynamically low oxygen partial pressure.
Figure 112005036290560-pat00001
It is very difficult to keep the inert atmosphere in this condition because it is oxidized from atm.

또한 모든 공정을 챔버내에서 수작업으로 해야 하기 때문에 작업성이 매우 낮고 장치비가 추가로 들어가는 비용적 문제를 가지고 있었던 실정이었다.In addition, since all the processes have to be done manually in the chamber, the workability is very low and the cost of additional equipment costs is high.

본 발명은 상기와 같은 종래 제반 문제를 해소하기 위하여 발명된 것으로, 특히 소결후 완전치밀화 할 수 있는 응집되지 않는 단분산된 미세한 입자의 분말사출성형공정용 피드스톡을 얻음과 동시에 산화력이 강한 금속 미세입자를 산화시키지 않고 분말사출성형용 피드스톡을 제조케 하고 또한 불활성 기체로 유지되는 별도의 장치없이 금속 미세입자를 산화시키지 않고 분말사출성형용 피드스톡을 제조가능케 함에 그 기술적 과제를 가지는 것이다. The present invention has been invented to solve the conventional problems as described above, in particular to obtain a feedstock for the powder injection molding process of non-agglomerated monodisperse fine particles that can be fully densified after sintering and at the same time has a strong metal oxide The technical problem is to make a powder injection molding feedstock without oxidizing the particles and to produce a powder injection molding feedstock without oxidizing the metal microparticles without a separate device maintained with an inert gas.

이하 본 발명의 구성과 작용을 첨부된 도면과 함께 상세히 설명하자면 아래와 같다.Hereinafter, the configuration and operation of the present invention will be described in detail with the accompanying drawings.

본 발명은 물 또는 유기 용매 중 어느 하나가 담겨진 용기 내에 소량의 알카리 금속 이온을 함유시킴과 동시에 그 내에 두개 이상의 금속전극을 이격배치 한 후 시간이 경과함에 따라 크기와 방향이 주기적으로 변하는 전류를 인가하여 100nm 크기 이하의 금속 미세입자를 제조하는 제 1단계와;The present invention contains a small amount of alkali metal ions in a container containing either water or an organic solvent, and at the same time, after placing two or more metal electrodes therein, applying a current whose size and direction periodically change as time passes. A first step of preparing metal microparticles having a size of 100 nm or less;

상기 제 1단계를 거친 용기내에 분말사출성형용 유기결합제를 첨가하는 제2단계와;A second step of adding an organic binder for powder injection molding into the container which has passed through the first step;

상기 첨가된 유기결합제를 용해시켜 미세입자와 균일하게 혼합하는 제3단계와;Dissolving the added organic binder to uniformly mix with the fine particles;

상기 용기 내부의 물 또는 유기용매를 제거한 다음 그 내의 유기결합제와 미세입자 혼합물을 분쇄하는 제 4단계로 이루어짐을 특징으로 한다.After removing the water or the organic solvent in the vessel, characterized in that the fourth step of pulverizing the organic binder and fine particle mixture therein.

즉, 본 발명은 물이나 유기용매에서 금속 미세입자를 제조한 후 건조하지 않은 상태에서 유기결합제를 혼합시킨 후 건조,분쇄케 하여 분말사출성형용 피드스톡을 제조하는데, 이때 상기 건조는 통상 자연 건조 또는 통상적인 건조실에서 건조케 하고 또 분쇄는 통상적인 분쇄장치를 통해 실시하거나 또는 작업자의 수작업으로 실시케 하며 그 분쇄크기는 제한이 없다.That is, the present invention is to prepare a metal powder particles in water or an organic solvent, and then to dry and pulverize the organic binder in a non-dried state to produce a powder injection molding feedstock, wherein the drying is usually natural drying Or drying in a conventional drying chamber and the grinding is carried out through a conventional grinding device or by a worker by hand and the grinding size is not limited.

이를 보다 상세히 설명하자면,To explain this in more detail,

물이나 유기용매(알콜, 아세톤, MEK(메틸에틸케톤),벤젠, 톨루엔 등)에서 단 분산된 금속 미세입자는 상기 용매에 알칼리 금속을 용해시키고 목적하는 금속을 전극의 형태로 담근 후 시간이 경과함에 따라 크기와 방향이 주기적으로 변하는 전류를 인가하여 제조하게 된다.Metal microparticles monodisperse in water or organic solvents (alcohol, acetone, MEK (methyl ethyl ketone), benzene, toluene, etc.) dissolve the alkali metal in the solvent and immerse the desired metal in the form of an electrode. As a result, it is manufactured by applying a current that varies periodically in size and direction.

이러한 전류는 정형파, 구형파, 삼각파, 톱니파 등의 파형을 갖는다. This current has waveforms such as square waves, square waves, triangle waves, and sawtooth waves.

이러한 파형을 갖는 전류의 에너지에 의해 금속이 이온화되고 이온화된 금속은 전극에서 전자를 받아 환원된 알칼리 금속으로 부터 전자를 받아 환원되어 금속상 미세입자로 변한다.The metal is ionized by the energy of the current having such a waveform and the ionized metal receives electrons from the electrode and receives electrons from the reduced alkali metal to be reduced to metal phase particles.

이렇게 제조된 금속 미세입자들은 용매 중에 분산되어 있기 때문에 강한 응집체를 형성하지 않는다.The metal microparticles thus prepared do not form strong aggregates because they are dispersed in a solvent.

이때 용매에 금속 미세입자가 산화되지 않도록 환원제 역할을 하는 물질을 첨가하거나 수소이온 농도를 높이기 위해서 유기산이 첨가된다.At this time, an organic acid is added to increase the hydrogen ion concentration or to add a substance that serves as a reducing agent so that metal microparticles are not oxidized.

일예로, 3-oxo-L-gulofuranolactone 포함하는 유기산이나 화합물이 있으며, 이에 한정하지는 않는다.For example, there is an organic acid or compound including 3-oxo-L-gulofuranolactone, but is not limited thereto.

상기 전류를 인가하여 제조된 금속 미세입자가 포함된 물질에 각각의 용매에 녹는 유기결합제를 첨가하는 공정, 균일하게 혼합하는 공정, 용매를 증발시키는 공정을 통해서 단분산된 금속미세입자 피드스톡이 제조된다.Monodisperse metal microparticle feedstock is prepared by adding an organic binder soluble in each solvent to a material containing the metal microparticles prepared by applying the current, uniformly mixing, and evaporating the solvent. do.

첨가되는 유기결합제는 분말사출성형공정에 통상적으로 사용되는 한가지 이상의 유기물을 사용할 수 있으며, 그 예로 폴리에틸렌, 폴리비닐알콜, 스테아린산, 왁스류 등이 있으며 통상적으로 사용되는 유기결합제를 사용할 수 있다.The organic binder to be added may be one or more organic materials commonly used in powder injection molding processes. Examples of the organic binder may include polyethylene, polyvinyl alcohol, stearic acid, waxes, and the like.

이러한 유기결합제는 물 또는 유기용매가 제거되면 본래의 유기물질로 환원되어 금속 미세입자와 혼합되어 있는 상태가 된다.When the organic binder is removed from water or the organic solvent, the organic binder is reduced to the original organic material and mixed with the metal microparticles.

여러 금속입자가 사용되는 합금이나 복합분말을 얻기 위해서 상기 전극을 제조,목적하는 두가지 이상의 금속으로 사용하거나, 각각 금속 입자들을 제조한 후 금속 미세입자와 용매가 혼재되어 있는 상태에서 두가지 이상의 금속입자를 혼합하고 유기결합제를 첨가하여 합금 또는 복합분말을 얻을 수 있다.In order to obtain an alloy or composite powder in which several metal particles are used, the electrode may be used as two or more metals to manufacture and target the electrode, or two or more metal particles may be used in a state in which metal microparticles and a solvent are mixed after preparing the metal particles. The mixture or the organic binder can be added to obtain an alloy or composite powder.

또한 산화물 입자와 금속입자가 혼합된 피드스톡을 얻기 위해서 산화물 입자는 상기 물 이나 유기용매에 환원제 또는 유기산을 첨가하지 않고 제조하고, 환원제나 유기산을 첨가하여 제조한 또 다른 금속 미세입자를 제조한 후 상기 두 가지 이상의 미세입자를 혼합하고 유기결합제를 첨가하여 피드스톡을 제조할 수 있다.In addition, in order to obtain a feedstock in which the oxide particles and the metal particles are mixed, the oxide particles are prepared without adding a reducing agent or an organic acid to the water or the organic solvent, and another metal microparticle is prepared by adding a reducing agent or an organic acid. Feedstock may be prepared by mixing the two or more microparticles and adding an organic binder.

이상과 같이 설명한 본 발명을 실시예를 통해 보다 자세히 살펴 보면,Looking at the present invention described above in more detail through examples,

실시예 1Example 1

알콜에 sodium acetate를 용해시킨 후, 수소이온 농도를 높이기 위해After dissolving sodium acetate in alcohol, to increase hydrogen ion concentration

3-oxo-L-gulofuranolactone를 용해시켜 용매를 준비한다.Prepare a solvent by dissolving 3-oxo-L-gulofuranolactone.

이와 같이 준비된 용매에 두개의 알루미늄(Al) 전극을 담근 후 정형파 전류를 인가한다.After dipping two aluminum (Al) electrodes in the solvent thus prepared, a square wave current is applied.

알콜에서 알루미늄 입자가 제조되면 스테아린산, 폴리에틸렌을 첨가하여 교반하면서 약 70℃로 가열하여 첨가된 유기결합제를 녹인다.When aluminum particles are prepared from alcohol, stearic acid and polyethylene are added and heated to about 70 ° C. while stirring to dissolve the added organic binder.

충분히 교반한 후 진공건조기에서 알콜성분을 제거하여 알루미늄 미세입자 피드스톡을 제조한다.After stirring sufficiently, the alcohol component is removed from the vacuum dryer to prepare aluminum fine particle feedstock.

도 1은 실시예 1에 따라 제조된 알루미늄 미세입자를 투과전자현미경으로 관찰한 사진이다.1 is a photograph observing the aluminum microparticles prepared according to Example 1 with a transmission electron microscope.

알루미늄미세입자의 크기는 약5nm이다.The size of the aluminum microparticles is about 5 nm.

도 2는 실시예 1에 따라 제조된 알루미늄 피드스톡의 외형사진이다.2 is a photograph of the appearance of the aluminum feedstock prepared according to Example 1.

도 3은 실시예 1에 따라 제조된 알루미늄 미세입자 피드스톡의 x선 회절분석 결과이다.3 is an X-ray diffraction analysis result of the aluminum microparticle feedstock prepared according to Example 1.

알루미늄이 산화되지 않고 금속상 알루미늄으로 존재한다는 것을 알 수 있다.It can be seen that aluminum is present as metallic aluminum without being oxidized.

이상과 같이 본 발명은 완전치밀화가 가능한 100nm 크기 이하의 한가지 이상의 금속미세입자 또는 한가지 이상의 금속 산화물과 금속미세입자로 이루어진 분말사출성형용 피드스톡의 제조가 가능하며 또한 별도의 장치없이 산화반응을 배제하면서 분말사출성형용 금속미세입자 피드스톡을 제조할 수 있다.As described above, the present invention enables the production of one or more metal microparticles having a size of 100 nm or less, or powder injection molding feedstock composed of one or more metal oxides and metal microparticles, which can be fully densified, and excludes oxidation reaction without a separate device. While powder injection molding metal microparticle feedstock can be prepared.

그리고 미세입자의 산화를 완전 억제하여 모든 합금 또는 복합계의 금속 미세입자로 이루어진 분말사출성형용 피드스톡 제조가 가능하여 복잡형상의 고기능성 소재에 대한 적용분야가 무궁무진한 이점을 가진다.And it is possible to manufacture a powder injection molding feedstock made of all alloys or composite metal microparticles by completely inhibiting the oxidation of the microparticles has an infinite number of applications for the application of complex high-performance materials.

Claims (5)

물 또는 유기 용매 중 어느 하나가 담겨진 용기 내에 소량의 알카리 금속 이온을 함유시킴과 동시에 그 내에 두개 이상의 금속전극을 이격배치 한 후 시간이 경과함에 따라 크기와 방향이 주기적으로 변하는 전류를 인가하여 100nm 크기 이하의 금속 미세입자를 제조하는 제 1단계와;It contains a small amount of alkali metal ions in a container containing either water or an organic solvent, and at least two metal electrodes are spaced apart from each other, and then a current having a size and direction periodically changed over time to apply a current of 100 nm. A first step of manufacturing the following metal microparticles; 상기 제 1단계를 거친 용기내에서 분말사출성형용 유기결합제를 첨가하는 제2단계와;A second step of adding an organic binder for injection molding in a container which has undergone the first step; 상기 첨가된 유기결합제를 용해시켜 미세입자와 균일하게 혼합하는 제3단계와;Dissolving the added organic binder to uniformly mix with the fine particles; 상기 용기 내부의 물 또는 유기용매를 제거한 다음 그 내의 유기결합제와 미세입자 혼합물을 분쇄하는 제 4단계로 이루어짐을 특징으로 하는 분말사출성형용 금속 미세입자 피드스톡의 제조방법.Removing the water or the organic solvent in the container and then pulverizing the organic binder and the fine particle mixture therein. 제 1항에 있어서,The method of claim 1, 상기 제1단계 중, 상기 알칼리 금속 이온을 함유시키는 공정은, 상기 물 또는 유기 용매 중 어느 하나에 알카리 금속 이온이 존재하도록 Na, Li, K 을 포함하는 수산화물이나 산화물, 화합물을 용해시켜 이루어지는 것을 특징으로 하는 분말사출성형용 금속 미세입자 피드스톡의 제조방법.In the first step, the step of containing the alkali metal ions is characterized by dissolving a hydroxide, oxide, or compound containing Na, Li, K so that alkali metal ions are present in any one of the water or organic solvent. Method for producing a metal microparticle feedstock for powder injection molding. 제 1항에 있어서,The method of claim 1, 상기 1단계 중, 상기 알칼리 금속 이온을 함유시키는 공정의 전 공정 또는 후 공정 중 적어도 어느 한 공정으로, 상기 물 또는 유기 용매 중 어느 하나에 금속 미세입자의 산화를 억제하기 위한 환원제 또는 유기산 중 어느 하나를 첨가하는 것을 특징으로 하는 분말사출성형용 금속 미세입자 피드스톡의 제조방법.Any one of a reducing agent or an organic acid for inhibiting oxidation of the metal microparticles in any one of the water or the organic solvent in at least one of the steps before or after the step of containing the alkali metal ion in the step 1 Method for producing a powder injection molding metal microparticle feedstock, characterized in that the addition of. 제 1항에 있어서, The method of claim 1, 상기 제 1단계를 통해 얻은 금속미세입자에 환원제 또는 유기산을 첨가하여 제조한 또 다른 금속 미세입자를 혼합케 함을 특징으로 하는 분말사출성형용 금속 미세입자 피드스톡의 제조방법.Method for producing a powder injection molding metal microparticle feedstock, characterized in that for mixing the other metal microparticles prepared by adding a reducing agent or an organic acid to the metal microparticles obtained through the first step. 제 3항에 있어서,The method of claim 3, 상기 환원제나 유기산은 3-oxo-L-gulofuranolactone, 2-Hydroxy-1,2,3-propanetricarboxylic acid을 포함하는 유기물질이나 화합물을 사용하는 것을 특징으로 하는 분말사출성형용 금속 미세입자 피드스톡의 제조방법.The reducing agent or the organic acid is prepared of the powder injection molding metal microparticle feedstock, characterized in that using the organic material or compound containing 3-oxo-L-gulofuranolactone, 2-Hydroxy-1,2,3-propanetricarboxylic acid Way.
KR1020050060092A 2005-07-05 2005-07-05 Manufacturing method of metal fine particles-feedstock for powder injection molding KR100707855B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020050060092A KR100707855B1 (en) 2005-07-05 2005-07-05 Manufacturing method of metal fine particles-feedstock for powder injection molding
PCT/KR2006/002591 WO2007004836A1 (en) 2005-07-05 2006-07-03 A manufacturing method of metal fine particles feedstock for powder injection molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050060092A KR100707855B1 (en) 2005-07-05 2005-07-05 Manufacturing method of metal fine particles-feedstock for powder injection molding

Publications (2)

Publication Number Publication Date
KR20070005992A KR20070005992A (en) 2007-01-11
KR100707855B1 true KR100707855B1 (en) 2007-04-17

Family

ID=37604663

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050060092A KR100707855B1 (en) 2005-07-05 2005-07-05 Manufacturing method of metal fine particles-feedstock for powder injection molding

Country Status (2)

Country Link
KR (1) KR100707855B1 (en)
WO (1) WO2007004836A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103874554B (en) * 2011-08-02 2015-12-16 Gkn金属烧结控股有限责任公司 For manufacturing the binder combination of shaped piece by injection moulding process
WO2022139186A1 (en) * 2020-12-21 2022-06-30 코오롱플라스틱 주식회사 Method for preparing feedstock for powder injection molding

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0748166A (en) * 1993-08-06 1995-02-21 Murata Mfg Co Ltd Composition for injection molding
KR100366773B1 (en) 2000-03-29 2003-01-09 이재성 Manufacturing method of nano-metal feedstock for metal injection molding
KR20050059280A (en) * 2002-10-29 2005-06-17 바스프 악티엔게젤샤프트 Metal powder injection molding material and metal powder injection molding method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0686608B2 (en) * 1987-12-14 1994-11-02 川崎製鉄株式会社 Method for producing iron sintered body by metal powder injection molding

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0748166A (en) * 1993-08-06 1995-02-21 Murata Mfg Co Ltd Composition for injection molding
KR100366773B1 (en) 2000-03-29 2003-01-09 이재성 Manufacturing method of nano-metal feedstock for metal injection molding
KR20050059280A (en) * 2002-10-29 2005-06-17 바스프 악티엔게젤샤프트 Metal powder injection molding material and metal powder injection molding method

Also Published As

Publication number Publication date
WO2007004836A1 (en) 2007-01-11
KR20070005992A (en) 2007-01-11

Similar Documents

Publication Publication Date Title
CN109369312B (en) Core-shell structure thermite and preparation method thereof
WO2020136864A1 (en) Mxene particulate material, slurry, secondary battery, transparent electrode, and method for producing mxene particulate material
JP5520210B2 (en) Air electrode material powder for solid oxide fuel cell and method for producing the same
JP2005530048A (en) Method for producing high-purity metal nanopowder and nanopowder produced by this method
CN110372036B (en) Ternary transition metal oxide powder and preparation method thereof
Chen et al. A foaming esterification sol–gel route for the synthesis of magnesia–yttria nanocomposites
US9309119B2 (en) Producing method of metal fine particles or metal oxide fine particles, metal fine particles or metal oxide fine particles, and metal-containing paste, and metal film or metal oxide film
KR100707855B1 (en) Manufacturing method of metal fine particles-feedstock for powder injection molding
WO2014077198A1 (en) NbO2 SINTERED BODY, SPUTTERING TARGET COMPRISING SINTERED BODY AND METHOD OF PRODUCING NbO2 SINTERED BODY
CN111836915A (en) Fe-Pt-oxide-BN sintered body for sputtering target
Sekino et al. Reduction and Sintering of Alumina/Tungsten Nanocomposites Powder Processing, Reduction Behavior and Microstructural Characterization
JP2011042537A (en) Chalcogen compound powder, chalcogen compound paste, and process for producing chalcogen compound powder
RU2681860C1 (en) Method of obtaining high-temperature thermoelectric material based on calcium cobaltite
KR101515065B1 (en) Method for producing oxide dispersion mixed powder using polyvinyl alcohol and oxide dispersion mixed powder thereby
US11090722B2 (en) Method for preparing nickel nanopowders and method for making nickel nanopowders into paste
CN106623976A (en) Preparation method of graphene-metal-based bulk composite material
Solodkyi et al. Effect of grain size on the electrical properties of samaria-doped ceria solid electrolyte
US20150140475A1 (en) Process for producing anode material for solid oxide fuel cell
CN107032783B (en) λ-(MxTi1-x)3O5Powder and preparation method thereof
RU2803865C1 (en) Method for obtaining a nickel-graphene nanocomposite with increased plasticity
JP3748084B2 (en) Method for producing NiO / YSZ composite powder
JPH0379401B2 (en)
WO2020203076A1 (en) Silver-palladium alloy powder and use thereof
JPH0986934A (en) Production of nio/ysz complex powder
KR101963876B1 (en) Nickel oxide nanoparticle manufacturing method

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120327

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130401

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140723

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160411

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170410

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20180409

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20190409

Year of fee payment: 13