KR100695821B1 - Liminated absorber for absorbing refrigerator - Google Patents

Liminated absorber for absorbing refrigerator Download PDF

Info

Publication number
KR100695821B1
KR100695821B1 KR1020060030229A KR20060030229A KR100695821B1 KR 100695821 B1 KR100695821 B1 KR 100695821B1 KR 1020060030229 A KR1020060030229 A KR 1020060030229A KR 20060030229 A KR20060030229 A KR 20060030229A KR 100695821 B1 KR100695821 B1 KR 100695821B1
Authority
KR
South Korea
Prior art keywords
adsorption
heat
freezer
pipes
stacked
Prior art date
Application number
KR1020060030229A
Other languages
Korean (ko)
Inventor
권오경
윤재호
김종하
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to KR1020060030229A priority Critical patent/KR100695821B1/en
Application granted granted Critical
Publication of KR100695821B1 publication Critical patent/KR100695821B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/022Evaporators with plate-like or laminated elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/026Evaporators specially adapted for sorption type systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/08Fins with openings, e.g. louvers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Abstract

A laminated absorber for an absorption type refrigerator is provided to improve turbulent flow of cooling water and hot water flowing through porous tubes aligned in the grid shape, thereby improving heat conductivity. A laminated absorber for an absorption type refrigerator includes a pair of head pipes facing each other and respectively having an inlet(20a) and an outlet(30a) for heat media. A plurality of porous tubes(40) aligned between the head pipes in the shape of grid with a predetermined interval for the movement of the heat media between the head pipes through a plurality of heat media paths. Heat exchange elements such as aluminum fins are positioned in each grid space of the porous tubes for carrying out heat exchange with the heat media in the heat media paths.

Description

흡착식 냉동기용 적층형 흡착탑 {Liminated absorber for absorbing refrigerator}Stacked adsorption tower for adsorption type refrigerator {Liminated absorber for absorbing refrigerator}

본 명세서에서 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술하는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어서 해석되어서는 아니된다.The following drawings, which are attached in this specification, illustrate preferred embodiments of the present invention, and together with the detailed description of the present invention, serve to further understand the technical spirit of the present invention. It should not be construed as limited to.

도 1 내지 도 4는 종래 흡착탑에 적용되는 열교환기의 다양한 형태를 예시한 도면.1 to 4 illustrate various forms of heat exchangers applied to conventional adsorption towers.

도 5는 일반적인 흡착식 냉동기의 흡착 및 탈착 상태를 나타내는 작동모드 예시도.Figure 5 is an exemplary operation mode showing the adsorption and desorption state of the general adsorption type refrigerator.

도 6은 본 발명에 따른 적층형 흡착탑의 구성도.Figure 6 is a block diagram of a stacked adsorption tower according to the present invention.

도 7은 도 6의 'A'부 확대도.7 is an enlarged view of a portion 'A' of FIG. 6.

도 8은 본 발명의 적용되는 헤드파이프와 다공튜브의 접속 상태를 보여주는 도면.8 is a view showing a connection state of the head pipe and the porous tube to which the present invention is applied.

도 9는 본 발명의 적층형 흡착탑에 적용되는 알루미늄핀의 예시도.Figure 9 is an illustration of an aluminum fin applied to the stacked adsorption tower of the present invention.

도 10은 본 발명의 적층형 흡착탑에 적용되는 옵셋스트립핀의 예시도.10 is an exemplary view of an offset strip pin applied to the stacked adsorption tower of the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

20,30: 헤드파이프 20a: 열유체입구20,30: head pipe 20a: thermal fluid inlet

20b: 열유체출구 21,31: 분배관20b: heat fluid outlet 21, 31: distribution pipe

40: 다공튜브 41: 열유체통로40: porous tube 41: heat fluid passage

50: 알루미늄핀 51: 루버50: aluminum fin 51: louver

52: 옵셋스트립핀 52: offset strip pin

본 발명은 흡착식 냉동기용 흡착탑에 관한 것으로, 특히 냉각수 및 온수의 난류성을 좋게 하고, 균일한 열전달 성능을 확보하며, 흡착제의 밀봉작업이 용이하고, 냉매증기가 원활하게 흐를 수 있도록 한 흡착식 냉동기용 적층형 흡착탑에 관한 것이다.The present invention relates to an adsorption tower for adsorption freezers, in particular, to improve the turbulence of cooling water and hot water, to ensure uniform heat transfer performance, to facilitate the sealing operation of the adsorbent, and to allow the refrigerant vapor to flow smoothly. It relates to an adsorption tower.

일반적으로 흡착식 냉동기는 흡수식 냉동기와 더불어 비프레온화와 폐열이라는 관점에서 주목을 받고 있는 냉동방식이다. 냉동원리는 흡수식과 비슷한데, 흡수기 대신 흡착탑이 있으며, 이 흡착탑에는 흡착제가 고정되어 있고 냉매만 순환하게 되어 있다.In general, the adsorption freezer is a freezing method that has attracted attention in terms of non-freonization and waste heat in addition to the absorption freezer. The freezing principle is similar to the absorption type, in which there is an adsorption tower instead of an adsorber, in which an adsorbent is fixed and only a refrigerant is circulated.

일예로 흡착제로 실리카겔을, 냉매로서 물을 작동매체로 하는 흡착식 냉동기는 각종 발전소 및 공장에서 버려지는 폐열(60∼95℃)을 재활용하여 실내의 냉방을 행할 수 있어 환경친화적이며, 미이용에너지 활용 및 국가 에너지절약 차원에서 활 발한 연구가 요구되어 진다.For example, the adsorption-type freezer, which uses silica gel as an adsorbent and water as a working medium, can recycle the waste heat (60 to 95 ° C) discarded in various power plants and factories, thereby cooling the room and being environmentally friendly. Active research is needed at the national energy conservation level.

그러나 흡착식 냉동기는 아직까지 시스템의 효율이 낮아서 국내에서는 전혀 보급되지 못하고 있는 실정이다. 흡착식 냉동기의 구성요소는 2개의 흡착탑, 증발기, 응축기 등으로 구성되어 있으며 이 중에서 흡착탑은 흡착식 냉동기 중에서 가장 많은 체적을 차지하고 성능에 가장 큰 영향을 미치는 요소이다.However, the adsorption chiller has not yet been widely distributed in Korea due to the low efficiency of the system. The adsorption chiller consists of two adsorption towers, an evaporator, and a condenser. Among them, the adsorption tower occupies the largest volume and is the most influential factor in performance.

흡착식 냉동기의 원리를 도 5에서 간단히 살펴보면, 2개의 흡착탑(HEX1,HEX2), 증발기(EVA), 응축기(COND) 등으로 구성되어 있으며, 4개의 작동모드(MODE A~D)를 통하여 밸브의 조작과 작동시간의 조작으로 증발기에서 냉수(일반적으로 7℃)를 얻어내어 실내의 냉방을 할 수 있는 환경친화적인 냉방시스템이다. 5, the principle of the adsorption-type freezer is composed of two adsorption towers (HEX1, HEX2), evaporator (EVA), condenser (COND), etc., the operation of the valve through four operating modes (MODE A ~ D) It is an environmentally friendly cooling system that can cool the room by obtaining cold water (generally 7 ℃) from the evaporator by the operation of overtime.

즉, 냉매가 증발기(EVA)에 분사되어 증발이 일어나고, 이때의 증발잠열에 의해 냉수(Chilled water)가 얻어진다. 증발된 냉매증기는 제1흡착탑(HEX1)에 흡착되고 이때 냉각수(Cooling water) 흡착열을 제거하여 주는 흡착사이클을 이루게 된다.That is, the refrigerant is injected into the evaporator (EVA) to cause evaporation, and chilled water is obtained by the latent heat of evaporation at this time. The evaporated refrigerant vapor is adsorbed to the first adsorption tower (HEX1) to form an adsorption cycle to remove the cooling water (heating) adsorption heat.

이때 제2흡착탑(HEX2)에서는 열매체로 가열되어 냉매증기가 이탈되는 탈착이 이루어져 응축기(COND)로 공급되고 냉각수에 의해 응축되어 다시 증발기로 공급된다.At this time, the second adsorption tower (HEX2) is heated by a heat medium to desorb the refrigerant vapor is removed is supplied to the condenser (COND), condensed by the cooling water is supplied to the evaporator again.

여기서 구동원으로 사용되는 온수(Hot water)는 발전소 및 각종 공장에서 버려지는 폐열을 활용할 수가 있으며 전기 및 가스를 전혀 사용하지 않고 냉매로서 물을 사용하므로 이산화탄소 등의 배출염려가 전혀 없다.Here, hot water used as a driving source can utilize waste heat discarded in power plants and various factories, and there is no fear of emission of carbon dioxide since it uses water as a refrigerant without using electricity and gas at all.

한편, 흡착식 냉동기의 선행 기술들을 검토해 보면 흡착탑으로 사용되고 있 는 열교환기의 형상으로 도 1과 같은 Shell and tube type, 도 2와 같은 평 파이프 타입(Flat-pipe type), 도 3과 같은 평 핀 타입(Plate-fin type), 도 4와 같은 선회 플레이트 타입(Spiral plate type)이 적용되고 있다. Meanwhile, if the prior art of the adsorption type refrigerator is examined, the shape of the heat exchanger used as the adsorption tower may be a shell and tube type as shown in FIG. 1, a flat-pipe type as shown in FIG. 2, and a flat fin type as shown in FIG. 3. (Plate-fin type), the spiral plate type as shown in Figure 4 is applied.

그러나 이러한 형상과 구조들은 냉동공조분야에서 다양하게 사용하고 있어 구조가 간단하고 값이 싸다는 장점이 있으나, 흡착제와 열전달 튜브 핀 사이의 열저항이 대단히 크고, 냉매증기의 유로확보가 곤란하여 시스템의 효율을 올리는데 한계가 있다.However, these shapes and structures are variously used in the refrigeration and air-conditioning field. However, the structure and structure are simple and inexpensive. However, the heat resistance between the adsorbent and the heat transfer tube fin is very large, and the flow path of the refrigerant vapor is difficult to secure. There is a limit to increase the efficiency.

따라서 본 발명은 상기와 같은 제반적인 사정을 감안하여 창출된 것으로, 냉각수 및 온수의 난류성을 좋게 하고, 균일한 열전달 성능을 확보하며, 흡착제의 밀봉작업이 용이하고, 냉매증기가 원활하게 흐를 수 있도록 한 흡착식 냉동기용 적층형 흡착탑을 제공함에 그 목적이 있다.Therefore, the present invention was created in view of the above-mentioned circumstances, and improves the turbulence of cooling water and hot water, ensures uniform heat transfer performance, facilitates sealing of the adsorbent, and allows the refrigerant vapor to flow smoothly. It is an object to provide a stacked adsorption tower for an adsorption-type refrigerator.

상기의 목적을 달성하기 위한 본 발명의 구체적인 수단은 흡착식 냉동기에 사용되는 흡착탑에 있어서, 상호 마주보도록 대향되게 배치되고, 각기 열유체 입,출구를 갖는 한쌍의 헤드파이프와; 상기 한쌍의 헤드파이프 사이에 일정 간격을 두고 격자 형태로 배치되고, 일측 헤드파이프로부터 유입된 열유체를 다수의 열유체통로를 통하여 타측 헤드파이프로 흘려보내는 다수의 다공튜브와; 상기 다공튜브들의 이웃한 격자 공간에 각기 위치되어 상기 열유체통로를 흐르는 열유체와 열교환을 이루는 열교환수단이 포함되어 달성된다.Specific means of the present invention for achieving the above object, in the adsorption tower used in the adsorption type refrigerator, a pair of head pipes disposed to face each other and having a heat fluid inlet and outlet; A plurality of porous tubes disposed in a lattice form at predetermined intervals between the pair of head pipes, and flowing heat fluid introduced from one head pipe to the other head pipe through a plurality of heat fluid passages; Heat exchange means for achieving heat exchange with the heat fluid flowing through the heat fluid passage, respectively located in the adjacent lattice space of the porous tubes is achieved.

또한 본 발명에 따르면, 상기 한쌍의 헤드파이프는 각기 열유체 입,출구와 연통되어 나란하게 분기된 다수의 분배관이 각기 구비되고, 각 분배관에는 다공튜브와 접속되기 위한 접속구멍이 형성된다. 상기 열유체통로는 사각단면 형태로서 다공튜브에 병열로 배치된 것을 특징으로 한다.Further, according to the present invention, the pair of head pipes are each provided with a plurality of distribution pipes branched side by side in communication with each of the heat fluid inlet and outlet, and each of the distribution pipes is formed with connection holes for connecting with the porous tube. The heat fluid passage is characterized in that the rectangular cross-section is arranged in parallel to the porous tube.

또한 본 발명에 따르면, 상기 열교환수단은 박판으로 제작된 파형 형태로서 상기 다공튜브의 대향하는 벽면에 부착된 알루미늄 핀으로 구성된다. 바람직하게 알루미늄핀의 표면에는 공기흐름과의 마찰을 높이기 위한 다수의 루버나 또는 옵셋스트립핀이 더 구성될 수 있다.In addition, according to the present invention, the heat exchange means is composed of aluminum fins attached to the opposite wall surface of the porous tube in the form of a waveform made of thin plate. Preferably, a plurality of louvers or offset strip pins may be further configured on the surface of the aluminum fins to increase friction with the air flow.

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 6은 본 발명에 따른 적층형 흡착탑의 구성도이고, 도 7은 도 6의 'A'부 확대도이고, 도 8은 본 발명의 적용되는 헤드파이프와 다공튜브의 접속 상태를 보여주는 도면이고, 도 9과 도 10은 본 발명의 적층형 흡착탑에 적용되는 알루미늄 핀과 옵셋스트립핀의 예시도이다.6 is a configuration diagram of a stacked adsorption tower according to the present invention, FIG. 7 is an enlarged view of a portion 'A' of FIG. 6, and FIG. 8 is a view illustrating a connection state of a head pipe and a porous tube to which the present invention is applied. 9 and FIG. 10 are exemplary views of aluminum fins and offset strip fins applied to the stacked adsorption tower of the present invention.

도 1에 흡착식 냉동기에 사용되는 적층형 흡착탑(10)이 예시되어 있다.A stacked adsorption tower 10 for use in an adsorption freezer is illustrated in FIG. 1.

도면 부호 '20','30'은 흡착탑(10)에 포함된 것으로 상호 마주보도록 대향되게 배치되고 각기 열유체 입,출구(20a,30a)를 갖는 한쌍의 '헤드파이프'이다.Reference numerals '20' and '30' are included in the adsorption tower 10 and are disposed to face each other, and are a pair of 'head pipes' having thermal fluid inlets and outlets 20a and 30a, respectively.

상기 한쌍의 헤드파이프(20,30)는 금속재로서 각기 열유체 입,출구(20a,30a) 와 연통되어 나란하게 분기된 다수의 분배관(21,31)이 구비되고, 각 분배관(21,31)에는 다공튜브(40)와 접속되기 위해 도 8과 같이 일정 간격마다 접속구멍(21a,31a)이 형성되어 있다.The pair of head pipes 20 and 30 are made of metal and are provided with a plurality of distribution pipes 21 and 31 branched side by side in communication with the thermal fluid inlets and outlets 20a and 30a, respectively. 31, connection holes 21a and 31a are formed at regular intervals as shown in FIG. 8 to be connected to the porous tube 40. As shown in FIG.

상기 한쌍의 헤드파이프(20,30) 사이에는 도 6 및 도 7과 같이 일정 간격을 두고 격자 형태로 다공튜브(40)가 배치되어 있다.Between the pair of head pipes 20 and 30, the porous tube 40 is disposed in a lattice form at regular intervals as shown in FIGS.

상기 다공튜브(40)는 일측 헤드파이프(20)로부터 유입된 열유체를 타측 헤드파이프(30)로 흘려보내기 위해 다수의 열유체통로(41)가 형성되어 있다. 상기 열유체통로(41)는 본 실시예에서 전도를 극대화하기 위해 사각단면 형태를 가지고 병열로 촘촘하게 형성되어 있다.The porous tube 40 has a plurality of heat fluid passages 41 are formed in order to flow the heat fluid introduced from one head pipe 20 to the other head pipe 30. The heat fluid passage 41 has a square cross-sectional shape and is densely formed in parallel to maximize conduction in the present embodiment.

본 발명에서 열유체통로(41)의 단면 구성은 예시된 것에 한정되는 것은 아니다.In the present invention, the cross-sectional configuration of the heat fluid passage 41 is not limited to the one illustrated.

상기 다공튜브(40)들의 이웃한 공간에는 상기 열유체통로(41)를 흐르는 열유체와의 열교환을 이루기 위한 열교환수단으로 알루미늄핀(50)이 배치되어 있다.In the adjacent space of the porous tubes 40, the aluminum fin 50 is arranged as a heat exchange means for heat exchange with the heat fluid flowing through the heat fluid passage 41.

상기 알루미늄핀(50)은 얇은 박판으로 제작된 파형 형태로서 상기 다공튜브(40)의 대향하는 벽면에 부착되어 있다. 여기서 파형이란 지그재그 형태로서 예로 S자 또는 Z자 형태로 나타날 수 있다.The aluminum fin 50 is a wave form made of a thin thin plate is attached to the opposing wall surface of the porous tube 40. Here, the waveform may be in a zigzag form, for example, in the form of S or Z.

상기 알루미늄핀(50)의 표면에는 바람직하게 도 9와 같이 공기 흐름의 경계층을 깨뜨리면서 공기의 흐름을 방해하여 마찰계수를 높여주는 다수의 루버(51)가 더 형성될 수 있으며, 도 10에서와 같이 상기 루버(51)가 아닌 옵셋스트립핀(52)으로도 형성될 수 있음은 물론이다.9, a plurality of louvers 51 may be further formed on the surface of the aluminum fin 50 to increase the friction coefficient by interrupting the flow of air while breaking the boundary layer of the air flow as shown in FIG. 9. Likewise, it may be formed of the offset strip pin 52 instead of the louver 51.

이와 같이 구성된 적층형 흡착탑(10)은 다공튜브(40)들의 사이사이에 배치된 알루미늄핀(50)의 틈새에 흡착제(미도시 됨)가 충진된다.The stacked adsorption tower 10 configured as described above is filled with an adsorbent (not shown) in the gap between the aluminum fins 50 disposed between the porous tubes 40.

본 실시예에서 흡착제는 저온폐열을 회수하여 사용할 수 있도록 80℃ 정도의 열원만 있으면 탈착이 가능한 실리카 겔(Silica Gel)을 사용하였다. 본 발명은 이에 한정되는 것은 탈착온도에 따라 제올라이트, 활성탄 등을 적용할 수 있음은 물론이다.In this embodiment, the adsorbent used a silica gel that can be desorbed if only a heat source of about 80 ° C. was used to recover the low temperature waste heat. The present invention is limited to this, of course, can be applied to zeolite, activated carbon, etc. according to the desorption temperature.

이와 같이 구성된 흡착식 냉동기용 흡착탑(10)의 작용을 설명한다.The operation of the adsorption tower 10 for the adsorption-type freezer configured as described above will be described.

본 발명의 적층형 흡착탑(10)을 적용한 흡착 및 탈착 사이클에 대한 설명은 도 5에 도시한 사이클 모드를 참조한다.Description of the adsorption and desorption cycles to which the stacked adsorption tower 10 of the present invention is applied refers to the cycle mode shown in FIG. 5.

<흡착 사이클시><At adsorption cycle>

먼저, 도 5와 같이 증발기(EVA) 내에 냉매(물)를 분사하면 증발잠열에 의해 냉수(Chilled water)가 얻어지고, 증발된 냉매증기는 2개의 흡착탑(10) 중 어느 하나의 다공튜브(40)의 사이사이에 충진된 흡착제에 흡착되어 증발이 계속 진행된다.First, when the refrigerant (water) is injected into the evaporator (EVA) as shown in FIG. 5, chilled water is obtained by latent heat of evaporation, and the evaporated refrigerant vapor is the porous tube 40 of any one of the two adsorption towers 10. Adsorption is carried out by adsorbent filled between) and evaporation continues.

이때 해당 흡착탑(10)에서는 냉각수가 하부측 헤드파이프(20)의 열유체 입구(20a)를 통하여 다수의 분배관(21)으로 공급된다. 분배관(21)으로 유입된 냉각수는 다공튜브(40)의 다수의 열유체통로(41)를 경유한 후 상부측 헤드파이프(30)의 분배관(31)을 거쳐 열유체 출구(30a)로 배출된다.At this time, the adsorption column 10 is supplied to the plurality of distribution pipes 21 through the heat fluid inlet 20a of the lower head pipe 20. The coolant introduced into the distribution pipe 21 passes through the plurality of thermal fluid passages 41 of the porous tube 40 and then through the distribution pipe 31 of the upper head pipe 30 to the thermal fluid outlet 30a. Discharged.

이때 다공튜브(40)의 벽면에 접촉되어 있는 알루미늄 핀(50)에서 열전도가 일어나 흡착열을 제거하여 줌으로써, 다공튜브(40)의 사이사이 즉 알루미늄 핀(50)에 충진된 흡착제의 흡착이 활발하게 이루어진다.At this time, heat conduction occurs in the aluminum fin 50 in contact with the wall of the porous tube 40 to remove the heat of adsorption, thereby actively adsorbing the adsorbent filled between the porous tubes 40, that is, the aluminum fin 50. Is done.

이와 같이 흡착이 계속 진행되어 평형상태가 되면 흡착은 더 이상 진행되지 않으므로 해당 흡착기(10)는 탈착 사이클로 전환한다.As the adsorption proceeds in an equilibrium state as described above, the adsorption no longer proceeds, so that the adsorber 10 switches to a desorption cycle.

<탈착 사이클시><At the time of desorption cycle>

탈착은 흡착이 완료된 흡착탑(10)을 열매체로 가열하여 냉매증기를 이탈시킴으로써 이루어진다. Desorption is performed by heating the adsorption tower 10 where adsorption is completed with a heat medium to leave the refrigerant vapor.

본 실시예에서는 각종 발전소 및 공장에서 버려지는 폐열을 열매체로 이용한다.In this embodiment, waste heat discarded in various power plants and factories is used as a heat medium.

알루미늄핀(50) 내에 충진된 흡착제에서 탈착된 냉매증기는 응축기(COND)로 보내지고, 응축기(COND)에서 냉각수에 의해 응축되어 다시 증발기(EVA)로 공급된다.The refrigerant vapor desorbed from the adsorbent packed in the aluminum fin 50 is sent to the condenser COND, condensed by the cooling water in the condenser COND, and supplied to the evaporator EVA again.

이와 같이 흡착식 냉동기용 적층형 흡착탑(10)은 다공튜브(40)에 다수의 열유체통로(41)가 일정 간격으로 촘촘하게 형성되어 있어 냉각수 및 온수의 난류효과를 좋게 하여 열전달효율을 촉진시킬 수 있다.As described above, the stacked suction tower 10 for the adsorption-type freezer has a plurality of heat fluid passages 41 formed in the porous tube 40 at regular intervals to improve the turbulent effect of the cooling water and the hot water, thereby promoting heat transfer efficiency.

또한 일정한 간격으로 다수 분배관(21,31)이 배치된 헤드파이프(20,30)를 가지므로균일한 열전달 성능을 얻을 수 있다.In addition, since the plurality of distribution pipes 21 and 31 have head pipes 20 and 30 arranged at regular intervals, uniform heat transfer performance can be obtained.

또한 다공튜브(40)들의 격자 사이에는 흡착제를 충진하기 용이하고 흡착제가 흘러내리지 않도록 밀봉작업이 편리해진다.In addition, between the grid of the porous tube 40 is easy to fill the adsorbent and the sealing operation is convenient so that the adsorbent does not flow down.

또한 다공튜브(40)의 열과 열사이에는 일정간격이 확보되어 냉매증기가 원활하게 흘러 냉동 효율을 높일 수 있다.In addition, a predetermined interval is secured between the heat and heat of the porous tube 40 to allow the refrigerant vapor to flow smoothly, thereby improving the freezing efficiency.

이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.As described above, although the present invention has been described by way of limited embodiments and drawings, the present invention is not limited thereto, and the technical idea of the present invention and the following by those skilled in the art to which the present invention pertains. Of course, various modifications and variations are possible within the scope of equivalents of the claims to be described.

상술한 바와 같이 본 발명의 흡착식 냉동기용 흡착탑에 따르면, 격자 형태로 배치된 다공튜브를 흐르는 냉각수 및 온수의 난류성이 좋아져 열전도성이 뛰어나고, 헤드파이프에 고르게 배치된 분배관에 의해 균일한 열전달 성능의 확보가 가능하며, 알루미늄 핀 사이사이에 흡착제의 밀봉작업이 용이하고, 다공튜브의 열과 열사이에 냉매증기가 원활하게 흘러 냉동 효율이 향상된다.As described above, according to the adsorption tower for the adsorption-type freezer of the present invention, the turbulence of the cooling water and the hot water flowing through the porous tubes arranged in a lattice form is improved, so that the thermal conductivity is excellent, and the distribution pipe evenly disposed on the head pipe ensures uniform heat transfer performance. It can be secured, the sealing work of the adsorbent between the aluminum fins is easy, and the refrigerant vapor flows smoothly between the heat and the heat of the porous tube to improve the freezing efficiency.

또한 본 발명에 따르면 적층형 흡착탑을 다양하게 수직이나 수평으로 적층할 수 있어 스케일 업/다운(Scale up/down)시에도 흡착식 냉동기의 최적설계에 쉽게 대응할 수 있는 장점이 있다.In addition, according to the present invention, the stacked adsorption tower can be stacked vertically or horizontally in various ways, so that it can easily cope with the optimum design of the adsorption-type freezer even at scale up / down.

Claims (6)

흡착식 냉동기에 사용되는 흡착탑에 있어서,In the adsorption tower used for the adsorption freezer, 상호 마주보도록 대향되게 배치되고 각기 열유체 입,출구(20a,30a)를 갖는 한쌍의 헤드파이프(20,30)와;A pair of head pipes 20 and 30 disposed to face each other and having thermal fluid inlets and outlets 20a and 30a, respectively; 상기 한쌍의 헤드파이프(20,30) 사이에 일정 간격을 두고 격자 형태로 배치되고, 일측 헤드파이프(20)로부터 유입된 열유체를 다수의 열유체통로(41)를 통하여 타측 헤드파이프(30)로 흘려보내는 다수의 다공튜브(40) 및;The head pipes 30 are arranged in a lattice form at predetermined intervals between the pair of head pipes 20 and 30, and the heat fluid introduced from one head pipe 20 is passed through the plurality of heat fluid passages 41. A plurality of porous tubes 40 flowing into the; 상기 다공튜브(40)들의 이웃한 격자 공간에 각기 위치되어 상기 열유체통로(41)를 흐르는 열유체와 열교환을 이루는 열교환수단이 포함된 것을 특징으로 하는 흡착식 냉동기용 적층형 흡착탑.Laminated adsorption tower for adsorption-type freezer, characterized in that the heat exchange means for heat exchange with the heat fluid flowing through the heat fluid passage 41, respectively located in the adjacent lattice space of the porous tubes (40). 제 1항에 있어서,The method of claim 1, 상기 한쌍의 헤드파이프(20,30)는 각기 열유체 입,출구(20a,30a)와 연통되어 나란하게 분기된 다수의 분배관(21,31)이 구비되고, 각 분배관(21,31)에는 다공튜브(40)와 접속되기 위한 접속구멍(21a,31a)이 형성되어 있는 것을 특징으로 하는 흡착식 냉동기용 적층형 흡착탑.The pair of head pipes 20 and 30 are provided with a plurality of distribution pipes 21 and 31 branched side by side in communication with the thermal fluid inlets and outlets 20a and 30a, respectively. Laminated adsorption column for adsorption-type freezer, characterized in that the connection hole (21a, 31a) for connecting to the porous tube (40) is formed. 제 1항에 있어서The method of claim 1 상기 열유체통로(41)는 사각단면 형태로서 다공튜브(40)에 병열로 배치된 것을 특징으로 하는 흡착식 냉동기용 적층형 흡착탑.The heat fluid passage 41 is a rectangular cross-sectional adsorption chiller stacked adsorption column, characterized in that arranged in parallel to the porous tube 40. 제 1항에 있어서,The method of claim 1, 상기 열교환수단은 박판으로 제작된 파형 형태로서 상기 다공튜브(40)의 대향하는 벽면에 부착된 알루미늄핀(50)으로 구성된 것을 특징으로 하는 흡착식 냉동기용 적층형 흡착탑.The heat exchange means is a stacked shape absorption tower for adsorption-type freezer, characterized in that consisting of aluminum fin (50) attached to the opposite wall surface of the porous tube (40) in the form of a thin plate. 제 4항에 있어서,The method of claim 4, wherein 상기 알루미늄핀(50)의 표면에는 공기흐름과의 마찰을 높이기 위한 다수의 루버(51)가 더 구성된 것을 특징으로 하는 흡착식 냉동기용 적층형 흡착탑.The surface of the aluminum fin (50) stacked suction tower for adsorption freezer, characterized in that a plurality of louvers (51) further configured to increase the friction with the air flow. 제 4항에 있어서,The method of claim 4, wherein 상기 알루미늄핀(50)의 표면에는 공기흐름과의 마찰을 높이기 위한 옵셋스트립핀(52)이 더 구성된 것을 특징으로 하는 흡착식 냉동기용 적층형 흡착탑.The surface of the aluminum fin (50) laminated strip adsorption column for adsorption-type freezer, characterized in that the offset strip pin (52) is further configured to increase the friction with the air flow.
KR1020060030229A 2006-04-03 2006-04-03 Liminated absorber for absorbing refrigerator KR100695821B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060030229A KR100695821B1 (en) 2006-04-03 2006-04-03 Liminated absorber for absorbing refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060030229A KR100695821B1 (en) 2006-04-03 2006-04-03 Liminated absorber for absorbing refrigerator

Publications (1)

Publication Number Publication Date
KR100695821B1 true KR100695821B1 (en) 2007-03-19

Family

ID=41623509

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060030229A KR100695821B1 (en) 2006-04-03 2006-04-03 Liminated absorber for absorbing refrigerator

Country Status (1)

Country Link
KR (1) KR100695821B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101918964B1 (en) * 2016-06-03 2018-11-20 한국철도기술연구원 Apparatus for heat absorbing
KR101929915B1 (en) * 2013-01-31 2018-12-18 한온시스템 주식회사 Adsorption heat exchanger

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003269822A (en) 2002-03-12 2003-09-25 Hitachi Ltd Heat exchanger and refrigerating cycle
KR20050012879A (en) * 2005-01-13 2005-02-02 주식회사 한일콘트롤 Heat exchanger of cooler for central computer terminal
JP2005061807A (en) 2003-07-31 2005-03-10 Daikin Ind Ltd Heat exchanger
KR20050039019A (en) * 2003-10-23 2005-04-29 한국생산기술연구원 Reactor of chemical heat pump

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003269822A (en) 2002-03-12 2003-09-25 Hitachi Ltd Heat exchanger and refrigerating cycle
JP2005061807A (en) 2003-07-31 2005-03-10 Daikin Ind Ltd Heat exchanger
KR20050039019A (en) * 2003-10-23 2005-04-29 한국생산기술연구원 Reactor of chemical heat pump
KR20050012879A (en) * 2005-01-13 2005-02-02 주식회사 한일콘트롤 Heat exchanger of cooler for central computer terminal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101929915B1 (en) * 2013-01-31 2018-12-18 한온시스템 주식회사 Adsorption heat exchanger
KR101918964B1 (en) * 2016-06-03 2018-11-20 한국철도기술연구원 Apparatus for heat absorbing

Similar Documents

Publication Publication Date Title
CN202083049U (en) Air conditioner and heat radiation device thereof
CN105180490B (en) Integrated natural cooling computer-room air conditioning system
CN101476757B (en) Solid adsorption moisture eliminator based on semiconductor refrigeration
CN203628875U (en) Heat-dissipating device assembly, air-conditioner and air-conditioning system
WO2009089694A1 (en) A falling-film evaporation-cooling absorption refrigeration unit
CN105157281A (en) Tube-in-tube evaporative condenser with fins
Yang et al. Research on a compact adsorption room air conditioner
CN201535592U (en) Lithium bromide absorption water chilling unit adopting falling film generator
KR101407660B1 (en) adsorption bed having plate heat exchanger shape
KR100695821B1 (en) Liminated absorber for absorbing refrigerator
Wang et al. Experiments on heat‐regenerative adsorption refrigerator and heat pump
CN201652979U (en) Biochemical analyzer refrigeration system with semiconductor refrigeration chip
KR100727407B1 (en) Absorber with micro channel for absorbing refrigerator
CN202813668U (en) Variable frequency air conditioner with novel chip cooling device
CN105318596A (en) Separated heat pipe room-temperature magnetic refrigeration device
CN215295145U (en) Radiator and air conditioner
CN101639300A (en) Semiconductor refrigerator capable of interruptedly supplying power
CN202792723U (en) Parallel flow condenser for freezer
CN108076616B (en) Photovoltaic centrifuge system
CN106288498A (en) Adsorbent bed system
CN105444472A (en) Condenser assembly for refrigerator, refrigerator refrigeration system and refrigerator
CN201302266Y (en) Air conditioning
CN111578741A (en) Heat exchange device and central air conditioner
CN204535031U (en) Double-effect evaporation formula air-conditioning heat transfer device
CN202816909U (en) Heat dissipation device for chip of variable frequency air conditioner

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120305

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee