KR100695603B1 - 제어 변환에 의해 제어정지로부터 능동 상태로 cdma이동국의 전력을 줄이는 방법과 장치 - Google Patents

제어 변환에 의해 제어정지로부터 능동 상태로 cdma이동국의 전력을 줄이는 방법과 장치 Download PDF

Info

Publication number
KR100695603B1
KR100695603B1 KR1020047017921A KR20047017921A KR100695603B1 KR 100695603 B1 KR100695603 B1 KR 100695603B1 KR 1020047017921 A KR1020047017921 A KR 1020047017921A KR 20047017921 A KR20047017921 A KR 20047017921A KR 100695603 B1 KR100695603 B1 KR 100695603B1
Authority
KR
South Korea
Prior art keywords
mobile station
data
state
channel
mobile
Prior art date
Application number
KR1020047017921A
Other languages
English (en)
Other versions
KR20050006236A (ko
Inventor
짜자스테이스로우
양홍쿠이
리앤서니
Original Assignee
비아 텔레콤 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 비아 텔레콤 인코포레이티드 filed Critical 비아 텔레콤 인코포레이티드
Publication of KR20050006236A publication Critical patent/KR20050006236A/ko
Application granted granted Critical
Publication of KR100695603B1 publication Critical patent/KR100695603B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • H04W52/0232Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal according to average transmission signal activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 이동전화 통신 시스템에 있어서 동시에 음성과 고속 패킷 데이터 통신 능력을 제공하도록 형성된 이동국(mobile station) 내부의 전력을 줄이기 위한 방법과 장치이다. 이동국으로 전송된 데이터가 상기 이동국 이외에는 수신되지 않는 상태가 정의될 수 있다. 이와 같이 줄어든 수신 프로세스 상태는 제어정지(Control Hold) 상태와 함께 공존(co-extensive) 할 수 있다. 특별히 높은 비트-율 데이터 채널에 수신된 신호를 프로세스 할 필요성은, 특정한 이동국에 송신되지 않는 신호에 대해서 수신 프로세스가 중지되도록 함으로써 줄어들 수 있다. 통지 메커니즘은 패킷 데이터 채널에 데이터를 전송하기에 앞서서, 서비스하는 기지국이 이동국으로 하여금 줄어든 프로세스로부터 전체 수신 프로세스로 리턴하도록 지시함으로써 나타난다. 상기 통지는 상기 이동국 MAC 주소와 미리 결정된 데이터 내용의 하나 이상의 비트를 표시하는 메시지와 같이 몇가지 형식을 취할 수 있다.
CDMA, 전력

Description

제어 변환에 의해 제어정지로부터 능동 상태로 CDMA 이동국의 전력을 줄이는 방법과 장치{Method and Apparatus for Reducing Power of a CDMA Mobile Station by Controlled Transition From Control Hold To Active State}
본 출원은 2002년 5월 6일자에 발명의 명칭이 "CDMA 시스템의 제어정지 상태에서 활성 상태로의 변환"로 제출된 미국 가출원 제60/378,919호를 근거호 미국특허법 119조 35항에 의거 우선권이 주장되었고, 상기의 가출원의 전체 내용이 그대로 본 출원에 통합되어 나타나 있다.
본 발명은 일반적으로 무선통신에 관한 것이며, 더 구체적으로는 CDMA 원거리통신 시스템에 관한 것이다.
삭제
CDMA 통신에 있어서, 그 기술수준은 여러 표준화 단체에서 발간된 간행물들에 실질적으로 반영되어 있다. 본 발명에서 제시된 주제(subject matter)에 앞서 발표된 표준의 하나가 IS-2000 릴리즈 B("IS-2000 B")이고, 그 내용의 전부가 여기에 통합되어 구체화되어 나타나 있다. 그 규격에 따르면, CDMA 이동 통신 장치는 음성통신과 함께 고속 패킷(packet) 데이터 통신에도 적합할 수 있다. 이와 같은 서비스를 위한 전형적인 시스템 및 통신규약(protocol)은 데이터-음성 통신 능력의 진화에 있어서 초기 단계라고 할 수 있는 1xEV-DV, 1xEV-DV-인에이블드(enabled) 또는 간단히 "EV-DV"로 표현될 수 있는 것이다. 그렇다면, 이렇게 데이터 통신능력까지 갖추도록 진화된 장치는 많은 다른 물리적 채널을 포함하게 된다. 여기에 나타난 방법과 장치는 IS-2000 B에 기술된 시스템에서의 개선점을 포함하고, 무선통신 기술분야에서 통상의 지식을 가진 기술자들은 이러한 개선점이 다른 시스템에도 역시 적용될 수 있다는 것을 인식할 것이다.
잘 알려진 바와 같이, 이동통신 시스템은 일반적으로 사용자 통신을 위해 휴대용 송수신부(transreciver)를 가지고 있고, 이것의 각각은 이동국(mobile station: "MS")이라고 불린다. 그러한 시스템은 본래 일대다(one-to-many) 방식이고, 일반적으로 비교적 적은 수의 기지국(base station: "BS")을 포함하며, 각 기지국은 많은 이동국과 통신한다. 기지국은 범위와 접속 용량에 대한 사용자의 요구를 만족시키기 위해 필요에 따라 지리학적으로 넓게 분포되어 있다. EV-DV 서비스를 위해, 기지국의 기반설비는 데이터 크기에 대한 사용자의 요구사항 또한 만족시켜야 한다.
휴대용 이동 전화 송수신기는 많은 수신 신호 처리 능력 뿐만 아니라 중요한 전송 능력도 가지고 있는 복합 장비이다. 일부에서 주장하는 바와 같이, 상기와 같은 이동 통신 단말기에서 수명이 긴 배터리는 항상 바람직하다. 따라서, 송수신 단말기에서 불필요한 전력 소실을 피하는 것은 매우 바람직하다.
1xEV-DV-인에이블드 이동국에서 충분한 데이터 통신 능력을 증가시키기 위해 추가된 여분의 채널은 전력 소비를 증가시키는 경향이 있다. 하지만, 1xEV-DV-인에이블드 이동국을 거의 소용량의 이동전화 단말기 크기만큼 작게 만드는 것이 바람직하고, 이것은 배터리 역시 작아야 함을 의미한다. 이러한 제약은 불필요한 것으로 여겨지거나 또는 새로운 시스템 특징에 의해 불필요한 것으로 여겨질 수 있는 프로세스에 의해 전력 손실을 줄이는 방안을 강구하도록 한다.
종래에 전력 손실을 줄이는 방안들에서는, 일반적으로 전송이 수신보다 비교적 높은 전력에서 수행되었기 때문에, 이동국 송수신기에 의한 전송 능력에 관심이 집중되었었다. 그럼에도, 지금까지의 계속된 노력에도 불구하고, 1xEV-DV-인에이블드 이동국에서의 전력 손실은 바람직하지 않을 정도로 높게 유지되어 왔다. 따라서, 1xEV-DV-인에이블드 이동국에서 상당한 전력을 소비하는 모든 프로세스를 조사하고, 그러한 프로세스에 의해 야기되는 전력 손실을 줄이거나 없애기 위하여, 상기한 프로세스를 불필요한 것으로 간주하는 방법을 결정할 필요가 있다.
삭제
삭제
삭제
삭제
여기에 서술된 방법과 장치는 이동 전화 통신 시스템 내에서, 결합된 음성과 데이터 용량을 공급하도록 제작된 이동국에서의 전력소실을 줄이기 위한 것이다. 이동국은 다수의 서로 다른 물리적 채널을 가지고 있다. 수신 프로세스(receive processing)가 적어도 하나의 데이터 채널에서 감소되면(reduced) 감소된 수신 프로세스 상태로 접어들고, 상기 감소된 수신 프로세스 상태는 종료 표시(indication)를 포함하는 시그널링(signaling) 채널에서 전송(transmition) 신호를 수신하면 종료된다.
본 발명에 따른 방법과 장치의 한 예는 능동적인(active) CDMA 데아타-음성 연결기간 동안 이동국에서의 전력 손실을 줄이는 방법을 포함한다. 상기 방법은 다수의 물리적 채널에 있는 수신 프로세스의 초기 수준을 이용하여 이동국(MS)과 기지국(BS) 사이에 CDMA 데이터-음성 연결을 설정하는 것을 포함하고, 또한 미리 결정되지 않은 소정의 시간 동안, 상기 이동국이 상기 다수의 물리적 채널 중 적어도 하나의 특정한 채널에 데이터를 수신하지 않는 중지된(suspended) 이송(transfer) 상태를 확인하는 것을 포함한다. 본 발명에 따른 방법은 상기 특정한 채널에서 신호의 수신 프로세스를 줄이는 것을 더 포함한다.
본 발명의 다른 예는 이동 통신 시스템인 이동국에서 제어정지(control hold) 상태로부터 능동(active) 상태로 변환시키는 방법을 포함한다. 상기 방법은 제어정지 상태 기간 동안 첫번째 채널의 내용(content)에 대한 대처(attention)를 중지하는 것과, 상기 제어정지 상태 기간 동안 이동국에 의해 수신되는 변환 신호 (transition signal) 패킷을 다른 두번째 채널에서 프로세싱하는 것을 포함한다. 나아가, 상기 방법은 상기 변환 신호 패킷이 제어정지 상태의 종료를 지시하는 정보를 포함하도록 결정하는 것과, 상기 변환 신호 패킷의 전체를 받은 다음에 이어지는 미리 결정된 시간의 마지막에, 상기 이동국에 의해 상기 첫번째 채널의 내용에 대한 대처를 재게하는 것을 포함해서, 능동 상태로 변환시키는 것을 더 포함한다.
본 발명의 다른 면은 능동적인 CDMA 데이터-음성 연결상태 동안 이동국에 의한 전력 소비를 줄이는 방법을 포함하고, 다양한 물리적 채널에 수신 단계의 능동수준을 수행하면서 이동국과 기지국 사이의 CDMA 데이터-음성 연결을 확립시키는 것을 포함한다. 본 발명은 제한된 데이터 통신 상태로 시작하는 단계와, 제한된 통신 상태 기간동안 수신 신호 처리단계를 줄이는 단계와, 복귀에 의해 제한된 통신 상태로부터 능동 수준으로의 수신 신호 처리단계를 저장하기 위한 수신 명령어를 확인하는 단계를 더 포함한다.
본 발명의 방법과 장치의 또 다른 면은 이동전화 통신 신호를 받기 위한 이동장치를 포함한다. 본 장치는 패킷 신호 채널과 패킷 데이터 채널을 포함해서 동시에 다양한 물리적 통신 채널을 받도록 형성된 수신 단위와, 패킷 데이터 채널에 전달되는 신호를 조정하고 저장하도록 형성된 미가공 신호 처리 블록(block)을 포함해서 패킷 데이터 채널에 대한 처리 설비를 가지고 있는 수신 단위와 저장된 신호를 복조하고 복호화하도록 형성된 신호 처리 불록을 포함한다. 본 장치는 또한 적절한 개시 상태가 되면 줄어든 수신 처리단계 상태로 이동장치를 일시적으로 위치시키고, 그런 종료를 지시하는 전송을 받으면 이동 장치가 줄어든 수신 단계 상태를 종료하게 만들도록 형성된 제어단위를 포함한다. 덧붙여서, 패킷 데이터 채널에 대한 처리 설비는 이동 장치가 줄어든 수신 처리 단계 상태에 있는 동안 패킷 데이터 채널의 어떤 수신 단계를 중지시키도록 형성되었다.
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
본 발명의 실시예는 다음의 도면을 참조로 더 쉽게 이해될 것이고, 여기서 참조 번호와 명칭은 각 구성요소를 가르킨다.
도1은 패킷 데이터 통신을 위한 다중(multiple) 물리적 채널을 가지고 있는 데이터-음성(EV-DV) 통신 이동국에 대한 층별 구성을 보여주는 블럭도이다.
도2는 바람직한 EV-DV 이동국에 대한 하드웨어를 프로세싱하는 수신기 신호의 블럭도이다.
도3은 바람직한 EV-DV 이동전화 시스템 안에 있는 패킷 통신에 대한 타이밍(timing) 도이다.
도4는 줄어든 수신 신호 프로세스에서 전체 수신 신호 프로세스로의 바람직한 변환에 관한 타이밍을 나타내는, 도3과 같은 타이밍 도이다.
도5는 제어정지 상태에서 능동상태로의 변환기간 동안, 두 사용자 각각에 대해, 제어 채널과 데이터 채널의 타이밍과 능동성의 관계를 보여주는 블럭도이다.
도6은 전체 (능동 상태)에서 줄어든 (제어정지 상태) 수신 프로세스로의 변환을 나타내는 것으로, 도5에서와 같이 두 사용자 각각에 대한 채널 타이밍과 능동성의 관계를 보여주는 블럭도이다.
도7은 이동국이 제어정지 상태로부터 능동 상태로 변환할 수 있는 바람직한 단계를 보여주는 플로우 차트이다.
삭제
삭제
삭제
삭제
삭제
삭제
삭제
개괄
CDMA 이동전화 통신 시스템은 과거에는 주로 음성 통신을 위해 구현되어 왔지다. 그러한 시스템에 고속 데이터 통신 능력을 합리적으로 부가하려는 요구가 등장하게 되었다. 음성 전송과 함께 효율적인 데이터 전송(여기서는 "EV-DV"로 언급됨)을 달성하기 위해서, 많은 CDMA 시스템 특징들이 추가되거나 수정되고 있다. 예를 들어, 전체적인 데이터율을 증가시키기 위해, 몇 가지 추가적인 물리적 채널이 고속 패킷 데이터 통신을 지원하기 위애 EV-DV-인에이블드 CDMA 이동국("MS") 송수신기 안에 제공된다. 덧붙여서, 다양한 사용자에게 데이터를 전달시키는 유연성을 증가시키기 위해, 앞선 버전의 CDMA 규격 중 기본 20ms 프레임 구조가 1.25ms의 지속시간을 가지는 "슬롯(slot)" 안에서 제어할 수 있고 주소 지정할 수 있도록(controllable and addressable) 만들어지고 있다.
패킷 데이터 능력을 지원하기 위해 추가된 물리적 채널은 순방향 및 역방향 채널을 포함한다. 도 1은 CDMA EV-DV 이동국에 의해 사용되고, 물리적계층(102)과 매체접근제어(MAC)계층(104) 사이에 있는 예시적인 인터페이스에 관한 도면이다. 한 세트의 물리적 채널(106)의 각각은 채널 라벨을 가진 화살표에 의해 표시된다. 화살표의 방향은 특정 채널의 정보 흐름 방향을 표시한다: 순방향 채널(F)은 이동국에(매체접근제어계층에) 정보를 교통하고, 반면에 역방향 채널(R)은 이동국의 매체접근제어계층에서 기지국(BS)으로의 정보를 교통한다. 일부 채널은 양방향이며, 양쪽끝 화살표와 채널 라벨에 붙여진 "F/R"의해 표시된다.
순방향 패킷 데이터 제어 작용("F-PDCF")의 구성요소로 인식되는 물리적 채널은 두가지 순방향 패킷 데이터 제어 채널("F-PDCCHs"), 즉 F-PDCCH0(108)와 F-PDCCH1(110)을 포함한다. F-PDCCHs는, 예를 들어, 특정 패킷이 목적 이동국에 "속하는지" 여부와 기지국이 받은 데이터를 이동국이 어떻게 복호화하는지를 표시하기 위해 이동국으로부터 정보를 전달한다. 주요한 유료부하 데이터 채널은 순방향 패킷 데이터 채널(F-PDCH) F-PDCHi(112)이다. 이동국에 부여된 F-PDCHi(112)는 서비스하고 있는 기지국으로부터 이용 가능한 다양한 패킷 데이터 채널로부터 선택될 수 있다. 이동국의 매체접근제어(MAC) 서브계층(104)이 도면에 나타나 있는데, 여기서 MAC 서브계층은 F-PDCHi(112)을 통해 패킷 데이터를 수신 받을 것이다. 역방향 채널품질표시패널("R-CQICH") R-CQICH(114)는 신호의 품질을 나타내는 피드백 정보를 이동국으로부터 서비스를 제공하는 기지국으로 제공한다. 역방향 긍정응답 채널("R-ACKCH"), R-ACKCH(116)은 역방향 특정 패킷을 정확히 수신했다고 알려주거나(ACK), 또는 수신에 실패했다는 것을 표시(NAK)하기 위해 이동국에 의해 사용된다.
이렇게 다른 물리적 채널은 상당히 다른 비트(bit)율 능력을 가질 수 있다. 예를 들어, 패킷 데이터 제어 채널 F-PDCCH0(108)와 F-PDCCH1(110)은 일초에 단지 몇 천 비트("bps")만을 전달할 수 있지만, 반면에 F-PDCH 패킷 데이터 채널은 대략 3 Mbps를 전달할 수 있다. 각 채널에 요구되는 신호 프로세스의 노력 양 또한 변한다. 일반적으로, 채널 각각에 데이터를 수신하고, 변조하고, 디코드하고, 저장하는데 요구되는 상기 프로세스의 노력은 비트 능력과 다소 상응한다. 그러나, 예를 들어, 인코딩하고 에러를 수정하는 수준 또한 채널에 따라 다르고 필요한 프로세싱 노력에 영향을 줄 수 있을 것이다.
수신단계
도 2는 두개의 채널 F-PDCH와 F-PDCCH, 그리고 하나의 파일럿 채널 각각에 대한 수신 프로세스 하드웨어를 도시하고 있는 도식화된 블럭도이다. 신호가 복합(I&Q) 형태인 것은 이중선으로 나타내었다. 들어오는 신호 "RF로부터"는 도시되지는 않았지만, RF 섹션으로부터 수신되고, 칩(chip) 레이트에서 I&Q 샘플을 포함한다. 세 블럭은 PDCCH 상관기(correlator) 블록(202), 파일럿 상관기 블록(204)과 PDCCH 상관기 블록(206)을 포함하여, 가공되지 않은(raw) 샘플(sampled)된 신호를 수신한다. 이러한 복합 상관기 블록 각각은 각 블록의 두개 이상의 실례 또는 "핑거들(fingers)"의 존재를 나타내기 위하여, 쌓아 올려진 또는 중첩된(superimposed) 형태의 복수의 블록으로 나타나 있다. 다수의 복합 상관기(complex correlator) 핑거(finger)는 시간에 있어서 서로 약간 분리된 동일한 형태의 신호들을 분리하여 프로세스하기 위한 레이크(rake) 필터처럼 작용한다. 동일한 좌형의 신호들 사이의 시간 분리는 본래의 다중-경로 반사 때문일 수 있거나, 전송 다양성 기술을 사용해서 의도적으로 만들어진 것일 수 있다. 제공되는 핑거의 수는 각 수신기의 설계에 있어서 공학적 설계상 선택사항이다. 파일럿 상관 블록(204)은 복합 신호를 수신하고, 각 핑거에 대해서는 적절한 PN 코드에 대해서 복합 신호로 디스프레드(despread) 한다. 각 핑거에 대한 파일럿 상관기의 결과가 채널 추정기(channel estimator) 블록(208)의 대응되는 핑거에 제공된다. 채널 추정기 블록(208)은 두가지 PDCCH와 PDCH 채널에 사용되도록 일반적으로 각 핑거와는 다른 채널 추정값을 제공한다.
예시적으로 두개의 PDCCH 채널, 즉 PDCCH0과 PDCCH1이 있다. 이에 따라, 두 채널의 복합 상관(complex correlation)과 왈쉬 신호 디스프레딩(Walsh signal despreading)이 각 블록(202) 안에 제공된다. 예시적으로 다수의 핑거가 쌓아 올려지거나(stacked) 겹쳐진(superimposed) 블럭의 도해로 다시 표시되었다. 복합 상관기 블록(202)의 각 핑거로부터 발생된 복합 I & Q 심벌은, 위상 정정을 위해 위상 정정 블록(210)의 대응되는 핑거에 제공되고, 이는 채널 추정기 블록(208)의 대응되는(corresponding) 핑거로부터 수신된 입력치를 토대로 한다. PDCCH를 위한 변조(modulation) 기술 장치가 이렇게 예시되는 수신기(receiver)에 부착되어 있고, 그러므로 복조(demodulation)는 다른 정보 없이도 수행되어 질 수 있다. 따라서, 복조는 예를 들어 위상 정정 블럭(210)의 대응되는 핑거안에서 즉각 행해 질 수 있다. 복조된 (실제) 심벌은 위상 정정 블록(210)의 각 핑거로부터 출력되고, 하나의 심벌 흐름(stream)을 만들기 위해 모든 핑거로부터의 출력을 적절히 결합하는 작동하는 MRC(Maximum Ratio Combiner)(212)로 제공된다. 디인터리버(de-interleaver) 블록(214)은 심벌의 순서를 바로잡고, 그 결과 심벌들은 각 심벌의 위해 최대의 추정치를 생산하는 비터비 디코더(Viterbi Decorder) 블록(216)에 의해 프로세스 된다. 그 결과로 생겨난 PDCCH 데이터가 제어 블록(218)에 제공된다.
PDCCH 신호 경로와 같이, PDCH 신호 경로 또한 상관기 블록(220)과 위상 수정 블록(222)의 다양한 예시를 포함하고, 각 수신기 레이크 핑거(rake finger) 중 하나는 이러한 블록에 겹쳐진(superimposed) 박스 형태로 표시되었다. PDCCH 에 관해서 위에 서술된 바와 같이, 이러한 블록들(220 과 222) 안에서 프로세스 되는 모든 과정은 특정한 수신기 디자인에 의해 수행되는 핑거의 수에 따라 되풀이(duplicated) 된다. 그러나, PDCH 프로세스는 PDCCH 보다 훨씬 높은 비트 율로 수행될 수 있다. 비트 율을 증가시키기 위해, 상관기 블록(220)의 각 핑거는 왈쉬 신호 디스프레딩(Walsh signal despreading)을 수행하는 28개의 복합 상관기를 포함한다. 상관기 블록(220)의 각 핑거로부터 생겨난 복합 심벌들은 채널 추정기(208)의 상응하는 핑거로부터 발생된 정보에 응답하여 위상 조정을 위해, 위상 수정 블록(222)의 상응하는 핑거에 제공된다. 위상 수정 블록(222)의 여러가지 핑거로부터, 복합 심벌들이 MRC 블록(224)에 제공되고, 여기서 상기 복합 심벌들은 적절하게 재결합된다. 복합 심벌은 PDCH 신호 경로에 관한 하나의 MRC 블록(224)으로부터 나오는 출력이고, 심벌 버퍼(226)에 저장된다. 심벌 버퍼(226)는 복합, 비복조화된(undemodulated) 심벌을 최고 5 슬롯에 대해 저장한다.
가능한 한 높은 데이터 전송율을 달성하기 위하여, 그리고 높은 데이터 전송율 달성이 불가능한 낮은 수준의 채널이 여전히 용인될 수 있도록, 전송기(transmitter)에서 PDCH 심벌에 적용된 변조는, 예를 들어 QPSK로부터 16 QAM 이나 그 이상의 높은 범위에 걸쳐서, 폭넓게 변할 수 있다. 복조기 블록(228)은 신호에 의해 사용된 변조 체계(modulation scheme)의 사전 정보(advance notice)를 가지고 있지 않다. 따라서, 버퍼된 신호의 복조는 복조기 블록(228)이 제어 블록(218)으로부터 복조 지시를 받을 때까지 시작하지 않는다. 교대로, 제어 블록 218은 PDCCH에 동시에 수신된 메시지 패킷으로부터 복조 레벨을 얻는다. 통상적으로, 상기 복조 수준은 전체 메시지가 수신되어, 디스프레드(despread) 되고, 디코드(decoded) 될 때까지 얻어질 수 없다. 그러므로, PDCH 신호는 완전한 패킷이 도달해서 PDCCH 메시지가 해석될 때까지 복조화 될 수 없다. 따라서, 심벌 버퍼(226)는 예시적으로 4번 슬롯인 최대 패킷 길이보다 더 긴 시간동안 심벌을 저장해야 한다. 그러므로, 심벌 버퍼(226)는 통상적으로 5 슬롯안에 전송될 수 있는 심벌의 최대 수 만큼의 충분한 복합 저장 공간(storage)을 제공한다.
이어서 복조기 블록(228)으로부터 생겨난 복조화된 심벌은 디-인터리빙(de-interleaving)을 위한 블록(230)에 제공된다. 상기 블록(230)은 또한 하이브리드 ARQ(automatic request for retransmission:재전송을 위한 자동 요청)를 제공한다. 예를 들어, 디코더 블록(232)은 패킷 사이즈(size)에 관한 정보를 제어 블록(218)으로부터 제공받고, PDCH 데이터를 생산하기 위하여 상기 블록(224)에 의해 출력된 디-인터리브된(de-interleaved) 심벌에 대해 터보-디코딩(Turbo-decoding)화 한다.
멀티플 억세스(multiple access), 프레임 그리고 타이밍(timing)
대상 이동국이 패킷 데이터 채널에 할당되었을(assigned) 때, 이동국은 그 채널에 있는 이동국을 유일하게 식별하는(uniquely identifies), 예시적으로는 8 비트인, 매체접근제어 (Media Access Control:MAC) 식별자(identifier)에 할당된다. 다수의 서로 다른 이동국 수신기를 위해, 상기 채널에 동시 접근을 가능하게 하기 위하여, 패킷 데이터 채널은 도 3에 나타난 바와 같이, 시분할다중방식(time division multiplexed: TDM)이다. 파일럿(pilot) 채널에 의해 이루어지는 타이밍을 사용함으로써, 각 채널은 순방향 패킷 제어 채널0(F-DCCH0)(304)의 슬롯(302)과 같이 1.25ms 슬롯으로 나뉘어져 있다. 능동적인 연결(active connection)은 각 사용자가 시시각각 데이터를 수신함으로써, 많은 사용자들에게 동시로 유지될 수 있다. 상기한 TDM에 덧붙여서, 다수의 이동국들에 동시로 억세스하는 것은 코드분할 다중방식(code division multiplex: CDM)을 사용함으로서 이루어질 수 있다. 타이밍과 이러한 멀티플 억세스 기술에 대한 상세한 설명은 아래에 나타내었다.
데이터는, 서비스하고 있는 기지국(BS)에 의해, 하나에서 4개의 슬롯이 되도록 선택 가능한 길이를 가지는 서비스 데이터 유닛(SDUs)으로 전송될 수 있다. SDUs는 일반적으로 인코더 패킷(Encoder Packet)의 서브 패킷이지만, 그러한 고도의 구성(organization)이 본 발명의 목적에 중요한 것은 아니다. 각 SDU 전송은 기준 시간 306, 308 그리고 310과 같은 전송 기준 시간(transmition reference time) T0 306에서 시작한다.
예를 들어, 전송 기준 시간 T0 308에서 시작하면서, 대상 이동국(예를 들어, 대상 이동국의 MAC 어드레스(address)로 식별된 대상 이동국)에 송신된(directed) 메세지(312)는 F-PDCCH0 304에 전송된다. 예시적으로 이러한 메시지는 F-PDCH(316)로 수행되는 동시 전송(concurrent transmission)(314)이 이동국을 위해 의도된 SDU인지 여부를 나타내고, 그리고 상기한 이동국이 그러한 SDU를 디코딩하게 할 수 있는 (적용된 변조와 같은) 더 많은 정보를 포함한다. 따라서, 도면에 굵게 나타난 선은 SDU(314)의 해석을 위하여, 메시지(312)의 완전한 프로세스 결과가 요구되어 짐을 나타낸다. SDU와 메시지는 같은 길이를 가지지만, 일반적으로 그 길이는 메시지(312)가 완성된 것으로 확인될 수 있을 만큼 완전히 수신되기 전까지는, 이동국에서 결정되지 않는다. R-ACKCH(reverse acknowledgement channel)(318)은 PDCH에 있는 SDU의 정확한 수신(correct receipt)에 긍정으로 응답(ACK)하거나 또는 부정으로 응답(NAK) 하기 위하여 사용될 수 있다.
SDU(314)와 같은, SDU는 이것이 정확하게 체크되기 전에 완전하게 수신되어야 한다. SDU(314)가 받아진 후에, SDU는 SDU의 CRC에 대해서 유효한 것으로 디코딩되고 체크된다. 그리고 ACK 또는 NAK가 R_ACKCH(318)에 전송되어야만 하는지 여부에 관한 결정이 이루어질 수 있다. 이에 따라, 지연(delay) ACK_DELAY(320)가 데이터 SDU의 완성(completion)과 R-ACKCH(318)에 대한 인지(acknowledgement)의 전송 사이에서 제공된다. ACK_DELAY(320)의 수치(value)는 특정한 이동국을 위해 규정될(be set) 수 있고, 예시적으로는 지속기간(duration) 안에 포함되어 있는 하나 또는 두개의 슬롯이다. 여기서, NAK(320)는 서브-패킷 SDU(314)가 정확하게 수신되지 않았다는 것을 나타내면서 전송된다.
전송 시작 시간 T0(308)는 SDU 322의 시작을 반영하고, 이것은 4 슬롯의 길이를 가진다. 이 시간 T0(308)이 NAK(320) 전송과 동시발생 하는 것은 단지 우연의 일치이다. 메시지(324)는 F-PDCCH1(326)에 전송되고, (완전히 수신되면서) 대상 이동국에 송신된(directed) 것과 같이 SDU(322)를 확인하도록 해석된다.
시간분할에 의해 다중화(multiplexed) 되는 것과 더불어, F-PDCH(316)은 두개 이상의 Walsh 스페이스(space)로 분리됨으로서 더욱 다중화 될 수 있고, 그에 따라 코드분할다중방식(CDM)을 제공한다. F-PDCH(316)에 있는 SDU(322)는 대상 이동국과 다른 이동국 사이에서 코드분할다중화 되는 것으로 가정할 수 있다. F-PDCCH0(304) 위에서 동시 발생하는 4-슬롯 메시지(328)는 상기 이동국을 위해 의도된 것은 아니지만, 상기 메시지는 또한 SDU(322)와 동시로 F-PDCH에 패킷을 수신하는 다른 이동국에 Walsh 코드가 할당되도록 특정하는 정보를 (이 경우에) 포함한다. F-PDCH(316) 내의 SDU(322)에 적용되는 Walsh 코드 스페이스를 부정 지시(negative implication)에 의해 결정하기 위해서, 대상 이동국은 다른 이동국에 대한 Walsh 스페이스 할당(Walsh space assignment)을 필요로 한다. 이에 따라, SDU(322)의 앞부분 가장자리를 지적하는 굵은 화살표에 의해 표시된 바와 같이, 두개의 F-PDCCH 채널들은 SDU(322)의 해석이 시작될 수 있기 전에 분석되는 것이 필요하다. 두개의 슬롯이 ACK_DELAY(330)에 의해 제공되는 동안, 전체 4-슬롯 SDU(322)는 정확하게 수신되고 체크되며, 그에 따라 ACK(332)는 R-ACKCH(318)로 서비스하는 기지국으로 리턴(return)된다.
단일-슬롯 SDU(334)는 전송 참조 시간 T0(310)에서 시작한다. 상기 SDU(334)는 F-PDCCH0(304)에 동시 발생하는 원-슬롯 메시지(336)가 (타겟(target) 이동국과 같이) SDU(334)에 대한 적절한 제어 정보, 길이 및 복조 계획를 얻기 위하여 분석된 이후에 해석될 것이다. F-PDCCH1(326)에 동시 발생하는 원-슬롯 메시지(338)가 상기한 이동국을 대상으로 의도된 것은 아니다. 바람직한 CDMA EV-DV 시스템에서, (메시지(338)와 같이) F-PDCCH1(326)에 있는 메시지는, 이동국이 F-PDCCH0(304)에서 동시 발생하는 메시지를 수신할 때, 대상 이동국을 위한 정보의 소스(source)가 되지 못할 것이다. 원-슬롯 SDU를 위한 타이밍을 완성하기 위해서, 본 실시예에서 이동국은 정확하게 SDU(334)를 받지 못하였고, 이에 따라 이동국은 ACK_DELAY의 두 슬롯 이후에 R-ACKCH(318)로 NAK(340)을 전송한다.
F-PDCCH0(304), F-PDCCH1(326), F-PDCCH(316) 및 R-ACKCH(318)에 대한 타이밍의 다른 예가 도 4에 도시되어 있, 이하에서는 이에 관하여 설명한다.
제어정지 상태와 이동국 전력 소실을 줄이는 방법
다중 접근 기술을 사용해서 단일 PDCH위에 동시 다발적으로 무수히 많은 이동국에 서비스하는 능력의 관점에 따르면, 다수의 사용자가 PDCH를 공유하는 것이 기대될 수 있다. 이와 같이, 대상 이동국은 데이터를 받지 않는 시간적인 간격을 종종 가질 수 있다. 전력을 아끼기 위하여, 이러한 시간적인 간격은 특정한 상태와 관련될 수 있고, 이러한 상태에서 데이터의 수신을 줄이는 것은 전력 소비를 줄이는데 도움을 줄 수 있다. 상기한 상태는 일반적으로 "줄어든 수신 프로세스" 상태로 명명될 수 있다. 하지만, CDMA EV-DV에 연결하는 앞선 표준 작업에서 "제어정지" 상태가 다른 목적으로 미리 한정되어 있어야 한다. 제어정지 상태는 이것이 "줄어든 수신 프로세스" 상태로 이용될 수 있게 하는 특성을 가지고 있다. 여기서 "제어정지" 라는 용어가 사용되었을 때, 이것은 특별히 바람직한 CDMA EV-DV 시스템 환경에서 사용되는 것을 제외하고는, 일반적으로 어떤 줄어든 수신 프로세스 상태를 언급하는 것으로 택일하여 취급될 수 있다.
제어정지 상태동안, 이동국이 일반적으로 역방향 채널-품질 표시 채널(R-CQICH)에 전송하도록 요구되는 어떤 채널-품질 정보는 종종 줄어들거나 또는 "게이티드(gated.)" 될 수 있다. 바람직한 시스템과 같은 CDMA 시스템은 제어정지 상태동안 이동국 안에서 전송 전력을 줄이기 위해 복잡한 게이팅(gating) 룰을 수행한다.
이동국 안에서 전력 소비를 줄이는 것은 항상 바람직하고, 이것은 제한된 저장 능력을 가지는 배터리에 의해서는 바람직한 전력화이다. 전송은 종종 수신보다 많은 전력을 소비하는 것으로 여겨진다. 이처럼, (R-CQICH을 게이팅(gating) 하는 것과 같이) 전송 지속시간과 전력 수준을 최소화하는 과정은 종종 전력 감소가 필요할 때 수행된다. 수신 신호 프로세스를 줄이는 것이 CDMA 이동국에서 전력소비를 줄이기 위한 중요 문제로 고려될 수는 없었다.
그러나, 위에서 상세히 설명한 것처럼, EV-DV(데이터-음성) 통신(바람직하게는 CDMA EV-DV 시스템)은 시분할다중방식이 바람직하다. 이에 따라, (연결이 능동적이고, 이동국이 특정한 기지국으로부터 데이터를 받도록 특정되었을 때 조차도) 이동국은 실제로 전체 능동적인 연결 시간 중에서 (1/16 크기 만큼의) 작은 시간 동안 데이터를 수신할 수 있다. 그리고 반대로, (다중화된 환경이 시간의 대부분을 소비하려고 할때에도) 이동국은 기지국과 능동적으로 연결되어 있는 동안 상기 이동국에 송신되지(directed) 않은 데이터를 수신한다.
본 출원인은 실질적으로 많은 양의 전력이 CDMA EV-DV 시스템에 요구되는 수신 신호의 프로세싱 과정에 의해 소비된다는 것을 확인하였다. 예를 들어, 도 2를 참조하면, 4개의 블록 220, 222, 224 및 226은 PDCH로부터 정보를 보유하기 위하여 (상기 이동국을 위한 것으로 의도되었다면 상위 시그널링(signaling)계층으로 더 프로세스되고 더 전송될 수 있는 형식으로) 모두 충분히 능동적이어야 한다. 블록(228) 안에서의 복조와 다른 프로세스는 단지 변조 계획과 코딩 정보가 동시발생하는 PDCCH 메시지로부터 생겨난 이후에 한하여 일어난다. 그러나, PDCH가 이용할 수 있는 높은 데이터 비율 때문에, 확장된 수신 프로세스 하드웨어는 PDCH 신호가 수신되는 동안 PDCH 수신 체인(receive chain)의 각 핑거안에서 능동적이다. 예를 들어, 핑거 각각은 블록(220) 안에서 28개의 복합 상관기를 포함하고, 블록(222)에서 28개의 위상 수정 섹션을 포함하며, 블록(224) 안에서 MRC를 포함한다. 게다가, 도 3의 SDU(322) 안에 수신된 모든 복합 심벌은 버퍼(226)안에 저장되어야 한다. 바람직한 하드웨어와 함께 현재 알려진 기술을 사용하면, 모든 이런 프로세스에서 대상 이동국의 전력 손실 절반 이상이 실제로 데이터를 받지 않고 있는 기간동안 실질적으로 소비되는 것으로 조사되었다. 위에서 서술한 바와 같이, 데이터는 실제로 능동적인 연결 시간의 실질적인 대부분 동안 수신되지 않을 수 있다. 따라서, 상기 이동국으로 어떤한 데이터도 의도되지 않은 기간동안 수신 신호 프로세스를 줄이는 것은 전력소실을 상당히 줄일 수 있고 그러므로 이동국 배터리 수명을 연장시킬 수 있다.
그러나, 도 3을 참조하면, 322와 같은 SDUs의 위치를 송신(direct)하는 324와 같은 메시지는 그것들이 송신하는 SDUs와 함께 시간에 따라 정렬된다. 따라서, 이동국은 (상기 신호가 지나간 후에) 데이터가 저장되어야만 했었다는 것을 결정할 수 있기 때문에, PDCH에 있는 데이터를 무시할 수 없다. 그러므로, 이동국은 PDCH에 들어오는 입력 신호를 프로세스 하는 것을 제외하고는 선택이 없는 것처럼 보인다. 그럼에도 불구하고, 상기와 같은 환경에서 수신 프로세스의 전력 손실을 줄이기 위해서는, 모든 입력 PDCH 신호를 반드시 처리해야만 하는 명백한 필요성을 피하는 것이 바람직하다. 불행하게도, 그런 회피는 앞선 작업과 병행할 수 없는 것이다. 이런 불편함으로 피하기 위한 방안이 아래에 나타나 있다.
제어정지 상태 동안, 대상 이동국은 PDCH에 데이터를 받지 않는다. 데이터 패킷이 기대되기 때문에 상기 이동국이 능동상태로 리턴되어야 한다는 사실이 미리 이동국에 통지되지 않는다면, 상기 이동국이 어또한 패킷도 기대되지 않는 상태에 있는 한, 상기 이동국은 PDCH에 입력되는 데이터를 무시할 수 있다. 그렇다면, 이동국은 재개하도록 지시를 받을 때까지 PDCH 신호의 수신 프로세스를 생략할 수 있다.
그러므로, 제어정지 상태는 이동국이 수신 프로세스를 가능한한 줄일 수 있는 "줄어든 수신 전력 기간"에 관한 좋은 예이다. 제어정지 상태는 다르게 한정될 수 있고, 수신 프로세스에서 감소가 실질적으로 일어나는 다른 상태들이 확인될 수 있다. 따라서, 수신 전력이 감소할 수 있는 다른 어떤 상태가 (여기에 사용된 용어처럼) 제어정지 상태를 대체할 수 있다는 것이 이해되어야만 한다.
F-PDCH는 수신 프로세싱 하는 동안 실질적인 전력을 소비하고 있고, 그러므로 줄어든 수신 전력 기간 동안 무시되어야 하는 채널로써 좋은 예가 될 수 있다. 그러나, 다른 채널은 또한 수신 프로세스 감소에 적합할 수 있고, 이들 중 일부는 아래에서 더욱 상세하게 설명된다. 수신 프로세스는 줄어든 프로세스 상태 동안 필요하지 않은 모든 채널에서 가능한 많은 프로세스를 줄임으로써 최소화 될 수 있다. 그러나, 줄어든 프로세스 기간동안 단지 비본질적인 채널 몇 개 만에 대해서 프로세스가 감소된다면, 덜 복합적인 과정들(procedures)은 만족될 수 있다. 수신 프로세스가 줄어드는 실제 채널들은 전력 손실(loss)이 감소될 수 있는 양과 같은 크기의 팩터(그러한 감소를 이행하도록 요구되는 노력)와 시스템 규격에 따른 그러한 감소와의 양립 가능성 사이에서 기술적인 균형을 맞추도록 선택될 것이다.
샘플 프로세스, 복조화, 수신된 데이터를 구성하는 과정, 그리고/또는 디코딩화하는 과정을 포함하는 수신 프로세스의 일부 영역은 수신 프로세스에 기인한 전력 소비를 줄이기 위하여 줄어든 프로세스 기간 동안 배제될 수 있다. 첫번째 프로세스 감소 접근법(approach)은 수신 프로세스의 모든 영역를 회피함으로써, 수신된 신호 채널을 완전히 무시하는 것이다. 두번째 프로세스 감소 접근법은 특정한 채널에 대해 버퍼된 샘플 데이터를 얻기 위하여 (상기 특정한 채널의 다른 수신 프로세스를 자제(withhold)시키는 것을 제외하고) 가공되지 않은 샘플 프로세스만을 수행하는 것이다. 또 다른 수신 프로세스 감소 기술 또한 이용 될 수 있다.
제어정지에서 능동 상태로의 리터닝(returning)
제어정지 상태와 같이 줄어든 프로세스 상태에 있는 대상 이동국은 그것에 송신된 데이터를 완전히 프로세싱 하기 위하여 적절한 시점에 능동 상태로 리턴해야만 한다. 기지국은 이동국이 예정된 SDU를 받아들이도록 능동 상태로 리턴해야 함을 알릴 수 있다. 그러한 통지는, 이동국이 (미리 줄어든) 수신 프로세스를 저장하기에 충분한 시간까지, 상기 이동국을 목적으로 하는 상기 SDU의 전송 출발 시점보다 앞서야 한다. 상기한 통지의 좋은 예는 대상 이동국을 위해 스케줄된 SDU보다 앞서는 F-PDCCH에 있는 메시지이다.
통지가 상기 이동국에 SDU의 전송을 충분히 앞설 수 없다면, (위에서 서술된) 두번째 감소 프로세스 접근법(여기서, 가공되지 않은 샘플 프로세스가 수행되어 버퍼된 미가공 데이터가 얻어짐)은 데이터가 손실("lost") 되지 않도록 요구될 수 있다. 그러므로, 두번째 감소 접근법을 사용할 때, 상기 이동국에는 상기 F-PDCH에 있는 데이터가 상기 이동국을 목적으로 한 것이라는 정보가 미리 알려질 필요는 없다. 그러나, 두번째 감소 접근법은 모든 수신 프로세스가 상기 F-PDCH에 대해서 중지되는 것을 허락하지 않는다.
F-PDCCH는 대상 이동국이 능동 상태로 리턴해야 함을 알리기 위한 좋은 예이다. F-PDCCHs가 여기에 나타나 있는 주요한 예이지만, 어떤 적절한 채널이 그런 목적으로 사용될 수 있다는 것 또한 이해되어야 한다. 적합한 통지 채널은, 데이터 패킷 전송이 시작되기 전에 이동국이 능동 상태로 리턴하도록 하는 통지를 제공하기 위해서, 충분히 자주 수신 프로세스(receive process) 되어야 한다. 그러므로, 통지 채널이 과도하게 늦어서는 안된다. 통지는 한번에 하나의 통지 채널로 제공되는 것이 바람직하지만, 다양한 채널들이 더불어 이용될 수 있다.
채널은 단지 대상 이동국을 목적으로 하여 능동화되거나(activeted) 또는 비능동화됨(deactiveted)으로서 통지 목적을 달성 할 수 있다. 그러므로, 채널은 통지와 같은 서비스를 위하여 다른 특별한 정보를 수행할 필요가 없다. 그러나, 여기에 서술된 바람직한 CDMA 이동전화 EV-DV 와 같은 멀티플 시스템 안에서, 일정하게 능동적인 채널을 가지는 것과 그런 정보와 함께 제공되는 주소(address)를 수단으로 하여 다른 수신기에 그런 채널에 관한 정보를 송신하는 것이 종종 편리하다. 이러한 방법으로, 하나의 채널은 특정 이동국에 대해서 능동적이거나 또는 비능동적일 수 있다. 바람직한 시스템의 특징으로써 앞서 언급된 매체접근제어(MAC) 주소는 상기한 주소를 위한 좋은 예가 된다. MAC 주소는 여기에 서술된 바와 같은 주소의 단지 하나의 예에 불과하지만, 보통의 지식을 가진자라면 다른 주소나 대상 식별자가 이러한 목적으로 사용될 수 있음을 이해할 것이다. 주소화는 특정한 수신인에 대하여 채널을 능동화시키고, 그래서 위에 나타난 일반적인 능동/비능동 기술의 특별한 예이다.
이동국이라는 관점에서 채널 능동화의 어떤 형태에 따른 하나의 대안은, 주소화와 같이, 알려진 방법에 따라, 이동국이 능동 상태로 리턴하는 것을 특정한 지시로 해석하는 채널에 특정한 정보를 표시하는 것과 관련이 있다. 그러므로, 채널이 벌써 대상 이동국에 의해 능동적으로 수신되었다면, 알려진 방법에 따라, 채널에 이행된 특정한 정보는 이동국이 능동 상태로 전환하도록 하는 명령어로서 이해될 수 있다. 종래의 방법이 서비스하는 기지국과 대상 이동국 두개에 의해 실행될 수 있다는 것을 가정하면, 데이터의 어떤 특별한 조합도 이러한 목적으로 사용될 수 있다.
상기와 같은 대안(alternative)의 조합은 상기 시스템의 유연성(flexibility)을 증가시키고 통지를 위한 서비스를 수행할 수 있다. 상기한 조합의 예에서와 같이, 특정한 데이터(하나의 대안)는 대상(target)(두번째 대안)에 주소화되는 채널에 따라 표시될 수 있다. 기술의 조합을 이용함으로써, 각 구성요소 기술 각각은 도 4의 하단에 도시된 바와 같이 능동적인 상태로 리턴하는 것을 촉발시키는 일이 없이 분리되어 사용될 수 있다.
도 4는 여러가지 특징들의 조합이 이동국이 능동 상태로 리턴하도록 하는 통지로써 서비스 될 수 있는 하나의 예를 도시하였다(하나의 특징만으로는 그렇지 않음). 도 4에 도시되어 있는 특징의 조합은 이하를 포함한다: 1) 대상의 MAC 주소를 사용하여 메시지를 주소화, 그리고 2) 종래의 방법에 따라 통지의 지표로서 받아들여지는 특별한 양(인코더 패킷 길이 또는 EP 길이)을 위한 널("null") 수치 형태로 특별한 정보를 추가로 제공하는 것.
도 4에 나타난 특별한 환경에서, 상기 대상 이동국은 PDCH의 수신 프로세스가 전체적으로 정지되어 있는 제어정지 상태로 시작한다. 대상 이동국은, EP 길이 필드에서 널("null") 수치와 조합된 이동국의 MAC 주소화를 포함하는 PDCCH에 통지 메시지를 확인한 후에만, PDCH의 전체 프로세스로 리턴되도록 특정되었다. 이러한 예에서, 이동국은 통지 메시지의 완전한 수신 이후에 뒤따르는 미리 예정된 변환 지연 시간에 능동 상태로 변환한다.
두-슬롯 메세지(402)는 전송 참조 시간 T0(404)에 시작하는 것으로 F-PDCCH0(304)에 나타나 있다. 예를 들어, 메시지는 CQICH에 게이팅(gating) 비율을 증가시키는 지시(instruction)와 같이 데이터 패킷과 관계없는 지시를 포함 할 수 있다. 그러나, 그것은 EP 길이에 대한 널("null") 수치의 특정 트리거(trigger) 데이터를 포함하지 않는다. 이동국이 제어정지 상태에 있기 때문에, 상기 이동국은 F-PDCH(316)으로부터 심벌을 저장하지 않고, 따라서, SDU(406)은 무시된다. 그리고 두 슬롯의 적절한 ACK_DELAY 이후에, 이동국은 NAK(408)을 전송함으로써 지시 메시지의 수신을 긍정할 수 있다. 데이터 패킷에 의해 수행되지 않는 메시지의 인지여부를 표시하고, 그에 따라 데이터 패킷 SDU의 정확한 수신 인지와 구별하기 위해서는, ACK보다는 NAK가 사용될 수 있다. 메시지를 정확하게 수신하지 못하는 것은 전혀 인지될 필요가 없다. 다른 채널에 대한 메세지와 같이 인지응답의 다른 형태가 사용될 수 있고, 또한 인지응답은 함께 생략될 수 있다.
전송 참조 시간 T0(410)에서, 4-슬롯 메시지(412)는 시작한다. 메시지(412)가 완전히 수신된 이후에, 상기 메시지(412)는 이동국에 대한 MAC 주소화와 EP 길이에 대한 널 수치를 포함하는 것으로 확인된다. 따라서, 메시지(412)는 이동국이 능동상태로 전환하도록 촉발시킬(trigger) 것이다. 메시지(412)를 해독하고, F-PDCH(316)에 있는 전체 수신 프로세스를 리턴하기 위한 시간을 위하여, 변환 지연(414)은 이동국이 하나의 시점(416)에서 능동상태로 전환하기 전에 통과하도록 허락되었다. 변환 지연(414)은 ACK_DELAY와 같은 비슷한 목적을 서비스하고, 이에 따라 변환 지연(414)은 ACK_DELAY에 적합하도록 결정된 것과 같은 수치로 주어질 수 있다. 일반적인 방법에 따라, 어떠한 수치도 변환 지연을 위해 사용될 수 있지만, 더 연장된 수치는 이동국에 초기 데이터를 전송하기 위한 잠복 기간을 증가시킬 것이다. 이러한 목적으로 ACK_DELAY을 이용하는 경우 분리된 통신 매개변수를 저장할 필요가 없다.
소정의 시간(416)까지, 이동국은 제어정지 상태로 남아있다. 따라서, 이동국은 메시지(412)와 함께 동시에 전송되는 SDU(418)을 무시한다. 게다가, 이동국은 SDU(418)을 복조하지 않을 것이기 때문에, 메시지(420)는 이동국을 위한 어떤 유용한 정보(사용되지 않는 Walsh 코드의 지정 같은 정보)도 포함하고 있지 않고, 그래서 상기 이동국과 관련이 없다. 이러한 환경은 메시지(412)로부터 두꺼운 화살표에 연결되지 않는 것으로 표시된다. NAK(422)는 ACK_DELAY의 말단에서, 소정의 시간(416)에 동시로 전송될 수 있다.
이동국은 상기한 시간(416)까지 능동적인 상태로 존재하고, 그 결과로 데이터가 F-PDCH(316)에 있는 상기 이동국으로 송신될(directed) 수 있다. 따라서, 이동국은 그 이후에 F-PDCH(316)에 수신된 연장되고(spread), 비복조된(undemodulate) 심벌을 저장한다. F-PDCCH0(304)에 있는 이동국을 주소화하는 메시지(426)는 동시 발생하는 SDU(428)이 이동국에 송신하는 것을 표시하고, 또한 상기한 데이터를 디코드하기 위해 필요한 정보를 제공한다. 메시지(426)를 해석한 후에, 이동국은 상기 SDU(428)을 위하여 저장된 가공되지 않은 심벌의 다른 프로세스를 전송한다. 다른 실시예에서, 상기 이동국은 미가공 심벌들이 이용 가능하게 되면 상기 미가공 심벌의 다른 프로세스를 시작한다. F-PDCCH1(326)에 있는 메시지(424)는 이동국으로 전송되지 않는다. 하나의 가능한 방법에 따라, 특정 이동국에 주소화 되는 F-PDCCH0에 대한 메시지 존재는 상기 특정 이동국을 위한 F-PDCCH1(326)에 메세지가 동시로 발생하지 않도록 한다. 따라서, 이러한 방법이 실행된다면, 상기 이동국은 메시지(424) 안에 있는 데이터를 전혀 참고할 필요가 없다. 이러한 패킷 프로세스를 완성하기 위하여, 이런 경우 상기 SDU(428)이 정확하게 디코드되고, 이에 따라 상기 이동국은 적절한 지연 이루어지면 R-ACKCH(318)에 ACK(430)을 전송한다.
그러므로, 능동상태로 리턴하기 위하여 동시에 발생하는 두개의 이벤트를 필요로 함으로서, 상기 이동국은 (상기 메세지(402)와 같이) 능동상태로 불필요하게 리턴할 필요없이 상기 이동국에 특별하게 주소화 되는 메시지를 수신할 수 있다. 상기 이동국과 관련해서 F-PDCCH의 능동화를 위한 다른 형태는 능동상태로의 불필요한 리턴을 피할 수 있는 것이다. 상기 이동국의 MAC 주소를 특정하지 않은 글로벌(global) 주소가 사용될 수 있지만, 상기 글로벌 주소는 상기 메세지가 상기 이동국에 의해 받아들여지는 것을 표시한다. 이러한 환경에서, 상기 F-PDCCH는 상기 이동국에 대해서 능동적인 상태가 될 수 있고, 능동 상태(예를 들어, 주소와 데이터)로 전환하기 위한 어떤 표준 척도도 아직 이동국에 제공되지 않는다. 그러므로 이동국은 제어정지 상태를 종료하기 위하여 지시받지 않는다.
도 5는 하나의 슬롯이 상기 ACK_DELAY와 상기 변환 지연을 위해 사용될 때 능동변환하는 제어정지 타이밍을 도시한다. 두 다른 사용자 #1과 #2가 표시되어 있다. 사용자 #1에 대한 F-PDCCH와 F-PDCH에 있는 신호가 도시되고, 이와 부합하는 신호가 사용자 #2에 대해 도시되었다. 슬롯i에 앞서서, 사용자 #1은 능동상태에 있고, 반면에 사용자 #2는 제어정지 상태에 있다. 간단하게 도 5 안에 있는 각 SDU는 길이로는 하나의 슬롯이다.
슬롯i 에서, 사용자 #1(F-PDCCH #1)을 위한 F-PDCCH는 주소화 되고, F-PDCH의 전체 Walsh 스페이스로부터 데이터를 회복시키는 것으로 지칭된다. 따라서, 사용자 #1(F-PDCCH #1)을 위한 상기 F-PDCCH는 사용자 #1에 대한 SDU 패킷을 포함한다. 사용자 #2는 제어정지 상태에 있고, 그러므로 어떤 패킷이든지 무시할 것이다; 따라서, 어떤 패킷도 사용자 #2(F-PDCCH #2)를 위한 F-PDCCH에 있는 사용자 #2에게 전송되지 않는다. 그러나, 사용자 #2는 상기 사용자 #2의 MAC ID와 특별한 코드를 포함하여, 상기 사용자 #2가 제어정지 상태로 변환하도록 지시하는 F-PDCCH #2에 있는 메시지를 수신한다.
슬롯 i+1은 PDCCH 메시지를 해독하고 F-PDCH에서 전체 수신 프로세스가 시작되도록 하는 것을 가능하게 하는 한 슬롯의 변환 지연과 일치한다. 따라서, 사용자 #2는 아직 제어정지 상태에 있고, 그와 같이, F-PDCH #2에 패킷을 수신하지 않는다. 그러나, 사용자 #1은 F-PDCH #1 메시지를 다시 수신하고 F-PDCH #1에 패킷을 받아들인다.
(이 경우에) 원-슬롯 변환 지연 다음에 이어지는 슬롯 i+2 에서, 사용자 #2는 능동상태로 들어간다. 그러므로 서비스하는 기지국은 각 사용자에 이용 가능한 Walsh 스페이스의 절반을 할당하면서 사용자 #1과 사용자 #2사이에 F-PDCH를 나누도록 선택한다. 이에 따라, 각 사용자는 (공유된) F-PDCH에 있는 Walsh 코드 스페이스의 절반으로부터 데이터를 얻기 위하여 사용자 각각의 F-PDCH에 메시지를 수신한다. 그러므로, 두 사용자는 모두 상기 (공유된) F-PDCH에서 패킷 전송을 나타내고 있다.
슬롯 i+3 에서는, F-PDCH에 있는 어떤 데이터도 사용자 #2에 송신되지 않고, 반면에 사용자 #1은 상기 F-PDCH에 다시 전체 Walsh 스페이스를 할당받는다. 적어도 이후의 복조화 및 디코딩을 위한 상기 미가공의 (즉, 이미 변조된) 복합 심벌을 저장하는 시점에는, 사용자 #2가 현재 능동상태에 있고 전체 PDCH를 수신 프로세스하고 있을 때 조차도, 사용자 #2는 어떠한 메시지나 패킷을 수신하지 않는다.
다음의 예시는 이동국이 줄어든 수신 프로세스 상태로부터 전체 수신 프로세스로 리턴할 필요성이 있다고 통지할 수 있는 어떤 기술의 결과를 서술하였다. 선택된 특정한 기술은, 시그널링에서 유연성(flexibility)과 같은, 시스템 능력에 영향을 미친다. 하나의 이벤트가, 일 채널에 목적 수신기(target receiver)를 주소화 하거나 또는 일 채널에 특정한 데이터를 제공하면서, (특정 채널의 능동화와 같은) 통지(notification)를 가능하게 하도록 선택될 수 있다. 이러한 이벤트의 결합이 목적 이동국에 통지를 위해 사용된다면 더 많은 유연성이 이루어질 수 있다. 각 사건의 어떠한 결합도 사용되어 질 수 있다. 바람직한 결합은, 상기와 같이 주소화된 패킷 내에 배치된(disposed) 특정한 데이터와 함께, 상기 목적 이동국을 MAC 주소화하는 것을 포함한다.
도 7은 현재 제어정지 상태에 있는 이동국이 제어정지 상태로부터 능동상태로 변환하기 위해 수행할 수 있는 과정을 도시한 플로어 차트이다. 블록(702)는 메시지가 PDCCHi에서 프로세스되는 것을 나타낸다. 결정(decision) 블럭(704)은 상기와 같은 메시지가 상기 이동국(MAC_IDs)에 상기 MAC 주소를 매칭시키는 MAC 주소(MAC_ID)를 포함하는지 여부를 결정하고, 이 경우 프로세스는 결정(decision) 블럭(706)으로 계속된다. 상기 MAC 주소가 매칭되지 않는다면, 상기 메시지는 능동상태로 변환하는 것과 관련이 없고, 따라서 이에 관해서는 프로세스가 종결된다. 그렇지 않으면, 결정(decision) 블럭(706)에서 특정한 데이터 필드(field), EP_SIZE 는 "널(null)" 수치 111과 동일한 것으로 테스트된다. 상기 데이터 필드 EP_SIZE 가 111이 아니라면 상기 메시지는 능동상태로의 변환과 관련이 없고, 프로세스는 종료된다.
그렇지 않으면, 프로세스는 메시지 타입을 결정하기 위한 선택적 결정(optional decision) 블록(708)에서 계속된다. 이 블록은 (제어정지 상태에서 능동상태로 변환하는 것과는 다른 목적으로) MAC 주소와 지금까지 확인된 특정한 데이터(즉, EP_SIZE=111 과 함께 상기 MS MAC 주소)의 결합을 다시 사용하도록 하게 하는 것을 포함한다. 이러한 결정 블록(708)이 이행되지 않는다면, 결정 블록(710)으로 프로세스가 직접 수행될 것이다. 상기 결정 블록(708)이 이행된다면, 변동가능한 EXT_MSG_TYPE(확장된 메시지 타입)의 단지 하나의 특정한 수치 (예를 들어, 상기 수치는 00)에 대해서만, 상기 결정 블록(710)으로 프로세스가 진행될 것이다. 그렇지 않으면, 프로세스는 타입(TYPE) 00과는 다른 유효한 메시지 타입을 체크하기 위하여 결정 블록(712)으로 진행될 수 있다. 그러한 다른 유효한 메시지 타입이 발견된다면, 프로세스는 리턴하기 전에, 관계되는(corresponding) 작용을 수행할 수 있는 블록(714)으로 계속 진행할 수 있다.
상기 선택적 결정 블록(708)이 이행되지 않는다면, 또는 EXT_MSG_TYPE=00이라면, 그다음 처리단계는 결정 블록(706)의 "네"로부터 결정 블록(710)으로 계속될 것이다. 상기 이동국이 제어정지 상태에 있다면, PIOT_GATING_USE_RATE=1이고, 이 경우에 결정 블록(710)은 "아니오"로 결정되며, 프로세스는 블록(716)으로 계속될 것이다. 블록(716)에서는, 트래픽(traffic)이 수신되어야 하고 이동국이 제어정지 상태에서 능동상태로 변환되어야만 한다는 것이 상기 이동국의 상위층으로 통지 된다. 블록(718)에서 명령이 인지된다면 ACK가 스케줄되고, 그 다음 프로세스는 리턴된다.
제어정지 상태로의 진입
이동국은, 수신 프로세스의 노력을 적절히 줄여서 응답하기 위하여, 제어정지 상태(또는 어떤 다른 줄어든 수신 프로세스 상태)로의 진입을 인지하는 것이 필요하다. 서비스하는 기지국 또한 상기 이동국이 목적된 데이터 패킷을 받아들일 수 있는 충분한 시간 안에 전체 프로세스를 리턴할 수 있도록 효과적으로 송신하기 위하여, 이동국이 제어정지 상태에 있다는 것을 인지할 필요가 있다. 제어정지 상태로 진입을 유도하기 위해 사용되는 메커니즘은 되도록 불필요한 시그널링을 전체적으로 피하고, 이동국 전력 소실을 줄이기 위하여 가능한 많은 시간동안 이동국이 제어정지 상태에 있도록 한다.
대상 이동국은 미리 결정된 트리거(trigger)에 따라, 자동으로 제어정지 상태로 진입할 수 있다. 예를 들어, 트리거 상태는 상기 이동국이 어떠한 데이터도 받지 않는 전송 기간의 선택된 수("진입 문턱")로 이루어 질 수 있다. 그러나, 제어정지 상태로의 진입은 상기 이동국으로 하여금 상기 트리거를 인지하고 그에 따라 행동하도록 하게는 트리거 상태 이후의 "진입 지연"을 필요로 한다. 하나의 방법은 하나의 전송 기간에 상기 진입 문턱을 설치하고, 하나의 슬롯에 상기 진입 지연을 설치하는 것이다. 이러한 특정 방법은 이동국이 제어정지 상태에 있는 시간을 최대화 시키고, 그래서 전력 소비를 최소화 시킨다. 그러나, 이 방법에는 일부 잠재적인 단점이 존재한다. 예를 들어, 제어정지 상태는 단지 수신 프로세스에 영향을 미치지는 않지만, 상기 제어정지 상태는 또한 역방향 파일럿 신호를 게이팅(gating) 하는 것과 관련이 있고, 이러한 상태의 안과 밖으로 자주 진입(frequent entry)하는 것은 기술적인 이유에서 적절치 못하다(inconvenient). 이러한 적절치 못함을 경감시키기 위해서, 상기 제어정지 상태는 줄어든 수신 프로세스(RRP) 상태로부터 분리(seperated)될 수 있고, 상기 RRP 상태로 그렇게 진입하는 것은 상기 제어정지 상태와 관련이 있는 프로세스 변화를 필요로 하지 않는다.
상기 이동국에 대한 어떠한 데이터도 포함하지 않는 하나의 전송 기간 이후에 상기 제어정지 상태로의 자동 진입을 특징으로 하는 방법의 다른 단점은 모든 중단된 데이터 전송에 앞서서 상기 능동 상태로의 변환을 송신할 필요가 있는 것이다. 이러한 단점은 특정 이동국에 대한 데이터를 대기 시키고 버스트(burst) 안에 있는 상기 데이터를 전송 시킴으로서 경감될 수 있다. 더욱이, 상기 단점은, 상기 목적 이동국에 대한 통지가 다른 이동국들에 대한 데이터 전송을 방해할 필요가 없기 때문에, 아래 도 6의 설명에서 보여질 수 있는 것처럼, 심각한 것은 아니다.
도 6은 사용자 #1에 대하여 상기 제어정지 상태로의 변환을 도시한다. 각 전송 기간(TP)은 시스템의 통신규약 면에서 길이가 하나, 둘, 넷 또는 다른 수의 슬롯일 수 있다. TP i 기간동안 사용자 #1은 F-PDCH#1에 패킷을 받기 위해 F-PDCH#1에서 (F-PDCH의 전체 Walsh 스페이스를 이용하여) 통지를 받는다. 사용자 #2는, 사용자 #2에 대한 MAC 주소 뿐만 아니라 알려진 방법에 의해 인지된 데이터(패킷 사이즈로 "널")를 포함하는 F-PDCH#2에 있는 메시지를 수단으로 하여, 능동상태로 전환하도록 통지 받는다.
TP i+1 기간동안, 사용자 #2는 TP i 기간동안 받았던 메시지를 해석하고 있고, 그래서 어떠한 데이터도 수신하지 않는다. 같은 기간동안, 사용자 #1은 다시 상기 F-PDCH#1에 있는 SDU 패킷으로 전체 Walsh 스페이스를 할당받는다(assigned). TP i+2 까지, 사용자 #2는 능동 상태로 변환한다. 사용자 #2는 F-PDCH#2의 전체 Walsh 스페이스로부터 데이터를 받기 위해 F-PDCH#1에 있는 메시지로 통지를 받는다. 이것은 TP i+1이 하나의 슬롯보다 더 길거나 또는 상기 변환 지연이 단지 하나의 슬롯을 포함한다는 것을 가정한다.
사용자#1은, F-PDCH의 전체 밴드폭(Walsh 스페이스)이 사용자 #2에게 사용되기 때문에, TP i+2 에서 데이터를 받지 않는다. 따라서, TP i+3 에서 사용자 #1은 제어정지 상태(또는 줄어든 수신 처리단계 상태)로 변환한다. 예를 들어, F-PDCH에 있는 패킷은 시스템의 다른 사용자에게 송신될 수 있다. 데이터를 나타내도록 표시된 F-PDCCH에 있는 어떠한 메시지도 TP i+3 동안 사용자 #2에게 송신되지 않는다. 따라서, 사용자 #2는 다음 전송기간(보이지 않음)에 제어정지 상태로 전환할 것이라고 가정될 수 있다.
제어정지 상태로 자동 진입하는 것은 패킷 스케줄에 적합하지 않은 제약을 부과 할 수 있다. 이동국은, 슬롯에 의하든 전송 기간에 의하든, 하나 이상의 수치까지 상기 자동 진입을 증가시킴으로써 이러한 제약의 일부를 약화시킬 수 있다. 도 6은 HOLD_ENTRY가 일 슬롯의 지연이 되도록 선택되는 예를 도시한다. 그러나, 예를 들어, HOLD_ENTRY는 여덟 또는 열여섯 슬롯처럼 높은 수까지 증가될 수 있고 또는 전력소비를 줄이는 것과 능동 변환 메시지로 보류할 필요성을 간단히 하는 것과의 사이에서 좋은 균형을 이루는 것으로 경험에 의해 결정된 수치까지 증가될 수 있다. HOLD_ENTRY는 또한 시계 시간과 같은 슬롯 또는 위에 서술된 것과 같은 (변하는 길이의)전송 기간보다는 양(quantity)을 표현할 수 있다. 많은 HOLD_ENTRY 가 데이터를 수신하지 않고 결합된 이후에, 이동국은 줄어든 수신 프로세스 상태(예를 들어, 제어 정지)로 진입한다. 상기 기지국과 이동국은 일관되게 알려진 방법에 따라 상기 이동국이 제어정지 상태로 진입하는 시기를 각각 독립적으로 결정한다.
상기 이동국 자체는 제어정지 상태로 자동 진입하는 것을 결정하고 제어할 수 있다. 상기 이동국은 다양한 상태의 일부 또는 모두를 평가할 수 있고, 이러한 상태는 예를 들어 배터리 충전 상태, 트래픽 비율, 신호 강도 및/또는 사용자에 의해 결정된 서비스(QoS)의 질을 포함한다. 선택된 상태의 수치를 토대로, 상기 이동국은 줄어든 수신 프로세스 상태(예를 들어, 제어정지 상태)로 진입할 수 있는 적절한 시간을 결정 할 수 있다. 이동국은 줄어든 수신 처리단계 상태로 진입하기에 앞서서 상기와 같은 변환의 통지를 기지국에 충분히 전송해야 한다. 상기 통지는 기지국이 데이터 패킷을 더 보내기에 앞서서 능동상태로 리턴하라는 지시를 보낼 수 있도록 충분한 시간을 확보할 수 있게 한다.
상기 이동국은, 선택된 지연 이후에 자동적으로 진입하는 것보다, 서비스하는 기지국에 의해 제어정지 상태로 진입하도록 지시를 받자마자 그러한 상태로 진입할 수 있다. 각 이동국은 이와 관련된 서비스 품질(QoS)을 가질 수 있다. 기지국은 상기 이동국이 비도록(empty) 대기(queue)할 때까지 대역폭 이용가능성과 QoS에 따라 각 이동국에 전송 대역폭의 일부를 제공할 수 있다. 게다가, 상기 기지국은 버스트로 상기 이동국에 전송을 스케줄할 수 있고, 상기 이동국이 그런 버스트 사이에서 제어정지 상태로 진입할 수 있도록 지시할 수도 있다.
목적 이동국이 능동 상태로부터 제어정지 상태로 변환하도록 송신하는 기술은 대상 이동국이 제어정지 상태로부터 능동상태로 변환하도록 송신하는 위에 서술된 기술들과 유사한 것으로 선택될 수 있다. 그러므로, 일치된(agreed) 채널의 능동화, 또는 목적 이동국에 대한 주소(MAC 주소와 같이)를 포함함으로써 목적 이동국을 능동화시키는 것은 하나의 기술에 의해 수행될 수 있다. 알려진 방법에 의해 일치된 특정한 데이터는 다른 기술로 사용될 수 있다. 이러한 기술 중 하나 또는 둘 다는 또한 결합되서 사용될 수 있다. 하나의 예로서, 동일한(identical) 메시지는 "토글(toggle)" 송신으로써 사용될 수 있고, 그리하여 제어정지 상태에 있는 이동국은 송신을 받자마자 능동상태로 변환하며, 반면에 능동 상태에 있는 이동국은 같은 지시를 받자마자 제어정지 상태로 변환한다. 택일적으로, 통지(notifiation) 기술의 독특한 결합이 사용될 수 있다. 예를 들어, 통지는 목적 이동국의 MAC 주소를 포함하는 F-PDCCH에 있는 패킷의 전송에 의해 목적을 이룰 수 있고, 제어정지 상태로부터 능동 상태로의 변환을 송신하도록 선택된 데이터와는 다른 데이터(알려진 방법에 따라 일치된 데이터)와 함께 F-PDCCH에 있는 패킷 안에 포함될 수도 있다.
제어정지 상태로의 진입을 위해 자동화되고 기지국에 송신되는 기술 또한 결합될 수 있다. 예를 들어, 이동국은 32 슬롯을 위한 어떠한 SDUs도 수신하지 않은 다음 제어정지 상태로 자동으로 진입할 수 있고, 서비스하는 기지국으로부터 명백한 송신을 받자마자 더 빠르게 제어정지 상태로 진입할 수 있다. 택일적으로, 이동국은 (종래의 규정에 의해 미리 한정된 것보다는) 다양한 매개변수로부터 계산된 시점에 제어정지 상태로 진입하도록 결정할 수 있고, 또한 기지국으로부터 지시를 받자마자 제어정지로 진입할 수 있다.
결론
앞선 설명은 페킷 데이터 수신기 안에서 수신 전력 손실을 줄이기 위한 방법과 장치에 관한 바람직한 이행 방법과 새로운 특징에 관한 것이다. 일부 대안적인 실시예들이 제안되었지만. 그 방법과 장치의 모든 대안들을 열거하는 것은 비실용적이다. 그러므로, 본 발명의 범위는 첨부된 청구항을 참조함으로서만 결정되어야 하고, 첨부된 청구항안에서 특별히 제한이 가해진 경우를 제외하고는 앞선 상세한 설명에서 제시된 특징들에 의해 제한되어서는 안 된다.
상기 상세한 설명은 다양한 실시예에 적용되는 본 발명의 신규한 특징들을 지적하고 있는 반면에, 통상의 전문가는 상기 설명된 방법 및 스시템의 형태 및 세부사항에서 다양한 생략, 치환 및 변형이 발명의 범위를 벗어나지 않는 범위에서 가능하다는 사실을 이해할 것이다. 예를 들어, 통상의 전문가는 여기에 서술된 상세한 내용을 변조 기술, 전송 기술 및 수신기 구조, 그리고 일반적으로 많은 다른 형식의 넓은 범위를 가지고 있는 통신 시스템에 적용할 수 있을 것이다.
상기에 서술된 구성요소의 각 실제적이고 신규한 결합, 그리고 그런 구성요소와 등가인 각 실제적인 결합이 본 발명의 실시예로서 의도되고 예상된다. 여기서 명백하게 열거되어 추론 될 수 있는 것보다 더 많은 구성요소의 결합이 본 발명의 실시예로서 의도 되며, 본 발명의 범위는 앞선 설명에 의하기 보다는 첨부된 청구항에 의하여 적절히 규정된다. 다양한 청구항 구성요소와 등가의 의미 및 범위 내에 있는 모든 다양한 변형은 대응되는 청구항 범위내에 포함된다. 아래에 나타난 각 청구항은 어떤 시스템 또는 방법이 실제로 선행기술의 실시예에 해당하지 않는 한, 그 청구항의 문자 그대로의 의미와 단지 근소하게 차이가 나는 어떤 시스템 또는 방법을 포함하는 것으로 의도 된다. 이러한 목적을 위하여, 각 청구항에 서술된 각 구성요소는 가능한 넓게 해석되어야 하고, 또한 선행기술을 포함하는 것이 없다면 가능한 한 그런 구성요소와 등가의 어떤 등가물이든 포함하는 것으로 이해되어야 한다.
삭제
삭제
삭제
상술한 바와 같은 본 발명은 (가) 다수의 물리적 채널에 있는 수신 프로세스의 초기 레벨을 이용하여 이동국(MS)과 기지국(BS) 사이에 CDMA 데이터-음성 연결을 설정하는 단계; (나) 미리 결정되지 않은 소정의 시간 동안, 상기 이동국이 상기 다수의 물리적 채널 중 적어도 하나의 특정한 채널에 데이터를 수신하지 않는 중지된(suspended) 이송(transfer) 상태를 확인하는 단계; 및 (다) 상기 특정한 채널에서 신호의 수신 프로세스를 줄이는 단계;를 포함하는 것을 특징으로 하여, 이동 전화 통신 시스템 내에서 결합된 음성과 데이터 용량을 공급하도록 제작된 이동국에서의 전력소실을 줄일 수 있다. 상기 중지된 이송 상태는 제어정지(Control Hold) 상태인 것이 바람직하고, 상기 제어정지 상태 동안 대상 이동국은 PDCH에 데이터를 받지 않는다. 데이터 패킷이 기대되기 때문에 상기 이동국이 능동상태로 리턴되어야 한다는 사실이 미리 이동국에 통지되지 않는다면, 상기 이동국이 어또한 패킷도 기대되지 않는 상태에 있는 한, 상기 이동국은 PDCH에 입력되는 데이터를 무시할 수 있다. 그렇다면, 이동국은 재개하도록 지시를 받을 때까지 PDCH 신호의 수신 프로세스를 생략할 수 있고, 이에 따라 전력손실을 줄일 수 있는 것이다.

Claims (30)

  1. (가) 다수의 물리적 채널에 있는 수신 프로세스의 초기 레벨을 이용하여 이동국(MS)과 기지국(BS) 사이에 CDMA 데이터-음성 연결을 설정하는 단계;
    (나) 미리 결정되지 않은 소정의 시간 동안, 상기 이동국이 상기 다수의 물리적 채널 중 적어도 하나의 특정한 채널에 데이터를 수신하지 않는 중지된(suspended) 이송(transfer) 상태를 확인하는 단계; 및
    (다) 상기 특정한 채널에서 신호의 수신 프로세스를 줄이는 단계;를 포함하는 능동적 CDMA 데이터-음성 연결 기간동안 이동국에 의한 전력소비를 줄이는 방법.
  2. 제1항에 있어서, 상기 중지된 이송 상태는 제어정지(Control Hold) 상태이고, 상기 특정한 채널은 순방향 패킷 데이터 채널(F-PDCH)인 것을 특징으로 하는 능동적 CDMA 데이터-음성 연결 기간동안 이동국에 의한 전력소비를 줄이는 방법.
  3. 제2항에 있어서, 기지국이 ACK_DELAY 수치(value) 만큼의 기간동안 상기 제어정지 상태에 있는 이동국에 대하여 상기 F-PDCH에 전송(transmission)을 지연시키는 것을 특징으로 하는 능동적 CDMA 데이터-음성 연결 기간동안 이동국에 의한 전력소비를 줄이는 방법.
  4. 제1항에 있어서, 상기 수신 프로세스를 줄이는 단계는 상기 특정한 채널에 있는 신호들의 가공되지 않은(raw) 샘플 프로세스를 중지하는 것을 포함하는 것을 특징으로 하는 능동적 CDMA 데이터-음성 연결 기간동안 이동국에 의한 전력소비를 줄이는 방법.
  5. 제1항에 있어서,
    (라) 상기 중지된 이송 상태 동안 적어도 하나의 통지 채널에 수신 프로세스를 계속하는 단계;
    (마) 중지된 상태에서 능동적인 이송 상태로의 변환이 필요하다는 표시(indication)를, 상기 이동국에 있는 상기 통지 채널에서 수신하는 단계; 및
    (바) 그리고 나서, 상기 특정한 채널의 수신 프로세스를 초기 레벨로 리턴하는(returning) 단계;를 더 포함하는 것을 특징으로 하는 능동적 CDMA 데이터-음성 연결 기간동안 이동국에 의한 전력소비를 줄이는 방법.
  6. 제5항에 있어서, 상기 중지된 상태에서 능동적인 이송 상태로의 변환이 필요하다는 표시는, 상기 이동국에 대응하는 것으로써, 상기 통지 채널에 전송된 통지 패킷의 데이터 안에 배치된 MAC 주소를 포함하는 것을 특징으로 하는 능동적 CDMA 데이터-음성 연결 기간동안 이동국에 의한 전력소비를 줄이는 방법.
  7. 제6항에 있어서, 상기 중지된 상태에서 능동적인 이송 상태로의 변환이 필요하다는 표시는, 상기 통지 채널에 있는 데이터 내의 유일한(unique) 데이터 비트 각각을 미리 결정된 수치(value)로 설정한 것임을 특징으로 하는 능동적 CDMA 데이터-음성 연결 기간동안 이동국에 의한 전력소비를 줄이는 방법.
  8. 제5항에 있어서, 상기 통지 채널은 상기 중지된 이송 상태 동안 상기 이동국에 의해 완전히 수신 프로세스되는 다수의 순방향 패킷 데이터 제어 채널(F-PDCCHs)중의 하나인 것을 특징으로 하는 능동적 CDMA 데이터-음성 연결 기간동안 이동국에 의한 전력소비를 줄이는 방법.
  9. 제5항에 있어서, 상기 통지 채널은 다수의 F-PDCCHs 중에서 미리 결정된 하나이고, 상기 이동국은 상기 줄어든 이송 상태 동안 어떠한 다른 F-PDCCH도 완전히 수신 프로세스 하지 않는 것을 특징으로 하는 능동적 CDMA 데이터-음성 연결 기간동안 이동국에 의한 전력소비를 줄이는 방법.
  10. 제5항에 있어서, 능동적인 이송 상태로의 변환이 필요하다는 표시를 수신하고, 미리 결정된 시점에서 상기 초기 레벨로 수신 프로세스를 리턴하는 단계를 더 포함하는 것을 특징으로 하는 능동적 CDMA 데이터-음성 연결 기간동안 이동국에 의한 전력소비를 줄이는 방법.
  11. (가) 제어정지 상태 동안 첫번째 채널의 내용(content)에 대한 대처(attention)를 중지하는 단계;
    (나) 상기 제어정지 상태동안 상기 이동국에 의해 수신된 변환(transition) 신호 패킷을 다른 두번째 채널에 프로세스하는 단계;
    (다) 상기 변환 신호 패킷이 상기 제어정지 상태의 종료를 지시하는 정보를 포함하도록 결정하는 단계; 및
    (라) 상기 변환 신호 패킷의 전체(entirety)를 받은 다음에 이어지는 미리 결정된 시간 기간의 마지막에, 상기 이동국에 의해 상기 첫번째 채널의 내용에 대한 대처를 재게하는 것을 포함해서, 능동 상태로 변환하는 단계;를 포함하는 이동국(MS) 안에서 제어정지 상태로부터 능동 상태로 변환하는 방법.
  12. 제11항에 있어서, 상기 변환 신호 패킷은 4개의 통신 슬롯 기간 중 하나를 차지하고, 상기 미리 결정된 시간 기간은 두개의 통신 슬롯 기간과 동일한 것을 특징으로 하는 이동전화 통신 시스템 이동국(MS) 안에서 제어정지 상태로부터 능동 상태로 변환하는 방법.
  13. 제11항에 있어서, 상기 첫번째 채널은 순방향 패킷 데이터 채널(F-PDCH)이고, 상기 두번째 채널은 상기 이동국에 의해 수신된 다수의 순방향 데이터 제어 채널(F-PDCCHs) 중에서 서비스하고 있는 기지국에 의해 선택된 것을 특징으로 하는 이동전화 통신 시스템 이동국(MS) 안에서 제어정지 상태로부터 능동 상태로 변환하는 방법.
  14. 제11항에 있어서, 상기 종료를 지시하는 정보를 포함하도록 결정하는 단계(다)는, 상기 변환 신호 패킷에 의해 전달되는 데이터 내에서, 상기 이동국과 관련있는 주소를 확인하는 것을 더 포함하는 것을 특징으로 하는 이동전화 통신 시스템 이동국(MS) 안에서 제어정지 상태로부터 능동 상태로 변환하는 방법.
  15. 제14항에 있어서, 상기 종료를 지시하는 정보를 포함하도록 결정하는 단계(다)는, 상기 변환 신호 패킷에 의해 전달되는 데이터 내에서, 이동국 주소와 상관없이 미리 정해진(predefined) 수치 패턴을 가지는 미리 정해진 비트 세트를 확인하는 것을 더 포함하는 것을 특징으로 하는 이동전화 통신 시스템 이동국(MS) 안에서 제어정지 상태로부터 능동 상태로 변환하는 방법.
  16. 제11항에 있어서, 상기 두번째 채널은 상기 이동국에 의해 수신된 다수의 순방향 데이터 제어 채널(F-PDCCHs) 중에서 미리 결정된 하나이고, 상기 제어정지 상태 동안 모든 다른 F-PDCCHs의 수신 프로세스를 줄이는 것을 더 포함하는 것을 특징으로 하는 이동전화 통신 시스템 이동국(MS) 안에서 제어정지 상태로부터 능동 상태로 변환하는 방법.
  17. (가) 다수의 물리적 채널에 있는 수신 프로세스의 능동 레벨을 이용하여 이동국(MS)과 기지국(BS) 사이에 CDMA 데이터-음성 연결을 설정하는 단계;
    (나) 제한된 데이터 통신 상태로 진입하는 단계;
    (다) 상기 제한된 데이터 통신 상태 동안 수신된 신호 프로세스를 줄이는 단계; 및
    (라) 상기 제한된 통신 상태로부터 리터닝함으로써 상기 능동 레벨까지 수신된 신호 프로세스를 되돌리기 위하여 수신된 지시(instruction)를 확인하는 단계;를 포함하는 능동적 CDMA 데이터-음성 연결 기간동안 이동국에 의한 전력소비를 줄이는 방법.
  18. 제17항에 있어서, 상기 수신된 신호 프로세스를 줄이는 단계는 적어도 하나의 데이터 채널에 대해서 복합 상관(complex correlation)을 중지시키는 것을 포함하는 것을 특징으로 하는 능동적 CDMA 데이터-음성 연결 기간동안 이동국에 의한 전력소비를 줄이는 방법.
  19. 제17항에 있어서, 상기 수신된 신호 프로세스를 줄이는 단계는 적어도 하나의 데이터 채널에 대해서 부분적으로 프로세스된(processed) 신호 정보의 저장을 중지하는 것을 포함하는 것을 특징으로 하는 능동적 CDMA 데이터-음성 연결 기간동안 이동국에 의한 전력소비를 줄이는 방법.
  20. 제17항에 있어서, 상기 제한된 데이터 통신 상태로 진입하는 단계는, (ㄱ) 미리 결정된 다수의 통신 유니트를 위한 데이터 패킷 채널에 데이터가 수신되지 않는다거나 또는 (ㄴ) 상기 제한된 통신 상태로 진입하기 위한 지시가 수신된다면 상기 제한된 데이터 통신 상태로 진입하는 단계를 포함하는 것을 특징으로 하는 능동적 CDMA 데이터-음성 연결 기간동안 이동국에 의한 전력소비를 줄이는 방법.
  21. 제17항에 있어서, 상기 수신된 지시를 확인하는 단계는, (ㄱ) 상기 이동국을 반영하는 주소, 그리고 (ㄴ) 변환 지시를 표시하는 특정한 데이터를, 수신된 메시지 내에서 확인하는 단계를 포함하는 것을 특징으로 하는 능동적 CDMA 데이터-음성 연결 기간동안 이동국에 의한 전력소비를 줄이는 방법.
  22. (가) 패킷 시그널링 채널과 패킷 데이터 채널을 포함하면서, 다양한 물리적 통신 채널을 동시에 수신 하도록 형성된 것으로써, ㄱ) 상기 패킷 데이터 채널에 전달되는 심벌을 추출하고(derive) 저장하도록 형성된 미가공 신호 프로세스 블록과 ㄴ) 상기 저장된 심벌을 복조하고 디코딩하도록 형성된 심벌 프로세스 블록을 포함하는 상기 패킷 데이터 채널을 위한 프로세스 설비(facilities)를 가지는 수신기 유니트(unit),
    (나) ㄱ) 적합한 진입 상태가 되면 이동 장치(mobile apparatus)를 줄어든 수신 프로세스 상태로 일시적으로 위치시키고 ㄴ) 종료를 지시하는 전송을 수신하면 상기 이동 장치가 줄어든 수신 프로세스 상태를 종료 하도록 형성된 제어 유니트를 포함하며,
    (다) 상기 패킷 데이터 채널을 위한 프로세스 설비는 상기 이동 장치가 줄어든 수신 프로세스 상태에 있는 동안 상기 패킷 데이터 채널의 수신 프로세스를 중지하도록 형성된 것을 특징을 하는 이동전화 통신 신호를 수신하기 위한 이동 장치.
  23. 제22항에 있어서, 상기 프로세스 설비는 상기 이동 장치가 줄어든 수신 프로세스 상태에 있는 동안 상기 미가공 신호 프로세스 블록의 적어도 하나에서 수신 프로세스를 중지하도록 형성된 것을 특징을 하는 이동전화 통신 신호를 위한 이동 장치.
  24. 제23항에 있어서, 상기 수신 데이터 패킷 채널에 있는 특정한 패킷을 복조하기 위해 필요한 지시가 상기 패킷 시그널링 채널에 동시 발생하는 메시지 패킷으로부터 추출된 것임을 특징을 하는 이동전화 통신 신호를 위한 이동 장치.
  25. 제24항에 따른 이동 장치에 있어서,
    (라) 상기 이동 장치는 데이터-음성이 이용 가능한 CDMA 송수신기이고;
    (마) 상기 미가공 신호 프로세스 블록은 Walsh 상징(symbol) 디스프레딩(despreading)에 대한 다수의 복합 상관기를 각각 가지고 있는 다수의 핑거들과, 상기 핑거들이 결합된 결과물로부터 복합 심벌을 추출하기 위한 최대 비율 결합자(maximum ratio combiner), 그리고 4개의 전송 슬롯 기간 동안 상기 송수신기에 의해 수신할 수 있는 다수의 심벌보다 많은 다수의 복합 심벌을 저장하도록 형성된 심벌 버퍼를 포함하고;
    (바) 상기 패킷 데이터 채널은 순방향 패킷 데이터 채널(F-PDCH)이고, 상기 이동 장치가 줄어든 수신 프로세스 상태에 있는 동안 프로세스는 상기 F-PDCH의 모든 미가공 신호 프로세스 블록 안에서 중지되며,
    (사) 상기 이동 장치가 상기 줄어든 수신 프로세스 상태를 종료하도록 지시하는 상기 전송은 ㄱ) 상기 장치에 관한 신호 능동과 ㄴ) 상기 지시를 표시하는 특정한 데이터의 결합을 포함하는 것임을 특징을 하는 이동전화 통신 신호를 위한 이동 장치.
  26. 제22항에 있어서, 상기 적합한 진입 상태는,
    (라) 미리 결정된 다수의 통신 유니트에 대하여, 상기 이동 장치에 전송되는 데이터 패킷의 부재(absence); 그리고
    (마) 상기 이동 장치의 확인(identifying) 주소와 상기 줄어든 수신 프로세스 상태로부터 변환하기 위한 지시(direction)를 전달하는 데이터를 포함하는 것으로, 패킷 시그널링 채널에 수신되는 신호를 포함하는 것을 특징을 하는 이동전화 통신 신호를 위한 이동 장치.
  27. 제22항에 있어서, 상기 미가공 신호 프로세스 블록은 다수의 Walsh 심벌(symbol) 디스프레더(despreader) 각각에 대한 복합 상관기의 다수의 핑거를 포함하는 것을 특징을 하는 이동전화 통신 신호를 위한 이동 장치.
  28. 제22항에 있어서, 상기 패킷 데이터 채널을 위한 상기 프로세스 설비는 상기 이동 장치가 상기 줄어든 수신 프로세스 상태에 있는 동안 모든 미가공 신호 프로세스 블록 안에 있는 모든 프로세스를 중지하도록 형성된 것임을 특징을 하는 이동전화 통신 신호를 위한 이동 장치.
  29. 제23항에 있어서, 상기 이동 장치가 상기 줄어든 수신 프로세스 상태를 종료하도록 지시(instructing)하는 상기 전송이, ㄱ) 장치에 관한 신호 능동화와 ㄴ) 상기 지시를 표시하는 특정한 데이터의 결합을 포함하는 것을 특징을 하는 이동전화 통신 신호를 위한 이동 장치.
  30. 제29항에 있어서, 상기 이동 장치가 상기 줄어든 수신 프로세스 상태에 있는 동안에는, 상기 패킷 시그널 채널에서 수신 프로세스가 줄어들지 않는 것을 특징을 하는 이동전화 통신 신호를 위한 이동 장치.
KR1020047017921A 2002-05-06 2003-05-06 제어 변환에 의해 제어정지로부터 능동 상태로 cdma이동국의 전력을 줄이는 방법과 장치 KR100695603B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US37891902P 2002-05-06 2002-05-06
US60/378,919 2002-05-06
PCT/US2003/014088 WO2003096551A2 (en) 2002-05-06 2003-05-06 Method and apparatus for reducing power of a cdma mobile station by controlled transition from control hold to active state

Publications (2)

Publication Number Publication Date
KR20050006236A KR20050006236A (ko) 2005-01-15
KR100695603B1 true KR100695603B1 (ko) 2007-03-14

Family

ID=29420453

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020047017921A KR100695603B1 (ko) 2002-05-06 2003-05-06 제어 변환에 의해 제어정지로부터 능동 상태로 cdma이동국의 전력을 줄이는 방법과 장치

Country Status (5)

Country Link
US (1) US7203527B2 (ko)
KR (1) KR100695603B1 (ko)
CN (1) CN100417039C (ko)
AU (1) AU2003249605A1 (ko)
WO (1) WO2003096551A2 (ko)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7385949B1 (en) * 2001-06-05 2008-06-10 Broadcom Corporation System and method for de-interleaving data in a wireless receiver
TWI225339B (en) * 2002-06-06 2004-12-11 Via Telecom Co Ltd Power control of plural packet data control channels
US7505478B2 (en) 2002-10-02 2009-03-17 Marvell International Ltd. Method and apparatus of de-multiplexing data
US7532723B2 (en) * 2003-11-24 2009-05-12 Interdigital Technology Corporation Tokens/keys for wireless communications
AR047415A1 (es) * 2004-01-13 2006-01-18 Interdigital Tech Corp Un metodo y un aparato cdma para proteger y autenticar informacion digital transmitida inalambricamente
US20050220322A1 (en) * 2004-01-13 2005-10-06 Interdigital Technology Corporation Watermarks/signatures for wireless communications
US20070121939A1 (en) * 2004-01-13 2007-05-31 Interdigital Technology Corporation Watermarks for wireless communications
US20050226421A1 (en) * 2004-02-18 2005-10-13 Interdigital Technology Corporation Method and system for using watermarks in communication systems
US8570952B2 (en) 2004-04-29 2013-10-29 Interdigital Technology Corporation Method and apparatus for selectively enabling reception of downlink signaling channels
US7839815B2 (en) * 2006-02-10 2010-11-23 Alcatel-Lucent Usa Inc. Triggering migration of a network access agent associated with an access terminal
KR20070095728A (ko) * 2006-03-22 2007-10-01 삼성전자주식회사 이동통신 시스템에서 패킷 데이터 송수신 장치 및 방법
JP2007274336A (ja) * 2006-03-31 2007-10-18 Fujitsu Ltd 無線基地局及び無線端末
US8064411B2 (en) * 2007-01-31 2011-11-22 Cisco Technology, Inc. Speculative power save
US8204010B2 (en) * 2007-06-18 2012-06-19 Research In Motion Limited Method and system for dynamic ACK/NACK repetition for robust downlink MAC PDU transmission in LTE
US7885238B2 (en) * 2007-08-03 2011-02-08 Alcatel-Lucent Usa Inc. Methods for detecting acknowledgement channels using probabilities
US8797928B2 (en) * 2008-05-27 2014-08-05 Qualcomm Incorporated Methods and systems for using a power savings mode during voice over internet protocol communication
US8189465B1 (en) * 2009-02-04 2012-05-29 Sprint Communications Company L.P. Deep packet inspection policy enforcement
US9083416B2 (en) * 2012-06-20 2015-07-14 Intel Mobile Communications GmbH Combining in receive diversity systems
CN107025188A (zh) * 2016-01-29 2017-08-08 后旺科技股份有限公司 复合式硬盘的交握方法
GB2571073B (en) * 2018-02-09 2021-01-13 Tcl Communication Ltd Control information transmission

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100414932B1 (ko) * 1998-01-24 2004-04-03 삼성전자주식회사 이동통신시스템의데이타통신방법
US6463307B1 (en) * 1998-08-14 2002-10-08 Telefonaktiebolaget Lm Ericsson Method and apparatus for power saving in a mobile terminal with established connections
GB9818378D0 (en) * 1998-08-21 1998-10-21 Nokia Mobile Phones Ltd Receiver
US6597683B1 (en) * 1999-09-10 2003-07-22 Pulse-Link, Inc. Medium access control protocol for centralized wireless network communication management
US6624767B1 (en) * 2000-09-06 2003-09-23 Qualcomm, Incorporated Data buffer structure for asynchronously received physical channels in a CDMA system
US20030054807A1 (en) * 2001-09-17 2003-03-20 Liangchi Hsu Apparatus, and associated method, for facilitating multicast and broadcast services in a radio communication system
US6717924B2 (en) * 2002-01-08 2004-04-06 Qualcomm Incorporated Control-hold mode

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
non

Also Published As

Publication number Publication date
CN100417039C (zh) 2008-09-03
WO2003096551A3 (en) 2004-04-01
WO2003096551A2 (en) 2003-11-20
AU2003249605A1 (en) 2003-11-11
AU2003249605A8 (en) 2003-11-11
US20030227882A1 (en) 2003-12-11
CN1666431A (zh) 2005-09-07
KR20050006236A (ko) 2005-01-15
US7203527B2 (en) 2007-04-10

Similar Documents

Publication Publication Date Title
KR100695603B1 (ko) 제어 변환에 의해 제어정지로부터 능동 상태로 cdma이동국의 전력을 줄이는 방법과 장치
EP1510084B1 (en) Power control of plural packet data control channels
RU2233037C2 (ru) Структура канала для систем связи
EP1000471B1 (en) Method and apparatus for data transmission using time gated frequency division duplexing
KR100858850B1 (ko) 무선 통신 환경에서의 데이터 송신 및 처리를 위한 방법,장치 및 시스템
JP3970332B2 (ja) 順方向リンクレートスケジュールのための方法と装置
US5673259A (en) Random access communications channel for data services
CN101199186B (zh) 多载波cdma***
JP4320010B2 (ja) セルラ式通信システムにおけるアップリンク通信のための方法及び装置
EP1871131A1 (en) Mobile communication system, mobile station, base station, and communication control method
KR20020073563A (ko) 무선 통신 시스템, 및 그 시스템에 수용된 기지국 장치 및통신 단말
JPH11341541A (ja) 移動通信システムのパケット転送方法、移動通信システムに用いる端末基地局及び移動通信システム
KR101215002B1 (ko) Ofdma 시스템들을 위한 효율적인 슬립 모드
KR100929077B1 (ko) 무선 통신 시스템에서 가상 회선 교환 방식을 이용한 통신자원 할당 방법과 장치 및 단말의 데이터 송수신 방법
CN101925138A (zh) 高速共享控制信道命令的发送方法及节点b
EP1349328A1 (en) Data transfer method
EP2224764A2 (en) Method for dynamically setting the number of HS-SCCH channels to be used on a cell.
US7801087B2 (en) Method of transmitting control signals in a digital communications system

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130227

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140220

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150223

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160303

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170302

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190227

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20200218

Year of fee payment: 14