KR100690450B1 - Waste heat withdrawal device for thermoelectric generation - Google Patents

Waste heat withdrawal device for thermoelectric generation Download PDF

Info

Publication number
KR100690450B1
KR100690450B1 KR1020030074118A KR20030074118A KR100690450B1 KR 100690450 B1 KR100690450 B1 KR 100690450B1 KR 1020030074118 A KR1020030074118 A KR 1020030074118A KR 20030074118 A KR20030074118 A KR 20030074118A KR 100690450 B1 KR100690450 B1 KR 100690450B1
Authority
KR
South Korea
Prior art keywords
waste heat
thermoelectric generator
electricity
high temperature
heat recovery
Prior art date
Application number
KR1020030074118A
Other languages
Korean (ko)
Other versions
KR20050038836A (en
Inventor
박주석
이용락
주재헌
Original Assignee
주재헌
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주재헌 filed Critical 주재헌
Priority to KR1020030074118A priority Critical patent/KR100690450B1/en
Publication of KR20050038836A publication Critical patent/KR20050038836A/en
Application granted granted Critical
Publication of KR100690450B1 publication Critical patent/KR100690450B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

본 발명은 제철·제강공정 등에서 고열로 방출되는 폐열을 전기와 열의 형태로 효율적으로 고수율로 회수하여 에너지 절감 뿐만 아니라 환경오염을 억제하며, 종래의 폐열회수와는 달리 동일한 시스템에서 폐열회수와 전기 생산이 이루어지는 복합발전기술로 주목을 받으며, 독립적인 소규모 전원공급 시스템으로도 활용도가 기대되는 열전발전기를 이용한 폐열회수장치에 관한 것이다.The present invention efficiently recovers waste heat emitted by high heat in the form of electricity and heat in the form of electricity and heat in a high yield to reduce energy consumption as well as environmental pollution, unlike conventional waste heat recovery, waste heat recovery and electricity in the same system It is a waste heat recovery device using a thermoelectric generator that is attracting attention as a complex power generation technology that is produced and expected to be utilized as an independent small power supply system.

상기 열전발전기를 이용한 폐열회수장치(100)는 냉각부(10)에서 응축된 액체 나트륨(Na)액이 전자기펌프(Electromagnetic Pump)(30)를 통과하여 고온부(20)로 공급되도록 연속적으로 순환되는 열전발전기(Alkali Metal Thermal to Eleectronic Converter)(40)를 구성하고, 상기 열전발전기(40)의 고온부(20)는 폐열이 배출되는 폐열원에 직접 연결하고, 폐열원으로 공기나 냉수를 통과시켜 폐열을 약 300℃로 하여 냉각부(10)에 연결하여 폐열의 일부를 전기로 전환하여 회수하도록 구성한다.
The waste heat recovery apparatus 100 using the thermoelectric generator is continuously circulated so that the liquid sodium (Na) liquid condensed in the cooling unit 10 is supplied to the high temperature unit 20 through the electromagnetic pump 30. A thermoelectric generator (Alkali Metal Thermal to Eleectronic Converter) 40, and the high temperature portion 20 of the thermoelectric generator 40 is directly connected to the waste heat source from which waste heat is discharged, and waste heat by passing air or cold water into the waste heat source. To about 300 ° C. and connected to the cooling unit 10 to convert some of the waste heat into electricity to recover.

냉각부, 고온부, 전자기펌프, 열전발전기Cooling part, high temperature part, electromagnetic pump, thermoelectric generator

Description

열전발전기를 이용한 폐열회수장치{Waste heat withdrawal device for thermoelectric generation} Waste heat recovery device using thermoelectric generator {Waste heat withdrawal device for thermoelectric generation}             

도 1은 본 발명의 열전발전기의 구성을 나타낸 단면도.1 is a cross-sectional view showing the configuration of a thermoelectric generator of the present invention.

도 2는 본 발명의 폐열회수장치의 구성을 나타낸 구성도.Figure 2 is a block diagram showing the configuration of the waste heat recovery apparatus of the present invention.

도 3은 본 발명의 설치상태를 나타낸 예시도.
3 is an exemplary view showing an installation state of the present invention.

♣도면의 주요 부분에 대한 부호의 설명♣♣ Explanation of symbols for the main parts of the drawing

10: 냉각부 20: 고온부10: cooling part 20: high temperature part

30: 전자기펌프 40: 열전발전기
30: electromagnetic pump 40: thermoelectric generator

본 발명은 열전발전기를 이용한 폐열회수장치에 관한 것으로, 더욱 상세하게는 열전발전기의 고온부를 폐열원에 직접 연결하고, 냉각부로는 약 300℃ 폐열을 통과시키고 열을 전기로 전환하여 회수하도록 하여, 제철·제강공정 등에서 방출되는 고온의 폐열을 고수율로 회수할 수 있는 것이다. The present invention relates to a waste heat recovery apparatus using a thermoelectric generator, and more particularly, a high temperature part of the thermoelectric generator is directly connected to a waste heat source, and the cooling part passes about 300 ° C. waste heat and converts heat to electricity to recover the waste heat. It is possible to recover high-temperature waste heat emitted in steelmaking and steelmaking processes with high yield.

1998년도 국내 에너지 총소비량은 석유환산 165백만(TOE)으로서 에너지 총수입규모가 97% 이상에 달하고 있고 에너지 수입의존도는 날로 증가하고 있다.In 1998, the total energy consumption in Korea was 165 million (TOE) equivalent to total imports of energy of 97% or more, and the dependence on energy imports is increasing day by day.

산업부문 에너지 소비율은 '90년도 48.1%, '95년도 50.7%, '97년도 53.4%, '98년도 57.5%로서 계속 증가추세에 있는 실정이다.The energy consumption rate in the industrial sector is steadily increasing as 48.1% in 1990, 50.7% in 1995, 53.4% in 1997 and 57.5% in 1998.

그러나 에너지 사용효율(제품 천불 생산에 사용되는 에너지 사용량, 단위: TOE/천$)은 '96년도 0.41, '97년도 0.43, '98년도 0.42로서 많은 부문에 개선이 되어 왔으나, 아직도 선진국에 비해 약 1.6∼2.5배 이상 과다하게 소비되고 있는 실정인데, '96년도 에너지관리공단 자료에 의하면 그중 절반 이상이 각종 폐열의 형태로 배출되고 있으며 그 가운데 회수 가능한 폐열량은 약 20%(금액환산 약 4조원)에 달하고 있어 새로운 폐열회수기술에 대한 기술개발추진이 강력히 요청되고 있다.However, the energy use efficiency (energy used to produce 1,000 dollars of product, unit: TOE / $ 1,000) has been improved in many sectors as 0.41 in '96, 0.43 in '97, and 0.42 in '98. Excess consumption is over 1.6 ~ 2.5 times. According to the '96 Korea Energy Management Corporation data, more than half of them are discharged in the form of waste heat, and the recoverable waste heat amount is about 20% (about 4 trillion won in amount) ), The development of new waste heat recovery technology is strongly requested.

이러한 에너지를 회수하기 위해 고성능, 고효율을 갖는 폐열회수장치 또는 새로운 개념의 폐열회수기술 개발에 대한 많은 노력을 기울이고 있다. In order to recover this energy, many efforts have been made to develop a high-performance, high-efficiency waste heat recovery device or a new concept of waste heat recovery technology.                         

현재 보편화되어 있는 폐열회수기술은 대부분 열교환기나 페열보일러를 사용하므로 서 열수나 연소용 공기 또는 증기의 형태로 회수하고 있어 사실상 기술적으로나 경제적인 측면에서 이미 한계점에 도달한 상태이다. Most of the current waste heat recovery technologies are recovering in the form of hot water, combustion air or steam by using heat exchangers or waste heat boilers, and thus have reached the limit in terms of technical and economic aspects.

특히 대부분의 폐열회수장치는 규모면에서 상당히 크기 때문에 설치환경에 대한 제한적인 요소가 많고, 또한 폐열을 회수하여 전기를 생산하는 경우에는, 보통 증기발생설비와 터빈 및 압축기를 비롯한 주변공급시설등이 필요하기 때문에 기술적인 타당성은 물론, 이들에 대한 충분한 경제성이 있어야 한다는 문제점이 있었다.
In particular, since most of the waste heat recovery system is quite large in size, there are many limitations on the installation environment. Also, in the case of recovering waste heat to produce electricity, there are usually steam generating facilities and peripheral supply facilities including turbines and compressors. Because of the necessity, there was a problem that there should be sufficient economics for them as well as technical validity.

본 발명은 상기와 같은 여러 가지 문제점을 고려하여 이루어진 것으로, 그 목적은 저조한 폐열회수의 단점을 제거하여 에너지의 사용효율을 높이기 위한 일환으로서 폐열을 보다 효율적으로 회수하여 에너지 절감에 기여할 뿐 아니라 대기 중으로 폐열의 방출을 방지하여 환경오염을 방지하는 열전발전기를 이용한 폐열회수장치를 제공함에 있다.The present invention has been made in consideration of various problems as described above, and an object thereof is to remove waste heat recovery and improve energy use efficiency as part of the waste heat recovery, thereby efficiently recovering waste heat and contributing to energy saving. It is to provide a waste heat recovery apparatus using a thermoelectric generator to prevent the discharge of waste heat to prevent environmental pollution.

본 발명의 다른 목적은 제철·제강공정 등에서 최저 600℃ 이상의 고열로 방출되는 폐열을 회수함으로서 보다 효율적으로 폐열을 이용할 수 있는 열전발전기를 이용한 폐열회수장치를 제공함에 있다.Another object of the present invention is to provide a waste heat recovery apparatus using a thermoelectric generator capable of more efficiently utilizing waste heat by recovering waste heat discharged at a high temperature of at least 600 ° C. or higher in steelmaking and steelmaking processes.

상기와 같은 목적을 달성하기 위하여 본 발명은 냉각부에서 응축된 액체 나트륨액이 전자기펌프를 통과하여 고온부로 공급되도록 연속적으로 순환되는 열전발 전기를 구성하고, 상기 열전발전기의 고온부는 폐열이 배출되는 폐열원에 직접 연결하고, 폐열원으로 공기나 냉수를 통과시켜 폐열을 약 300℃로 하여 냉각부에 연결하여 폐열의 일부를 전기로 전환하여 회수하도록 구성한다.
In order to achieve the above object, the present invention constitutes a thermoelectric power that is continuously circulated so that the liquid sodium liquid condensed in the cooling unit passes through the electromagnetic pump to be supplied to the high temperature portion, and the high temperature portion of the thermoelectric generator discharges waste heat. Directly connected to the waste heat source, through the air or cold water through the waste heat source to connect the waste heat to about 300 ℃ to configure a portion of the waste heat converted to electricity to recover.

이하에서 본 발명의 실시예을 첨부된 도면에 의하여 상세히 설명하면 다음과 같다.Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

첨부된 도면 도 1은 본 발명의 전체 구성을 나타낸 예시도로서, 부호 100은 본 발명의 폐열회수장치를 표시하고 있다.1 is an exemplary view showing the overall configuration of the present invention, reference numeral 100 denotes a waste heat recovery apparatus of the present invention.

상기 폐열회수장치(100)는 냉각저온부(10)에서 응축된 액체 나트륨(Na)액이 전자기펌프(Electromagnetic Pump)(30)를 통과하여 가열고온부(20)로 공급되도록 연속적으로 순환되는 열전발전기(Alkali Metal Thermal to Eleectronic Converter)(40)를 구성하고, 상기 열전발전기(40)의 가열고온부(20)는 폐열이 배출되는 폐열원에 직접 연결하고, 폐열원으로 공기나 냉수를 통과시켜 폐열을 약 300℃로 하여 냉각저온부(10)에 연결하여 폐열의 일부를 전기로 전환하여 회수하도록 구성한다.The waste heat recovery apparatus 100 is a thermoelectric generator continuously circulated so that the liquid sodium (Na) liquid condensed in the cooling low temperature unit 10 passes through an electromagnetic pump 30 to be supplied to the heating high temperature unit 20. Alkali Metal Thermal to Eleectronic Converter (40), and the heating high temperature unit 20 of the thermoelectric generator 40 is directly connected to a waste heat source from which waste heat is discharged, and waste heat is reduced by passing air or cold water into the waste heat source. It is configured to connect to the cooling low temperature section 10 at 300 ° C. to convert some of the waste heat into electricity and recover it.

첨부된 도면 도 2와 같이 상기 열전발전기(40)는 냉각저온부(10)에서 응축된 액체 Na은 전자기 펌프(electromagnetic pump)에 의해 재순환되어 가열고온부(20)로 공급되므로서 연속적으로 동작하는 특징을 갖고 있다.As shown in FIG. 2, the thermoelectric generator 40 is continuously condensed by the liquid Na condensed in the cooling low temperature unit 10 and supplied to the heating high temperature unit 20 by an electromagnetic pump. Have

상기 가열고온부(20)의 액체 나트륨은 800∼1200K 정도로 가열되며 이 온도 에서 Na의 증기압은 1.1×103∼2.7×105 Pa 정도의 값을 갖는다.The liquid sodium in the heated high temperature portion 20 is heated to about 800 ~ 1200K and the vapor pressure of Na at this temperature has a value of about 1.1 × 10 3 ~ 2.7 × 10 5 Pa.

베타알루미나(β"-Al2O3)를 통과한 Na+ 이온은 전극면에서 전극으로부터 전자를 받아 중성화된 후 진공중으로 증발하여 400∼700K의 냉각저온부(10)에서 응축한다.Na + ions passing through beta alumina (β ″ -Al 2 O 3 ) are electron-neutralized at the electrode surface, neutralized, and then evaporated in vacuum to condense in the cold low temperature section 10 of 400-700 K.

이 온도에 있어서의 Na의 증기압은 3.8×10-4∼1.3×102 Pa 이다.The vapor pressure of Na at this temperature is 3.8 × 10 −4 to 1.3 × 10 2 Pa.

한편 베타알루미나(β"-Al2O3)의 가열고온부(20) 계면에서 발생한 전자는 액체 나트륨(음극)과 다공성 박막전극(양극) 사이에 접속된 외부 부하에 전력을 발생하고, 다공성 박막전극에 도달한다.Meanwhile, electrons generated at the interface of the heated high temperature portion 20 of beta alumina (β "-Al 2 O 3 ) generate power to an external load connected between the liquid sodium (cathode) and the porous thin film electrode (anode), and the porous thin film electrode To reach.

베타알루미나(β"-Al2O3)를 통과한 Na+ 이온은 베타알루미나(β"-Al 2O3)와 다공성 박막전극과의 계면에서 저온 진공부로 증발하여 응축하게 된다.Beta alumina (β "-Al 2 O 3) Na + ions passing through the beta alumina (β" and evaporated to -Al 2 O 3) and low temperature binary study at the interface with the porous thin film electrode is condensed.

응축된 액체 나트륨은 다시 전자기펌프(30)로 공급되고 가열고온부(20)로 연속적으로 공급함으로서 발전을 하게 된다.The condensed liquid sodium is again supplied to the electromagnetic pump 30 and continuously supplied to the heated high temperature unit 20 to generate electricity.

이와 같이 열전발전기(40)은 단위소자를 직렬이나 병렬형태로 연결하여 모듈화할 수 있기 때문에 수 kW 규모에서 수백 MW 규모의 대용량 발전이 가능한다. As described above, the thermoelectric generator 40 can be modularized by connecting unit elements in series or in parallel to enable large-scale power generation of several hundred kW to several hundred MW.

또한, 열전발전기(40)의 가열고온부(20)에 공급되는 온도는 600℃ 이상이 되어야 하는데 제철·제강공정 등에서 배출되는 폐열은 거의가 600℃ 이상으로 본 발명의 폐열회수장치를 적용할 수 있다. In addition, the temperature supplied to the heating high-temperature unit 20 of the thermoelectric generator 40 should be at least 600 ° C. The waste heat discharged from the steelmaking and steelmaking process is almost 600 ° C. or higher, so that the waste heat recovery apparatus of the present invention can be applied. .                     

예를 들어 폐열원에 따른 방출폐열의 온도는 고로, 전로스태그가 약 1500℃, 전로배가스 약 1450℃, 코크스로 약 1000℃, 가열로 약 860℃, 소결로 약 800℃, 기타 약 600℃ 등이다. For example, the temperature of the discharged waste heat according to the waste heat source is blast furnace, the furnace tag is about 1500 ° C, the converter exhaust gas is about 1450 ° C, the coke oven is about 1000 ° C, the heating furnace is about 860 ° C, the sintering furnace is about 800 ° C, and other about 600 ° C. And so on.

첨부된 도면 도 2는 본 발명에 따라 전로에서 방출되는 배가스로 부터 폐열을 회수하여 전기와 증기를 생산하기 위한 폐열회수장치 개념설계도를 나타내었다.2 is a conceptual diagram illustrating a waste heat recovery apparatus for producing electricity and steam by recovering waste heat from exhaust gas discharged from a converter according to the present invention.

여기서, 총배열양 1.5×107 Kcal/h 가운데 40%는 열전발전기(40)의 가열고온부(20) 입열양으로 사용하고 나머지 60%는 스팀 발생에 사용한 경우로서, 이때의 에너지 절약효과에 대한 비용분석을 하면 다음과 같다. Here, 40% of the total array amount 1.5 × 10 7 Kcal / h is used as the heat input amount of the heating high temperature part 20 of the thermoelectric generator 40 and the remaining 60% is used for steam generation. The cost analysis is as follows.

여기서 우선 기본적으로 전로 배가스의 열손실과 온도강하 등을 고려하여 열전발전기(40) 조건을 다음과 같이 설정하였다. Here, the thermoelectric generator 40 was basically set as follows in consideration of heat loss and temperature drop of the converter flue gas.

설계조건: Design condition:

(1) Th = 1100 K, Tl = 500K, 총입열양 Qi = 1.5×107 Kcal/hr (1) T h = 1100 K, T l = 500K, total heat input Q i = 1.5 × 10 7 Kcal / hr

(2) Cpair=0.24, Cpw=1.0, CpNa=0.31, 과잉공기비=15%(2) Cp air = 0.24, Cp w = 1.0, Cp Na = 0.31, excess air ratio = 15%

(3) 열전발전기 효율 = 25%, 손실열 = 50%, 보일러 효율 = 85%  (3) Thermogen efficiency = 25%, heat loss = 50%, boiler efficiency = 85%

(4) 저위발열양 : 9,650 Kcal/Kg, 연료 B-C 오일 가격 : 97원/liter  (4) Low calorific value: 9,650 Kcal / Kg, fuel B-C oil price: 97 won / liter

(5) 10 kg/cm2, 180oC 15 T/h Steam 생산 및 2,000kW 전기 생산(5) 10 kg / cm 2 , 180 o C 15 T / h Steam production and 2,000 kW electricity production

(6) AMTEC 용량=8MW, η=25
(6) AMTEC capacity = 8 MW, η = 25

이때 절약되는 연료양은 B-C 오일로 1,900Kg/h 이므로 연간 연료절감액은 1,900Kg/h×97원/Kg×8,000h = 14.7억원/년이다.The amount of fuel saved at this time is 1,900Kg / h with B-C oil, so the annual fuel savings are 1,900Kg / h × 97 won / Kg × 8,000h = 14.7 billion / year.

또한, 본 발명에 따라 폐열을 보다 효율적으로 회수함으로서 에너지 절약효과에 부대하여 환경오염을 억제하는 효과를 가져온다.Further, according to the present invention, by recovering waste heat more efficiently, it brings about an effect of suppressing environmental pollution in addition to the energy saving effect.

이와 같이 본 발명의 폐열회수장치를 적용할 때, 적용이 가능한 산업체의 에너지 소비량을 각각 30%, 20%, 10%로 하고, 보급율은 적용가능한 전체 산업체의 10∼50% 수준으로 하며, 가동율은 0.5∼1.0, 장치의 수명은 10∼20년으로 가정하여 에너지 절약 및 환경오염 억제효과를 계산하여 표 1에 나타내었다.As such, when the waste heat recovery apparatus of the present invention is applied, the energy consumption of the applicable industries is set to 30%, 20%, and 10%, respectively, and the diffusion rate is set to 10 to 50% of all applicable industries, and the operation rate is Table 1 shows the energy saving and environmental pollution inhibitory effects, assuming 0.5 to 1.0 and a lifespan of 10 to 20 years.

구 분division 30%30% 40%40% 10%10% 1.에너지 절약효과 1)동력(Kcal) 2)전기(MW) 3)계(백만TOE)1. Energy saving effect                                                    1) Kcal                                                    2) Electricity (MW)                                                    3) Total (Million TOE) 1.2×1011 ≒104 31.2 × 10 11 ≒ 10 4 3 1.2×1010 ≒103 21.2 × 10 10 ≒ 10 3 2 1.2×109 ≒102 0.71.2 × 10 9 ≒ 10 2 0.7 2.환경효과 1)CO2삭감(Ton/Year) 2)SOx " 3)NOx " 4)HC "2.Environmental Effect 1) CO 2 Reduction (Ton / Year) 2) SOx "3) NOx" 4) HC " 520만 12만 7만 400 5.02 127,000 7400 52만 1.2만 0.7만 40 522,000 1.20,000 0.740 5만 1만 700 4 51 11 700 4 3.기타 부대효과3. Other incidental effects 소음·진동없음No noise and vibration 좌동Left 좌동Left

환경효과는 1백만 KW급 화력발전소에서 발생하는 대기오염 발생량을 기준으로 계산하였음.Environmental effects were calculated based on air pollution generated at 1 million KW thermal power plant.

본 발명의 설치상태는 첨부된 도면 도 3과 같이 폐열원의 폐열이 발생하는 곳에 열전발전기(40)의 가열고온부(20)를 직접 연결한다.The installation state of the present invention directly connects the heated high temperature unit 20 of the thermoelectric generator 40 where waste heat of the waste heat source is generated as shown in FIG. 3.

그리고, 냉각저온부(10)로는 폐열의 온도를 공기나 냉수로 통과시켜 약 300 ℃로 하여 공급한다.Then, the cooling low temperature section 10 is supplied with the temperature of the waste heat through air or cold water at about 300 ° C.

상기 냉각저온부(10)에서는 응측된 나트륨 액이 전자기펌프(30)를 통과하면서 폐열의 일부를 전기로 전환하여 회수한다.
In the cooling low temperature unit 10, the condensed sodium liquid passes through the electromagnetic pump 30 to recover a part of the waste heat converted into electricity.

상술한 바와 같이 본 발명은 에너지의 사용효율을 높이기 위한 일환으로서 폐열을 보다 효율적으로 회수하여 에너지 절감에 기여할 뿐 아니라 대기중으로 폐열의 방출을 방지하여 환경오염을 방지하며, 제철·제강공정 등에서 최저 600℃ 이상의 고열로 방출되는 폐열을 보다 효율적으로 이용할 수 있는 장점이 있다.As described above, the present invention not only contributes to energy saving by more efficiently recovering waste heat as part of increasing the use efficiency of energy, but also prevents the emission of waste heat into the atmosphere, thereby preventing environmental pollution, and at least 600 in steelmaking and steelmaking processes. There is an advantage that more efficient use of waste heat emitted by high heat of ℃ or more.

Claims (1)

전로배가스와 같은 폐열원으로 부터 폐열을 회수함에 있어서,In recovering waste heat from waste heat sources such as converter flue gas, 냉각저온부(10)에서 응축된 액체 나트륨(Na)액이 전자기펌프(Electromagnetic Pump)(30)를 통과하여 가열고온부(20)로 공급되도록 연속적으로 순환되는 열전발전기(Alkali Metal Thermal to Eleectronic Converter)(40)를 구성하고, 상기 열전발전기(40)의 가열고온부(20)는 폐열이 배출되는 폐열원에 직접 연결하고, 폐열원으로 공기나 냉수를 통과시켜 폐열을 약 300℃로 하여 냉각저온부(10)에 연결하여 폐열의 일부를 전기로 전환하여 회수하도록 구성함을 특징으로 하는 열전발전기를 이용한 폐열회수장치.The liquid sodium (Na) liquid condensed in the cooling low temperature unit 10 passes through an electromagnetic pump 30 and is continuously circulated to be supplied to the heating high temperature unit 20 (Alkali Metal Thermal to Eleectronic Converter) ( 40, the heating high temperature unit 20 of the thermoelectric generator 40 is directly connected to the waste heat source from which waste heat is discharged, and the waste heat is passed through the air or cold water to the waste heat source at about 300 ° C. Waste heat recovery apparatus using a thermoelectric generator, characterized in that for connecting to recover the part of the waste heat to electricity.
KR1020030074118A 2003-10-23 2003-10-23 Waste heat withdrawal device for thermoelectric generation KR100690450B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030074118A KR100690450B1 (en) 2003-10-23 2003-10-23 Waste heat withdrawal device for thermoelectric generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030074118A KR100690450B1 (en) 2003-10-23 2003-10-23 Waste heat withdrawal device for thermoelectric generation

Publications (2)

Publication Number Publication Date
KR20050038836A KR20050038836A (en) 2005-04-29
KR100690450B1 true KR100690450B1 (en) 2007-03-09

Family

ID=37241155

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030074118A KR100690450B1 (en) 2003-10-23 2003-10-23 Waste heat withdrawal device for thermoelectric generation

Country Status (1)

Country Link
KR (1) KR100690450B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190026455A (en) 2017-09-05 2019-03-13 전주대학교 산학협력단 Thermoelectric generator for boiler

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4381463A (en) 1979-09-28 1983-04-26 Ben-Gurion University Of The Negev Research And Development Authority Method and apparatus for producing electrical power and for the simultaneous heating of fluid, utilizing a magnetohydrodynamic generator
JPH0414025A (en) * 1990-05-07 1992-01-20 Ricoh Co Ltd Optical information processor
JPH04289784A (en) * 1991-03-15 1992-10-14 Hitachi Ltd Alkaline metal thermoelectric generating system
JPH05191989A (en) * 1992-01-14 1993-07-30 Mitsubishi Heavy Ind Ltd Alkaline metal thermoelectric power generating system
JPH05211788A (en) * 1992-01-29 1993-08-20 Mitsubishi Heavy Ind Ltd Alkali-metal thermoelectric generator device by multistage heat recovery
US6495749B2 (en) 2001-03-30 2002-12-17 Siemens Westinghouse Power Corporation Hybrid combustion power system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4381463A (en) 1979-09-28 1983-04-26 Ben-Gurion University Of The Negev Research And Development Authority Method and apparatus for producing electrical power and for the simultaneous heating of fluid, utilizing a magnetohydrodynamic generator
JPH0414025A (en) * 1990-05-07 1992-01-20 Ricoh Co Ltd Optical information processor
JPH04289784A (en) * 1991-03-15 1992-10-14 Hitachi Ltd Alkaline metal thermoelectric generating system
JPH05191989A (en) * 1992-01-14 1993-07-30 Mitsubishi Heavy Ind Ltd Alkaline metal thermoelectric power generating system
JPH05211788A (en) * 1992-01-29 1993-08-20 Mitsubishi Heavy Ind Ltd Alkali-metal thermoelectric generator device by multistage heat recovery
US6495749B2 (en) 2001-03-30 2002-12-17 Siemens Westinghouse Power Corporation Hybrid combustion power system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190026455A (en) 2017-09-05 2019-03-13 전주대학교 산학협력단 Thermoelectric generator for boiler

Also Published As

Publication number Publication date
KR20050038836A (en) 2005-04-29

Similar Documents

Publication Publication Date Title
RU2501958C2 (en) Method of energy generation by means of thermodynamic cycles with water vapour of high pressure and moderate temperature
US20070157922A1 (en) Integrated electrical and thermal energy solar cell system
CN104196582B (en) Based on CO in MCFC electrochemical process trapping IGCC system 2combined power system
Mohammadi et al. Exergy analysis and optimisation of waste heat recovery systems for cement plants
CN105275616A (en) Combined heat, water and power system
CN205779061U (en) Coal mine gas gradient thermoelectric cold supply system
KR100690450B1 (en) Waste heat withdrawal device for thermoelectric generation
CN101793172A (en) Combined heat and power device for directly recovering exhaust afterheat of power station steam turbine by absorption heat pump
CN2918743Y (en) Carbon dioxide thermodynamical coproduction fire coal power technology equipment
CN202141033U (en) Generating system of absorption heat pump steam exhaust recovery steam turbine improving 1% of generating efficiency
CN101788141B (en) Application of absorption type heat regenerator in regenerative circulation system of power plant
CN102505990A (en) Power generation method of condensing double-working medium gas turbine circulation system
CN114909647B (en) Cogeneration unit and method for low-load stable combustion and thermoelectric deep decoupling
CN113669121B (en) Power plant condensing system and process method
CN211925720U (en) Waste heat steam power generation device
CN202328161U (en) Three-stage gas cooling device of gas turbine generator set
CN201568085U (en) Cogeneration device for directly recycling waste heat of exhaust steam from power station steam turbine with absorption type heat pump
CN114046506A (en) Waste incineration waste heat utilization device and method for recycling heat of flue gas furnace slag
CN114857952A (en) Vacuum system based on condenser and roots vacuum pump
CN220689111U (en) Flue gas condensation water lifting and waste heat recovery system
CN202012376U (en) A biomass generating steam water system possessing a function of smoke waste heat recovery
CN219693597U (en) Novel electricity generation exhaust steam is retrieved device
CN217541545U (en) Heat cyclic utilization system
CN112378080B (en) High-temperature heat pump system based on photovoltaic/photothermal heat collection/evaporator
CN216644217U (en) Waste incineration waste heat utilization device for recycling heat of flue gas furnace slag

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130118

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140127

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150225

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160226

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180226

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee