KR100689157B1 - Manufacturing method of al-si alloy films - Google Patents

Manufacturing method of al-si alloy films Download PDF

Info

Publication number
KR100689157B1
KR100689157B1 KR1020050096121A KR20050096121A KR100689157B1 KR 100689157 B1 KR100689157 B1 KR 100689157B1 KR 1020050096121 A KR1020050096121 A KR 1020050096121A KR 20050096121 A KR20050096121 A KR 20050096121A KR 100689157 B1 KR100689157 B1 KR 100689157B1
Authority
KR
South Korea
Prior art keywords
substrate
aluminum
electron beam
film
silicon
Prior art date
Application number
KR1020050096121A
Other languages
Korean (ko)
Inventor
정재인
곽영진
정창영
Original Assignee
주식회사 포스코
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코, 재단법인 포항산업과학연구원 filed Critical 주식회사 포스코
Priority to KR1020050096121A priority Critical patent/KR100689157B1/en
Application granted granted Critical
Publication of KR100689157B1 publication Critical patent/KR100689157B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

A method for forming an Al-Si alloy film having high reflectivity and superior corrosion resistance at high temperature by controlling silicon content of an Al-Si alloy in a crucible and controlling electric power of an electron beam, thereby evaporating the Al-Si alloy at a proper evaporation rate is provided. A manufacturing method of an Al-Si alloy film comprises: a vacuum process(S11) of vacuuming a vacuum chamber within a vacuum deposition equipment to a range of 10^-2 to 10^-5 torr; a substrate cleaning process(S11) of injecting argon gas into the vacuum chamber and applying a negative voltage of 400 to 1000 V to a substrate mounted on a substrate holder installed within the vacuum chamber, thereby glow discharging the substrate to clean the substrate; a substrate heating process(S13) of heating the substrate to a temperature range of 200 to 350 deg.C to form a film on the substrate cleaned by the substrate cleaning process; and an evaporation depositing process(S14) of evaporating an evaporation material within an alumina crucible by controlling an electron beam power to 2.5 to 4.0 kW to obtain a preset evaporation rate when the substrate is heated, and depositing the evaporate Al-Si alloy evaporated for a determined time by opening a shutter when the electron beam power has a preset power value.

Description

알루미늄 실리콘 합금 피막 제조 방법{Manufacturing method of Al-Si Alloy films}Manufacturing method of aluminum silicon alloy film {Manufacturing method of Al-Si Alloy films}

도 1은 본원발명의 피막제조 장치의 구성을 나타내는 도면이고,1 is a view showing the configuration of the film production apparatus of the present invention,

도 2는 본원발명의 처리과정을 나타내는 순서도이며,2 is a flow chart showing the process of the present invention,

도 3은 본원발명에서 전자빔 전력에 따른 실리콘 함량 변화를 나타내는 그래프이며,3 is a graph showing a silicon content change according to the electron beam power in the present invention,

도 4는 본원발명에서 실리콘 함량에 따른 상대적인 반사율 변화를 나타내는 그래프이다.Figure 4 is a graph showing the relative reflectance change according to the silicon content in the present invention.

* 도면의 주요 부호에 대한 설명 *Description of the main symbols in the drawings

1: 진공실 2: 전자빔 증발원1: vacuum chamber 2: electron beam evaporation source

3: 알루미나 도가니 4: 기판3: alumina crucible 4: substrate

5: 기판홀더 6: 기판가열장치5: Substrate holder 6: Substrate heating device

7: 셔터 8: 두께측정기7: Shutter 8: Thickness gauge

9: 가스도입구 10: 진공게이지9: gas inlet 10: vacuum gauge

본 발명은 금속 소재의 알루미늄-실리콘 합금 피막에 관한 것으로서, 더욱 상세하게는, 금속 소재 표면에 알루미늄-실리콘 합금 피막을 기판상에 증착하여 형성된 알루미늄-실리콘 합금 피막이 고반사율을 가지며 고온에서 우수한 내식성을 가지도록 하는 알루미늄-실리콘 합금 피막의 제조 방법에 관한 것이다.The present invention relates to an aluminum-silicon alloy film of a metal material, and more particularly, an aluminum-silicon alloy film formed by depositing an aluminum-silicon alloy film on a surface of a metal material on a substrate has high reflectivity and excellent corrosion resistance at high temperatures. A method for producing an aluminum-silicon alloy film to have.

일반적으로 알루미늄은 색상이 미려하고 내식성 및 내열성이 우수하여 화장품 케이스나 악세서리 등의 장식용 피막은 물론 반도체의 도전막, 자성재료나 강판의 보호피막, 온열 계통의 가전제품, 자동차용 머플러 등에 매우 폭 넓게 이용되고 있다. 또한, 알루미늄은 이 금속이 갖는 제 특성(밀도가 낮고, 가공성, 반사도 및 열전도성이 우수)으로 인하여 산업상 응용분야가 매우 다양하다. 최근 우주개발이나 항공산업이 크게 발달하면서 각종 소재에 알루미늄을 피막처리함으로써 내식성 및 기계적 성질을 우수하게 하는 연구가 활발히 진행되고 있다. 예로서 맥도넬 더글라스사에서는 비행기에 사용되는 각종 부품에 알루미늄을 코팅하여 내부식 및 내마모 재료로 사용하고 있다. 한편, 독일에서는 강판상에 알루미늄을 진공 증착하여 용기용으로 또는 가전제품에 사용하고 있는 등, 그 응용 분야는 헤아릴 수 없다.In general, aluminum is beautiful in color and has excellent corrosion resistance and heat resistance, so it is widely used in decorative coatings such as cosmetic cases and accessories, as well as conductive films of semiconductors, protective films of magnetic materials and steel sheets, home appliances in thermal systems, and automotive mufflers. It is used. In addition, aluminum has a wide variety of industrial applications due to its properties (low density, excellent workability, reflectivity and thermal conductivity). Recently, as the space development and the aviation industry are greatly developed, researches to improve the corrosion resistance and mechanical properties by coating aluminum on various materials have been actively conducted. McDonnell Douglas, for example, uses aluminum as a coating for various parts used in airplanes as a corrosion and wear resistant material. On the other hand, in Germany, aluminum is vacuum-deposited on steel sheets and used in containers or home appliances.

알루미늄은 전기도금으로 코팅할 경우 그 효율이 낮아 생산성이 떨어지기 때문에 대부분 물리증착법을 이용하고 있다. 물리증착에는 크게 진공증착, 스퍼터링(spattering) 그리고 이온플레이팅(ion plating)이 있으며 내식성 향상을 위한 목적의 경우는 일반적으로 이온플레이팅(ion plating) 방법을 이용하고 있다.Aluminum is most commonly used for physical vapor deposition because its efficiency is low when it is coated with electroplating. Physical vapor deposition includes vacuum deposition, sputtering and ion plating, and ion plating is generally used for the purpose of improving corrosion resistance.

알루미늄은 용융점이 낮은 반면 증기화되는 온도가 높고 열전도율이 매우 높아서 통상의 수냉 구리 도가니를 이용하여 증발시킬 경우 적정한 증착에 필요한 증 발률을 얻기 위해서는 5kW 이상의 높은 전력이 필요하다. 따라서 흑연이나 알루미나 도가니를 수냉 구리 도가니에 삽입하여 열전달을 차폐하는 방법이 널리 이용되고 있다.Aluminum has a low melting point, high vaporization temperature, and high thermal conductivity. When evaporated using a conventional water-cooled copper crucible, a high power of 5 kW or more is required to obtain evaporation necessary for proper deposition. Therefore, a method of shielding heat transfer by inserting graphite or alumina crucibles into a water-cooled copper crucible has been widely used.

알루미늄 피막은 특히, 반사판에도 적용되어 적외선을 이용하는 열반사판이나 광학용 미러(mirror) 등에 많이 이용되고 있다. 알루미늄 피막을 고온 및 고내식 환경에서 사용하기 위해서는 피막의 두께를 향상시켜야 하는데, 피막의 두께가 증가하면 일반적으로 조도가 나빠져 반사율이 현저하게 나빠지게 된다. 이를 해결하기 위한 방법으로 다층계 코팅을 실시하거나 아노다이징(Anodizing)과 같은 고내식 피막층을 형성시키는 경우가 많다. 그러나 이들 방법은 공정이 까다롭게 다층 형성시 밀착 불량이 발생할 수 있는 가능성이 높다는 단점이 있다. 이에 따라 알루미늄에 실리콘이 첨가되면 입자가 미세화되면서 반사율이 향상되는 점을 이용하여 알루미늄 피막층에 실리콘을 첨가하는 방법을 이용하게 된다. 알루미늄 피막에 실리콘을 첨가하는 방법 중 가장 손 쉬운 방법이 알루미늄에 실리콘이 첨가되어 있는 알루미늄-실리콘 모합금을 증발물질로 이용하는 것이다.Aluminum coatings are especially applied to reflecting plates, and are widely used for heat reflecting plates using infrared rays, optical mirrors, and the like. In order to use an aluminum film in a high temperature and high corrosion resistance environment, it is necessary to improve the thickness of the film, and as the thickness of the film is increased, roughness is generally worsened and the reflectance is significantly worsened. In order to solve this problem, a multilayer coating or a high corrosion resistant coating layer such as anodizing is often formed. However, these methods have a disadvantage in that a process may be difficult and adhesion failure may occur when forming a multilayer. Accordingly, when silicon is added to aluminum, the method of adding silicon to the aluminum film layer is used by using the point that the particles become fine and the reflectance is improved. The easiest way to add silicon to the aluminum film is to use an aluminum-silicon mother alloy in which silicon is added to aluminum as the evaporation material.

그러나 상술한 종래기술과 같이 알루미늄-실리콘 모합금을 전자빔 증발원을 이용하여 증발시킬 경우 합금이 용융되면서 두 개의 원소가 서로 분리되어 물질의 증기압 차이로 인해 모합금 성분과는 전혀 다른 합금이 기판에 증착되게 된다. 예로써 실리콘이 30% 함유된 알루미늄-실리콘을 모합금으로 이용하여 기판에 증착시킬 경우 피막내에 존재하는 실리콘의 함량은 1% 미만으로 나타나게 된다. 실리콘의 함량이 너무 낮을 경우에는 반사율이 그다지 향상되지 않게 되는 문제점을 가진다.However, when the aluminum-silicon master alloy is evaporated by using an electron beam evaporation source as described above, two elements are separated from each other while the alloy is melted, and an alloy completely different from the master alloy component is deposited on the substrate due to the difference in vapor pressure of the material. Will be. For example, when a silicon-containing 30% silicon-silicon is deposited on a substrate using a mother alloy, the content of silicon present in the coating is less than 1%. If the silicon content is too low, there is a problem that the reflectance does not improve so much.

따라서, 종래기술의 경우 실리콘을 함유하는 알루미늄 피막의 형성시 실리콘 함량을 적절히 제어할 수 있도록 하는 알루미늄 피막 형성 방법이 요구된다.Therefore, in the prior art, an aluminum film forming method is required to properly control the silicon content in forming the aluminum film containing silicon.

본 발명은 상술한 종래기술의 문제점을 해결하기 위한 것으로서, 알루미늄에 실리콘이 첨가된 알루미늄-실리콘 합금을 하나의 도가니에서 알루미늄-실리콘 합금의 실리콘 함량을 조절하며, 또한 전자빔의 전력을 조절하여 적정 증발률을 가지도록 증발시켜 기판상에 고 반사율 및 고온에서 우수한 내식성을 가지는 알루미늄-실리콘 합금 피막을 형성시킬 수 있도록 하며, 또한, 5㎛ 이상의 두께에서도 매우 높은 반사율을 가지는 알루미늄 실리콘 합금 피막 제조 방법을 제공하는 것을 그 목적으로 한다. The present invention is to solve the above-mentioned problems of the prior art, the aluminum-silicon alloy in which silicon is added to aluminum in one crucible to control the silicon content of the aluminum-silicon alloy, and also by adjusting the power of the electron beam to evaporate appropriate It is possible to form an aluminum-silicon alloy film having high reflectance and excellent corrosion resistance at high temperature by evaporating to have a rate, and also providing a method of manufacturing an aluminum silicon alloy film having a very high reflectance even at a thickness of 5 μm or more. It is for that purpose.

상술한 목적을 달성하기 위한 본원 발명의 알루미늄-실리콘 합금 피막 제조 방법은, 실리콘이 함유된 알루미늄-실리콘 합금을 증발시켜 진공증착에 의한 피막을 형성시키는 방법에 있어서,In the method for producing an aluminum-silicon alloy film of the present invention for achieving the above object, in the method of evaporating the aluminum-silicon alloy containing silicon to form a film by vacuum deposition,

진공증착 장치내의 진공실을 진공화하는 진공과정과;Vacuuming the vacuum chamber in the vacuum deposition apparatus;

상기 진공과정에 의해 적정 진공압력이 형성된 경우 아르곤 가스를 주입하고 상기 진공실 내의 기판홀더에 장착된 기판에 음의 전압을 인가하여 시편을 청정시키는 기판청정과정과;A substrate cleaning process in which argon gas is injected when the proper vacuum pressure is formed by the vacuum process, and the specimen is cleaned by applying a negative voltage to the substrate mounted on the substrate holder in the vacuum chamber;

상기 기판청정과정에 의해 청정된 기판을 피막 형성을 위한 적정 온도를 가지도록 가열하는 기판가열과정과;A substrate heating process of heating the substrate cleaned by the substrate cleaning process to have an appropriate temperature for forming a film;

상기 기판가열과정에 이해 상기 기판이 적정온도로 가열된 경우 기설정된 증발률을 가지도록 상기 전자빔 전력을 제어하여 알루미나 도가니 내의 증발물질을 증발시키며, 상기 전자빔 전력이 기 설정된 전력 값을 가지는 경우 셔터를 열어 정해진 시간 동안 증발된 알루미늄-실리콘 합금을 상기 기판에 증착시키는 증발증착과정;을 포함하여 이루어지는 것을 특징으로 한다.When the substrate is heated to an appropriate temperature, the substrate is heated at a proper temperature to control the electron beam power to have a predetermined evaporation rate to evaporate the evaporation material in the alumina crucible, and when the electron beam power has a predetermined power value, It characterized in that it comprises a; evaporation deposition process for depositing the aluminum-silicon alloy evaporated for a predetermined time to the substrate.

상기 증발물질은 Si 함량이 17중량% 이상인 알루미늄 실리콘 합금인 것을 특징으로 한다.The evaporation material is characterized in that the aluminum silicon alloy having a Si content of 17% by weight or more.

상기 기판가열과정은 상기 기판의 가열온도가 200 ~ 350 ℃ 범위로 가열하는 것을 특징으로 한다.The substrate heating process is characterized in that the heating temperature of the substrate is heated in the range of 200 ~ 350 ℃.

상기 증발증착과정은 상기 알루미늄 실리콘 합금의 증발률이 0.5㎛분 ~ 1.5㎛/분 범위를 가지도록 상기 전자빔 전력값을 제어하여 수행되는 것을 특징으로 한다.The evaporation deposition process is performed by controlling the electron beam power value such that the evaporation rate of the aluminum silicon alloy is in the range of 0.5 μm to 1.5 μm / minute.

이하, 첨부도면을 참조하여 본원 발명을 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.

도 1은 본원발명의 피막제조 장치의 구성을 나타내는 도면이다.BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the structure of the film manufacturing apparatus of this invention.

도 1에 도시된 바와 같이, 본원발명의 진공증착장치는 진공실(1)과, 진공실(1) 내에 알루미늄-실리콘 합금을 증발시키기 위한 전자빔 증발원(2)과, 증발물질을 담아 증발시키는 알루미나 도가니(3), 기판(4)을 장착시키기 위한 기판홀더(5)와 기판(4)을 가열시키기 위한 기판가열 장치(6), 피막의 두께를 측정하는 두께측정기(8), 그리고 진공도를 측정하는 진공게이지(10)를 포함하여 구성된다.As shown in FIG. 1, the vacuum evaporation apparatus of the present invention includes a vacuum chamber 1, an electron beam evaporation source 2 for evaporating an aluminum-silicon alloy in the vacuum chamber 1, and an alumina crucible containing evaporation material to evaporate ( 3), the substrate holder 5 for mounting the substrate 4, the substrate heating device 6 for heating the substrate 4, the thickness gauge 8 for measuring the thickness of the film, and the vacuum for measuring the degree of vacuum. It comprises a gauge 10.

도 2는 상술한 구성을 가지는 진공증착장치에서 기판에 본원발명에 따르는 알루미늄-실리콘 합금 피막을 진공증착에 의해 형성하기 위한 처리과정을 나타내는 순서도이다.2 is a flow chart showing a process for forming an aluminum-silicon alloy film according to the present invention by vacuum deposition on a substrate in a vacuum deposition apparatus having the above-described configuration.

도 2에 도시된 바와 같이 본원 발명에 따르는 알루미늄-실리콘 합금 피막을 진공증착에 의해 형성하기 위해서는 우선 기판(4)을 기판홀더(5)에 장착하고 낟알 형상의 알루미늄-실리콘합금을 알루미나 도가니(3)에 적당량 채운 다음 진공펌프(도면에 표시하지 않음)를 이용하여 진공도가 10-5 토르 이하가 되도록 배기한다(진공과정)(S11).As shown in FIG. 2, in order to form the aluminum-silicon alloy film according to the present invention by vacuum deposition, first, the substrate 4 is mounted on the substrate holder 5, and the grain-shaped aluminum-silicon alloy is alumina crucible (3). ), And then evacuated using a vacuum pump (not shown) so that the vacuum degree is 10 -5 Torr or less (vacuum process) (S11).

진공도가 10-5 토르 이하가 되면 기판(4)의 청정을 위해 가스 도입구(9)를 통해 아르곤 가스를 주입하고 기판(4)에 음의 전압을 인가하여 시편을 청정시킨다. 기판(4)의 청정은 기판(4)에 존재하는 유기물과 같은 불순물뿐만 아니라 자연적으로 존재하는 산화막을 제거하는 단계를 포함한다. 이들 불순물이 충분히 제거되지 않으면 밀착성에 영향을 주므로 충분히 청정을 해주어야 한다. 기판(4)의 청정은 보통 10-2 토르 정도의 아르곤가스 분위기에서 시편에 400∼1000 V의 음의 전압을 인가하여 글로(glow) 방전을 유도시켜 실시한다. 이렇게 하면 방전영역에 존재하는 아르곤 이온이 시편에 충돌하여 시편에 존재하는 불순물을 제거하게 된다(기판청정과정)(S12).When the vacuum degree is 10 −5 Torr or less, argon gas is injected through the gas inlet 9 to clean the substrate 4, and a negative voltage is applied to the substrate 4 to clean the specimen. Cleaning of the substrate 4 includes removing not only impurities such as organic matter present in the substrate 4, but also naturally occurring oxide films. If these impurities are not removed sufficiently, it will affect the adhesion and should be sufficiently cleaned. The cleaning of the substrate 4 is performed by inducing a glow discharge by applying a negative voltage of 400 to 1000 V to the specimen in an argon gas atmosphere of about 10 -2 Torr. In this way, argon ions present in the discharge region collide with the specimen to remove impurities present in the specimen (substrate cleaning process) (S12).

S12과정에 의해 기판(4)의 청정이 완료되면 기판(4)의 가열을 위해 기판가열장치(6)를 이용하여 기판(4)의 온도를 원하는 조건에 맞추는 것에 의해 기판을 가열하여 기판이 적정한 온도를 가지도록 온도 제어를 수행한다. 이때 기판은 하기에 설명되는 바와 같이 200 ~ 350℃ 범위 내를 가지도록 제어하는 것이 바람직하다. 이는 상기 기판(2)의 온도가 200℃ 이하에서는 반사율이 낮고 350℃ 이상에서는 피막의 결정성 증가에 따라 조도가 나빠져 궁극적으로 반사율이 낮아지기 때문이다(기판가열과정)(S13).When the cleaning of the substrate 4 is completed by the S12 process, the substrate is heated by adjusting the temperature of the substrate 4 to a desired condition by using the substrate heating apparatus 6 to heat the substrate 4 so that the substrate is appropriately prepared. Temperature control is performed to have a temperature. At this time, the substrate is preferably controlled to have a range of 200 ~ 350 ℃ as described below. This is because the reflectance is low when the temperature of the substrate 2 is 200 ° C. or lower, and when the temperature of the substrate 2 is higher than 350 ° C., the illuminance decreases as the crystallinity of the film increases, thereby lowering the reflectance (substrate heating process) (S13).

S13과정에 의해 기판(4)의 온도 제어가 완료되면 전자빔 증발원(2)의 필라멘트를 가열시켜 알루미나 도가니(3) 내의 증발물질을 증발시킨다. 전자빔의 전력이 적정 전력에 도달하면 셔터(7)를 열어 정해진 시간 동안 알루미늄-실리콘 합금을 증착시킨다. 상기 알루미늄-실리콘 합금의 증발률은 분당 0.5-1.5㎛가 적당한데, 이는 증발률이 0.5㎛이하가 되면 피막내의 실리콘 함유량이 낮아 반사율이 그다지 향상되지 않으며 1.5㎛이상이 되면 증발물에서 스플래시(splash) 등이 발생하여 피막을 손상시키기 때문이다. 여기서 전자빔의 전력의 적정 전력은 증착 물질의 증발률과 밀접한 연관이 가지게 되며 전자빔의 전력이 3.5kW가 되면 증발률은 분당 1㎛가 된다. 여기서 증발률은 전자빔의 전력에 의해 제어되는 것이나, 상술한 전자빔의 전력은 주변 환경에 따라 변할 수 있는 것으로서 증발률에 따라 일정한 값을 가지는 것은 아니다. 따라서 상술한 바와 같이 알루미늄-실리콘 합금의 증발률이 분당 0.5-1.5㎛가 되도록 상황에 따라 전자빔의 전력 세기를 조절하여야 한다(증발증착과정)(S14).When the temperature control of the substrate 4 is completed by the process S13, the filament of the electron beam evaporation source 2 is heated to evaporate the evaporation material in the alumina crucible 3. When the power of the electron beam reaches an appropriate power, the shutter 7 is opened to deposit an aluminum-silicon alloy for a predetermined time. The evaporation rate of the aluminum-silicon alloy is suitably 0.5-1.5 μm per minute. When the evaporation rate is 0.5 μm or less, the silicon content in the film is low so that the reflectance does not improve so much. ), Etc., to damage the coating. Herein, the proper power of the electron beam power is closely related to the evaporation rate of the deposition material. When the electron beam power reaches 3.5 kW, the evaporation rate is 1 μm per minute. Here, the evaporation rate is controlled by the power of the electron beam, but the power of the above-described electron beam may vary depending on the surrounding environment and does not have a constant value according to the evaporation rate. Therefore, as described above, the power intensity of the electron beam should be adjusted according to the situation so that the evaporation rate of the aluminum-silicon alloy is 0.5-1.5 μm / min (evaporation and deposition process) (S14).

상술한 S11 내지 S14과정을 수행하게 되면 모든 공정이 완료된다.When the above steps S11 to S14 are performed, all processes are completed.

상술한 본원 발명에 의한 알루미늄 실리콘 피막 제조 방법은 고온 및 고 내식성 환경에서 고 반사율을 요구하는 적외선 반사 열처리 장치 등의 다양한 방면에 매우 유용하게 적용될 수 있다.The above-described method for manufacturing an aluminum silicon film according to the present invention can be very usefully applied to various aspects such as an infrared reflecting heat treatment apparatus requiring high reflectance in a high temperature and high corrosion resistance environment.

이하, 본원발명의 실시예를 설명한다.Hereinafter, the Example of this invention is described.

<실시예 1><Example 1>

도 3은 본원발명 실시예 1로서 전자빔 전력에 따른 실리콘 함량 변화를 나타내는 그래프이다.3 is a graph showing a silicon content change according to the electron beam power as Example 1 of the present invention.

도 3이 실시예 1은 미러 연마된 스텐레스 강판에 알루미늄-실리콘 합금을 제조한 경우이다. 가로가 20cm이고 세로가 15cm이며 두께가 0.8mm인 스텐레스 기판(4)을 기판홀더(5)에 설치하고 실리콘이 30중량% 함유된 알루미늄-실리콘 합금을 알루미나 도가니(3)에 장입한 다음 진공 배기를 실시하였다.3 shows a case of manufacturing an aluminum-silicon alloy on a mirror polished stainless steel sheet. A stainless steel substrate 4 having a width of 20 cm, a height of 15 cm, and a thickness of 0.8 mm was installed in the substrate holder 5, and an aluminum-silicon alloy containing 30% by weight of silicon was charged into the alumina crucible 3, followed by vacuum evacuation. Was carried out.

진공도가 10-5 토르 이하가 된 후 기판(4)의 청정을 위해 가스 도입구(9)를통해 아르곤 가스를 주입하고 기판(4)에 음의 전압을 인가하여 시편을 청정시켰다. 상술한 실시예 1에서는 6x10-2 토르의 아르곤 가스 분위기에서 시편에 700 V의 음의 전압을 인가하여 글로(glow) 방전을 유도한 후 30분 동안 청정시켰다.After the vacuum degree was 10 −5 Torr or less, argon gas was injected through the gas inlet 9 to clean the substrate 4, and a negative voltage was applied to the substrate 4 to clean the specimen. In Example 1 described above, a negative voltage of 700 V was applied to the specimen in an argon gas atmosphere of 6 × 10 −2 Torr to induce a glow discharge, followed by cleaning for 30 minutes.

기판(4)의 청정이 완료된 후 기판가열 장치(6)를 기동하여 기판을 250℃로 가열하였다. 기판(4)의 온도가 상승하여 250℃를 유지하면 다음 단계는 알루미나 도가니(3) 가열 단계가 된다. 전자빔의 전력을 낮은 전력에서부터 서서히 상승시켜 3.5 kW가 되었을 때 셔터(7)를 열고 10분간 증착하여 실리콘이 30중량% 함유된 두께 10㎛의 알루미늄-실리콘 합금을 피막을 제조하였다.After the cleaning of the board | substrate 4 was completed, the board | substrate heating apparatus 6 was started and the board | substrate was heated to 250 degreeC. When the temperature of the substrate 4 rises and maintains 250 degreeC, the next step will be the heating step of the alumina crucible 3. When the power of the electron beam was gradually increased from the low power to 3.5 kW, the shutter 7 was opened and deposited for 10 minutes to prepare a 10-micrometer thick aluminum-silicon alloy containing 30 wt% silicon.

도 3은 알루미나를 사용한 일 실시 예로서 전자빔 증발원(2)의 전력에 따른 피막내의 실리콘 함량을 보여주는 그림이다. 전자빔의 전력이 2.5kW 이상이 되면 실리콘의 함량이 급격히 증가하여 3.5kW가 되면 30중량%의 실리콘이 피막 내에 함유된다.3 is a diagram showing the silicon content in the film according to the power of the electron beam evaporation source 2 as an embodiment using alumina. When the power of the electron beam is 2.5 kW or more, the content of silicon increases rapidly, and when 3.5 kW is reached, 30 wt% of silicon is contained in the film.

<실시예 2><Example 2>

도 4는 본원발명에서 실리콘 함량에 따른 상대적인 반사율 변화를 나타내는 그래프이다.Figure 4 is a graph showing the relative reflectance change according to the silicon content in the present invention.

도 4는 본 발명의 효과를 설명하기 위해 피막내의 Si 함량에 따른 알루미늄 피막의 상대적인 반사율을 나타낸 그래프이다. 상기 그래프는 미러 연마된 스텐레스 기판에 알루미늄 피막을 0.2mm 증착한 것을 기준 값(100%)으로 하고 동일 기판에 알루미늄-실리콘 합금을 10mm 두께로 증착한 시편의 반사율 값을 비교한 것이다. 제3도에서 알 수 있듯이 Si 함량이 17중량% 이상이 되면 반사율이 50% 이상으로 향상되고 있음을 볼 수 있다.4 is a graph showing the relative reflectance of the aluminum film according to the Si content in the film to explain the effect of the present invention. The graph compares the reflectance values of specimens in which an aluminum film is deposited on a mirror polished stainless substrate by 0.2 mm as a reference value (100%) and an aluminum-silicon alloy is deposited on the same substrate by a thickness of 10 mm. As can be seen in Figure 3 it can be seen that the reflectance is improved to 50% or more when the Si content is 17% by weight or more.

상술한 본원 발명은 고온에서 우수한 내식성 및 고 반사율의 우수한 피막 특성을 가지는 피막을 형성시킬 수 있도록 하며, 알루미늄-실리콘 피막 제조 공정을 간소화시킴으로써 생산성을 향상시키는 효과를 제공한다.The present invention as described above enables the formation of a film having excellent corrosion resistance and excellent film properties of high reflectance at high temperature, and provides the effect of improving productivity by simplifying the aluminum-silicon film manufacturing process.

Claims (4)

실리콘이 17중량% 이상 함유된 알루미늄-실리콘 합금을 증발시켜 진공증착에 의한 피막을 형성시키는 방법에 있어서,In the method of evaporating an aluminum-silicon alloy containing at least 17% by weight of silicon to form a film by vacuum deposition, 진공증착 장치내의 진공실을 10-2~10-5토르로 진공화하는 진공과정과;Vacuuming the vacuum chamber in the vacuum deposition apparatus to 10 -2 to 10 -5 Torr; 상기 진공과정이 완료되면 아르곤 가스를 주입하고 진공실 내의 기판홀더에 장착된 기판에 400~1000V의 음 전압을 인가하여 글로우방전시키는 것에 의해 시편을 청정시키는 기판청정과정과;A substrate cleaning process of cleaning the specimen by injecting an argon gas and applying a negative voltage of 400 to 1000 V to the substrate to be mounted on the substrate holder in the vacuum chamber to glow discharge the vacuum process; 상기 기판청정과정에 의해 청정된 기판에 피막 형성을 위해 200~350℃까지 가열하는 기판가열과정과;A substrate heating process of heating to 200 to 350 ° C. to form a film on the substrate cleaned by the substrate cleaning process; 상기 기판가열과정에 의해 상기 기판이 가열된 경우 기설정된 증발률을 가지도록 전자빔 전력을 2.5~4.0kW로 제어하여 알루미나 도가니 내의 증발물질을 증발시키며, 상기 전자빔 전력이 기 설정된 전력 값을 가지는 경우 셔터를 열어 정해진 시간 동안 증발된 알루미늄-실리콘 합금을 상기 기판에 증착시키는 증발증착과정;을 포함하여 이루어지는 것을 특징으로 하는 알루미늄 실리콘 피막 제조 방법.When the substrate is heated by the substrate heating process, the electron beam power is controlled to 2.5 to 4.0 kW to have a predetermined evaporation rate to evaporate the evaporation material in the alumina crucible, and the shutter when the electron beam power has a predetermined power value. The evaporation deposition process for depositing the aluminum-silicon alloy evaporated for a predetermined time by opening the substrate; aluminum silicon film manufacturing method comprising a. 삭제delete 삭제delete 제 1항에 있어서, The method of claim 1, 상기 증발증착과정은 상기 알루미늄 실리콘 합금의 증발률이 0.5㎛/분 ~ 1.5㎛/분 범위를 가지도록 상기 전자빔 전력값을 제어하여 수행되는 것을 특징으로 하는 알루미늄 실리콘 피막 제조 방법.The evaporation deposition process is performed by controlling the electron beam power value so that the evaporation rate of the aluminum silicon alloy is in the range of 0.5 ㎛ / 1.5 ~ 1.5 ㎛ / minute.
KR1020050096121A 2005-10-12 2005-10-12 Manufacturing method of al-si alloy films KR100689157B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050096121A KR100689157B1 (en) 2005-10-12 2005-10-12 Manufacturing method of al-si alloy films

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050096121A KR100689157B1 (en) 2005-10-12 2005-10-12 Manufacturing method of al-si alloy films

Publications (1)

Publication Number Publication Date
KR100689157B1 true KR100689157B1 (en) 2007-03-02

Family

ID=38102317

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050096121A KR100689157B1 (en) 2005-10-12 2005-10-12 Manufacturing method of al-si alloy films

Country Status (1)

Country Link
KR (1) KR100689157B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199671A (en) 1984-10-22 1986-05-17 Victor Co Of Japan Ltd Method and device for forming thin film
JPS6425971A (en) * 1987-07-18 1989-01-27 Kobe Steel Ltd Steel product plated with al-si alloy by vacuum deposition and having high corrosion resistance and production thereof
KR19990054142A (en) * 1997-12-26 1999-07-15 이구택 Method of manufacturing aluminum-silicon deposited aluminum sheet for brazing
KR100276336B1 (en) 1996-12-23 2000-12-15 이구택 The al-silico oxide composite sheet and the same method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199671A (en) 1984-10-22 1986-05-17 Victor Co Of Japan Ltd Method and device for forming thin film
JPS6425971A (en) * 1987-07-18 1989-01-27 Kobe Steel Ltd Steel product plated with al-si alloy by vacuum deposition and having high corrosion resistance and production thereof
KR100276336B1 (en) 1996-12-23 2000-12-15 이구택 The al-silico oxide composite sheet and the same method
KR19990054142A (en) * 1997-12-26 1999-07-15 이구택 Method of manufacturing aluminum-silicon deposited aluminum sheet for brazing

Similar Documents

Publication Publication Date Title
TW201807223A (en) Protective metal oxy-fluoride coatings
KR100736664B1 (en) Substrate with ITO transparent conductive film and method for producing same
WO2008007180A1 (en) Glass with scratch-resistant coating
JPS6130661A (en) Coating forming device
US3216710A (en) Aluminum vaporizer
KR20010052308A (en) Material and method for coating glass forming equipment
KR100711488B1 (en) Method for manufacturing aluminum-magnesium alloy films
KR100689157B1 (en) Manufacturing method of al-si alloy films
CN102051497B (en) Preparation methods of gold and silver embedded target and film thereof
Guenther et al. Corrosion-resistant front surface aluminum mirror coatings
KR100957928B1 (en) Method for manufacturing Al-Mg alloy films
KR20150076467A (en) Aluminum coating layer with controllable structure and the method thereof
KR101245324B1 (en) Aluminum coated steel sheet and method for manufacturing the same
Hashizume et al. Fabrication of Tantalum nitride thin film using the low vacuum magnetron sputtering system
KR20060070751A (en) Forming method of aluminum coatings by sputtering
Gangalakurti et al. Influence of Deposition Conditions on Properties of Ta2O5 Films Deposited by Ion Beam Sputtering Coating Technique
JPH0827566A (en) Production of observation window of vacuum device
KR100384449B1 (en) Manufacturing method of Al films having good adhesion
KR20090067475A (en) Method for forming aluminium and chromium alloy layer on metals
JP2011031511A (en) Heat ray shielding film
JPH07230716A (en) Transparent conductor and its manufacture
JP2646979B2 (en) Method for forming alumina film on glass substrate
WO2022253859A1 (en) Anti-static coating
JPH089767B2 (en) Method for producing low resistance transparent conductive film
KR100489301B1 (en) Manufacturing method for metal film by vacuum evaporation

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130222

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140224

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150217

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160223

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee