KR100668940B1 - 모터의 베어링 지지 구조 - Google Patents

모터의 베어링 지지 구조 Download PDF

Info

Publication number
KR100668940B1
KR100668940B1 KR1020057024141A KR20057024141A KR100668940B1 KR 100668940 B1 KR100668940 B1 KR 100668940B1 KR 1020057024141 A KR1020057024141 A KR 1020057024141A KR 20057024141 A KR20057024141 A KR 20057024141A KR 100668940 B1 KR100668940 B1 KR 100668940B1
Authority
KR
South Korea
Prior art keywords
rotor
metal member
bearing
motor
washer
Prior art date
Application number
KR1020057024141A
Other languages
English (en)
Other versions
KR20060029227A (ko
Inventor
켄타 하타노
소츠오 미요시
Original Assignee
미츠비시덴키 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 미츠비시덴키 가부시키가이샤 filed Critical 미츠비시덴키 가부시키가이샤
Publication of KR20060029227A publication Critical patent/KR20060029227A/ko
Application granted granted Critical
Publication of KR100668940B1 publication Critical patent/KR100668940B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/06Means for converting reciprocating motion into rotary motion or vice versa
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/173Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings
    • H02K5/1732Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Motor Or Generator Frames (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

몰드 성형한 회전자(12)에 금속 부재(22)를 일체화하고, 이 금속 부재(22)를 통하여 베어링(16)을 회전자(12)로 지지하였다. 그때, 금속 부재에 와셔(24)를 고정하고, 이 와셔로 상기 베어링의 회전부를 지지함으로써, 베어링 지지 성능, 내구성이 향상된다. 모터 출력 축의 이동을 제한하는 스토퍼 플레이트(21)를 금속 부재(22)로서 이용함으로써, 부품 수를 늘리는 일 없이, 베어링 지지 성능, 내구성을 향상시킬 수 있다. 각 금속 부재(22)의 기단부는 회전자(12)와 일체적으로 몰드 성형함으로써, 금속 부재(22)의 지지를 확실하게 할 수 있다.
모터, 베어링, 밸브

Description

모터의 베어링 지지 구조{BEARING HOLDING STRUCTURE FOR MOTOR}
본 발명은, 전동 제어 밸브를 구동하는 모터의 베어링 지지 구조에 관한 것이다.
종래, 전동 제어 밸브를 구동하는 모터의 회전자를 베어링으로 회전 가능하게 지지한 모터의 베어링 지지 구조로서, 「내연 기관의 EGR(배기 가스 환류) 밸브를 구동하는 모터의 로터부는, 인서트 성형에 의해 마그넷, 볼베어링 및 이들을 지지한 수지제의 마그넷 홀더가 일체적으로 성형되어 있다」고 하는 예가 있다(예를 들면, 특허 문헌 1 참조).
구체적으로는, 회전자를 구성하는 마그넷 홀더의 일부가 플랜지 형상으로 돌출하여 회전자를 지지하는 베어링의 내륜을 지지하는 구조로 되어 있다.
그러나, 이와 같은 베어링 지지 구조에서는, 베어링 지지 강도로서 수지에 의한 지지 강도밖에 확보할 수 없고, 신뢰성, 내구성의 점에서 우려가 있다. 특히 전동 제어 밸브를 구동하는 고출력의 모터의 경우, 모터의 출력이 출력 축으로부터 회전자를 통하여 베어링 내륜 지지부에 전하여져서 베어링 내륜을 고정하는 수지가 파손되어, 모터의 동작 불량의 원인으로 된다.
특허 문헌 1 : 특개평10-82349호 공보
종래의 모터의 베어링 지지 구조는, 베어링 지지 강도로서 수지에 의한 지지 강도밖에 확보할 수 없고, 신뢰성, 내구성이 낮다는 과제가 있다.
본 발명은 상기한 바와 같은 과제를 해결하기 위해 이루어진 것으로, 신뢰성, 내구성을 향상시킨 모터의 베어링 지지 구조를 얻는 것을 목적으로 한다.
본 발명에 관한 모터의 베어링 지지 구조는, 회전자와 일체적으로 몰드한 금속 부재를 통하여 베어링을 회전자에 지지한 것이다.
또한, 본 발명에 관한 모터의 베어링 지지 구조는, 축선 방향으로 왕복 이동하는 모터 축의 이동을 제한하도록 회전자와 일체적으로 몰드한 금속 부재를 통하여, 베어링을 회전자에 지지한 것이다.
이로써, 수지에 의한 지지 강도보다도 강대한 지지력을 갖는 금속 부재를 이용하여 베어링을 지지하도록 구성하였기 때문에, 회전자 베어링부의 신뢰성, 내구성의 향상을 도모할 수 있다.
또한, 모터 축의 이동을 제한하는 금속 부재를 이용하여 베어링을 지지하도록 구성하였기 때문에, 부품 수를 늘리는 일 없이, 베어링을 강고하게 지지할 수 있다.
도 1은 전동 제어 밸브의 전체 구성을 도시한 단면도.
도 2는 도 1에 도시한 전동 제어 밸브의 아래의 베어링부 부근을 확대하여 도시한 단면도.
도 3은 금속 부재를 예시한 사시도.
도 4는 금속 부재를 예시한 사시도.
도 5는 전동 제어 밸브의 아래의 베어링부 부근을 확대하여 도시한 단면도.
도 6은 전동 제어 밸브의 아래의 베어링부 부근을 확대하여 도시한 단면도.
도 7은 전동 제어 밸브의 아래의 베어링부 부근을 확대하여 도시한 단면도.
도 8은 일체화 금속 부재의 평면도.
도 9는 일체화 금속 부재의 정면도.
도 10은 하면도.
도 11은 일체화 금속 부재로 지지된 와셔의 단면을 도시한 부분 단면도.
도 12는 일체화 금속 부재로 지지된 와셔의 하면도.
이하, 본 발명을 보다 상세히 설명하기 위해, 본 발명을 실시하기 위한 최선의 형태에 관해, 첨부한 도면에 따라 설명한다.
실시의 형태 1
도 1은 본 발명의 실시의 형태 1에 의한 모터 베어링 지지 구조를 구비한 전동 제어 밸브를 도시한 EGR 밸브 장치의 단면도이고, 도 2는 베어링부를 확대하여 도시하고 있다. 이들의 도면을 참조하면서 설명한다.
도 1에 도시한 EGR 밸브 장치(1)는, 엔진으로부터의 배기 가스를 순환시키는 유체 통로(배기 가스 환류로)(3)를 형성하고 있는 밸브 하우징(2)을 구비하고 있다. 이 밸브 하우징(2)에는 밸브 로드(4)가 축 방향으로 이동 가능하게 부착되어 있다. 그 밸브 로드(4)는, 상기 밸브 하우징(2) 내에 부착된 밸브 시트(6)에 접리(接離) 가능한 밸브(5)를 갖고 있다. 상기 밸브 로드(4)는, 이것에 일체적으로 끼워 부착된 스프링 홀더(7)와 상기 밸브 하우징(2)의 외측 오목부의 저벽과의 사이에 개재된 스프링(8)에 의해 상방향(밸브 폐쇄 방향)으로 가세되어 있다. 또한, 밸브 로드(4)는 두부(4a)를 일체로 갖고 있다.
그리고, 밸브 하우징(2)의 외측에는, 밸브 로드(4)를 축방향으로 구동하기 위한 전제(電制) 모터(10)가 장착되어 있다. 이 전제 모터(10)는 고정자로서의 코일(11)과 이 코일(11)의 내부에 배치된 회전자(12)와, 이 회전자(12)의 중심구멍부에 나사결합된 스크류 로드부(13)를 일단측에 가지고 축방향으로 이동 가능한 모터 출력 축으로서의 모터 샤프트(14)를 구비한 구성으로 되어 있다. 전제 모터로서는, 스크류 로드부(13)를 넣을 수 있는 타입의 것을 적용할 수 있다. 예를 들면 DC 모터, 스텝 모터를 들 수 있다. 본 예의 밸브에서는 고출력이 요구되기 때문에, DC 모터가 주된 대상으로 된다. 회전자(12)는 상하의 베어링(15, 16)에 의해 회전 자유로우며 일정 범위만 축방향으로 이동 가능하게 지지되어 있다.
여기서, 회전자(12)의 하측의 베어링(16)의 외륜(16b)은, 전제 모터(10)의 모터 하우징(10a)의 하단 개구부에 끼워부착되어 있는 보스 부재(누름 부재)(17)와의 사이에 개재된 와셔(18)에 의해, 여압(與壓)이 주어져서 축방향으로 탄성적으로 이동할 수 있도록(可動) 지지되어 있다. 또한, 보스 부재(17)는 밸브 하우징(2)의 상단과 모터 하우징(10a)과의 사이에 끼워 넣어지고, 이들 모터 하우징(10a), 보스 부재(17), 밸브 하우징(2)은 체결 볼트(19)에 의해 일체적으로 체결 고정되어 있 다.
베어링(16)의 내륜(16a)은, 회전자(12)에 본 발명에 관한 지지 수단인 금속 부재(22)의 일부를 일체화하고, 이 금속 부재(22)를 통하여 지지하는 구성으로 하고 있다. 도면의 예에서는 금속 부재(22)는 L자 모양으로 절곡한 절곡편으로 이루어지고, 그 기단(基端)측이 회전자(12)와 일체화되고, 타단측의 단부를 코킹하여 내륜(16a)에 맞붙이고 있다. 이와 같이, 수지에 의한 지지 강도보다도 강대한 지지력을 갖는 금속 부재(22)를 이용하여 베어링(16)의 내륜(16a)을 지지하기 때문에, 회전자 베어링부의 신뢰성, 내구성의 향상을 도모할 수 있다.
금속 부재(22)는, 회전자(12)의 회전 중심축(O-O)의 주위에 균등한 간격을 두고 복수 개소에서 베어링의 회전부, 즉 내륜(16a)을 지지하도록 구성하고 있다. 이로써, 안정된 지지를 도모할 수 있고, 베어링 지지의 신뢰성이 향상된다. 도 1, 도 2는 단면도이기 때문에, 좌우 2개소에 금속 부재(22)가 도시되어 있지만, 회전 중심축(O-O)의 주위에 90도마다 4개소에서 내륜(16a)을 지지하고 있다. 물론, 2개소, 3개소, 또는 6개소 등, 지지하는 개소는 필요에 따라 임의로 정할 수 있다.
금속 부재(22)의 기단부는, 회전자(12)와 일체화되어 있다. 이 일체화의 수단으로서는, 접착, 나사 고정, 맞물림(계합(係合)) 등 어느 것이라도 좋지만, 본 예에서는, 기단부를 회전자(12)와 일체적으로 몰드 성형하였다. 몰드 성형함으로써, 회전자(12)와의 일체화 형성을 용이하며, 확실하게 행할 수 있다.
종래 기술에서는, 베어링을 회전자(12)에 인서트 성형할 때, 적지않게 성능 저하를 미치는 공정을 거치고 있다. 예를 들면, 베어링을 인서트 성형으로 지지할 때는, 작업 공정에서 고온의 금형에 베어링을 세트할 필요가 있기 때문에, 베어링 내부의 그리스의 점성 저하가 우려되지만, 본 실시의 형태 1의 발명에 의하면, 베어링(내륜(16a))은 금속 부재(22)에 의해 회전자에 지지되기 때문에, 회전자(12)에 인서트 성형할 필요가 없어지고, 이로써, 베어링 내부의 그리스의 점성 저하는 없다.
또한, 종래 기술에서는, 베어링을 회전자에 인서트 성형할 때, 베어링을 덜커덕거림 없이 지지하는 궁리, 배려가 필요하여, 조립 공정(제작 방법)이 복잡, 곤란하였었다. 예를 들면, 베어링을 인서트 성형으로 지지하는 데는, 성형시에 금형으로 베어링을 고정할 필요가 있고, 그 고정 하중이 크면 베어링이 변형하여 성능이 저하되기 때문에, 이것을 고려하여야 했지만, 본 실시의 형태 1의 발명에 의하면, 베어링(내륜(16a))은 금속 부재(22)에 의해 회전자가 지지되기 때문에, 이러한 고려는 불필요하고 작업이 용이하게 된다.
모터 샤프트(14)의 하단(밸브 로드(4)와의 피접속부)에는 코킹용의 돌기부(14a)가 일체 형성되어 있다. 이 돌기부(14a)는 플레이트(20)를 통하여 밸브 로드(4)와 연결되어 있다. 스크류 로드부(13)는 수나사로 되어 있고, 회전자(12)의 중심구멍부에 형성된 암나사에 나사결합되어 있다. 스크류 로드부(13)의 하방은 스크류 로드부(13)보다도 대경(大徑)의 모터 샤프트(14)로 되어 있고, 이 경차(經差)에 의한 단부(段部)(14b)가 형성되어 있다.
회전자(12)의 중심구멍부의 하단부에는 금속제의 링형상을 한 스토퍼 플레이트(21)가 회전자(12)와 일체적으로 몰드되어 있다. 스토퍼 플레이트(21)는 회전자 (12)의 중심구멍부에 연통하는 대경의 구멍 내에서 원형의 노출 맞닿음면(當接面)(21a)을 형성하고 있고, 이 원형의 노출 맞닿음면(21a)에 상기 단부(14b)가 접리 가능하다(도 2의 확대도 참조). 도 1, 도 2에서는 노출 맞닿음면(21a)에 단부(14b)가 맞닿은 상태가 도시되어 있다. 또한, 모터 샤프트(14)는 보스 부재(17)를 관통하고 있지만, 이 관통부에서 축방향으로의 이동은 가능하지만 회전할 수 없는 지지 수단, 예를 들면, D형 끼워맞춤 또는 키 등의 적절한 수단을 이용하여 지지되어 있다.
도 1에 도시한 EGR 밸브 장치(1)의 동작의 개요를 설명한다.
도 1에서, 원형의 노출 맞닿음면(21a)에 단부(14b)가 맞닿아 있는 때, 밸브(5)는 신장성의 스프링(8)의 탄성에 의해 착좌(着座)하여 있고, 두부(4a)와 코킹용 돌기부(14a)는 플레이트(20) 내에서 이간하여 밸브(5)의 착좌를 확실하게 하고 있다. 전제 모터(10)가 구동되고, 회전자(12)가 소정 방향으로 회전함으로써, 회전자(12)의 회전 운동이 모터 샤프트(14)의 하방향으로의 운동으로 변환되어, 모터 샤프트(14)가 하방향으로 이동한다. 이에 수반하여 원형의 노출 맞닿음면(21a)으로부터 단부(14b)가 떨어지고, 동시에, 코킹용 돌기부(14a)가 두부(4a)에 근접하고, 마침내 맞닿으면, 그 이후는 스프링(8)의 탄성력이 모터 샤프트(14)에 작용하고, 스크류 로드부(13)를 통하여 회전자(12) 및 상방향으로의 탄성력을 받는다. 회전자(12)가 회전함으로써 스프링(8)의 탄성력에 대항하여 밸브 로드(4)가 압하되고, 밸브(5)가 열린다. 밸브(5)의 개방도는 전제 모터(10)의 회전량에 의해 제어된다.
밸브(5)를 닫을 때는, 회전자(12)를 역전시킴으로써, 모터 샤프트(14)가 상 방향으로 이동하고, 그 이동량에 따라 밸브 로드(4)가 추종하여 상방향으로 이동한다. 이윽고 밸브(5)가 밸브 시트(6)의 좌면에 착좌하면, 이후는 스프링(8)의 탄성력은 착좌한 밸브(5)가 받기 때문에 밸브 로드(4)의 상방향으로 이동은 멈추고, 두부(4a)로부터 코킹용 돌기부(14a)가 위로 떨어져 가고, 원형의 노출 맞닿음면(21a)에 단부(14b)가 맞닿은 후에 회전자(12)의 회전이 정지된다. 이와 같이, 밸브(5)가 착좌한 후에 원형의 노출 맞닿음면(21a)에 단부(14b)를 맞닿게 함으로써, 모터 샤프트(14)의 최대 인입(引入) 위치를 규제하여 착좌를 확보하고 있다.
상기 EGR 밸브 장치(1)의 동작의 개요로부터 알 수 있는 바와 같이, 회전자(12)는 스프링(8)에 의해 상방향으로의 탄성력(F)을 반복하여 받기 때문에, 본 발명에 관한 금속 부재(22)의 내륜(16a)에 걸리는 부위도 이 탄성력에 의한 반복 응력이 작용하고, 과혹한 상황에 있다. 그러나, 종래 구조와 같이 회전자와 일체의 몰드 수지로 지지하는 구성에 비하여, 본 발명은 강도를 갖는 금속 부재로 지지함에 의해 신뢰성이 향상된다.
실시의 형태 2
실시의 형태 1에서 설명한 도 2에 도시한 금속 부재(22)는, 회전자(12)의 내부에 인서트된 기단부의 형상이 직선형상이고, 이것으로는 실시의 상황에 따라서는, 회전자(12)로부터 인발(引拔)되는 방향으로 탄성력(F)에 의해 내륜(16a)의 지지가 불안정하게 될 경우도 고려된다. 그래서, 본 실시의 형태 2에서는, 도 3에 도시한 바와 같이, 금속 부재(22)의 기단부를 절곡하여 L자 모양의 볼록부(22a)를 형성하고, 또는 도 4에 도시한 바와 같이, 금속 부재(22)의 기단부를 절곡하여 T자 모양의 볼록부(22b)를 형성한다. 이로써, 금속 부재(22)의 회전자(12)에 대한 일체화 기능이 향상되고, 베어링의 내구성, 신뢰성이 향상된다. 이 이외에도, 본 실시의 형태 2에서는, 상기한 실시의 형태 1에서의 구성상의 이점을 모두 구비하고 있다.
실시의 형태 3
상기한 실시의 형태 1, 2에서 설명한 금속 부재(22)는 그 선단부를 직접, 코킹하여 내륜(16a)에 맞붙여서 지지하고 있다. 그러나, 이와 같은 코킹 공법에서는, 매우 신중하게 작업하지 않으면, 베어링이 파손될 우려가 있다. 또한, 복수의 각 금속 부재(22)에 관해 균등한 맞닿는 힘으로 내륜(16a)을 지지한 것도 곤란하다고 생각된다. 그래서, 본 실시의 형태 3에서는, 각 금속 부재에 와셔를 고정하고, 이 와셔로 베어링의 회전부(내륜(16a))를 지지하는 것으로 하였다.
도 5에 있어서, 본 실시의 형태 3에 의한 발명에서는, 금속 부재(23)는 상기한 실시의 형태 1, 2에 있어서의 금속 부재(22)와 마찬가지로, 그 기단부(도면중의 상단부)를 회전자(12)의 내부에 수납한 상태에서 일체로 몰드 성형되어 있다. 해당 기단부의 형상은 상기 실시의 형태 2에서 도 3에 의해 설명한 바와 같이 L자 모양의 볼록부(23a)로 형성되고 회전자(12)와의 일체화가 강화되어 탄성력(F)에 견디도록 하고 있다. 또한, 형상적으로는 와셔의 부착을 고려하여, 금속 부재(23)의 하단측이 회전자(12)의 하방으로 돌출하도록 하고 있다.
금속 부재(23)는, 회전자(12)의 회전 중심축(O-O)의 주위에 동등한 간격을 두고 복수 개소에 마련되어 있다. 와셔(24)는 그 외경이 내륜(16a)에 겹쳐지는 크 기로서, 그 중앙부에는 모터 샤프트(14)가 관통할 수 있는 크기의 구멍이 마련되고, 또한, 복수 마련된 각 금속 부재(23)에 대응한 위치에, 이들 금속 부재(23)가 관통할 수 있는 크기의 구멍이 형성되어 있다.
도 5에 도시한 바와 같이, 와셔(24)에 형성된 상기 각 구멍을 모터 샤프트(14) 및 각 금속 부재(23)에 의해 관통시키고, 또한, 내륜(16a)에 대해 해당 와셔(24)가 균등한 압력으로 맞닿도록 눌러댄다. 이때, 각 금속 부재(23)의 하단부는 와셔(24)를 뚫고나와 하방으로 돌출하고 있다. 이 하방으로 돌출한 금속 부재(23)와 와셔(24)를 용접에서, 또는 코킹함으로써, 이들 금속 부재(23)와 와셔(24)를 고정한다. 이와 같이, 와셔(24)로 내륜(16a)을 지지하는 구조에서는, 내륜(16a)에 대해 균일한 하중을 걸어서 지지하는 것이 용이하게 되고, 베어링의 신뢰성을 손상시키지 않는다. 금속 부재(22)의 코킹에 의해 직접 내륜을 지지하는 실시의 형태 1, 2의 구조에 비하여, 내륜(16a)에의 영향이 적고, 필요한 지지 강도를 확보하는 재질 및 치수를 적용함에 의해 베어링에의 데미지도 없어지고, 베어링의 신뢰성, 내구성을 향상시킬 수 있다. 금속 부재(23)의 수는 와셔(24)를 이용하는 본 실시의 형태에서는, 2개로는 불안정하기 때문에, 바람직하게는 3개 이상이 적당하다.
특히, 와셔(24)를 이용한 구성에서는, 실시의 형태 1, 2에서와 같이 복수의 금속 부재로 개개로 직접 내륜(16a)을 지지하는 예와 비교하여, 양산 공정에서도 안정하게 내륜(16a)을 지지하는 성능이 확보된다. 즉, 와셔(24)를 개재시킴으로써, 코킹하거나, 용접하거나 하는 수단으로 금속 부재(23)에 와셔(24)를 고정하여도 베어링까지 영향이 미치기 어렵기 때문에, 베어링의 정밀도에 주는 영향이 적다.
도 6에 도시한 예는, 도 5에 의해 설명한 본 실시의 형태 3의 변형예로서, 도 5에 도시한 예와의 차이는, 금속 부재(23)의 기단부(도면에서의 상단부)의 형상을 T자 모양의 볼록부(23b)로 한 점뿐이고, 기본적인 기능 성능은 공통되어 있다. 본 실시의 형태 3에서도, 상기한 실시의 형태 1에서 기술한 이점을 모두 구비하고 있다.
실시의 형태 4
전동 제어 밸브를 구동하는 모터의 회전자에는, 이 회전자의 회전에 수반하여 왕복 이동하여 밸브의 개폐를 행하는 모터 출력 축에 맞닿아서 해당 모터 출력 축의 이동을 제한하고, 모터의 출력 축의 최대 인입 위치를 규제하는 스토퍼 플레이트(21)를 마련한 것이 있다. 본 실시의 형태 4는, 이와 같은, 스토퍼 플레이트(21)를 구비한 타입의 전동 제어 밸브에 대해 적용할 수 있다. 본 실시의 형태 4를 상기한 실시의 형태 3과 대비하여 설명하면, 상기 실시의 형태 3에서는 도 5, 도 6에 도시한 바와 같이 스토퍼 플레이트(21)와는 별개로 금속 부재(23)가 마련되어 있다. 이것에 대해, 본 실시의 형태 4에서는 도 7에 도시한 바와 같이, 지금까지의 예에서의 스토퍼 플레이트(21)와 금속 부재(23)를 대신하여, 이들 스토퍼 플레이트(21)와 금속 부재(23)를 일체화한 일체화 부재(25)를 마련하였다.
이 일체화 금속 부재(25)는, 노출 맞닿음면(21a)을 구성한 저부(26), 빠짐방지(拔止) 기능을 다하는 빠짐방지부(27), 와셔(30)를 지지하는 지지 플레이트부(28)를 갖고 있고 링형상을 하고 있다. 중심부에는 구멍(29)이 형성되어 있다. 이 구멍(29)은 스크류 로드부(13)의 지름보다 크고, 모터 샤프트(14)의 지름보다 작 다. 이 구멍(29)의 주위에는 노출 맞닿음면(21a)이 형성된다.
이 일체화 금속 부재(25)를 위에서 본 형상을 도 8, 정면에서 본 형상을 도 9, 하방에서 본 형상을 도 10에 각각 도시한다. 이들의 도면에서, 회전자(12) 내에 몰드 일체화되고, 탄성력(F)과 평행한 방향으로 돌출하고 있는 빠짐방지부(27)는, 그 선단부가 역삼각형 형상으로 형성되고, 지지 플레이트부(28)에는 요철부(28a)가 형성되어 몰드 일체화에 있어서의 수지의 회전에 의한 강고한 일체화를 가능하게 하고 있다. 지지 플레이트부(28)의 하단부에는 U자 모양의 홈(28b)이 형성됨으로써 두갈래로 나뉘어져 있다.
도 7에 도시한 바와 같이, 일체화 금속 부재(25)는 그 중심축선을 회전자(12)의 중심축선과 합치시키고, 저부(26)의 내측면이고, 또한 구멍(29)의 연부(緣部) 부근의 노출 맞닿음면(21a)을 회전자(12)로부터 노출시키고, 빠짐방지부(27)와 지지 플레이트부(28)의 기단부를 회전자(12)의 내부에 위치시키고 몰드로 일체화시켜서 마련되어 있다.
상기 실시의 형태 3에서의 도 5, 도 6에 도시한 와셔(24)에 준한 구성의 와셔(30)가, 구멍(29)의 동심원상에 등간격으로 형성된 구멍부가 지지 플레이트부(28)에 의해 관통된 다음, 그 와셔(30)의 외주 연부가 내륜(16a)에 맞닿은 상태에서 지지 플레이트부(28)에 지지 고정되어 있다. 이 와셔(30)의 고정 순서로서는, 임의의 대향하는 지지 플레이트(28)에 관해, 와셔(30)를 관통한 부분으로서, 홈(28b)으로 두 갈래로 분기된 부위를 이용하여 와셔(30)에 용접 가고정한 다음, 나머지 지지 플레이트부(28)의 하단부를 코킹하여 고정한다. 코킹 후의 상태는 도 11 에 둥근 표시로 둘러싸서 지시한 지시부(31)를 확대한 도 7에 도시한 바와 같이, 홈(28b)으로 분기된 2편(片)의 각각을 열리는 방향으로 변형시켜서 코킹함에 의해 고정하고 있다.
코킹으로 고정하는 방법과, 용접으로 고정하는 방법에서는, 용접의 쪽이 강도가 강하다. 그러나, 와셔(30)를 고정할 때에는 내륜(16a)에 눌러대고 나서 고정하지 않으면, 접촉 불량에 의한 덜커덕거림이 나와 버릴 우려가 있다. 이것을 회피하기 위해 모두를 용접하지 않고, 복수 개소의 포인트로 용접으로 고정하고, 이 용접 개소를 지주로 삼고, 나머지 복수 개소를 코킹에 의해 내륜(16a)에 눌러댐으로써, 내륜(16a)의 균등 간격의 위치에서 와셔(30)를 통하여 내륜(16a)을 지지한다. 그 후, 코킹부도 용접하면, 강도가 확보된다.
이와 같이, 용접, 코킹이라는 순서를 밟아 복수 개소에 고정함으로써, 베어링 덜커덕거림 방지를 꾀하는 코킹부와, 지지 강도 향상을 꾀하는 용접부로 와셔(30)를 지지하고, 이로써, 베어링의 조립시 덜커덕거림을 방지하고, 보다 강도를 향상시킴에 의해 전동 제어 밸브의 신뢰성, 내구성의 향상을 가능하게 하였다.
도 7에 도시한 지지 플레이트부(28)에 의한 와셔(30)의 지지 상태를 아래에서 본 양상을 도 12에 도시한다. 도 7에서 구멍(29)의 주위에 4개의 지지 플레이트부(28)의 코킹부가 보인다. 와셔(30)의 외연부에 따라 원형의 윤곽으로 베어링(16)을 도시하고 있다. 2중의 파선으로 도시한 부위가 내륜(16a)에 상당한다.
종래, 스토퍼 플레이트(21)는, 회전자(12)에 인서트 성형되어 있을 뿐으로 해당 스토퍼 플레이트(21)의 지지 강도를 향상시키는 기능은 없고, 탈락, 파손이라 는 부적합함이 생기고 있지만, 본 실시의 형태 4에서 설명한 바와 같이, 내륜(16a)을 지지하기 위한 금속 부재(실시의 형태 1 내지 3에서의 금속 부재(22, 23) 등)와 일체화하여 일체화 금속 부재(25)를 구성함으로써, 부품 수를 늘리는 일 없이 복수의 각 지지 플레이트부(28)의 정밀도도 향상시킬 수 있다. 또한, 회전자(12)에의 인서트 부가 늘어남으로써 회전자(12)와의 일체화가 강화되고, 스토퍼 플레이트로서의 기능 부분 및 금속 부재로서의 기능 부분의 각각 부재의 회전자(12)와의 일체화가 강화된다. 본 실시의 형태 4에서도, 여기서 기술한 외에, 상기한 실시의 형태 1에서 기술한 이점을 모두 구비하고 있다. 결과로서, 전동 제어 밸브의 성능이 장기간에 걸쳐서 안정하게 확보된다.
본 발명은, 내연 기관의 EGR(배기 가스 환류) 밸브를 구동하는 모터의 베어링 지지 구조에 이용하는데 적합하다.

Claims (4)

  1. 몰드 성형한 회전자와, 이 회전자와 일체적으로 몰드한 금속 부재와, 이 금속 부재를 통하여 상기 회전자에 회전 가능하게 지지한 베어링을 구비한 것을 특징으로 하는 모터의 베어링 지지 구조.
  2. 몰드 성형한 회전자의 회전에 의해 축선 방향으로 왕복 이동하는 모터 축과, 이 모터 축이 맞닿아서 해당 모터 축의 이동을 제한하도록 상기 회전자와 일체적으로 몰드한 금속 부재와, 이 금속 부재를 통하여 상기 회전자에 회전 가능하게 지지한 베어링을 구비한 것을 특징으로 하는 모터의 베어링 지지 구조.
  3. 제 1항에 있어서,
    회전자로부터 돌출한 금속 부재에 끼워맞추어진 와셔를 베어링에 가압시킨 상태에서 해당 금속 부재에 고정한 것을 특징으로 하는 모터의 베어링 지지 구조.
  4. 제 1항에 있어서,
    금속 부재의 몰드 부분에 요철부를 형성한 것을 특징으로 하는 모터의 베어링 지지 구조.
KR1020057024141A 2004-06-15 2005-03-10 모터의 베어링 지지 구조 KR100668940B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2004-00177034 2004-06-15
JP2004177034A JP4417181B2 (ja) 2004-06-15 2004-06-15 モータの軸受保持構造

Publications (2)

Publication Number Publication Date
KR20060029227A KR20060029227A (ko) 2006-04-05
KR100668940B1 true KR100668940B1 (ko) 2007-01-12

Family

ID=35510045

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020057024141A KR100668940B1 (ko) 2004-06-15 2005-03-10 모터의 베어링 지지 구조

Country Status (6)

Country Link
US (1) US7600920B2 (ko)
JP (1) JP4417181B2 (ko)
KR (1) KR100668940B1 (ko)
CN (1) CN1806376B (ko)
DE (1) DE112005000035B4 (ko)
WO (1) WO2005124970A1 (ko)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4531359B2 (ja) * 2003-07-18 2010-08-25 三菱電機株式会社 モータ
US8294311B2 (en) 2006-03-06 2012-10-23 Honda Motor Co., Ltd. Electric motor and electric power steering apparatus
JPWO2008069016A1 (ja) 2006-12-04 2010-03-18 三菱電機株式会社 直流モータ
KR101044547B1 (ko) * 2007-02-02 2011-06-27 미쓰비시덴키 가부시키가이샤 직류 모터
JP2008228482A (ja) * 2007-03-14 2008-09-25 Nippon Densan Corp 軸受機構およびモータ
KR101193295B1 (ko) 2007-12-27 2012-10-19 미쓰비시덴키 가부시키가이샤 밸브 장치
KR101028247B1 (ko) * 2008-10-14 2011-04-11 엘지이노텍 주식회사 스텝 액츄에이터
CN101882829B (zh) * 2010-06-09 2012-06-06 北京市星光凯明动感仿真模拟器中心 大推力直联式电动缸
JP5875777B2 (ja) * 2011-03-31 2016-03-02 株式会社不二工機 電動弁
KR101865948B1 (ko) 2012-06-05 2018-06-11 현대자동차주식회사 전기자동차의 구동모터
CN111919366B (zh) * 2018-03-29 2023-05-16 日本电产株式会社 马达
WO2019189303A1 (ja) * 2018-03-29 2019-10-03 日本電産株式会社 モータ
JP7275437B2 (ja) * 2018-03-29 2023-05-18 ニデック株式会社 モータ
CN110285224B (zh) * 2019-07-03 2020-10-30 上海恒温控制器厂有限公司 一种电子流量调节阀

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1772778A (en) * 1929-03-25 1930-08-12 Sterling Pump Works Deep-well turbine-pump drive
US3777195A (en) * 1972-02-08 1973-12-04 Bendix Corp Support for generator bearing
US4048530A (en) * 1975-05-05 1977-09-13 The Superior Electric Company Electric motor with plastic encapsulated stator
JP2598107B2 (ja) * 1988-10-07 1997-04-09 ファナック株式会社 電動機の軸受保持部構造
US4938452A (en) * 1988-12-10 1990-07-03 Aisan Kogyo Kabushiki Kaisha Air control device for internal combustion engine
US5831360A (en) * 1995-12-15 1998-11-03 Iai Corporation Actuator
JPH1082349A (ja) * 1996-07-19 1998-03-31 Hitachi Ltd 内燃機関用モータ式流量制御弁
DE19730998C2 (de) * 1996-07-19 2001-10-31 Hitachi Ltd Motorbetätigtes Durchflußmengensteuerventil und Abgasrückführungssteuerventil für Verbrennungsmotoren
JP3442643B2 (ja) * 1998-02-27 2003-09-02 三菱電機株式会社 ステップモータ
DE19818059B4 (de) * 1998-04-22 2005-06-23 Interelectric Ag Wälzlageranordnung für Elektrokleinmotoren
KR100402382B1 (ko) * 1999-04-20 2003-10-17 미쓰비시덴키 가부시키가이샤 회전/직동변환 모터용 모터 샤프트 및 그의 제조방법
JP4507050B2 (ja) * 2001-05-28 2010-07-21 株式会社ジェイテクト ステアリング装置
DE50301274D1 (de) * 2002-04-10 2005-11-03 Luk Lamellen & Kupplungsbau Anordnung zur übertragung der schalt- und wählbewegungen zu einem schaltfinger

Also Published As

Publication number Publication date
JP4417181B2 (ja) 2010-02-17
CN1806376A (zh) 2006-07-19
US20080247694A1 (en) 2008-10-09
DE112005000035T5 (de) 2007-05-03
JP2006005987A (ja) 2006-01-05
CN1806376B (zh) 2010-04-21
KR20060029227A (ko) 2006-04-05
WO2005124970A1 (ja) 2005-12-29
DE112005000035B4 (de) 2011-04-14
US7600920B2 (en) 2009-10-13

Similar Documents

Publication Publication Date Title
KR100668940B1 (ko) 모터의 베어링 지지 구조
KR101165317B1 (ko) 전동밸브
JP3631413B2 (ja) 電磁弁及びそれを用いた燃料噴射装置
JP2000249030A (ja) 電磁式燃料噴射弁におけるシール部材の取付け構造
JP4383933B2 (ja) 電動制御弁の出力軸接続構造の製造方法
JP2722766B2 (ja) 燃料噴射ポンプ
US6811137B2 (en) Solenoid valve
JP5321473B2 (ja) 燃料噴射弁
JP3709277B2 (ja) バルブの駆動部と弁軸との連結構造
US6254059B1 (en) Electrically operated flow control valve
WO2015194289A1 (ja) ローラリフタ
KR20010108252A (ko) 배기가스 재순환 밸브장치
KR20010113853A (ko) 배기가스 재순환 밸브장치
JP2001304445A (ja) 電動式コントロールバルブ及びその組み立て方法
JP2023074260A (ja) パイロット式電磁弁
KR101025151B1 (ko) 분할된 자기 궤환 부재를 가진 전기 모터
JP6529673B2 (ja) 車載用アクチュエータ
JP4627116B2 (ja) ソレノイドバルブ
WO2021255986A1 (ja) 燃料噴射弁のプレストローク調整方法
JP4627114B2 (ja) ソレノイドバルブ
JP4615693B2 (ja) 電動式コントロールバルブ
JPH10220626A (ja) ソレノイド式移動機構及びその製造方法
JP2006510846A (ja) スライディング弁
JP2011190847A (ja) ソレノイドバルブ及びその製造方法
US6416035B1 (en) Throttle body

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121227

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20131218

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20141230

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20151217

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20161219

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20171219

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20181219

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20191219

Year of fee payment: 14